Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
9a91646be6446d6746b9362782b88521
mooc-rr
Commits
5f8810cf
Commit
5f8810cf
authored
Jan 15, 2025
by
9a91646be6446d6746b9362782b88521
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
doc: module2 exo3 final
parent
4b899e54
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
141 additions
and
3 deletions
+141
-3
exercice.ipynb
module2/exo3/exercice.ipynb
+141
-3
No files found.
module2/exo3/exercice.ipynb
View file @
5f8810cf
{
{
"cells": [],
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Savoir faire un calcul simple soi-même"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Données d'entrée"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les données d'entrée sont les suivantes :"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"data = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calculs statistiques"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le but est de faire des calculs statistiques sur ces valeurs (moyenne et l'écart-type, le min, la médiane et le max)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Moyenne: 14.113000000000001\n",
"Écart-type: 4.334094455301447\n",
"Min: 2.8\n",
"Médiane: 14.5\n",
"Max: 23.4\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"mean = np.mean(data)\n",
"std_dev = np.std(data, ddof=1)\n",
"minimum = np.min(data)\n",
"median = np.median(data)\n",
"maximum = np.max(data)\n",
"\n",
"print(f\"Moyenne: {mean}\")\n",
"print(f\"Écart-type: {std_dev}\")\n",
"print(f\"Min: {minimum}\")\n",
"print(f\"Médiane: {median}\")\n",
"print(f\"Max: {maximum}\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"## Traçage des données"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous allons désormais tracer une séquence *plot* et un histogramme."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAD8CAYAAABTlCH6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXl8HFeV7leSJcu2ZMuSLMtrbMdbYrzEchyyTCCEkLAm4WUYIHmT9QF5TOABwyP8QhheyOMRZmDgwZAMhEwSXoAQwhLCQMgenBA7lmxZtixbliy1tdiyNkutXep6fxwdd3Wpllvd1V23S/f7/fRr9X6rv6q6X33n3HM0XdehoKCgoKCgoKCQHHKCHoCCgoKCgoKCQjZDiSkFBQUFBQUFhRSgxJSCgoKCgoKCQgpQYkpBQUFBQUFBIQUoMaWgoKCgoKCgkAKUmFJQUFBQUFBQSAFKTCkoKCgoKCgopAAlphQUFBQUFBQUUoASUwoKCgoKCgoKKWBWJr+srKxMX7VqVSa/UkFBQUFBQUEhKVRVVXXpur7I7XUZFVOrVq3C3r170/odjY2NOPfcc9P6HQrJQXEjJxQv8kJxIycUL/LCb240TWsReV3ownwlJSVBD0HBBoobOaF4kReKGzmheJEXQXETOjE1NDQU9BAUbKC4kROKF3mhuJETihd5ERQ3oRNTOTmh26TQQHEjJxQv8kJxIycUL/IiKG5Ct0fk5eUFPQQFGyhu5ITiRV4obuSE4kVeBMVN6MRUNBoNeggKNlDcyAnFi7xQ3MgJxYu8CIqb0ImpsrKyoIegYAPFjZxQvMgLxY2cULzIi6C4CZ2Yam1tDXoICjZQ3MgJxYu8UNzICcWLvAiKm9CJqbVr1wY9BAUbKG7khOJFXihu5ESYedF14LHHgMHBoEeSHILiJnRi6tChQ0EPQcEGihs5oXiRF4obORFmXvbuBW65BXjmmaBHkhyC4iZ0Ymrr1q1BD0HBBoobOaF4kReKGzkRZl4OHKDb/v5gx5EsguImdGKqqqoq6CEo2EBxIycUL/JCcSMnwszLwYN0m60LFoPiJnRiqrKyMughKNhAcSMnFC/yQnEjJ8LMS7aLqaC4CZ2YCvMVQ7ZDcSMnFC/yQnEjJ8LMS7aLqaC40XRdz9iX7dixQ9+7d2/Gvk9BQUFBQUFBDF1dwKJF9P8nPwk89FCw45EBmqZV6bq+w+11oXOmamtrgx6Cgg0UN3JC8SIvFDdyIqy8GBfCZaszFRQ3oRNT69evD3oICjZQ3MgJxYu8UNzIibDywiG+srLsFVNBcRM6MRWJRIIegoINFDdyQvEiLxQ3ciKsvBw8CCxcCKxbl71iKihuQiemFi9eHPQQFGyguJETihd5obiRE7Lz8pvfANdf7/19Bw8Cb3sbUFSUvWIqKG5CJ6b6+vqCHoKCDRQ3ckLxIi8UN3JCdl6efx747W+BkRHx9+h6XEwVFmavmAqKm9CJqYKCgqCHoGADxY2cULzIC8WNnJCdl9On6bazU/w97e1AX1/2i6mguAmdmFJQUFBQUJjJ6OqiWy9iipPPs11MBYXQiakRL76mQkahuJETihd5obiRE7LzkowzxRUFNm3KbjEVFDehE1PFxcVBD0HBBoobOaF4kReKGzkhOy/JiKmDB4ElS4DSUkpAHx0FxsfTM750IihuQiemTp06FfQQFGyguJETihd5EWZuRkaA/v6gR5EcZOYlFgO6u+l/r2LqbW+j/wsL6TYb3amguAmdmFq5cmXQQ1CwgeJGTihe5EWYubnrLuDKK4MeRXKQmZe+PmBykv4XFVOTk0BdHbB5M93PZjEVFDehE1NHjx4NeggKNlDcyAnFi7wIKze6Djz7LNDSEvRIkoPMvHCIDxAXU8ePA8PD4XCmguImdGJqM0trBemguJETihd5ITs39fXA0JD39x05Apw8CQwM+D+mTEBmXpIRU8aVfEB2i6mguAmdmKqqqgp6CAo2UNzICcWLvJCZm/FxoLIS+P73vb/3pZfodmQEmJjwd1yZgMy8cFmEZcu8i6nzz6fbbBZTQXETOjFVWVkZ9BAUbKC4kROKF3khMzfd3eRKJROqe/nl+P/Z6E7JzAs7U+ef701MrVkDzJtH97NZTAXFTejElMxXDDMdihs5oXiRFzJzk8yKMYBWm73yCpCfT/ezUUzJzAuLqU2biBtdd3+PcSUfkN1iSjlTPkHmK4aZDsWNnFC8yAuZuUmmyjYAHDpE7+WVfNlYHkF2XgoLgZUrKRR75ozz68fGKIctm8RUdzdw//20AtEM5Uz5hJqamqCHoGADxY2cULzIC5m5YWfKmPAsAg7xXXst3WajMyUzL6dPA2VlQHk53XcTu0ePUt5aNomp9nbg3nuBw4enPxcUN6ETU5s2bQp6CAo2UNzICcWLvJCZm2SdqZdfBlatik/e2SimZObl9Glg0SJxMWVeyQfIL6Z4XJzjZURQ3IROTB07dizoISjYQHEjJxQv8kJmbtiZ6ukRbzsSiwGvvgpccQW1LAGyU0zJzItXMVVbC8yaBWzYEH9s1iygoEBebgYH6dZKTAXFTejE1PLly4MegoINFDdyQvEiL2Tmhp0pIC6s3FBTA/T2Au96V3aLKdl5MYopt+4qBw+SkOIFAQyZmx2zmGIHzYiguAmdmOoyHuEKUkFxIyfCzMvEBHD33cCJE0GPJDnIzI1RQImG+jhfKtudKZl54ZypsjK6LxLmM4b4GNkgpqycqaC4CZ2YKrSSqgpSQHEjJ8LMS20t8MAD1LokGyEzN8Y5y4uYWreOCkpmq5h65hng298uD+S7H30U+MUv7J8fHKS2MIsWAXl5QEmJMzeDg0BTU/aJKaecqaCOGVcxpWnaCk3TXtY07bCmaYc0Tfvs1OMlmqY9r2law9TtwvQP1x3josF7hYxDcSMnwszLkSN0m20TNkNmbrq7AY6oiKzom5gAXnuNXCkAmD2bQkvZVBrhkUeA668HfvCDuRgdzfz3f+tbwHe/a/8887BoEd2WlzuLKS4tkG1iyinMF9QxI+JMTQD4gq7r5wF4O4BPa5p2PoC7Abyo6/o6AC9O3Q8csVgs6CEo2EBxIyfCzEu2iymZuenqircfEXGm9u0j4cRiCiB3Klu4+c53gNtvBxZO2QZuuUh+Q9eBSIT+7MBuIYf43MQU9wQ2Jp8zskFMWTlTQR0zrmJK1/UOXderp/4fAHAYwDIA1wJ4bOpljwG4Ll2D9IK5c+cGPQQFGyhu5ESYecl2MSUzN93dwNq1QG6umJjifKl3vjP+WDaIKV0HvvpV4AtfAG64AfjRj+jxkyczO47eXhIRJ09SoU0reHWmjh+n21Wrpj8ns5iKRsnVnDVr+nNBHTOecqY0TVsF4AIAuwEs1nW9AyDBBSCYILIJPT09QQ9BwQaKGzkRZl5YTMk6KbhBVm4mJmhyLy8nF0QkzPfyy8B55wEVFfHHZBdTsRjw2c8CX/86cNttlK+0YgU9l2lnihdR6DrQ1mb9mmTE1JIlwJw505+TWUwNDlq7UkBwx4ywmNI0rRDA0wD+h67rwlFuTdM+oWnaXk3T9nZ0dKCrqwsdHR1oa2tDb28vGhsbMTw8jLq6OsRiMVRXVwOI99eprq5GLBZDXV0dhoeH0djYiN7eXrS1tYE/r7m5GdFoFPX19SgvLz9bAZU/g29ra2sxOjqKhoYG9Pf3IxKJoLOzE52dnYhEIujv70dDQwNGR0dRW1tr+Rk1NTWYmJhAfX09otEompub075NExMTodimWCwWum0KA0/z5s2Tept+8pMOXHXVJA4e9MZTa2sb6uvJ8j95clCqbRLlaXBwUMp9b/9+ijXNmnUGCxeOo61tzHGbxseBV1+dxDvfqSfwNGfOBLq6RqTYJiuevvjFbnz/+8DNN3fjRz+Koaam+qwYPHkys+eI+vohMF55pcnyMw4cIJXV03MU0WgU+fm96OkBIhHrfa+pSUd5edRy3xsf70E0qku37zU3N6O7ewRz5kxablNFRYWv53Jh6Lru+gcgD8BzAD5veOwIgCVT/y8BcMTtcyorK/V049ChQ2n/DoXkoLiRE7Lz8vnP6zqg611d3t534gS9D9D19743PWNLN2Tlpq6Oftef/1zXr7xS1y++2Pn1b7xBr3/qqcTHr75a13fuTN84U8WHP6zrGzboeiwWf2xkhLbl61/P7Fh+8IP4/vz449avuftuXc/Li4/3hz+k17e3W7/+nHN0/aabrJ/74hd1fc6clIedFvzt3+r6xo3Wz/l9zADYqwvoJJHVfBqAnwA4rOv6dwxPPQPg5qn/bwbwO28yLj3YuHFj0ENQsIHiRk7IzguHLry2LeEQX16e3KEkJ8jKDSc6l5ZSSMmNG6t8KQCYP19ubqJRoLgY0LT4Y7NnAwsX6hnPmTpxIp4jZFc3jWtM8XidqqCPj9PnrF5t/VmFhVRmYWIitXGnA05hvqCOGZEw36UA/iuAd2matn/q730AvgngKk3TGgBcNXU/cOzfvz/oISjYQHEjJ2TnhSeCZMXUli1yT9hOkJUbLtjJDXXdcqZeew3YvDm+yoxRVCR3aYTBQevl98XFIxkXU5EIsHIliVe7FX3cSobhJKYiEcoJcxJTQHzlnEyw4wUI7pixyIVPhK7ruwBoNk9f6e9wUsf27duDHoKCDRQ3ckJ2XlIRU4WFwPr1wO7d/o8rE5CVG6MzVV5OgmhkhPq5WeHYMeDCC6c/LnsCejRK22jGOefMyXgCOoupgQF7MdXVlShYncQUr+Rbs8b6s4zNjhcsSG7M6cLgYHzbzAjqmAldBXROOFOQD4obOSE7L6mE+davlz+U5ARZuTE6U+yE2LlTsRiFk845Z/pzRUU0WVPqrXyIRq0dkPz8nkCcqRUr6E/UmVq8mG6dxJSbMyXjir5o1D7MF9QxEzoxVVlZGfQQFGyguJETMvOi66k5Uxs2yO9+OEFWbrq6aDn93Llxh8BOTJ06RXWRVq6c/lxREYmtoaHpz8kAu3DS+eeXZNSZmpgA2tvpN1y50jlnyiimFiygnEGrY6epiZ5btsz6s2QWU05hvqCOmdCJKV4SqSAfFDdyQmZe+vvjBQq9iKnhYaClhcRUYSGFoGRMpHVCayvw5pv7Avludi3s0N0dD385hZKAuItiJ6YAecWunQMyMdGGgYHMicCODmByMi6m+vuBM2cSXzM+DvT1JYb5NM2+1tTx4+QW5uZaf6fsYsrOmQrqfBY6MbVt27agh6BgA8WNnJCZF6Pb4UVMHTtGrhY7U4Cck4IdenqAjRuB117bmvHv3r2b8mj27rV/jTE3h50QO35aWujWLswHyCmmdN3eAbnggiUAMle40yhIWZSaQ30cejU6U4CzmLIL8QFyiymnMF9Q57PQian6+vqgh6BgA8WNnJCZF54ENM2bmOKVfEYxJeOEbYennqKJvLq6L+PffegQ3R4+bP8aK2fKLszn5EzNn0+3MnIzPEyCyrqZbiuAzLWU4bAe50wZH2OYq58z7MRUU1N2iqmJCXKr7cRUUOez0Imp1U57h0KgUNzICZl54Ulg7drkxNT69dkppp54gm5HRzO/jIrFj11eDpDoTM2fT33SnJyp+fOtV4QxNzKWR2ARYTVpb9lCCjJTYoo5WbHC3plyElNmBy0aJQ7tVvIB8oopLtVglzMV1PksdGKqvb096CEo2CDM3HR0OIdFZIbMvPAE/ba3eRdTy5fTRJhtYqqlBfjLX+j/tjabjrZphIiYMjpTTnk5/HlWIT5Abm5YRFhN2rpOKiqZMN8f/2jfqNgOkQgVD50/n3ob5uVNF1NcrsJcy4u5Ma6YdFvJB8gbHncSuUBw57PQiamSkpKgh6BggzBz8z//J3DttUGPIjnIzAtfbW/aRMm1opMQr+QD5J6wrfDzn9Ptjh1AX19+xr+fc5zslt9PTlJOl3HSXrTIOcxnFeID5ObGSUytXbsAmubdmaqqAt73PuDHP/b2Pi6LAAA5ObQCz4szNTycWHyziVr7OYopFiuyccPbYSemgjqfhU5MDcm6xlYh1Ny88UY8ATTbIDMvnZ10Nc4TiVulbYCuwLNZTD3xBHDJJcDOncDp03b1ktMHN2eqr49+Y2MxSydnqqUlO50pp3DS+PgQysq8O1PsOP7xj97ed+JEoiC1Ko/Ax4a5yKjVaku3gp0AhW7z8+VzptzCfEGdz0InpnJyQrdJoUFYuenqoiu90VH6yzbIzEtnJ00Gbsvvze85cyY7xdSBA8DBg8CNN9I29/XlYHw8c9/PBTYBezFlFU6yE1MDA0Bvb3Y7U1YOSE5ODhYv9u5M7dpFty+/TOU6RGF291autA7zLVwY79/HsBNTRUWAm4lTWOiPmNq/H3j++dQ/B3B3poI6n8l7Fk0SeXl5QQ9BwQZh5WbPnvj/Mk4KbpCZl9OnvYspXsyTjWLqiSdoMvzIR+LbzOIlE+jspAuC5cvJgbKaSI2tZBh2zY5ZkNmJKVlDSYBzmC8vLw8VFd7ElK4Dr78OLFlC9alYWImMo6dnuphqbaWQK8NcsJNhdezwSj7Nxfj0S0x96UvATTf5U+neLWcqqPNZ6MRUVDZPUuEswsqNse+bjKuS3CAzL52dNEHwhCASVjGWRQCyR0zFYsDPfgZcfXW8gTAgFtr0C+x2XHop3Vq5U8ZWMgyrvBzAucYUQPk/slaodwonRaNRLF7sLczX1ETi6wtfoPDZn/4k9j5jWQTGihVUIsAo5ryIqePHnUN8DL/E1IED9P1tbal/lpszFdT5LHRiqsy8lCFEiMWA++8HmpuDHklyCCs3RmcqG8WUzLwkE+Y7coQa7vKV/Jw5NGlLrBkBAK+9Rm7DTTfRfbdimOkAi6nLLqNbKzFl5UzZ8eNUY4pRVCTncePkgJSVlZ11pkTdltdfp9v3vAe4/HLvYsrsTBmfA0hMWR3K5v1I190LdjL8EFOnT8dFnx/Fyd1ypoI6n4VOTLW2tgY9hLShoQG4917g178OeiTJIYzc6DqJqVWr6L6Mk4IbguLlV7+Kr1yzQixGE3d5OU24s2eLi6l160hAARTKKCyU0/0w4oknaJwf+hDd9yIg/QI7SU5iys6ZAqaPtaWFwpZLlth/p6zOlFOYr7W1FYsXkxsnKjZ27aJaW5s2AddcQ8VRncpPMKwEqVWtqa4ua2dqzhz6jY09LoeGMiemamvj//vRg9gtzBfU+Sx0Ymrt2rVBDyFt4MrEMp54RCA7N//0T7QqzwuOHaN8hquuovvZKKaC4uWBB4BvfMP++d5eyglZtMi9lpERxpV8DFknbMboKInL66+n5sFAcGG+oiKa8DXN3pnKz0+czHgSN481EqH8K7v+b4C83LADwnwYsXbtWlRU0P+ieVOvv06rNHNySEwBwHPPub8vEqH3LF0af8wspnTdXkwBiceOyEo+hh9i6sABul282B8x5RbmC+p8FjoxdYgVRwiR7WJKZm7GxoD77otXnhYFh/je/W66zUYxFRQvzc30Zxcm4ZM/iwoRMTU2RpNFtomp//xPSvi+8cb4Y8XFQG6unnFnauVKKgpZUWHvTJWVJSYvO4X5nEJ8gLzcRKPk6lgJwUOHDp0VUyJ5Uz09QF1d3PE7/3wSmSKhvhMnyNkz5lXPn09/zE9fH+VQeRFTmXSmysspvOlnmM9K5ALBnc9CJ6a2bs18Y9BMoa6ObmXP/bCDzNzwCdHrUufdu+mgvvhiup+NYioIXgYH6Uo6GiUHygrscngRU42N5GZlm5h64gnaviuvjD+WkwMsWqRlPGeKk8VXrLB3psy1jOzyu5xqTDFk5SYatc/L2bp1KxYvpv9FzhnseHNiv6aRO/X883AtfWEnSI3lEfhYsUsXMh47XLCTUxOcUFTkjzO1eTOwfTt1iujoSO3zolE659pVQAhqngmdmKryw0eUFNnuTMnMDR/gyYipHTvi9VqyUUwFwYsx14PzdMzgkz9P1CJiyrySjyHrhA3QuJ59FvjoR6fXCCoqGsq4mOKJ205MsTNlxLx5NMEZw3wTE7R6K1udqcFBezFVVVXlKcz3+uvkLF14Yfyxa66h84VxNbAVRMQULwoQdaYqKuydHSNSzTWcnKR5a8sWoLKSHkvVnRoctA/xAcHNM6ETU5XMWMgwMRGfKGQ88YhAZm6SEVOjo1SMbufO+JVSNoqpIHgxCig3MWV2ppxWT2WjmGpvp33pooumP7dy5dyM5UwNDpJQMosp8+9t5UwB08VuRwdNpm5iav58OY+baNR+0q6srERpKR3zImG+XbvImTEKmCuvpBCiU6hP14kDY1kExooV050pJzF1+jQt6hBdyQeQmBoaSqxn5QWNjZSkv3kzsG0bOXKpah0nkQsEN8+ETkzJ7H6kgmPH4n3JsjXMJzM3RjElutS5poY4uegiOknIOim4IQhevIgpdkHKy0l0OImiI0co0XXBgsTHZRZTPC6uh2XErFk9GXOmeGI2hvkGBykfxwgrZwqYLqbcakwxZOXGKcxXVVWF3FzaZrcLsNFR4K234iE+RnExpQc4ianTp+n9ds5UVxeJFZEwXyxGuVtcsFMEvP3Jdmjh5PMtW4jn9ev9EVPKmcoAZHY/UgHnS5WXy3niEYHM3LCYGhoSF6tsz7OjkK1iKihnatYsSvC1E1OnT5MDwqEvkVIBViv5AHknbMB5Cf7GjSUZF1NGZ8r4OEATcne3vTNldNFEakwBxM3oqHvuUKbh5IDwMSNSuLOqiraPk8+NuOYaet6OY6ff0FhrSiTMB5ALeuKE2Eo+IL79yV7A19aSe3f++XS/sjL1MJ+TY0jfoZwpX1BrLGoRInC+1IUXyjspuEFmboxJkaKhvj17aJXN8uV0f/787OQmCF5aWmiyPuccZ2fKODmkKqZkdXR5XFbOVCx2EgMD3vq4JQvmwSymjHlTZ86QoLIrDmnlTImIKUC+Y8fJmeJjRqSlDBfrvOSS6c9xiYQ//9n6vSJiKhIhETt3rn0eFB87VVUUsvPqTCV77Bw4QDXf5syh+5WVVJg2lQsEN2cqqHkmdGJq/fr1QQ8hLTh0iFZfVFTIOym4QWZukhFTu3dTvhQvEc9WZyoIXniVl5uY4kkAcBdT3d30ZyWmCgvldD8AN2eKLKBM5E1FIpTDw/WMrMSUVfVzhjmnLRKh1zlNfIDcYspu7HzMiIqpdetwdvWfERdcQCLULtRn1UqGYeTHrpUMg4+dN9+k20yJqdpaCvExtm+n21TcKbecqaDmmdCJqYi5lbZk0PXkrjIPHaJCetlQydkOMnPT0QEsW0b/i4ipnh6qSG9MGpZdTMVi1mUIguBFRExxk2OGm5iySz4H5J2wAWcxpWmkojIR6mtpoWOAw6oVFfS/UUxZVT9nlJeTWD1zhu6L1JgC5OXGyZniY4bDfHZ5ltzc2JwvxcjJoV6Mzz1Hx+f07yFXx0q8LltGF3LsTDl1UTGLqUyE+aJRSkDfvDn+2AUX0G0qaU1uYb6g5pnQianFVvJfIvz853TlNzws/h5eybdpUzxc4Uf37UxDZm5OnqTVJvy/G956i26zSUzdey+VcFi2DHj/+4F77gGeegqYnKzI6DjGxyl3g8VUV9f0BrnA9DCfW686zis877zpz8k6YQPxMVlN3OvWUSZ9ppwpY7J4bi7tK1bOlFMPOB6rSI0pgI4bwB9uurv9Ozc6OSB8LquooEUo5iR9xtGj9JtZ5UsxrrmGXrNv3/TnWJAaC6Qy8vMpzSASca5+DpAY0zTg4EESyJya4IZUxBSnphidqQULyKVLRUy5hfmCmmdCJ6b67PZqSXD4MLkDXpbgHztGE9D559OkEIt5E2OyQFZuYjG6uty8mSYQEW5276aT044d8cdkF1MtLcDChVStvbUV+Na3gI98BNixY97ZlaKZQGsr/eYspoDEJGeALiC6uxOdqdmz6WRsJ6YOH6YGx1bFCGUWU07OVH4+2TyZcKasnCRzrSl2puzCfEA81MfV1N3A3KR67EQiJC6eeSa1zwFo/3SatPlcxvO2XRL6rl10a+dMAVQZXNOs+1RGItYhPgaXR3AL8+XmkgDm486pvY8RqYgp40o+I7ZvT2+YL6h5JnRiqqCgIOghOKKnh275Ck8ErPA5zAfIOSm4QVZuurpo8l62TGypM0Bi6rzz4lfVgPxianCQrkgfe4zKOgwMAPffDwwO5nguVpoKjEvmWUyZQ308aRvFFECTl5OY2rDBeqKQXUwVFEwv2AkAy5ZRD5F0i6nJSRK5bmLKyZkyiqkzZ2i7Mhnm+8tf6KLztddS+xwgXgrAbtLmc5lb4c7XXyfhaRV6ZixaBNx0E/Bv/0YcGHHihPNvuHJlPGfKKcwHxIWfaL4UEOcmWTFVWDjdnayspOOdj3Ev0HX3MF9Q80zoxJTsYDHlxbY3hi9knhSyFZx8vmQJnRzdljrrOq3kMxdZnD+fDvRkC9ylG0NDiat9CgoA7ryQaosHLxARU+bq5wynKuh1dfEl2GbIfNw45eYUFuqYPTv9Yb6ODrqgME98K1bEnUSAxNSsWdYrD42NmUVrTAH+ccOlSqzCZV7BYWcnBwRwd6Y4X8oqTGfEfffReeN//a/4Y6OjxIubmGpqomPbyZkC4vx4EVOpXLzX1pLbb277kkoS+ugo7YtuixqCQOjE1Egm1hCngGSdqdWraQdK5UohaMjKjVlMubk0x48Tfzt3Jj7OLpWs3FiFLZYsodsgnKkVKyh/cNYsezFldqbsxNTgIH2GVb4UkL1ianR0ZFrJgXTAbgn+ihWUE8RizqrJMYOdkc5O8RpTgH/ccNPxfftSz5viY9hu0uZzmZMz1dlJOVNO+VKMVauAO+8EHnkEqK+nx9ra6NZNTPEKVVExJZp8DiQf5tP1eE8+M1hMJZM3JSJyg5pnQiemiouLgx6CI9ja9HKleehQ/Io7m8N8snLjVUyZi3Uy/Mr9SBfMzhQQF1OZdKaam+l7Z8+mkNzy5dPFlLnJMaO83NoF4AkoG8XUwID95FBcXCzUk9CMzs64oy0COyfJXB7BrpUMkJjTJlpjCvCHm9FRElFlZZQMnuqCLqc8NiB+Llu4kHruWZ0zXn2VbkXEFEALQubOBb7yFbrvVBaBYXzOLcxdbTzoAAAgAElEQVSXjDOVn08XO17FVHs75Qab86UA+s3WrElNTDk5U0HNM6ETU6dEGiUFCK/O1Ph4fCUfIPek4AZZuWEhUVERD/NZLVNm7NlDy5Xf9rbEx9mZklVMWTlT5eWApukZD/MZJ22r8ghOzlR3N4WkjDh8mG7dwnwyuoZOztSpU6emVRZ3w8gI8I53kNjn840bWHyYJ26zmLJrJcPgsUYiJK7M/FkhP5/+UjmncWunW2+l+6mG+twcED6X5eTYC/xnn6XVs8bmxk4oLwf+8R+Bp5+mc4yIu2d8Lh1hPk2j38DrccPJ51bOFJB8ErqbYwgEN8+ETkytFLkUChBexVRjIwkqs5iScVJwg6zcdHTQFfWcOSSmJiacJ6F9+yjXKC8v8XHZxZSVMzVrFp2EgxZTzc2Jr+nsJNdq4cLEx8vLKYRgTl49fJhev3at9Xf6eRHS1BRfpeUHolHrHCSAjhmvztQ//RM5ddEo8H//r9h7IhH6rc3j8OJMAfEq6LwKzZwvY4dUuwewW3zHHfSdqYopt0nbeC6zcrMnJ4E//hF473utFxbY4fOfp9/w7rsTw+F28CKmtm0jjp2S4a2QjJjiIuR2Yqqyko4jq7p3ThBxpoKaZ0Inpo4ePRr0EGwxMREvaCd6pWlcyQdkd5gvCG5iMeA//gOOS/9PnoyHu9xW5wB0Eli3bvrjsospu6XeCxeOZExMxWI0MZvFVHt7Ike8Osk8GdsV7qyrI07y862/d/ZsmtT8OG7uvhv44Aed3UsvcHKmjh49elagiOQBvfkm8C//QqLi+uuB731PbH+0qwlVVkYLFbw4Uxzm8zKnFRWldtxwa6d160gs+CWmnHhhWPXne+st2oc/8AFv31tURGG+l18GnniCfmtuxWIF5gdwF1Pvfz/xZ24C7oZknakVK6ZfDDG4fZ5XnkRypoLSAKETU5vtpLAEMKpwUWeKxdTGjXSbzc5UENz85S/AbbcBv/+9/Ws6OsTF1OgorW6ySuKUXUxZOVMAsHr1nIyJqZMnSTQZa0GtWkVCwbgs3NxKhmEnpg4fts+XAuLhCj/E1L59lJfT2Jj6ZwHOOVObN29GeTnVlbMqbGrEyAiFuZYtA779bcrB6eujJfdusKtWrmmU0xaJxB1BJ2fKGOYTWcnHSLUR9e7dFNbUNKqyne4wn/FcZuVMPfssOaVXX+39uz/5STom6uvdBammkWjJzRUTSW6rCq2QrJhyOt0nm4QuEuYLSgOETkxVpVJaNc3g0FFOjjcxxSv5gOx2poLg5vhxuuVWI1bwIqZaWmhSyTYxNTlJQtDqJJSX15UxMWWV6GxVHsFc/ZxhJabGxqiwrV2+FCPVCRuIt8gA4lXwU4WTM1VVVZVQcsAJHN57+GHaFysrKcz0ne+4CzEnJ4lrTfX3k7sukjPltqTfjFS44dZOvLr2ggtImHtZMW2G26RtPJexM2V0Kp99lhLP7ZwZJ8yeTaUSALHfcOVKaxfXL3gVU2NjtB9aJZ8zSkvpuPc6JYiE+YLSAKETU5XsH0oIFlOrVomH+erq4iE+gPJ0Zs/OLjHV3Q184xvA7NmZ54ZzceycX133Jqaamug228QUFyG0cqY2by5zTbq3wsQEnfSNRR3d4EVMiTpTDQ0kFp2cKcAfMVVbGw+37d2b2mcxnMRUZWWlaxsdIDG89573xB+/914SFT/6kf17z5yhfdbOSWIx5dTkmLFoEe1Hup45Z8rc2on7v+3fn9znAe5hPuM8U1FB+x+f30+coIR4ryE+Iz7+cQolv/e97q/90IeA665L/rvc4FVMHTlCeb5uBlFlZfJiyinMF5QGCJ2YygZnasMGCvmZVySZYV7Jx+D+fLJjdJSuiteupZDDffdloCeGCW5iqr+fQigspoqKKEfBTkyxK3HuudOfk7k0gtMV3fh4BJOT3q/kf/c7ckNEk5wBazHFCbZGMWVucsxYuJBCGkZhwSv5MiGmeIJescIfZ2pigsJzdgnoRmfKTkyZw3tGXHwx8K53Af/8z/YN1t1Wja1YQTltnBck0lDX6fOskAo35tZOLKZSCfXx8WJ18QEkzjPmC7A//IFuUxFTubnUFucTn3B/7Wc+Azz0UPLf5Qav8w0nnzs5UwDNa42N7vOgESJhPuVM+YRscKY2bKArN7dly8aefEb4lfuRLug6Le/dtAn4wheAt7+dijPqusA6aZ/hJqaMZREAOik71ZpqaqKET369Ebm5dJDLKKacnKmdO2nW8xrqe/BBuv3Nb8SLJLa00HJx45Xl7NkkZllMjY6SW2IV5svJwbQilnV1xBvnFdrBDzFVUwMUF5MTUF3tbSKwgtuVdmVlpWuY7+tfTwzvmfGVrxC3jzxi/X63auUrV5LbdPAg3XfLmTK+TxSpiilja6eSEvruVMQUtyyxC50Z5xlzFfRnn6WLLa+r5mSF03zzzW8Cn/oUibk336T9+cABiqC4bf+SJXTe8LJSVSTMp5wpn1BTUxP0EGzBy7nXr6dbNyfAvJKP4cekkC7EYrRq5IYbSHT86U+0RHjtWuD48czbaTxRdHdb94IyFuxkuImpNWvsEzlTXeKdLjidhKLRBgDexNTRo8CLL9IJs7Exvq+6wW7VmLHWlF3BToa5VMDhw/R+OxeB4ZeY2rqVagcNDcWLhSYLHo+dmKqpqXEN8/3yl3TMGcN7RrzzncAllwAPPGC9qlXEmQLi4sTJmTIKYKcl/WYke9zYtXbats0fMWUH4zxjdKaGhui4+MAHkkv2lhF2Yb6JCeCrXwV+/GOq3n7xxXSMfe97JG7NpWPMSKZg8OAgCdzZs+1fE5QGcBVTmqY9omlap6ZpBw2PfU3TtDZN0/ZP/b0vvcMUxyaz8pAIPT10gHEtHDcxxVfc5vCFzGG+9nYST3fdRSERXs2yeDEQjWa2odLEBOUvcP+5hobpr2HR5FVM2UHWZsdOYYtLLqEqfl5Oag89RKUGfvEL2kd/8xux96VLTLklnwOpHzexGIUwWEwBqYf63HJzNm3ahLlzaWK3ElNnzpCDfckl9t+haZQ7FYkA/+//TX8+EqGSEuywmMGiiEOcIs7U4sXxJfsiYKHrtQ0Mt3Yyi6kLLqAUCbfEezs45bEBifOM0Zl66SUKp6YS4pMNhYX0O5pzKpuaKHLy8MMUAfjtbyns/973Ap/9rPvnJtPKanCQxuMkVIPSACLO1KMArrF4/F91Xd829fef/g4reRw7dizoIdiip4dyPkRX5xw6RMnq5glQ5jAfh5N27kwsVrd4MdDR4VNhHkG0tVFiKF+xW4X6vDhTup69Yop5sbraHhqiRDBRMTU8DDz6KPDhD5MD8Pa304nUDbruLKZOnKATtl31c4ZRTE1Okjvkli8FpO5MNTbSyXzrVnKXi4pST0J3E1N8PrOrgs7uCy81t8PVV1PC7/33x2vdMVpanAtsspg6cMB9CX5pKU10XusmFhXR/uFV/Ni1drrggnh/uGTAk7YdjPPMggXklJw8SSG+wkLg8suT+14ZUVhIv+XwcOLj7Mqefz4dv9deS2Lq17+mcjRuSMaZcnMMgeA0gKuY0nX9NQCCTQmCx/Lly4Megi16eiiezza5SJjPSmTLHOazCyctXgz09+didDRzY+F8qSuuoEnATkwVFCROEBUVFBI0h0S6uuhgtko+Z8gqppycqbVrl2HBAvGT2pNP0gKKO++k+9dfT/lDbv3Qenvp97MTU2NjNCGxULIrQmgUU83NlGMl6kyl2rIEIDGVk0PixC9nyi4Bnc9ndlXQOdfWLU1E0yg5/cQJEsHGfduuxhRjwQIa39AQnb+cluDPmkWCKhkxBXjnZ/du69ZOqa7oc5u0jfOMpvHFIompq6+2Lx6bjbBrdsxiKtncMA6Peg3zuYmpoDRAKjlT/6Bp2oGpMGAS1TTSg65UioukGVzwjsWUkzM1Pk6Tv52YkjXMZyemRN04P8Fiat06cpPsxNSSJYm2MR/k5smLV/KFzZnq6urCkiXidvuDD5IT9I530H1elu3mTjklOhvLI4iE+aJR2iZu5ivqTI2PI2lBX1NDopyPyQsvjPeESxZuzhSfz8xJ94yqKnKO3KpfA8TXI49QKOrWW+NhG5Fq5exOuTXTBahEw+c/7/46I5zE1JtvkvNkJdb37CEhaW7ZsmIFCb9k86bcwnzmeaaignKl2trCFeIDnMVURQUtyEgG+fk0H3oVU068AMFpgGTF1IMAzgWwDUAHgG/bvVDTtE9omrZX07S9HR0d6OrqQkdHB9ra2tDb24vGxkYMDw+jrq4OsVgM1VPdD3l5Y3V1NWKxGOrq6jA8PIzGxkb09vaira0N/HnNzc2IRqOor6/HnDlzziag8WfwbW1tLUZHR9HQ0ID+/n5EIhF0dnais7MTkUgE/f39aGhowOjoKGqn1neaP6OmpgYTExOor69HNBpFc3Mzurq6cPfdA7jllqjjNrW2DqKkBDh0qBpFRTqOHOm23abXXmvD+DhQXNyOiYmJhG0qLAT6+ibSvk3J8UQzZl9fW8I2zZlDCuP48SHU19dP26Z08HT8+CQ0TcfChVGsWDGEurqJadvU1jaJBQuGErYpGiWb+JVX6hP2vb/+lZbrzJt3ynLfm5iYwMRED/r7M7vvifB06FAzAKCp6eC040nXdZSUjKKlZcxym4w8VVfTBPapTwEHD9I2AQ3YuHESv/jFiOM2sbilYn2J2zQ5SQW89u49jebmIeTn6xgYsN6m4WHax156qfZsWYQNG9zPEXl5pKJ6e5Pb9958cwjr1k3ixAnapvLyCMbGgF/+8nDSPB0+TGXfW1oOWR5PXV1dGB4eRkFBP06dik3bpr17Y1i/fkD4eLr22n586Ut9+NnPgM98ZhCNjRG0t+soLOx23PeKi+n4nTt3yHWbLrywDm9/u7dz+fg4BT+OHGmftu/9+c+0z33kI8Cbb1af3aaBgVFUVcWwbdvotONpYKAfGzYMobo6ltTx1Nc3jtmzx2yPp/b29oRtmjdv4KwouPjiPtv5KRPnPf/O5