diff --git a/module3/exo3/exercice_fr.ipynb b/module3/exo3/exercice_fr.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..1f5d9a0200990b95e559f12760df1425c4c173f2 100644
--- a/module3/exo3/exercice_fr.ipynb
+++ b/module3/exo3/exercice_fr.ipynb
@@ -1,5 +1,1647 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'évolution du prix du blé et du salaire moyen entre 1565 et 1821 sont disponibles sur le site de [Vincent Arel](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une 5 années de la période demandée. Nous téléchargeons toujours le jeu de données complet."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_file = \"wheat.csv\"\n",
+ "\n",
+ "import os\n",
+ "import urllib.request\n",
+ "if not os.path.exists(data_file):\n",
+ " urllib.request.urlretrieve(data_url, data_file)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://vincentarelbundock.github.io/Rdatasets/doc/HistData/Wheat.html):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| rownames | Numéro de la ligne |\n",
+ "| Year | La valeur numérique de l'année, regroupées en période de 5 années. Par exemple, 1520 correspond à la période 1520-1524 |\n",
+ "| Wheat | Estimation du prix du blé (en shilling et pence) sur cette période |\n",
+ "| Wages | Estimation du salaire moyen des ouvriers anglais (en shilling) |\n",
+ "\n",
+ "\n",
+ "Nous souhaitons que la tableau reprenne le numéro des lignes présents dans le fichier csv, ce que nous spécifions par `index_col=\"rownames\"`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Year \n",
+ " Wheat \n",
+ " Wages \n",
+ " \n",
+ " \n",
+ " rownames \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1565 \n",
+ " 41.0 \n",
+ " 5.00 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1570 \n",
+ " 45.0 \n",
+ " 5.05 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1575 \n",
+ " 42.0 \n",
+ " 5.08 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1580 \n",
+ " 49.0 \n",
+ " 5.12 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 1585 \n",
+ " 41.5 \n",
+ " 5.15 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1590 \n",
+ " 47.0 \n",
+ " 5.25 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 1595 \n",
+ " 64.0 \n",
+ " 5.54 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 1600 \n",
+ " 27.0 \n",
+ " 5.61 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 1605 \n",
+ " 33.0 \n",
+ " 5.69 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1610 \n",
+ " 32.0 \n",
+ " 5.78 \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 1615 \n",
+ " 33.0 \n",
+ " 5.94 \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 1620 \n",
+ " 35.0 \n",
+ " 6.01 \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 1625 \n",
+ " 33.0 \n",
+ " 6.12 \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 1630 \n",
+ " 45.0 \n",
+ " 6.22 \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 1635 \n",
+ " 33.0 \n",
+ " 6.30 \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 1640 \n",
+ " 39.0 \n",
+ " 6.37 \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 1645 \n",
+ " 53.0 \n",
+ " 6.45 \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 1650 \n",
+ " 42.0 \n",
+ " 6.50 \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 1655 \n",
+ " 40.5 \n",
+ " 6.60 \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 1660 \n",
+ " 46.5 \n",
+ " 6.75 \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 1665 \n",
+ " 32.0 \n",
+ " 6.80 \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 1670 \n",
+ " 37.0 \n",
+ " 6.90 \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 1675 \n",
+ " 43.0 \n",
+ " 7.00 \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 1680 \n",
+ " 35.0 \n",
+ " 7.30 \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 1685 \n",
+ " 27.0 \n",
+ " 7.60 \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 1690 \n",
+ " 40.0 \n",
+ " 8.00 \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 1695 \n",
+ " 50.0 \n",
+ " 8.50 \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 1700 \n",
+ " 30.0 \n",
+ " 9.00 \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 1705 \n",
+ " 32.0 \n",
+ " 10.00 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1710 \n",
+ " 44.0 \n",
+ " 11.00 \n",
+ " \n",
+ " \n",
+ " 31 \n",
+ " 1715 \n",
+ " 33.0 \n",
+ " 11.75 \n",
+ " \n",
+ " \n",
+ " 32 \n",
+ " 1720 \n",
+ " 29.0 \n",
+ " 12.50 \n",
+ " \n",
+ " \n",
+ " 33 \n",
+ " 1725 \n",
+ " 39.0 \n",
+ " 13.00 \n",
+ " \n",
+ " \n",
+ " 34 \n",
+ " 1730 \n",
+ " 26.0 \n",
+ " 13.30 \n",
+ " \n",
+ " \n",
+ " 35 \n",
+ " 1735 \n",
+ " 32.0 \n",
+ " 13.60 \n",
+ " \n",
+ " \n",
+ " 36 \n",
+ " 1740 \n",
+ " 27.0 \n",
+ " 14.00 \n",
+ " \n",
+ " \n",
+ " 37 \n",
+ " 1745 \n",
+ " 27.5 \n",
+ " 14.50 \n",
+ " \n",
+ " \n",
+ " 38 \n",
+ " 1750 \n",
+ " 31.0 \n",
+ " 15.00 \n",
+ " \n",
+ " \n",
+ " 39 \n",
+ " 1755 \n",
+ " 35.5 \n",
+ " 15.70 \n",
+ " \n",
+ " \n",
+ " 40 \n",
+ " 1760 \n",
+ " 31.0 \n",
+ " 16.50 \n",
+ " \n",
+ " \n",
+ " 41 \n",
+ " 1765 \n",
+ " 43.0 \n",
+ " 17.60 \n",
+ " \n",
+ " \n",
+ " 42 \n",
+ " 1770 \n",
+ " 47.0 \n",
+ " 18.50 \n",
+ " \n",
+ " \n",
+ " 43 \n",
+ " 1775 \n",
+ " 44.0 \n",
+ " 19.50 \n",
+ " \n",
+ " \n",
+ " 44 \n",
+ " 1780 \n",
+ " 46.0 \n",
+ " 21.00 \n",
+ " \n",
+ " \n",
+ " 45 \n",
+ " 1785 \n",
+ " 42.0 \n",
+ " 23.00 \n",
+ " \n",
+ " \n",
+ " 46 \n",
+ " 1790 \n",
+ " 47.5 \n",
+ " 25.50 \n",
+ " \n",
+ " \n",
+ " 47 \n",
+ " 1795 \n",
+ " 76.0 \n",
+ " 27.50 \n",
+ " \n",
+ " \n",
+ " 48 \n",
+ " 1800 \n",
+ " 79.0 \n",
+ " 28.50 \n",
+ " \n",
+ " \n",
+ " 49 \n",
+ " 1805 \n",
+ " 81.0 \n",
+ " 29.50 \n",
+ " \n",
+ " \n",
+ " 50 \n",
+ " 1810 \n",
+ " 99.0 \n",
+ " 30.00 \n",
+ " \n",
+ " \n",
+ " 51 \n",
+ " 1815 \n",
+ " 78.0 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 52 \n",
+ " 1820 \n",
+ " 54.0 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 53 \n",
+ " 1821 \n",
+ " 54.0 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Year Wheat Wages\n",
+ "rownames \n",
+ "1 1565 41.0 5.00\n",
+ "2 1570 45.0 5.05\n",
+ "3 1575 42.0 5.08\n",
+ "4 1580 49.0 5.12\n",
+ "5 1585 41.5 5.15\n",
+ "6 1590 47.0 5.25\n",
+ "7 1595 64.0 5.54\n",
+ "8 1600 27.0 5.61\n",
+ "9 1605 33.0 5.69\n",
+ "10 1610 32.0 5.78\n",
+ "11 1615 33.0 5.94\n",
+ "12 1620 35.0 6.01\n",
+ "13 1625 33.0 6.12\n",
+ "14 1630 45.0 6.22\n",
+ "15 1635 33.0 6.30\n",
+ "16 1640 39.0 6.37\n",
+ "17 1645 53.0 6.45\n",
+ "18 1650 42.0 6.50\n",
+ "19 1655 40.5 6.60\n",
+ "20 1660 46.5 6.75\n",
+ "21 1665 32.0 6.80\n",
+ "22 1670 37.0 6.90\n",
+ "23 1675 43.0 7.00\n",
+ "24 1680 35.0 7.30\n",
+ "25 1685 27.0 7.60\n",
+ "26 1690 40.0 8.00\n",
+ "27 1695 50.0 8.50\n",
+ "28 1700 30.0 9.00\n",
+ "29 1705 32.0 10.00\n",
+ "30 1710 44.0 11.00\n",
+ "31 1715 33.0 11.75\n",
+ "32 1720 29.0 12.50\n",
+ "33 1725 39.0 13.00\n",
+ "34 1730 26.0 13.30\n",
+ "35 1735 32.0 13.60\n",
+ "36 1740 27.0 14.00\n",
+ "37 1745 27.5 14.50\n",
+ "38 1750 31.0 15.00\n",
+ "39 1755 35.5 15.70\n",
+ "40 1760 31.0 16.50\n",
+ "41 1765 43.0 17.60\n",
+ "42 1770 47.0 18.50\n",
+ "43 1775 44.0 19.50\n",
+ "44 1780 46.0 21.00\n",
+ "45 1785 42.0 23.00\n",
+ "46 1790 47.5 25.50\n",
+ "47 1795 76.0 27.50\n",
+ "48 1800 79.0 28.50\n",
+ "49 1805 81.0 29.50\n",
+ "50 1810 99.0 30.00\n",
+ "51 1815 78.0 NaN\n",
+ "52 1820 54.0 NaN\n",
+ "53 1821 54.0 NaN"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_file, index_col=\"rownames\")\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, les années 1815, 1820 et 1821 n'ont pas de données sur la valeur du salaire hebdomadaire."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Year \n",
+ " Wheat \n",
+ " Wages \n",
+ " \n",
+ " \n",
+ " rownames \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 51 \n",
+ " 1815 \n",
+ " 78.0 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 52 \n",
+ " 1820 \n",
+ " 54.0 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 53 \n",
+ " 1821 \n",
+ " 54.0 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Year Wheat Wages\n",
+ "rownames \n",
+ "51 1815 78.0 NaN\n",
+ "52 1820 54.0 NaN\n",
+ "53 1821 54.0 NaN"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Year \n",
+ " Wheat \n",
+ " Wages \n",
+ " \n",
+ " \n",
+ " rownames \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1565 \n",
+ " 41.0 \n",
+ " 5.00 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1570 \n",
+ " 45.0 \n",
+ " 5.05 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1575 \n",
+ " 42.0 \n",
+ " 5.08 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1580 \n",
+ " 49.0 \n",
+ " 5.12 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 1585 \n",
+ " 41.5 \n",
+ " 5.15 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1590 \n",
+ " 47.0 \n",
+ " 5.25 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 1595 \n",
+ " 64.0 \n",
+ " 5.54 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 1600 \n",
+ " 27.0 \n",
+ " 5.61 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 1605 \n",
+ " 33.0 \n",
+ " 5.69 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1610 \n",
+ " 32.0 \n",
+ " 5.78 \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 1615 \n",
+ " 33.0 \n",
+ " 5.94 \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 1620 \n",
+ " 35.0 \n",
+ " 6.01 \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 1625 \n",
+ " 33.0 \n",
+ " 6.12 \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 1630 \n",
+ " 45.0 \n",
+ " 6.22 \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 1635 \n",
+ " 33.0 \n",
+ " 6.30 \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 1640 \n",
+ " 39.0 \n",
+ " 6.37 \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 1645 \n",
+ " 53.0 \n",
+ " 6.45 \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 1650 \n",
+ " 42.0 \n",
+ " 6.50 \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 1655 \n",
+ " 40.5 \n",
+ " 6.60 \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 1660 \n",
+ " 46.5 \n",
+ " 6.75 \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 1665 \n",
+ " 32.0 \n",
+ " 6.80 \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 1670 \n",
+ " 37.0 \n",
+ " 6.90 \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 1675 \n",
+ " 43.0 \n",
+ " 7.00 \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 1680 \n",
+ " 35.0 \n",
+ " 7.30 \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 1685 \n",
+ " 27.0 \n",
+ " 7.60 \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 1690 \n",
+ " 40.0 \n",
+ " 8.00 \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 1695 \n",
+ " 50.0 \n",
+ " 8.50 \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 1700 \n",
+ " 30.0 \n",
+ " 9.00 \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 1705 \n",
+ " 32.0 \n",
+ " 10.00 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1710 \n",
+ " 44.0 \n",
+ " 11.00 \n",
+ " \n",
+ " \n",
+ " 31 \n",
+ " 1715 \n",
+ " 33.0 \n",
+ " 11.75 \n",
+ " \n",
+ " \n",
+ " 32 \n",
+ " 1720 \n",
+ " 29.0 \n",
+ " 12.50 \n",
+ " \n",
+ " \n",
+ " 33 \n",
+ " 1725 \n",
+ " 39.0 \n",
+ " 13.00 \n",
+ " \n",
+ " \n",
+ " 34 \n",
+ " 1730 \n",
+ " 26.0 \n",
+ " 13.30 \n",
+ " \n",
+ " \n",
+ " 35 \n",
+ " 1735 \n",
+ " 32.0 \n",
+ " 13.60 \n",
+ " \n",
+ " \n",
+ " 36 \n",
+ " 1740 \n",
+ " 27.0 \n",
+ " 14.00 \n",
+ " \n",
+ " \n",
+ " 37 \n",
+ " 1745 \n",
+ " 27.5 \n",
+ " 14.50 \n",
+ " \n",
+ " \n",
+ " 38 \n",
+ " 1750 \n",
+ " 31.0 \n",
+ " 15.00 \n",
+ " \n",
+ " \n",
+ " 39 \n",
+ " 1755 \n",
+ " 35.5 \n",
+ " 15.70 \n",
+ " \n",
+ " \n",
+ " 40 \n",
+ " 1760 \n",
+ " 31.0 \n",
+ " 16.50 \n",
+ " \n",
+ " \n",
+ " 41 \n",
+ " 1765 \n",
+ " 43.0 \n",
+ " 17.60 \n",
+ " \n",
+ " \n",
+ " 42 \n",
+ " 1770 \n",
+ " 47.0 \n",
+ " 18.50 \n",
+ " \n",
+ " \n",
+ " 43 \n",
+ " 1775 \n",
+ " 44.0 \n",
+ " 19.50 \n",
+ " \n",
+ " \n",
+ " 44 \n",
+ " 1780 \n",
+ " 46.0 \n",
+ " 21.00 \n",
+ " \n",
+ " \n",
+ " 45 \n",
+ " 1785 \n",
+ " 42.0 \n",
+ " 23.00 \n",
+ " \n",
+ " \n",
+ " 46 \n",
+ " 1790 \n",
+ " 47.5 \n",
+ " 25.50 \n",
+ " \n",
+ " \n",
+ " 47 \n",
+ " 1795 \n",
+ " 76.0 \n",
+ " 27.50 \n",
+ " \n",
+ " \n",
+ " 48 \n",
+ " 1800 \n",
+ " 79.0 \n",
+ " 28.50 \n",
+ " \n",
+ " \n",
+ " 49 \n",
+ " 1805 \n",
+ " 81.0 \n",
+ " 29.50 \n",
+ " \n",
+ " \n",
+ " 50 \n",
+ " 1810 \n",
+ " 99.0 \n",
+ " 30.00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Year Wheat Wages\n",
+ "rownames \n",
+ "1 1565 41.0 5.00\n",
+ "2 1570 45.0 5.05\n",
+ "3 1575 42.0 5.08\n",
+ "4 1580 49.0 5.12\n",
+ "5 1585 41.5 5.15\n",
+ "6 1590 47.0 5.25\n",
+ "7 1595 64.0 5.54\n",
+ "8 1600 27.0 5.61\n",
+ "9 1605 33.0 5.69\n",
+ "10 1610 32.0 5.78\n",
+ "11 1615 33.0 5.94\n",
+ "12 1620 35.0 6.01\n",
+ "13 1625 33.0 6.12\n",
+ "14 1630 45.0 6.22\n",
+ "15 1635 33.0 6.30\n",
+ "16 1640 39.0 6.37\n",
+ "17 1645 53.0 6.45\n",
+ "18 1650 42.0 6.50\n",
+ "19 1655 40.5 6.60\n",
+ "20 1660 46.5 6.75\n",
+ "21 1665 32.0 6.80\n",
+ "22 1670 37.0 6.90\n",
+ "23 1675 43.0 7.00\n",
+ "24 1680 35.0 7.30\n",
+ "25 1685 27.0 7.60\n",
+ "26 1690 40.0 8.00\n",
+ "27 1695 50.0 8.50\n",
+ "28 1700 30.0 9.00\n",
+ "29 1705 32.0 10.00\n",
+ "30 1710 44.0 11.00\n",
+ "31 1715 33.0 11.75\n",
+ "32 1720 29.0 12.50\n",
+ "33 1725 39.0 13.00\n",
+ "34 1730 26.0 13.30\n",
+ "35 1735 32.0 13.60\n",
+ "36 1740 27.0 14.00\n",
+ "37 1745 27.5 14.50\n",
+ "38 1750 31.0 15.00\n",
+ "39 1755 35.5 15.70\n",
+ "40 1760 31.0 16.50\n",
+ "41 1765 43.0 17.60\n",
+ "42 1770 47.0 18.50\n",
+ "43 1775 44.0 19.50\n",
+ "44 1780 46.0 21.00\n",
+ "45 1785 42.0 23.00\n",
+ "46 1790 47.5 25.50\n",
+ "47 1795 76.0 27.50\n",
+ "48 1800 79.0 28.50\n",
+ "49 1805 81.0 29.50\n",
+ "50 1810 99.0 30.00"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous voulons maintenant nous assurer que les valeurs des années sont bien des nombres entiers."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data['Year'] = data['Year'].astype(int)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous pouvons désormais réaliser le graphe de [Playfair](https://fr.wikipedia.org/wiki/William_Playfair) qui représente l'évolution du prix du blé et du salaire moyen sur la période (1565-1810)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAGFCAYAAAA2IN88AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4FeXZx/HvnYUkmMgOgiiBiogsYQmgKJiIAooKqFhQKqivqNRdqUstBpe61KW2ailat9ZWxA0V604KIoIgi1CkqCBblB0SQkKW5/1jJvFkIwsnOVl+n+vKdXLOPDNzn5mz3POce54x5xwiIiIiInL4wkIdgIiIiIhIfaHkWkREREQkSJRci4iIiIgEiZJrEREREZEgUXItIiIiIhIkSq5FRERERIJEybVIEJlZtJlNMbOoUMciIiIiNU/JtUhw/RnY5JzLDnUgIiIiUvOUXIsEkXPuSufcK8Fanpk5MzuuivMOMrO1wYqlnHVtMLMzamhdl5jZh0FaVqqZ/V8V5y3zOZtZkpltLuXxGDP73MzOrso6q8LMJprZZzW1Pn+dL5jZfRVs+28zm1DdMdV2ZrbAzHqHOo7awszamNka/QoodZGSa5Eg8BOtA2aWEfD3ZA3HUCQRd87Nd851qckYaoJz7mXn3NBQx1FFfwUecc69V5WZy0ra6zLn3FnOuRdDHUcomdm5QLpzbpl/v7uZfWBmO8ysxGWU/YPCrIDPmrXFpjc2s6f9+fea2byAaSlmllPss6rTIWJLNrO5/nI2lDK9l5nN96dvNrOpAdPamtnbZrbV/3yKLzZvlJk9Z2b7zOxHM7u5YJpz7idgLjCp/C0oUrsouRYJnnOdc7EBf9eGOqD6xswiQh3D4XDOXeqceyPUcdQVdX1/V8LVwN8D7ucArwJXHGKeawM+a4ofRM8AmgNd/dubik2fWeyz6vtDrGc/8BwwpYzp/wTm+es5DbjGzM7zp+UD7wMXlDFvCtAZ6AAkA78xs+EB018GrjpEbCK1kpJrkWrk98zsMbPuAY+18nu5W/v3rzSzb81sl9/L066MZRUpYQj8uT+gZ2qF3xP1y+K9nGbW1V/GHjNbHfAFWPAz/lNmNsfM0s1skZn94hDP61dm9oOZ7TSz3xabVqQkoLzeVr9H63oz+97vafuDmYUFPMcFZva4me0CUoo974H+PMf49xP853dCGes608y+8XvZngQsYFqKmf0j4H68H9uhErx+ZvZfM9ttZs+bWXQZ621nZq+b2XYzW29m1x9ie0SZ2SNmttHMfjKz6eaVkxwB/BtoF9DjWOK1YmYt/NfRPjNbDPwiYFqJ51T8dVVsWf3NbIm/rJ/M7LGAabP83sa9ZjbPzLqVsYxmZvau/9x3+/+3L239pe1v//HLzSsR2G1ej26HMtZV8PwuM7NNfvurzayfma30XxtPBrQPM7O7/NfyNjN7ycya+NPmmNl1xZa/0sxG+f+fYGYfmfe+XWtmFwW0q/D7ycwaAacD/yl4zDm31jn3N2B1afMcipl1Ac4DJjnntjvn8pxzSyu7nIBYFjvn/g6UlYDHAy/76/kO+Azo5s/7k3PuaeDLMua9FLjXObfbObcGeAaYGDB9EdCprP0tUlspuRapRv6JjW8A4wIevgj4j3Num5mdDjzgP9YW+AGodM22c26w/2+C3xM1M3C6mUUC7wAfAq2B64CX/S/iAuOAaUAz4Fvg/tLWZWYnAn8BfgW0A1oA7UtrWwmjgUSgDzASuDxg2gC8L/bWxWNyzn2OV2rxopnF4PX+3eWc+6aUuFsCrwN3AS2B74BTDjPuS4BheAns8f6yi683DG/brwCOBoYAN5rZsDKW+ZC/rF7Acf48U51z+4GzgK0BPY5bS5n/KSAL7/V0OUW3ZWU9ATzhnDsS7zm+GjDt33i9jq2Br/B6GUsTBjyP1zt5LHAAOFTJVJH97SezdwLnA62A+cC/yol7gB/bL4E/Ar8FzsBL+i4ys9P8dhP9v2SgExAbENuLwPiCBZpZAt6+eM8/0PkIr9e2Nd575+liBxgVej/5ceY75ypb7vOAf2C5wMySij33H4Bp/vSvzax4z/G5/kHBajO7ppLrLe6PwKVmFul/npwMfFzeTGbWDO/zY0XAwyvwE3MA51wu3rZLOMwYRWqUkmuR4HnL7xkr+LvSf/yfFE2uL/YfAy85e84595WfiN8BnGzFahOD4CS8xOFB59xB59ynwLvF4nrD76XKxUuUepWxrAuBd51z8/yYf4f38+/heMg5t8s5txHvyzowrq3OuT8753KdcwdKmTcFaAIsBrbiJZelORv4r3PuNedcjr+eHw8z7iedc5ucc7vwkqdxpbTpB7Ryzt3jb/vv8XroxhZvaGYGXAnc5G+PdOD3pbUtjZmF4/0EP9U5t985twovSayqHOA4M2vpnMtwzn1RMME595xzLt1/DaQACQW9voGcczudc6875zL953M/XvlAWYrv76uAB5xza/zX5u+BXuX0Zt7rnMtyzn2IV9bwL+fcNufcFrzkvODEwUuAx5xz3zvnMvDef2P9nv3ZQGcz6+y3/RVeOcVB4Bxgg3PueT/Or/AO3C4MiKGi76emQPohnktpbsM7GDgarwTknYCe8fZAd2AvXvJ6Ld7BZ1d/+qt45SKt8F5rU82stNdtRb2L97wPAN8Af3POldVTHSjWv90b8NheIK5Yu3S8bSRSZyi5FgmeUc65pgF/z/iPfwrEmNkAPyHoBbzpT2uH18sEgP8FvxPvSzOY2uENERiYBP9QbD2BiWYmP3/5lbqsgjt+j+rOw4xvU8D/P/jrKG1aCX6i/AJeQvGoc67ECWC+4nG78pZdAYeKu0AHvFKOwgMvvJ7YNqW0bQU0BpYGtH3ff7wiWgERpcRVVVfg9aJ/Y2Zfmtk54CXxZvagmX1nZvuADX77lsUXYN7JdX/1Sy/24dXnNvUPBEpTfJ90AJ4I2B678Mp5DvUe+Sng/wOl3C94bRd5//n/RwBt/IOGV4Hx/q8P4/i5LroDMKDYPr0EOCpgWRV9P+2mZEJ5SM65RQUHNv7JoAvwDh4Lnl8OcJ9/MPcfvBMDh/rz/tc5t9Uv4/gc79eJCwHM7E77ueRoenlxmFlzvNfnPUA0cAwwzMwmV+BpZPi3RwY8diQlDzTigD0VWJ5IraHkWqSa+Qntq3hfzhfj9foWfIFsxfuiBsD/ubkFsKWURe3HS7wKHFVKm7JsBY7xk4QCx5axnvKk4X2JAl7yhBfz4cR5TMD/x+LFW6CsZLlg/UcDd+OVHjxqZQ/dVTxuK7beYMddYBOwvtiBV5xzrrTh+HbgJUfdAto2cc4VJGaH3BbAdiC3lLgK7PdvK/Q8nXPrnHPj8EofHgJe81+jF+OV75yB96tBvD+LlbKYW4AuwAC/vGTwIdpCyee4Cbiq2PaL8RPDw1Xk/Ye3rXL5ORl/ES9pHgJkOucWBsT0n2IxxTrnqlJisQ7v5Xg4B9SOn7fnyqrO65z7fUDJ0dUVmLcTkOece8nvwd+MV9ZW7lCTzrndeO/JwJKPBALqzP1fEI6jaOmISK2n5FqkZvwTr/7zEn4uCSl4/DLzhrOKwvvJe5FzbkMpy1gOnO/3BB5HyZEEfsL7sivNIrzE6jd+bWQScC5VqO8GXgPOMbNT/ZOx7qHoZ8ly4Gwza25mRwE3VmCZU8w78e0Y4AZgZnkzQGGC/ALwN7ztkQbcW0bzOUA3Mzvf/9K+nqKJ5XJgsJkd65c33FGBEH5tZu39Hrw7y4h7MbDPzG4z78TEcPOGWutXvKF/IPYM8Lj9fMLr0QH12T8BLUorv/Dnz8Or8U/xXycnAhMCpm/HO6Aa78dxOQEnPBZnZuPNrJUfV0HvYR5eb2I23i8WjfFet2WJwztg2ONvp7sP0bY004E7CuqZzayJmY2p5DLK8i/gJjPraGaxeM9jpl/KgZ9M5wOPUnQ0j3eB4807sTfS/+sXUHpRYf4vLx8TUCpjnmigkX8/uuCg0cyamtkw/7EIM7sE74DlA3/2ecBGvG0WYWanAEkF081spP9eMzPrj/c+mF1WfOad9BkNRPqhRfvve4D/+Y9d7Lc7Cu9zbkXA/NFAwQFvlBU96fcl4C4/nhPwylReCJjeH6/85nB+fRGpcUquRYLnHSs6dmxB6QfOuYLkth3eiWAFj3+CV7P8Ol5i+AvKrq99HDiIl2C9SMkTyFLwaiv3WMDIBf56DuKNIHAWXu/o08ClrpQT/8rjnFsN/BrvwCAN72ftwJOx/o735boB7wTKiiTKs4GleAnuHLxkuSKuxyuv+J1f5nEZ3sHKoFLi3gGMAR7ESwo74/2cXjD9Iz/WlX4s71Zg/f/Ee47f+38lLpziJ7zn4pUDrcfb/s/i9fiW5ja8k7i+8MsoPsbr+cXfX/8Cvvf3c2llKNfilSD8iJeoPF9s+pV4w6rtxDt57FA9wMOB1WaWgVc+MNY5l4WXFP2Al6j/F/ii7EXwRyAG73l/gVdGUGHOuTfxes1f8bfHKrzXcTA8h/d6nYe3b7LwTvYN9BLQAygcScb/5Wko3nt1K962foifk8jK+iteTXeBDngHJAW9uAeAgrGsI/FeZ9vxtul1eCVpa/3YcvB+VTgbr4b5GYq+18fivb7S/ef2kDv0OOOD/fW/x88npH7or2sf3ommN+F9DizH2z+BJ28e4OcSkG/8+wXuxjux+Ae80VL+4JwLfH1cgndwJVKnWNnliSIi1c+8i2R0ds59G+pYRIozs0vxhrU7tZrX8xlwnfMvJNPQ+b/c/Afo7R/QidQZDWWAfhERkUrxzyeYjPdLT7Wq7uS9rnHObcMb1USkzlFZiIiISDF+nft2vDKsf5bTXESkkMpCRERERESCRD3XIiIiIiJBouRaRERERCRI6vQJjS1btnTx8fGhDkOqwf79+zniiCNCHYbUAO3rhkX7u2HR/m5Y6vv+Xrp06Q7nXLlXzK3TyXV8fDxLliwJdRhSDVJTU0lKSgp1GFIDtK8bFu3vhkX7u2Gp7/vbzCp0QSOVhYiIiIiIBImSaxERERGRIFFyLSIiIiISJHW65ro0OTk5bN68mawsXS21LmvSpAlr1qwJdRhSAw53X0dHR9O+fXsiIyODGJWIiEjV1LvkevPmzcTFxREfH4+ZhTocqaL09HTi4uJCHYbUgMPZ1845du7cyebNm+nYsWOQIxMREam8elcWkpWVRYsWLZRYizQAZkaLFi30S5WIiNQa1ZZcm9lzZrbNzFYFPNbczD4ys3X+bbOAaXeY2bdmttbMhh3mug9ndhGpQ/R+FxGR2qQ6e65fAIYXe+x24BPnXGfgE/8+ZnYiMBbo5s/ztJmFV2Ns1er++++nW7du9OzZk169erFo0aJDtp84cSKvvfbaIdtMnTqVjz/++LDieuutt7jnnnvKnP7CCy9w7bXXljrt7LPPZs+ePQDExsYCsGHDBrp37w7AkiVLuP766w8rvvpq+vTpvPTSS1Wad/v27QwfXvxtJCIiIrVVtdVcO+fmmVl8sYdHAkn+/y8CqcBt/uOvOOeygfVm9i3QH1hYXfFVl4ULF/Luu+/y1VdfERUVxY4dOzh48OBhL7espDgvL4/w8Iodhzz88MO8/fbbVVr/e++9d8jpiYmJJCYmVmnZNaEy2ynYrr766irP26pVK9q2bcuCBQs45ZRTghiViIiIVIearrlu45xLA/BvW/uPHw1sCmi32X+szklLS6Nly5ZERUUB0LJlS9q1awd4CXK/fv3o3r07kyZNwjlXYv6y2gT2bsfHx3PPPfdw6qmnMmvWLL777juGDx9O3759GTRoEN98802J5f7vf/8jKiqKli1bAjBr1iy6d+9OQkICgwcPLmy3detWhg8fTufOnfnNb35T+Hh8fDw7duwo83mnpqZyzjnnAJCSksLll19OUlISnTp14k9/+lNhu3vvvZcTTjiBM888k3HjxvHII48A8Kc//YkTTzyRnj17Mnbs2BLLf+GFFxg5ciTDhw+nS5cuTJs2rXDaqFGj6Nu3L926dWPGjBmFj8fGxjJ16lQGDBjAwoVFj9NKW9/+/fu5/PLL6devH71792b27NmF6x41ahTnnnsuHTt25Mknn+Sxxx6jd+/enHTSSezatQuAZ555hn79+pGQkMAFF1xAZmZm4fYoeJ5JSUncdttt9O/fn+OPP5758+cDXvI/ZcoU+vXrR8+ePfnrX/9a5Pm9/PLLZW57ERERqT1qy2ghpRVNlsw8ATObBEwCaNOmDampqUWmN2nShPT0dACibruNsK+/Dmqg+T16kP3QQ2VOP/nkk0lJSeG4444jKSmJCy64gFNPPRWACRMmcNNNNwFw5ZVXMmvWLM466yxycnI4cOAA6enpFWrjnMPM+Pe//w3Aueeey+OPP85xxx3Hl19+yVVXXcW7775bJK5PPvmE7t27F26blJQU3njjDdq1a8eePXtIT08nKyuLZcuWMX/+fKKioujbty+XXXYZ7du3xzlHRkZG4UFDeno6GRkZ5Ofnk56eTmZmJrm5uaSnp5Odnc3q1auZM2cOGRkZ9OnTh/Hjx/P1118za9Ys5s2bR25uLoMGDSqM6YEHHuDrr78mKiqKPXv2kJeXVxgreCeqLlq0iC+++ILGjRuTlJREUlISffr04YknnqB58+YcOHCApKQkhg4dSosWLdi/fz+/+MUvCstpApdXfH3p6elMmzaNk08+mSeeeII9e/aQnJzMgAEDyMrKYuXKlXz22WdkZ2fTq1cvpk2bxrx587j99tuZMWMGv/71rznzzDMLE/V77rmHp556iquvvprs7GwiIyNJT08nLy+PzMxMPvnkEz744AOmTp3K22+/zfPPP090dDSffvop2dnZDB06lIEDBxIfH88JJ5zAnXfeWST++qT4vq6KrKysEp8FUjtlZGRoXzUg2t8Ni/a3p6aT65/MrK1zLs3M2gLb/Mc3A8cEtGsPbC1tAc65GcAMgMTERFf8GvZr1qz5eVivRo0g2KUAjRrR6BDDhsXFxRUmqHPnzuWyyy7jwQcfZOLEiXz44Yc8/PDDZGZmsmvXLnr16kVcXByRkZHExMQQFxdXoTZmxqWXXkpcXBwZGRksWrSIyy67rDCG7OzsEkOb7d69m6OPPrrw8UGDBnHttddy0UUXcf755xMXF0d0dDRnnHEG7du3B6Bbt27s3LmTrl27YmbExsYWzh8XF0dsbCxhYWHExcXRuHFjIiIiiIuLIyoqivPOO4+WLVvSsmVL2rRpQ2ZmJsuWLWP06NG0bu39YDFy5EiioqKIi4sjISGBq6++mlGjRjFq1Cicc0WeQ3R0NEOHDiU+Ph6ACy+8kGXLlnHaaafx6KOP8uabbwKwZcsWfvzxR+Lj4wkPD2f8+PGlloMUX19sbCypqam8//77PPXUUwAcPHiQ3bt3Ex0dzZAhQwp/gWjSpAljxowhLi6Ovn37snLlSuLi4vjqq6/41a9+xZ49e8jIyGDYsGGF26PgeYaHhzN27Fji4uIYNGgQt99+O3FxccybN4+VK1fyzjvvALB3717S0tLo0aMHnTp14scff6y3QxMGY9jF6OhoevfuHaSIpDqlpqZS/HNb6i/t74ZF+9tT08n128AE4EH/dnbA4/80s8eAdkBnYPFhr+2PfzzsRVRFeHh4Yc9qjx49ePHFFxk7diyTJ09myZIlHHPMMaSkpJQYPiwrK6vcNgWOOOIIAPLz82natCnLly8/ZEwxMTHs3bu38P706dNZtGgRc+bMoVevXoXzF/RMFzyP3NzcKm2D0pZTWhlMgTlz5jBv3jzefvtt7r33Xr744osSbYqPCmFmpKam8vHHH7Nw4cLCHu2CbRYdHV1mnXXx9a1evRrnHK+//jpdunQp0nbRokVFnk9YWFjh/bCwsMJtNHHiRN566y0SEhJ44YUXyjx6L5g3cPs65/jzn//MsGElB8rJysoiJiam1GWJiIhI7VKdQ/H9C++ExC5mttnMrsBLqs80s3XAmf59nHOrgVeB/wLvA792zuVVV2zVae3ataxbt67w/vLly+nQoUNhwteyZUsyMjJKHR2kIm2KO/LII+nYsSOzZs0CvCRtxYoVJdp17dqVb7/9tvD+d999x4ABA7jnnnto2bIlmzZtKjFPsJ166qm88847ZGVlkZGRwZw5cwDvAGHTpk0kJyfz8MMPF/b8FvfRRx+xa9cuDhw4wFtvvcUpp5zC3r17adasGY0bN+abb74pNSkvrqz1DRs2jD//+c+FBwHLli2r1PNLT0+nbdu25OTkVLpGetiwYfzlL38hJycH8Grk9+/fX/h/wagsIiIiDVFKivdXF1TnaCHjypg0pIz29wP3V1c8NSUjI4PrrruOPXv2EBERwXHHHceMGTNo2rQpV155JT169CA+Pp5+/fqVmLcibUrz8ssvc80113DfffeRk5PD2LFjSUhIKNJm8ODB3HLLLYX12lOmTGHdunU45xgyZAgJCQnl9n4frn79+nHeeeeRkJBAhw4dSExMpEmTJuTl5TF+/Hj27t2Lc46bbrqJpk2blpj/1FNP5Ve/+hXffvstF198MYmJifTo0YPp06fTs2dPunTpwkknnVRuHGWt73e/+x033ngjPXv2xDlHfHx8idr1Q7n33nsZMGAAHTp0oEePHpWqI/6///s/NmzYQJ8+fXDO0apVK9566y0A5s6dy4gRIyq8LBEREQkdO9RP9bVdYmKiW7JkSZHH1qxZQ9euXUMUUe12ww03cO6553LGGWeELIaMjAxiY2PJzMxk8ODBzJgxgz59+pRoV7wO94UXXmDJkiU8+eSTNRlurTB48GBmz55Ns2bNym9cBwWj5lrv+7pDNZkNi/Z3w1Kd+7ug1zqUvddmttQ5V+64w/Xu8udStjvvvLNweLhQmTRpEr169aJPnz5ccMEFpSbW8rPt27dz880319vEWkREpL6pLUPxSQ1o06YN5513Xkhj+Oc//1ml+SZOnMjEiRODG0wd0KpVK0aNGhXqMERERKSC1HMtIiIiIhIkSq5FRERERIJEybWIiIiISJAouZZSLViwgPnz54c6DBEREZE6Rcl1NQgPD6dXr150796dMWPGlDlCx9lnn82ePXuqtI6UlBQeeeSRCrdPTU3lnHPOKXVafHw8O3bsKLy/bNkynn/++UOOGX3hhRfy/ffflzk9KSmJ4sMkAixZsoTrr78e8IbXu/baa4Giz2fq1KnMnTu3/CdVz+3Zs4enn366Qm0r+3qobPutW7dy4YUXVrh9sG3fvp3hw4eHbP0iIiIVVe9HCwn2eIgVWV5MTEzhBVkuueQSpk+fzs0331w43TmHc4733nsvuMEFSe/evXn22WfLnL569Wry8vLo1KlTpZedmJhIYuKhh4i85557KnUBlpqUm5tLRET1v23y8vIKk+vJkydX+/rK065duwpdMbS6tGrVirZt27JgwQJOOeWUkMUhIiJSHvVcV7NBgwbx7bffsmHDBrp27crkyZPp06cPmzZtKuwx/vLLL+nZsydZWVns37+fbt26sWrVqhLLuv/+++nSpQtnnHEGa9euLXw8sJd4x44dxMfHlxrLvn37GD16NCeeeCJXX301+fn5Jdr84x//oH///vTq1YurrrqKvLySV6F/+eWXGTlyJOAlgRMnTqR79+706NGDxx9/vLDdrFmz6N+/P8cff3xhicmhetALTJw4sfDqhPHx8dx999306dOHHj168M033wBeT+aZZ55Jnz59uOqqq+jQoQM7duxg//79jBgxgoSEBLp3787MmTNLLD8pKYkbb7yRgQMH0r17dxYvXgzA4sWLGThwIL1792bgwIGF2/iFF15gzJgxnHvuuQwdOrTE8gL3y7hx4wp7hMvaLxs2bGDQoEH06dOHPn368Pnnnxdum+TkZC6++GJ69OjB7bffznfffUevXr2YMmXKIdcb+Hr47rvvGD58OH379mXQoEGF26y4FStWcPrpp9O5c2eeeeYZwDvwmzJlSuH+LNh+GzZsKLwE++rVqwtfIz179mTdunVlbvelS5dy2mmn0bdvX4YNG0ZaWhoAzzzzDP369SMhIYHx48cX/rozceLEIkl8bGxs4f+jRo2q9GXlRUREalq977kOpdzcXP79738X/py9du1ann/++RI/9RdcFvyuu+7iwIEDjB8/vjCRKbB06VJeeeUVli1bRm5uLn369KFv376Vimfx4sX897//pUOHDgwfPpw33nijyE/9a9asYebMmSxYsIDIyEgmT57Myy+/zKWXXlpkOQsWLGDcOO/q9suXL2fLli2FBwOBZS65ubksXryY9957j2nTpvHxxx9XKt4CLVu25KuvvuLpp5/mkUce4dlnn2XatGmcfvrp3HHHHbz//vvMmDEDgPfff5927doxZ84cAPbu3VvqMvfv38/nn3/OvHnzuPzyy1m1ahUnnHAC8+bNIyIigo8//pg777yT