cRTNHpy6tyReN47dGgSK1cOprRN5eWTaGiICm/TmTMTmDVrxHGb5s2bl7KOMG6TMHRdd/0DsArAQa/Pmf8qKyv1dKO9vT3t32GFiy/W9ZUrnV+zZo2u33jj9P+t8J//qeuAru/aNf25L39Z12fN0vVYLPnxpgtPP03j3rcv8fG//pUe/8MfMjeWW2/V9aVL6f/PfU7X587V9cnJxNecd56uf/jDiY/t3k1j/f3vEx//+tfp8cFB+++86y5dX7gw9bH7je9/n8be2Tn9ufb2dv1jH6N90g133EG/Y29v4uP33KPrubm63tVl/95//Vcaw+nT05/r76fnvvlN4m3ZMvvPeeYZeu2ePbp+yy26vmSJ+7h1XdcfeYTe19Qk9nozVqzQ9Y99LH6/qYk+78EHk/s8Xdf1H/2IPuPECevn+Xx29926npeXeMz39+u6pun6ffd5+85YTNc//Wn63s99jm4fftj5PXfcQa+77jpv3yWKl16iz3/55enP3XSTrs+eTc9/5jPxx996ix578knrz/zCF+h9Y2Pex7N6NX2vHczzzH/7bzSWnTu9f5fseO656XNRLKbrxcW6/qlPpfbZ7363rl90kfjrL7pI19/zHufX+K0BAOzVBfRNUs6UpmmGdF1cD+Cg3WszjZhf3Uc9oq2NwiROq1E4Zwogu9wp5MVVpa2WFxcV0Uq1VMIL6YJTzhQwvSFoOtHcHO8Bt349hYWmLijPwlj9nGFXBb2piV7rtASfw3xeVyWlG045U7FYDEuW0G/hNO6+Pmq++vGPT7f2r7uOksGffdb+/S0t9P1Wq8GKimhxBof57EJ8QGIV9Lo6sRAffweQXN5UTw8dk9u2xR9btYq2JZUkdLcwH5/PFi2iEKUxeXzfPuLLLfncDE2j5evXXw/867/SY27Vyvk85LSSLxVwjSgrbhoagEsvBf7H/6ACsU89RY/v2UO35uRzxgUXUEg3mfIVbmE+8zzD54ywhfgA6zBfZyedD0SPPTvweUcUImG+oDSASGmEnwP4K4ANmqa1app2O4BvaZpWq2naAQBXAPhcmscpjLluxWbSgFgs3vXerhDnxATtfHwyKitzTkA/cYISPZcunf6czP353HKmghRTQGLe1PAwcWIWUyz8rMSUU74UQJPC5OT0lS9e0dND+4hTg2Yv4Jwpqw70c+fOxZIlNGanfK/HH6fXcOK5EZWV1BDXKW+KV/LZLWvm8gh2rWQYRmEuWhYBSE1M8aowLrMBxKtup5KE7iam+HxmlXM4FclwTT63Qm4uCeNLL6X7xsbTVvCSM5UMnLoHNDRQ3uMDD9DK0dtvp+N4927aF+zyvVJJQnebtM3zzLJldBtGMcXcGMUUC1S3Qrlu4FxN0YtPkdV8QWgAQGw138d0XV+i63qeruvLdV3/ia7r/1XX9c26rm/Rdf1Duq5nqE2qO3rcyoqnAZ2d8UrIdiq7r49u2ZlatMhdTC1ZMj2xEkhtUkg37Cptz5sHzJ0b81TtNhVMTtJv6CSmWNiZxdTs2eSSmMVUY6PzSj7Av5Yyf/0rLVjg1hSpYnCQOLFaidXT0+O6TFnXqbbUzp3WToimkTv13HPxfcAMu7IIDKOYckqo5uf27aNjIBPOlHElnxEXXkirbu222Q3RKK0mtTrOgfj5zKqlTFUVXWxZVeMXwZw5tH89/XS89p0dMiWmzNz09NDfunWUsPzLX9LtDTcAu3aRK2UnzjdsoG30moQ+OUl8Ok3a5nnmxhvJlWUBFyZYXbz7KabGxmilrwhEVvMFoQGAEFZAX2pl5aQZbW3x/+1WRDG/XsJ8dldcVlcKssCp0jZ3V88E2ttJ4PLkvXQpiQmjmLKqMcUw15oaGSGeRZwpIHUxxfVz+DZVDA3ZhyeXLl3qKqb27iUX6FOfsv+O664j5+rPf7Z+vqXF2QFZtYrcRDdnat48+nvlFbrv1ZlK5ripqaExmYXLjh00+Sa7BH9gwNkB4fOZVRX0qirvIT4zFiygUglu4IsIdmD8hp2Y4kK769bR7YoVVHj04EFyinfutP/M3FzqD+dVTLEwFuGFUVhIVejDCKswX309nU9SrULgtdaUiJgKQgMAIRRTx48fz/h3trbG/7fbKcxiatEimnjsrmgjEft2DLKH+fLyrFsJLFgwkjExxSvHePLOyaETcrJiqqWF3JlMiSnOB6mtTd71MMLpJHT8+HHXasQ8IV1xhf13XH45OXpW1dAHB8lpc3OmBgdpe53EFEDPc6+4TDlTZlcKSL0SultuDp/PzM7U4CBNaJlqQ7Z6NfDGG+QIpQPz5pHD5CamAOCaa6jfIBAPU9rhggtI6HrJYXTrlwgEM88EBSsxdfgwOX9ONcdE4EVMxWJ0bnDLmQqKm9CJqY2p+o5JwOhM2e0U3BfO6EwB1u6UrpNAsxNTMof5nCbtc86ZE5iYAuzFlFWYxCymmmjlfkbEFPcbW7aMXA/OjUkFTs7Uxo0bXQvoHTxIJzGnekR5eZQz8vvfT28A7NZM1/yciJgCEjsKuCHZ42ZigkJ5VmJq6VKaEJJNQncTU3w+Y2eKzxcsEDLZ0/Xii937rSULTbPu7NDQQBO2+bj72teo/hTXOrPDtm2UYsHnAxG45bEBwcwzQaGggDgwO1OpJp8D3sSUU608I4LiJlRi6vhx4F/+pXlaD6F0o62NLOW5c92dKU5A55OjVd5UVxeFldzElKxhPrudPTe3K2M5U3zyNE7+69fH+0kBxFVOjnV+TpBiqqEhscK4H6E+J17279+P4mLKFXMSU5s2uV+JXncdjf211xIf9yqm3IpQsoA6/3zxhrLJiqkjR2hVmJWYAsidSsWZsqt+DhA3AOUJFRfHnSmufJ5qmE8mWDU7bmigY9jc2DYnxzlfisE5TF5CfXxedZq09ycb181CsNDl32VoiI5nPzSLlyroTikkRgTFTajE1O9+B3zpS2vOJntnCq2tdIW6dKl4mM+ppYxTWQRA/jCf3c6+adMidHWR25JuNDfTVY+x2er69fTd7AJ3dFAeV27u9PdXVNC28AmkqYmSWd2Sff0QUxzi+9CHSGDw/VTg5Ext374dmua8TPngwektO6xw9dX0G9x6KzkHjHQ5U16ujvPz6c/rccPnZicxdeRIcpy75UxtN6glYxX06mradwNKD0kLrNr9NDS4J8c7YfNmuj10SPw9Is7U9jCpWAEYxRS7+36IqaIimi+8iCm3MF9Q3IRKTFklaWYCbW0UknGajHp6SOFzDzinMJ+bmJI5zOe0CmZ0NIJYzL0noR+wWjlmXtFnVWOKYa411dhIrpTblbAfYmr3bvoNzz+fEmzT7UxxlWC7/bezk/ZTETE1bx611cjNBf7mb4DvfCfe4Dgvz/73Bsi1ZcEnKqZEk88ZyfTnq6khEWY3eezYQbfsFnmBW5ivyvChxmbHnHwu6splA4qKEo8bXY+XRUgWc+bQMenlnCMyaVclQ3YWwyim/FrJxxBtZSXiGALBcRMqMRVE/zcgUUw5reYrLo67IE5hPlFnStYwn50DcuGFFHPLRN6UscYUwyymTp4UF1MiNaYA/8TUjh20r1x0EQmRVH8zJ2eqcirxxk5McaK3iJgCaOzV1eSsfeEL1E2+pob2Z6cwoabFBbBomM9r3oZVXo4bamooxGmXL8RiKplQn5uYqjQkRXGzY+5JmMl8qUzALHS7u6lIaSpiCiCRzjmrIhCZtCvD9uO7wCymeEGPHxAt3Cka5guKm1CJKXOSZqbQ2kpLRJ12Cm5yzFiwgCZLO2cqL8/+6nz2bKpLI6Mz5eSA9PWRikm3mJqcpNWQZjFVWkphVq/OlK6Li6nZs8nFSFZMjY5SWImrOvNtqqE+J164j5VfYgqgC4df/YoqVv/pT8Af/+heZRug18yd637C3LaNjiGvjn6yzpRdiA8gl3nVquSS0N3EVLVh9QGH+Q4coJVNYZvPzdxYreRLBsmKKVFeZgKMYurwYVrdaUyhSAVexZRbmC8obkIppjIZ5uvvp52MnamBgTjpRhhbyQCk7O2qoJ84QeLM7ipe05KbFDIBp0n70ksp+SHd/HR0UJK5VU2j9evpJD05SeMQEVOnT9N2iYgpwDqRVhT799PYuX7O9u0kulMN9Tk5U9umeqRUVNDKp5GRxOcPHqQJiSuPi0LTgLvuAl5/nZydd77T/T3veIf7cneAPquvT3wlH8PrcXPqFP05iSkg+SR0twT0bYb+NeXldL7g7wlb2o4sYkpk0jbyMhNQVJToTPm5YM5vZyoobkIppjLpTHFZhGXLnFcmmMUU4Cym7EJ8DOOVgkxwElNnzmTGmbIqi8BYv56cqc5Ourq3SygvLSURc/Kk+Eo+BvfnSwYsmtiRmjuXkmhTFVNOvNRPJUHY1Zri5PNk83MuvJA+46tfdX/t3XfbF/30A8ZJQQR2lc/N2LyZ9rvRUfHPnpgg4eo0adcbGsuVl9M++/zzdO5wO0dkG6zEVE4OuSCpIB1hvvpkGv5lMTg8PjlJ50+/xZSdCWGEaM5UUNyESkzl5wMLFugZFVNcsJPDfIA3MWUX5nM7UWajM7VlyznIz8+cmLIKK61fT5w1NtJ9O2cqN5cmL6OYcmslw0hFTO3ZQyu0jJWFL7qI3IhkS37ourMztXpqtrLaf3WdhBCvisp2eD1uRMUUX8j5HU5abVAS/B0vvRS+5HNguqPb0EAXRPn5qX1uMmJK06z7WDJWp6rwsgx88R6J0AWAn2JKtDyCqDMVFDehElMAsHDheEbDfEZnyklMdXdPF1NW/fkmJ+kzwyimOjrahVvKxGJ0Mn3qKeCee+Ld7UXgtAyfk9C5DpLT6jKuNcXCy60ZLCNVZ8rcImPnTkrENRYc9QJuumzHS3t7OwDr/ffECdrPvORLyQyvx011NQlb87FrBudD+i2mmBsgHtIcHAxfvhRA3IyOUq82IPWVfIzSUjp+zIVk7cDnMKfFEkZeZgJYTPm9kg8QL9wpmjMVFDc27TWzF+XlOYGE+ZYujZNt3ikmJym/w5iADlg7UydP0kGfjWE+dkDsJu2SkpKzK5Ls8MtfAt/7HjkCZtt3yxbgyivdx9HcTPk9VleWLKZefZVuRcRUUxPx63SlasT8+dQb0Cu6u4Fjx4Dbb098nEN+u3cndxKzaz7NKJlSClYntWSSz2WGFzH12msk5m+7zf216RJTJQYVZ8wPC6uYAoifkhISU5dckvrnMjc9PWI5dtGou/tR4qauQwaebw4fpvt+VD9nuLWyYoiG+YLiJpTOVKbDfKWlNNGWltIqPPNOwUVErZypnp7EIpZcFsGpbQcgpzPFDojdpD00NOTqTH372yRebr8deOQRcgbOnKF8pbvuilcvd4JVWQQGFwB8/XW6dSrCaRRTovlSQPLOFK/YY/HE2LiR+E42b8rNHh+aUluLFtHVuFFM1dbS7aZNyX23bODjxq1X26lTwEc/SqHdb3/b/XNTEVNOCehDhsaMRiEQtuRzIFFMdXbSrV/OFCDOjdsKSyCRl5mAwkKKFuzbRyaA2RhIBV6cqfx8WsnuhKC4CZ2YKivTMx7m407qmkYTsHmnMFc/Z5SV0Q5qrNjuVmOK4TWRNhNwm7RzcnIcxZSuk418ww3kTt16K7WDmD+f7h8+DHz/++7jcBJT8+ZR2GZwkPgwt6kwoqKCxnrsWObElKbF6xYxcnPpsWTLI7g5UzlT8QzOEzM7U8uXU6mDMKCoiC5ezCsWjZicBD72MTouf/UrZ7HDSEZM8cWQ08SdY4g1lZbS/rFwoXjIOZtgFFN+reQDvHMzOOgupnJS7fCbZeDfY+9ef0N8QNyEEBFTbrwAwXETuj2C85C8JuuOjQE33kgVm72syGltjYspwHqZp7nJMcOqCrqomEqm+GC64Sam8vLysHgxXXVaOQMdHSRCrA7WD3wAeEXtLZQAACAASURBVP/7qcGp00EXi1GSpFNNIw71ubWGqaigkGt7u3jyOZC8mNq9myp6W03eF11EoU92/7xAhBeGufCsaBuZbIFI94B/+ifg5ZeBH/5QPPE+XWE+Ize5ufQ9lZXhSz4H5BFTIs5UXro6PksK/j2OHPFfTNmZEGaIhF+B4LgJnZgqKho5m6PkBS+8APzsZ1SxedMm4Omn3UMBADlTxpVXTs6U2Rq1qoJ+4gQ5CAsXOn+vjGE+t0k7Go2ivJxCdb290593S2787ndJ6H7pS/ZjOHmShLHTlTuLKad8KSBRbHl1pkZG4om0ItB1cp7MIT7GRReRsPPSsJXh5kxFDRan8WJgYoLcwDCJKbe+ln/8I/C//zeFmW+5Rfxz58yhP7/FVNRkP997L52jwgizmJo1yx8HLhkx5TZpm3kJO3gf1XX/xRQgVmvKaXGTEUFxEzoxtWoVzRheQ32//CVVVH7mGarsesMNwOWXOxfiGxuj73FzppzCfMB0MbVihfuVJ698EckhyhTcxFRZWdnZwo9W/LiJqbVrgS9+EfjpT4Fdu6xf41RjipEJMQV4E7tNTXSytxNTvMIvmVCfCC8M4/7b2Ej7WJjElJMzFYkAN91EZRBEwslmpKPStpEbAPjMZ4BrrvE+tmyA8bhpaKD6Um75MSJIR5jPzEvYYfw9/Ew+Z4g4U6JiKihuQiemdJ1maS9J6GNjwO9+Rz3EPvhBqkL97/9OS9F37gQee8z6fbxiyyymuroSXQk7MWVVZFSkxhQgZ38+dkDsdvjW1tazYsoqb6q+nia7pUvtv+PLX6bf5x/+ITFxnyGDmOIJ20uoj5PLzWURGFx7KpkkdDdnqpWLpYF+k85O+m3DtpIPiHNjddzcdhtdnDz1lPjKTSOSFVNOOVlGbsIOszPlV++3wkLKyfEzzDeTeAES99EgnSmRnKmguAmdmNq2jWZiL2LqhRcoLPiRj9D9WbOAT3wifkA/+aT1+7gsgjHMxxO0USz09JDTZE7idXKm3CCS+5FpsANiN2mvXbvWUUwdPkwHqpMrN28era6qqSHBa4ZTwU4Giykn0QbExdScOd5aqSTT7Hj3bvrdnITLRRclJ6bcnKm1vMQRtP/GYiSoDh4kLtJxJRoU7I6boSHglVdIpCc7iXsVUzwGp6ttIzdhB3Nz5gwt+vBLTGmaN25EwnwziRcgLmJmzxbrsekVbEI4RVpEc6aC4iZ0Yqqn5wgAb2E+DvFddVXi4/PnA5ddRisYrPKnjAU7GVY1M7q7SUjl5ia+v6CAdlIWfmNj9D4vYkomZ8pt0j506JCrMyVy1XPDDcC73kXFPM2FLJubyfGzE3QAhQt//GNacOCEoiISUmvWeEv4TUZM7dlDicVOYY2dO4Hjx723S3Jzpg4dOnT2f+My5YMHKfHe6bfMNtiJqf37yY2zC7OKIBlnqqDAmXMjN2EHc9PQQOcSv8QU4F1MuTkgM4kXIP57rF8/fR7zA1YmhBmiYb6guAmdmHrHO6ggjuiEMzYG/Pa3wHXXWbctuPBC+qxIZPpzxlYyDKuaGVatZBjG/nzt7STavIT5UnWm7ruPlt2LJNu7wU1Mbd26FSUlVMvIfNAMDNDvKSKmNI3EUF4e5Y8YP6ulxT1pVdOAO+6Ih1mdXrdsmfeTulcxNTZGieV2IT4GT/Re86ZEeGEYWzuEqY0Mw05McW6kuSyFFyQjptwm7a1ufWxChLw8cj6qq+l+EGKKy2YoXhLBv0c6QnyAWK0p0TBfUNyETkzV1lahuFjcmXr+ebKV//ZvrZ/nk+vevdOfa2sj58IYvrPqMyQqpkTLIgD+hPmGh2mFXFWVtVj0CrdJu6qqCrm5JGLM/LDDJBpSWrMGePZZElLve1/8d3CqMZUMfvpT4IEHvL1HVExFo5SPd9VVlOh98cXOr+cl8VVV3sbj5kxVGT6QT2rNzeQQhClfCrA/bvbupW03usxeUVpKx7poWRYRMVXllewsR1FRvB9iEGJKtP/bTOQlNzd9xXtFxJRomC8obkInpiorK7Fokbgz9dRT1iE+xpYtdMVktaqPC3YaQ0CLF9N9UTFlHGsyYiqVMN+TT8ZLFNitjvMCtxNR5VQPDKvCncn0fNq5k0K0NTUkhsfGxJwpL3j72+M5VqJwE1OvvUYFSSsqaPl9WxvwjW+QO+qEwkKaFNzaLpjhVjm40tCbhC8GXnmFrtJniph66y1yoVNBaSkJqTNnxF4/MOBeELQyjH1jHFBURBd5+fnuXSC8QFRMiaywBGYeL3PnkvHw2c+m5/NFnSkRMRUUN6ETU1VVVcJiyi3EB5DtvGWLtTPV2poY4gNIeJWVJe4UVk2OGUZnit2hTIX5Hnww3qqE26ukAhZTdiuh+IrBSkwdPkxXPl6KYwJUyPPf/x147jnKpRodTU+CpBc4iak//xl4xzuojtlHPwr85S/kAH35y2K5CCUl8dWhohgacs57Ml7JFRRQjbMXX6T7YRNTs2bRNhqPm/5+KkaYSogPSE9xyJnmgPCxs2aNv7k5LKbc0hlEm+nONF4A4Ior0tcJobx8uglhxPg4zdciYT7lTPmEyspK12a6DA7x8So+O1x4IYkps31vbCVjhHmZZ0+PfS8jszNVXCzWviLVMF91NeXe3HknhZf8cKZ40rar5s9XDOXl1s7Uuefai1on3H47VUb//e/pftCtNubNoxODFTevvkoTemsr8PDDtMDBS3J7SYm3vBzA/YrOfCW3ZAk5lnl5/oZaZIG54C2fe/1wpgB/xdRMc0D4vOb3fldaShOym5Mv2kx3pvGSbrAJYee6i4ZfAeVM+Yba2lphZ+qpp0i8vPvdzq/bsSO+XJcRi1HCuJ2Y4p2Cq7E7OVODg2Rti5ZFAFKvM/XggyR8/v7vgUsvpWRjr1XjzRgcdHZAaqe65nJLGSNEV/LZ4atfpaRyANiwIfnP8QOaZt9S5sAB2k6+AvcKzsvxgqEh55MQ88Jgy33jRjrJhQ3mVkx+JJ8D6RFTZm7CjnSKKcCdG9Ew30zjJRNwqjXlRUwFxU3oxNT69euF+vONjlKI79pr3d0QvmI1hvq4MKc5zAck7hRnzpC17CSmADrIvYgpdoCScab6+qh1zsc/TmLysstojH/9q/fPMsLNAVk/lXy0eDFN8HzimpigUFcq9Yw0jcJ9dXVU+iBo2Imp2trUVsgl60w5idz1pqQwzpsKW4iPYW4SvncvuZmpFk5Oh5gycxN2BC2mRMN8M42XTMAvMRUUN6ETU5FIBOXl5AhZ9X9jvPCCWIgPoOazc+YkJqFb1ZhiVFSQMxWL2Tc5ZhiroHsRU5qWfLPjxx8nMXPnnXT/oosoPyHVvCk3MRWZSgoz15o6fpyEaarLbnNy5CkwaSWmzpyhBPktW5L/3HQ4UxHTUk52psIspszOVKohPsC7mBJJQDdzE3YELaZEnamZxksmICKmRHKmguImdGJq8eLFlm1azBAN8QGU43LBBYnOlJOYWrKE3Jbubvsmxwy+Go5E6PWiYgqgHctrmE/XgYceopVw27fTY/Pm0falmjflJqYWT6mo8nK6z2IqmZV8ssNKTHF7llSdqYEBb02U3Zypxaby7jNJTHV1URmIVEN8AJ1PcnL8dabM3IQdsogpNwdkpvGSCXB6jFVESZQXIDhuQiem+vr6zk7WdmKKQ3xOq/jMuPBCStqemKD7VgU7GcZlnnZ9+Rgs/Pbvp1svYsp8hS2CV1+llXPsSjEuvZQS0lNpnOwmpvqmkrLMzhSLqaBznfyElZg6cIBuU3WmAGfX1Qw3Z6rPlCx3wQUkvvwQGDLCeNzwBZIfzlRODq2EFBFT4+N0HnITU2Zuwo6NG+kcaHVeTQV8/vUrzDfTeMkEjCaEGV7CfEFxEzoxVVBQcFag2K3oq6qikMu114p/7o4dNCkdPkz329ro5Gklgr2IKXam9u2j23SLqQcfpBP+3/1d4uOXXUZJ8DyOZOA2aRcUFACI/2bMT309PbZwYfLfLRvsxFRxcWoTheikYISbM8W8MK64go4Pt96F2QrjccOhe3ZpU4XX4pBuk7aZm7Djk5+ksL/diuBkIXrciIb5ZhovmYBVwWuGlzBfUNyETkwBcA3zcbVtL2EMcxJ6WxuRb1UI0YuYWriQThzcQiGdYb6TJ4Ff/5oKRZprQV16Kd2mEuoTLapmDvMdPixPrpNfsBJTnHzupRSCGexMecmbchO5VnDqF5ftMDtTGzZQ4V4/4HdxyJmIdPR+y8ujY1JETGka1SJTyCys+toyvIT5gkLoxNTIyMhZt8dJTM2a5a0e0bp1dDDylaxVwU4GK+yTJ+MHr12xs5wcOgFz9XMvroVXZ+rhh8lG/dSnpj+3ZAkVykslCd3NARkZGQFAJ7aSEhJTup56WQQZYRZTuk5iKpUQH5AeZ4p5mSng1Xy6Tsezn+FMUTHFx61bAvpM4yadEOGG89jcLngUL/7DqQq6lzBfUNyETkwVFxcjPx+O/fmOHqUCkV6uvnNyqDea0Zmy6+M1bx6dJNmZKi52/i4Wf4sWebsi8iKmhoeBH/yA2ubYrRy99FJyppJteuzmTBUbFCUX7jx9mvJ/wiimBgbiyZSRCImrVBsHp8OZKk5XWWNJUVREvBw7RseoH/lSDL+dqZnGTTohwo1oM13Fi//wS0wFxU3oxNSpqdiRU+HOo0e991sD6KRbU0MrqZzEFBBf5unUl4/BYUkvIT7AW5jv4YdJvNxzj/1rLruMBGhjo7dxMNzE1ClD2XMu3BnGlXxAvCgn8+NH8jng3ZkaGyM30smZOmUuRx9ysBv08st0K7OYmmncpBOizpTIhK148R9z59J500pM8fHidB5jBMVN6MTUyqnumOXl1mIqFqMCkcmIqR07aHJ64w1K0HUKyXkRU+xMeRVTos7U6CjwrW+RWLr8cvvXpZI3NTFBv43TiWiloXMp9+fjhP6w5UzxhM2hPhZTqZYbKCoil1PUmRK5olvpZ0fZLABz89JLlJ+zbZt/n11aSk6gW6RBVEzNNG7SCS9hPjcoXtIDu1pTnKogsjAhKG5CJ6aOTmWXL1pkHeZrbaUTXbLOFAD87nd0K+JMOTU5ZqQipoaGqECpEx5/nLb73nudcwHOO48S4pPJmxKZtJkbIC6m6uvpIPF7KXTQMDc7rq0FVq8W67voBE3zVgV9aIhuna7ojLzMBPBk+fLLwKZNYle7ovC7OORM4yad8DPMp3hJD5zElGjyeVDchE5MbZ5KSrEL8/HvnIyYOuccOiB/+1u6Lyqm7Ap2MjjM51VQ80HPQsYKExPA//k/JASvusr583JygEsuSc6Z4knbaYffbEgYKi8nd2//flpN5fdS6KBhFlMHDqSeL8XwUgVdRORu9mtgWQIWtJ2d/tfSEhVTognoM42bdKK0lI5Hp1p6omE+xUt6UFFhL6ZEV74GxY3rFKZp2iOapnVqmnbQ8FiJpmnPa5rWMHUrTYWgqqkW8OXl1v35UhFTmkaipLmZ7ruF+YaGyBFKpzMFOIf6fvYzqtvyla+ILcm/9FJyi5Lp/wY4n4iYGyBea+rNN8OXLwUkiqmREdrvUs2XYvjtTBl5mQkwChg/86UA/52pmcZNOiGyeEM0zKd4SQ+4CroZoiIXCI4bET/gUQDXmB67G8CLuq6vA/Di1H0pUFlZCYDcHqv+fEePEim8csArjFeyTs4Ul0cYHU1fArqbmJqcBL7xDZrEP/hBsc+87DK6feMNb2NhMeU0aTM3QFxMjYyEX0wdPkxc+CWm/HamjLzMBBjFVFDOlGjdnJnGTTohwo2oA6J4SQ+WLCEOzEXMvYT5guLGVUzpuv4aAPOp+1oAj039/xiA63weV9IwOlPA9FAfr+RLtnAiX8kWFzsLB6NYcxNT730v8KUveb9K5oPebkXf008DR46Iu1IATS55ed5Dfck6U0D4ks+BRDHFyed+uc8lJeJiSjlT08FiKj/fP4HL8CKmCgrcy7PMNG7SCRFulDMVLHgR1K9+lfi4lzCfzM6UFRbrut4BAFO35f4NKTUYnSnAXkwlC76SdUuYNoopt5ypkhLgm98U7xPIcHKmYjHg/vvJ9fnwh8U/c84c2kavSeheHRCjmAq7M1VbSxPn2rX+fLbo8ntAOVNW4ONm61bvx5wbvORMKQcksxAVUyIOiOIlPbj4Yrro/OEPE+sdegnzSetMpQpN0z6hadpeTdP2dnR0oKurCx0dHWhra0Nvby8aGxsxPDyMuro6xGIxVE/1VWF1WV1djVgshrq6OgwPD6OxsRG9vb1oa2sDf15zczOi0Sjq6+uxb98+1NTUJPTni3/WQRw/rqOsrBv9/f2IRCLo7OxEZ2cnIpEI+vv70dDQgNHRUdTW1iaMg29Pn67B0qU6Fi6MIhqNorm52XKbiouHz/4GPT3HUtqmiYkJ1NTUTBsPn4x7e8fR0NCQsE0//WkfamuBz31uGE1NzttUU1ODiYkJ1NfXIxqN4m1vO4O33tLR0iLO04EDVJzq1Kkm223atWvX2W0qKZmY2j+AgYHEz6qtrcXo6Oi0bfLCk3mb7Hjyc98z8nT0KH3GkSNtOHAAWL16GJOT/mzT5ORpDA0BR460uG7ToUPHAQBNTQdtt2nPnj2e971s5qmgYAI5OTp27PB/mwoKgIKCSZw+HXPcpo6OARQWxly36ZVXXknpHJHNPPm9Te3tvG3Nltt07FgzRkcBXR9w3aYXXnhBim0KG0+aBrz//S3Ytw94/PHDZ7dpcFDH5OQZoW3av3+/r9skDF3XXf8ArAJw0HD/CIAlU/8vAXBE5HMqKyv1dGN8fFzXdV1vb9d1QNcffDD+3OHD9NhPf5rad7zwgq7v3ev8mlhM12fPpu97443Uvs8O9fX0+U88Mf25v/kbXV+9Wtenfg5PeOgh+tzWVvH3PPEEvae+3v4146bBFBbq+po13seXLZg7V9f/8R91vaJC12+5xb/PZX7a2txf+6Mf0WtPnLB/jZmXmYBf/ELXm5vT89krVuj6zTc7v+a663R982b3z5qJ3KQL/f10LDzwgPXzfX30/He+4/5Zipf0ob+f5gbjMbRkia7fcYfY+/3mBsBeXUDfJOtMPQPg5qn/bwbwuyQ/x3ccO0YukFV/Pl7Jt25dat9x5ZXUWsYJmhZPQnfLmUoWdmG+kRFaJfeRjyTXsFY0VGGESDiJuWEsWwacf77HwWUR5s+nliUnT/qXLwXE9yeRvCmRnCkzLzMBf/d3VOokHRBZICCamzMTuUkXCgspH9TuvOalma7iJX0oKgJuugl48sn4cSR6vADBcSNSGuHnAP4KYIOmaa2apt0O4JsArtI0rQHAVVP3pcDyqWSmvLzp/fn8ElOi4LypdIkpuwT0/fuplspFFyX3uSxEu7rE3yMippabEs0efxz49rc9Di6LMH9+PPfMz0RnLy1lkuFFITX4WWlbceMfNM2ZGz5WFC/B4847yRR49FHKnfKymi8obkRW831M1/Uluq7n6bq+XNf1n+i63q3r+pW6rq+buvXQdjW96DIoAHNLmaNHSSikS9yYwc7UwjRV4eKD3uxM7d5Ntzt3Jve5qThTTg5Il0md7dyZ2mIA2TF/fnz/89OZ8tLseGiICqI6JVqbeVFIDSJiSjQBXXHjL5y4Ea39BShe0o0tW6iA9EMPkaiKxcTFVFDchKzuNFBoOBLMVdBTXcnnFWvWkKBKJtQmgpwc2sGsxNSyZc51sJyQrDOVm+s8aReK+rQhAa/oKy9PXL2YKrw6U/PmOZfGmGm8pBuizpRIayHFjb8QEVMik7biJf347/+d+ug+8wzdF/3Jg+ImdGJq3NArwNyfL9Ni6itfAV55Jb3fUVg4Pcy3Z0/yIT4geWfKbdIed+rjEEKwmEpXLSNRZ8qt99xM4yXd4Dpg5u4LRoiG+RQ3/sIpn82LM6V4ST9uuIEu7P/5n+m+qDMVFDehE1MxwxnMGOYbGKCeP5kUUwsXUt+5dKKoKNGZ6uoCGhuTD/EB5C4VFXl3ptx29pjT7BJCsJjyu1XU3LnEkRdnygkzjZd0o7SUhNSZM/avERVTiht/4VfOlOIl/Zg9G7jtNoBrcIqKqaC4CZ2Ymmu4DF+0KN6fr6GBHgtbjo5ZTO3ZQ7epOFMAXRF4caaGhtx39rluFknIkC5nihNp/XKmZhov6Yabszs+Tm2mRCZtxY2/YDFlLAjJ8BLmU7xkBp/8ZDzaIRq9C4qb0ImpHsMMU14e78+XSoNjmWEO8+3ZQ7lUqfYcKy3135nqEe2BEhKky5kCxJsdK14yDzcx5SWcpLjxF6WlJGatWnApXuTDmjXA1VfT/6LOVFDchE5MLV269Oz/xpYyLKb8aukhC8zO1O7dVLsp1Rw8r86UyKRt5GYmYN06+h3TUUvLizOleMksRMWUSAK64sZfOHHjJcyneMkcPvc5Wty0cqXY64PiJnRi6vjx42f/N7aUOXqUyJgzJ6CBpQlGMaXrqSefM5JxptzcVSM3MwE33wycOJGefc6LM6V4ySz8dKYUN/7CiZtolFz92bPdP0fxkjm85z3U43TNGrHXB8VN6MTURkPX3PKp9svsTIUtxAckhvmOHSO3wg8xlQ5namMYOxo7QNOowXE64KczNdN4STf8FFOKG3/hJqYKC51XJDMUL5mFlzSooLgJnZjav3//2f/NzlQYxZTRmfIr+Rygk05/PzA2JvZ6ETFl5EYhNbAzZZVIa4SIM6V48RfFxeRw+CGmFDf+wi3MJ5oeoXiRF0FxEzoxtX379rP/c/HJQ4domXJYxVQ0SpPq7t00cfqRo8O/nag7JeKAGLlRSA2lpbQibHjY+XWKl8wjJ4fKotgdO3zxI5IzpbjxFyLOlAgUL/IiKG5CJ6aquCgFqD/fwoXx/mhhFFOFhSSkhoZITO3Y4U/Fda+FO0WcKSM3CqlBtNmxiDOlePEffrUtUdz4C6fuAdGo+IoxxYu8CIqb0ImpysrKhPuLFgEHDtD/YRRTfHXb3U0Njv0I8QHeWsqINqI0c6OQPETE7uQkuVeKl8zDLzGluPEXs2YBCxakHuZTvMiLoLgJnZiqrq5OuL9oERXtzMsDzjknoEGlESymdu2i/KZUKp8b4cWZGh0Va0Rp5kYheYg4U0NDdOvmTCle/IdfYkpx4z+suBkaokrb554r9hmKF3kRFDehE1Pbtm1LuM8r+s49N30Nh4MEn5BfeIFug3CmuD6L26Rt5kYheYiIXRZTbiJX8eI//Gqoq7jxH1bc/OY3tODm5pvFPkPxIi+C4iZ0Yqq+vj7hPq/oC2OID4g7Uy++CCxZAixf7s/nenGmWEy5TQ5mbhSSh4gzJSpyFS/+w0lMDQxQ7TGRizvFjf+w4uaRR6iO0eWXi32G4kVeBMVN6MTU6tWrE+6zMxVWMcXOVCRCIT6RGikiKCggceTFmXITU2ZuFJKHUyItQ9SZUrz4j9JS+v1HRqY/52XVmOLGf5jF1PHjwEsvAbfcQisxRaB4kRdBcRM6MdXe3p5wf6Y4U4B/IT6G09W1EaKTtpkbheQxZw79+eFMKV78h19L8BU3/sN8XnvsMboIFQ3xAYoXmREUN6ETUyV8yT4FdqbWrQtgMBlAOsVUWZm/zpSZG4XU4CZ2RUWu4sV/+CWmFDf+gwsSj4/TwplHHwWuukq89xugeJEZQXETOjE1xDPIFN73PuD++4FLLw1oQGkGn5Q1jWpM+QlRZ0pUTJm5UUgNJSX+OFOKF//hJKYGBsTFlOLGfzA3PT3Ayy8DLS3Arbd6+wzFi7wIipvQiakcU9B7/nzgnnuoNEIYwc7UeefRtvoJv50pMzcKqcGt2bGoM6V48R9uzpRI9XNAcZMOGPMNH3mE2v9cd523z1C8yIuguAndHpEXVtVkg1mzaLL0O8QHeHem3ByQmcZNuuHW7FjxEhz8CvMpbvwHc9PYCPz618CNN3pvSK54kRdBcRM6MRXlIi4zCE8/DXzta/5/blkZ0NcHTEw4v07UmZqJ3KQTfjlTihf/4ZeYUtz4D+bm3/6NVlt6DfEBiheZERQ3oStjWcbVJmcQrr46PZ9rzC3gRH4riE7aM5GbdIKdKV23Lokh6kwpXvxHQQH97qmKKcWN/+Dz2nPPAVu2AMn0xVW8yIuguAmdM9Xa2hr0EEID0SroopO24sZflJTQiiS7CzEWuXPmOH+O4iU9sAuTe0lAV9z4DxZTAHDbbcnV5lO8yIuguAmdmFq7dm3QQwgNRKugDw7SlXhurvPrFDf+wugcWmFwkISUWz6m4iU9sBJTY2P0J5qArrjxH4WFtCApL4/ypZKB4kVeBMVN6MTUoUOHgh5CaODFmRLpM6a48RduVdCHhhQvQcJKTLGLK+pMKW78h6ZRTanrr4+f47xC8SIvguImdDlTW7duDXoIoQGfaEScKZFJW3HjL0ScKbfQK6B4SRdKS4ETJxIf45CsqJhS3KQHL71EJRGSheJFXgTFTeicqaqqqqCHEBrwZC3iTIlM2oobf+HW7FjUmVK8pAdWzpRXMaW4SQ9WrkytLp/iRV4ExU3oxFRlZWXQQwgN5s6lnBu/nCnFjb9wy2kTFbmKl/SgtBTo7aWWJQAwPAzs20f/i4opxY2cULzIi6C4CZ2YUlcM/qK01N2ZUg5IMFDOlNwoLSUh9dGPAps2kYC68UbK2VmxQuwzFDdyQvEiL4LiJnQ5U+qKwV+UlYk5U4sWuX+W4sZf5OfTBO3kTBmXgdtB8ZIebNpEwunNN4Ft24D/8l/otrISOOccsc9Q3MgJxYu8UM6UT6itrQ16CKGCiDMlGuZT3PgPp2bHipdgcdVVVGE7EgGeeQa47z7gwx8WF1KA4kZWKF7kRVDchE5MrV+/PughhAoizY5FJ23Fjf9w6p8oGuZTvKQP+fmpvV9xIycUL/IiKG5CJ6YikUjQQwgVRJodi4opxY3/cHOmRBLQFS/yQnEjC6O32QAAC8dJREFUJxQv8iIobkInphYvXhz0EEKFsjJakTQ5af8a0UlbceM//HCmFC/yQnEjJxQv8iIobkInpvr6+oIeQqhQWkqNdHt7rZ+PxSgvRGTSVtz4DztnStdJTImIXMWLvFDcyAnFi7wIipvQiamCgoKghxAquLWU4Wa6ImJKceM/SktJTOl64uMjI/SY4iW7obiRE4oXeREUN6ETUwr+QqQwJCA2aSv4j5ISCsH29yc+zryIOFMKCgoKCqkhdGJqZGQk6CGECm7OlBcxpbjxH3Zi14tjqHiRF4obOaF4kRdBcZNS0U5N05oBDACYBDCh6/oOPwaVCopT6V6pMA1+OlOKG/9hrIK+Zk38cS/OlOJFXihu5ITiRV4ExY0fztQVuq5vk0FIAcCpU6eCHkKo4KczpbjxHyymUnGmFC/yQnEjJxQv8iIobkIX5lu5cmXQQwgV5s2jwoNuzpSIA6K48R/sHJpX9ClewgHFjZxQvMiLoLhJVUzpAP6saVqVpmmf8GNAqeLo0aNBDyFU0DTnKuheHBDFjf/ww5lSvMgLxY2cULzIi6C4SVVMXarr+nYA7wXwaU3TLje/QNO0T2iatlfTtL0dHR3o6upCR0cH2tra0Nvbi8bGRgwPD6Ourg6xWAzV1dUA4p2fq6urEYvFUFdXh+HhYTQ2NqK3txdtbW3gz2tubkY0GkV9fT3OO+881NTUJHwG39bW1mJ0dBQNDQ3o7+9HJBJBZ2cnOjs7EYlE0N/fj4aGBoyOjp7t72P+jJqaGkxMTKC+vh7RaBTNzc1p36aJiYlAt6m4eAKRyKDlNtXWNgEAWlrqXLepqKhImm0KC0+xGKnc5ub+hG2qrz8xxcth121avny5VNsURp6S3abc3NzQbVMYeBobGwvdNoWFp02bNvm6TaLQdHOBmiShadrXAER1Xf8Xu9fs2LFD37t3ry/fZ4eqqirV0dtnvOtdwNgYsGvX9Od+8hPgjjuAlhbAzV1V3KQHCxYAt94KfPe78cd++lPg7/8eOHYMOPdc5/crXuSF4kZOKF7khd/caJpWJZITnrQzpWnaPE3Tivh/AO8BcDDZz/MLagf3H04tS7wkoCtu0oNFi4CDBxMLd3rJmVK8yAvFjZxQvMiLoLhJJcy3GMAuTdNqAOwB8Add1//kz7CSB9t6Cv7BKWfKi5hS3KQHn/wk8OKLwJNPxh/zkjOleJEXihs5oXiRF0Fxk3SdKV3XmwBs9XEsvkBdMfgPblkSiwE5Jvk9OEiPzZ7t/jmKm/Tg858Hnn4a+PSngXe+E6ioUM5UWKC4kROKF3mRjc6UlPCaNKbgjrIyElJW/SO5ma6muX+O4iY9yM0FHn2UBNSdd8abHOfnA7MELpcUL/JCcSMnFC/yIihuQiemNm3aFPQQQgenKuiDg+J9+RQ36cPGjcDXvw789rfAz39OvIj25VO8yAvFjZxQvMiLoLgJnZg6duxY0EMIHZyqoHsRU4qb9OLznwfe/nbgrruApibFSxiguJETihd5ERQ3oRNTy5cvD3oIoYNfzpTiJr3IzQX+4z+Ikz/8QdyZUrzIC8WNnFC8yIuguAmdmOqyW3amkDT8cqYUN+nHxo3A/ffT/4qX7IfiRk4oXuRFUNwkvZpPVhQWFgY9hNCBxVSqzpTiJjP43OeAZ5+Nt5pxg+JFXihu5ITiRV4ExU3oxNT4+HjQQwgdiopoVZidM8VhQDcobjKD3Fzg+eenl7Gwg+JFXihu5ITiRV4ExU3oxFQsFgt6CKGDU7PjoSFxZ0pxkznk5Ym/VvEiLxQ3ckLxIi+C4iZ0OVNzRbNuFTzBrqWMlzCf4kZOKF7kheJGTihe5EVQ3IROTPX09AQ9hFDCzpnyIqYUN3JC8SIvFDdyQvEiL4LiJnRiaunSpUEPIZTww5lS3MgJxYu8UNzICcWLvAiKm9CJqePHjwc9hFDCypkaGwMmJsTFlOJGTihe5IXiRk4oXuRFUNyETkxt3Lgx6CGEEuxM6Xr8MW6mKyqmFDdyQvEiLxQ3ckLxIi+C4iZ0Ymr//v1BDyGUKCsDJieBM2fijw0N0a1ovp/iRk4oXuSF4kZOKF7kRVDchK40wvbt24MeQijBtaT+4R+Aiy8Gtm0DCgroMVFnSnEjJxQv8kJxIycUL/IiKG5C50xVVVUFPYRQ4l3vAt7zHuBPfyJBddllwI4d9JyomFLcyAnFi7xQ3MgJxYu8CIobTTcmwaQZO3bs0Pfu3Zux71PwH7oOtLUB+/cDNTXAiRPAN74h3rpEQUFBQUEhW6BpWpWu6zvcXhc6Z6q6ujroIYQamgYsXw584APAPfcADz0kLqQUN3JC8SIvFDdyQvEiL4LiJnTOVCwWQ45oUzKFjEJx8//buZsQq+owjuPfH+NYqUSZFaaWE0hlQRkR9kJIBllJtokMBCnaBWkUobWIFu0ialFBmCUUSpiUBEVhQa3sRRdZjiRaOo2pEb1QkEVPi3Oii3lJut7zfzj399k458zIPPB17jzee87NyV3ycpuc3CWvE91mYJ+ZGh0dLT2CdeE2OblLXm6Tk7vkVapN65apkZGR0iNYF26Tk7vk5TY5uUtepdq0bpkaHx8vPYJ14TY5uUtebpOTu+RVqk3rlqmpvq0sLbfJyV3ycpuc3CWvUm1at0z9+vfbcls6bpOTu+TlNjm5S16l2rRumfIdFnm5TU7ukpfb5OQueZVq07p/EcPDw6VHsC7cJid3ycttcnKXvEq1afR9piQdBr7u87eZBnzX5+9h/4/b5OQueblNTu6S14luc15EnPlfX9ToMtUESZ8czxtsWfPcJid3ycttcnKXvEq1ad3LfGZmZmZN8jJlZmZm1oM2LlPPlx7AunKbnNwlL7fJyV3yKtKmdddMmZmZmTWpjc9MmZmZmTWmVcuUpEWSdknaLWlV6XkGlaRZkt6XtFPS55JW1OenSnpX0pf1n6eXnnUQSRqStF3Sm/WxuyQg6TRJGyWN1j87V7lNeZLurx/HdkhaL+lkdylD0lpJhyTt6DjXtYWk1fU+sEvSjf2crTXLlKQh4BngJmAucKekuWWnGlh/AA9ExEXAfODeusUqYEtEzAG21MfWvBXAzo5jd8nhaeDtiLgQuJSqkdsUJGkGcB9wRURcAgwBS3GXUl4CFh117pgt6t85S4GL67/zbL0n9EVrlingSmB3ROyJiCPABmBJ4ZkGUkQciIht9cc/U/1SmEHVY139ZeuA28pMOLgkzQRuAdZ0nHaXwiSdClwHvAAQEUci4gfcJoMJwCmSJgCTgHHcpYiI+AD4/qjT3VosATZExG8RsRfYTbUn9EWblqkZwP6O47H6nBUkaTYwD9gKnB0RB6BauICzyk02sJ4CHgL+7DjnLuWdDxwGXqxfgl0jaTJuU1REfAM8AewDDgA/RsQ7uEsm3Vo0uhO0aZnSMc75VsWCJE0BXgNWRsRPpecZdJIWA4ci4tPSs9i/TAAuB56LiHnAL/ilo+Lq62+WACPAOcBkScvKTmXHqdGdoE3L1Bgwq+N4JtXTsVaApGGqReqViNhUnz4oaXr9+enAoVLzDahrgFslfUX1Mvj1kl7GXTIYA8YiYmt9vJFquXKbsm4A9kbE4Yj4HdgEXI27ZNKtRaM7QZuWqY+BOZJGJE2kuvBsc+GZBpIkUV37sTMinuz41GZgef3xcuCNpmcbZBGxOiJmRsRsqp+P9yJiGe5SXER8C+yXdEF9aiHwBW5T2j5gvqRJ9ePaQqprQN0lj24tNgNLJZ0kaQSYA3zUryFa9aadkm6muiZkCFgbEY8XHmkgSboW+BD4jH+uzXmY6rqpV4FzqR6kbo+Ioy8mtAZIWgA8GBGLJZ2BuxQn6TKqGwMmAnuAu6j+w+s2BUl6DLiD6i7l7cA9wBTcpXGS1gMLgGnAQeBR4HW6tJD0CHA3VbuVEfFW32Zr0zJlZmZm1rQ2vcxnZmZm1jgvU2ZmZmY98DJlZmZm1gMvU2ZmZmY98DJlZmZm1gMvU2ZmZmY98DJlZmZm1gMvU2ZmZmY9+As/X8a3gz8cgwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 720x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAD8CAYAAABTlCH6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFuJJREFUeJzt3U9s2/d5x/HP49qr4bqFI2iR47mOvNiO2zSwGwlFgQ5FuiFF2kvbw4D1MORQIDu0QDv0EuyyXgYUw9peNhTo0CA5rB0GdF2Colj/BC26wxBMJKwyUhjTqllOMiNBsAyNsKxZ43cHUamj0LbsH/n98vv83i+AoEjT5PP1xw/56Pcjf7QQggAAAHB/9qUuAAAAIGcMUwAAAAUwTAEAABTAMAUAAFAAwxQAAEABDFMAAAAFMEwBAAAUwDAFAABQAMMUAABAAftjPtj4+HiYnJyM+ZAAAAD3pVKprIYQfv9ut4s6TE1OTmpmZibmQ7qxsLCgRx55JHUZiIS8y4Osy4Os82Nmv93L7djNl4mxsbHUJSAi8i4Psi4PsvaLYSoT169fT10CIiLv8iDr8iBrvximMrFvH1GVCXmXB1mXB1n7RbKZOHDgQOoSEBF5lwdZlwdZ+8UwlYlOp5O6BERE3uVB1uVB1n4xTGVifHw8dQmIiLzLg6zLg6z9YpjKxOLiYuoSEBF5lwdZlwdZ+8UwlYlTp06lLgERkXd5kHV5kLVfDFOZmJubS10CIiLv8iDr8iBrvyyEEO3BpqenA0dAB4DbO3p0UsvLezro8kibmHhYb77ZTF0GUIiZVUII03e7HVumMlGpVFKXgIjIuzx2Z709SIXsTx4GwkGjr/1iyxQAjBAz0/ZAkjtTzNcXYBjYMuUMv9GUC3mXB1mXB1n7xZYpABghbJkCRgdbppyp1WqpS0BE5F0eZF0eZO0Xw1Qmzpw5k7oERETe5UHW5UHWfjFMZaLVaqUuARGRd3mQdXmQtV8MU5mYmJhIXQIiIu/yIOvyIGu/GKYyce3atdQlICLyLg+yLg+y9othKhMHDx5MXQIiIu/yIOvyIGu/GKYAAAAKYJjKxI0bN1KXgIjIuzzIujzI2i+GqUwcOXIkdQmIiLzLg6zLg6z9YpjKxPLycuoSEBF5lwdZlwdZ+3XXYcrM3m9mvzCz181szsy+3Lt+zMx+ZmaN3vkDwy+3vE6cOJG6BERE3uVB1uVB1n7tZcvUlqSvhhA+IOmjkr5oZh+U9JykV0IIpyW90ruMIbl48WLqEhAReZcHWZcHWft1z190bGYvSfr73unJEELbzB6S9MsQwqN3+rt80TEA3BlfdAyMjqF80bGZTUr6sKRXJU2EENqS1Dt/8N7LxF5VKpXUJSAi8i4Psi4PsvZrz8OUmR2W9ANJXwkhrN/D33vWzGbMbKbdbmt1dVXtdltLS0taW1vTwsKCNjY2ND8/r263q2q1Kul3/+mq1aq63a7m5+e1sbGhhYUFra2taWlpSTv312w21el0VK/XtbW1pdnZ2bfdx855rVbT5uamGo2G1tfX1Wq1tLKyopWVFbVaLa2vr6vRaGhzc/Otb/fefR+zs7Pa2tpSvV5Xp9NRs9mMsqb9+/e7W5PHnAa1pqmpKXdrGmZOR49OysyyPE1PT7/tsjfe/+/dy5rOnTvnbk0ec7p1TXu1p918ZnZA0o8k/SSE8M3edW+I3XzRVCoVTU1NpS4DkZD3vfGza0ySvKyF3Xy70df5GdhuPtt+lvqupNd3BqmelyU90/v5GUkv3U+h2BsasFzIG/CHvvZrL7v5PibpzyX9sZld6J0+Lenrkp4ys4akp3qXMST3uskReSNvwB/62q97/jRfEezmu3+3vm8K/pH3vWE33yhiN99u9HV+hvJpPqRz6dKl1CUgIvIG/KGv/WKYysTx48dTl4CIyBvwh772i2EqE6urq6lLQETkDfhDX/vFMJWJw4cPpy4BEZE34A997RfDVCZu3ryZugRERN6AP/S1XwxTmeh2u6lLQETkDfhDX/vFMJWJQ4cOpS4BEZE34A997RfDVCauXr2augRERN6AP/S1XwxTmTh27FjqEhAReQP+0Nd+MUxl4vLly6lLQETkDfhDX/vFMJWJs2fPpi4BEZE34A997RfDVCYuXLiQugRERN6AP/S1X3zRMYDs8UXHo4gvOkb++KJjZyqVSuoSEBF5A/7Q136xZQpA9tgyNYrYMoX8sWXKmWq1mroERETegD/0tV8MU5k4f/586hIQEXkD/tDXfjFMZaJer6cuARGRN+APfe0Xw1QmTp48mboERETegD/0tV8MU5m4cuVK6hIQEXkD/tDXfjFMZWJsbCx1CYiIvAF/6Gu/GKYycf369dQlICLyBvyhr/1imMrEvn1EVSbkDfhDX/tFspk4cOBA6hIQEXkD/tDXfjFMZaLT6aQuARGRN+APfe0Xw1QmxsfHU5eAiMgb8Ie+9othKhOLi4upS0BE5A34Q1/7xTCViVOnTqUuARGRN+APfe0Xw1Qm5ubmUpeAiMgb8Ie+9othKhPnzp1LXQIiIm/AH/raL4apTFQqldQlICLyBvyhr/2yEEK0B5ueng4zMzPRHg9AOZiZpHjPZcPlZS2mmK8vwDCYWSWEMH2327FlKhP8RlMuMfI+enRSZubiBOSA53G/2DIFlBRbc0aVl7WwZQr5Y8uUM7VaLXUJiIi8AX/oa78YpjJx5syZ1CUgIvIG/KGv/WKYykSr1UpdAiIib8Af+tovhqlMTExMpC4BEZE34A997dddhykze97MVszstVuu+5qZLZnZhd7p08MtE9euXUtdAiIib8Af+tqvvWyZekHS032u/1YI4Xzv9OPBloXdDh48mLoERETegD/0tV93HaZCCL+SdDVCLQAAANkp8p6pL5nZr3u7AR8YWEXo68aNG6lLQETkDfhDX/t1v8PUtyU9Ium8pLakb9zuhmb2rJnNmNlMu93W6uqq2u22lpaWtLa2poWFBW1sbGh+fl7dblfValXS744UW61W1e12NT8/r42NDS0sLGhtbU1LS0vaub9ms6lOp6N6va6trS3Nzs6+7T52zmu1mjY3N9VoNLS+vq5Wq6WVlRWtrKyo1WppfX1djUZDm5ubbx0PZPd9zM7OamtrS/V6XZ1OR81mM8qalpeX3a3JY06DWtORI0eGviYghlHop373keI54vDhw+7W5DGnW9e0V3s6ArqZTUr6UQjhQ/fyZ7txBPT712g0dPr06dRlIJIYeXME9FHlZS0cAX03nsfzM9QjoJvZQ7dc/Jyk1253WwzGiRMnUpeAiMgb8Ie+9msvh0b4vqT/lPSomS2a2Rck/a2Z1czs15I+Iekvh1xn6V28eDF1CYiIvAF/6Gu/+KJjoKTYzTeqvKyF3XzIH1907MzOG+lQDuQN+ENf+8WWKaCk2DI1qryshS1TyB9bppzhN5pyIW/AH/raL7ZMASXFlqlR5WUtbJlC/tgy5cy9HkAMeSNvwB/62i+GqUw89thjqUtAROQN+ENf+8UwlYlLly6lLgERkTfgD33tF8NUJo4fP566BERE3oA/9LVfDFOZWF1dTV0CIiJvwB/62i+GqUwcPnw4dQmIiLwBf+hrvximMnHz5s3UJSAi8gb8oa/9YpjKRLfbTV0CIiJvwB/62i+GqUwcOnQodQmIiLwBf+hrvximMnH16tXUJSAi8gb8oa/9YpjKxLFjx1KXgIjIG/CHvvaLYSoTly9fTl0CIiJvwB/62i+GqUycPXs2dQmIiLwBf+hrvximMnHhwoXUJSAi8gb8oa/9shBCtAebnp4OMzMz0R4PwO2ZmaR4/T9crGX0mGK+vgDDYGaVEML03W7HlqlMVCqV1CUgIvIG/KGv/WLLFFBSbJkaVV7WwpYp5I8tU85Uq9XUJSAi8gb8oa/9YpjKxPnz51OXgIjIG/CHvvaLYSoT9Xo9dQmIiLwBf+hrvximMnHy5MnUJSAi8gb8oa/9YpjKxJUrV1KXgIjIG/CHvvaLYSoTY2NjqUtAROQN+ENf+8UwlYnr16+nLgERkTfgD33tF8NUJvbtI6oyIW/AH/raL5LNxIEDB1KXgIjIG/CHvvaLYSoTnU4ndQmIiLwBf+hrvximMjE+Pp66BERE3oA/9LVfDFOZWFxcTF0CIiJvwB/62i+GqUycOnUqdQmIiLwBf+hrvximMjE3N5e6BERE3oA/9LVfDFOZOHfuXOoSEBF5A/7Q134xTGWiUqmkLgERkTfgD33tl4UQoj3Y9PR0mJmZifZ4AG7PzCTF6//hYi2jxxTz9QUYBjOrhBCm73a7u26ZMrPnzWzFzF675boxM/uZmTV65w8ULRh3xm805ULegD/0tV972c33gqSnd133nKRXQginJb3Su4whmpqaSl0CIiJvwB/62q+7DlMhhF9Jurrr6s9IerH384uSPjvgurBLrVZLXQIiIm/AH/rar/t9A/pECKEtSb3zBwdXEvo5c+ZM6hIQEXkD/tDXfg3903xm9qyZzZjZTLvd1urqqtrttpaWlrS2tqaFhQVtbGxofn5e3W5X1WpV0u/2LVerVXW7Xc3Pz2tjY0MLCwtaW1vT0tKSdu6v2Wyq0+moXq9ra2tLs7Ozb7uPnfNarabNzU01Gg2tr6+r1WppZWVFKysrarVaWl9fV6PR0Obm5lu/Qey+j9nZWW1tbaler6vT6ajZbEZZ06uvvupuTR5zGtSaWq3W0NcExDAK/dTvPlI8RzSbTXdr8pjTrWvaqz19ms/MJiX9KITwod7lNyQ9GUJom9lDkn4ZQnj0bvfDp/nu3/r6ut73vvelLgORxMibT/ONKi9r4dN8u/E8np+BfZrvNl6W9Ezv52ckvXSf94M9unbtWuoSEBF5A/7Q137t5dAI35f0n5IeNbNFM/uCpK9LesrMGpKe6l3GEB08eDB1CYiIvAF/6Gu/9t/tBiGEz9/mj/5kwLUAAABkh6+TycSNGzdSl4CIyBvwh772i2EqE0eOHEldAiIib8Af+tovhqlMLC8vpy4BEZE34A997RfDVCZOnDiRugRERN6AP/S1XwxTmbh48WLqEiDp6NFJmdnQTwcPHhz6YwDD9e4ovRLjdPTo5ED+RXge9+uun+bDaHj88cdTlwBJy8u/lY8DKkrbB4cEhmVTXnpleXkwvcLzuF9smcrEzmHxAQB54nncL4apTExNTaUuAQBQAM/jfjFMZYLfaAAgbzyP+8UwlQl+owGAvPE87hfDVCZmZ2dTlwAAKIDncb8YpjLx2GOPpS4BAFAAz+N+MUxl4tKlS6lLAAAUwPO4XxxnKhPHjx9PXQIAlNS73RzodmLiYb35ZjN1Ge4wTGVidXVVhw8fTl0GAJQQByDFnbGbLxMMUgAAjCaGqUzcvHkzdQkAAKAPhqlMdLvd1CUAAIA+GKYycejQodQlAACAPhimMnH16tXUJQAAgD4YpjJx7Nix1CUAAIA+GKYycfny5dQlAACAPhimMnH27NnUJQAAgD4YpjJx4cKF1CUAAIA+GKYy8cQTT6QuAQAA9MEwlYlKpZK6BAAA0AfDVCampqZSlwAAAPpgmMpEtVpNXQIAAOiDYSoT58+fT10CAADog2EqE/V6PXUJAACgD4apTJw8eTJ1CQAAoA+GqUxcuXIldQkAAKAPhqlMjI2NpS4BAAD0wTCVievXr6cuAQAA9MEwlYl9+4gKAIBRxCt0Jg4cOJC6BAAA0AfDVCY6nU7qEgAAQB8MU5kYHx9PXQIAAOij0DBlZk0zq5nZBTObGVRReKfFxcXUJQAAgD72D+A+PhFCWB3A/eAOTp06lboEAADQB7v5MjE3N5e6BAAA0EfRYSpI+qmZVczs2UEUhP7OnTuXugQAANBH0WHqYyGEJyR9StIXzezju29gZs+a2YyZzbTbba2urqrdbmtpaUlra2taWFjQxsaG5ufn1e12Va1WJUmVSkWSVK1W1e12NT8/r42NDS0sLGhtbU1LS0vaub9ms6lOp6N6va6trS3Nzs6+7T52zmu1mjY3N9VoNLS+vq5Wq6WVlRWtrKyo1WppfX1djUZDm5ubqtVqfe9jdnZWW1tbqtfr6nQ6ajabUdb085//POs1PfjgCZlZ9icAyB2vuXtf015ZCOG+A3nbHZl9TVInhPB3t7vN9PR0mJnhfepltD2IDOb/Wlpe1iGxllHlZS1e1iF5W8ugXvfLwMwqIYTpu93uvrdMmdl7zOy9Oz9L+qSk1+73/nBnOxM2AAAYLUU+zTch6Ye9XR/7JX0vhPDvA6kK7zA1NZW6BAAA0Md9D1MhhN9I4l3RkdRqNT3++OOpywAAALtwaIRMnDlzJnUJAACgD4apTLRardQlAACAPhimMjExMZG6BAAA0AfDVCauXbuWugQAANDHIL6bb6QcPTqp5eXfpi5jICYmHtabbzYlSQcPHkxbDADAgXe7OQDxra+RqbkbprYHKR8HJFte9vEfHgAwKjbFa+TgsZsvEzdu3EhdAgAA6INhKhNHjhxJXQIAAOiDYSoTy8vLqUsAAAB9MExl4sSJE6lLAAAAfTBMZeLixYupSwAAAH0wTGWC7+UDAGA0MUxlolKppC4BAAD0wTCViampqdQlAACAPtwdtNMXP0eqBQDAK4apkebnSLUSQyEAwCd28wEAABTAMAUAAFAAwxQAAEABDFMAAAAFMEwBAAAUwDAFAABQAMMUAABAAQxTAAAABTBMAQAAFMAwBQAAUADDFAAAQAEMUwAAAAUwTAEAABTAMAUAAFAAwxQAAEABDFMAAAAFMEwBAAAUwDAFAABQAMMUAABAAQxTAAAABTBMAQAAFMAwBQAAUEChYcrMnjazN8zskpk9N6iiAAAAcnHfw5SZvUvSP0j6lKQPSvq8mX1wUIUBAADkoMiWqY9IuhRC+E0I4X8l/bOkzwymLAAAgDwUGab+QNJ/33J5sXcdAABAaewv8Hetz3XhHTcye1bSs72LHTN7o8Bj7lG/0nL11lrGJa0mLGQAvOQSZR2R8vaSiZTxWvpkne1advGyDmlAaxmR53E/uZgNfS0P7+VGRYapRUnvv+XycUlXdt8ohPAdSd8p8DiQZGYzIYTp1HUgDvIuD7IuD7L2q8huvv+SdNrMTprZ70n6M0kvD6YsAACAPNz3lqkQwpaZfUnSTyS9S9LzIYS5gVUGAACQgSK7+RRC+LGkHw+oFtwZu0rLhbzLg6zLg6ydshDe8Z5xAAAA7BFfJwMAAFAAw1QGzKxpZjUzu2BmM6nrweCY2fNmtmJmr91y3ZiZ/czMGr3zB1LWiMG4TdZfM7OlXm9fMLNPp6wRg2Fm7zezX5jZ62Y2Z2Zf7l1PbzvFMJWPT4QQzvOxWndekPT0ruuek/RKCOG0pFd6l5G/F/TOrCXpW73ePt97HyrytyXpqyGED0j6qKQv9r5ujd52imEKSCiE8CtJV3dd/RlJL/Z+flHSZ6MWhaG4TdZwKITQDiFUez//j6TXtf0NIfS2UwxTeQiSfmpmld4R5eHbRAihLW0/KUt6MHE9GK4vmdmve7sB2e3jjJlNSvqwpFdFb7vFMJWHj4UQnpD0KW1vLv546oIADMS3JT0i6byktqRvpC0Hg2RmhyX9QNJXQgjrqevB8DBMZSCEcKV3viLph5I+krYiDNmymT0kSb3zlcT1YEhCCMshhP8LIXQl/aPobTfM7IC2B6l/CiH8a+9qetsphqkRZ2bvMbP37vws6ZOSXrvz30LmXpb0TO/nZyS9lLAWDNHOC2vP50Rvu2Db3777XUmvhxC+ecsf0dtOcdDOEWdmf6jtrVHS9hHrvxdC+JuEJWGAzOz7kp7U9rfJL0v6a0n/JulfJJ2Q1JL0pyEE3ricudtk/aS2d/EFSU1Jf7Hznhrky8z+SNJ/SKpJ6vau/ittv2+K3naIYQoAAKAAdvMBAAAUwDAFAABQAMMUAABAAQxTAAAABTBMAQAAFMAwBQAAUADDFAAAQAEMUwAAAAX8P4VgKczum7wDAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 720x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"plt.figure(figsize=(10, 4))\n",
"plt.plot(data, linestyle='-', color='b')\n",
"plt.grid(True, linestyle=':')\n",
"plt.show()\n",
"\n",
"plt.figure(figsize=(10, 4))\n",
"plt.hist(data, bins='auto', color='b', edgecolor='black', zorder=3)\n",
"plt.grid(True, linestyle=':')\n",
"plt.show()"
]
}
],
"metadata": {
"metadata": {
"kernelspec": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3",
...
@@ -16,10 +155,9 @@
...
@@ -16,10 +155,9 @@
"name": "python",
"name": "python",
"nbconvert_exporter": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"pygments_lexer": "ipython3",
"version": "3.6.
3
"
"version": "3.6.
4
"
}
}
},
},
"nbformat": 4,
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 2
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment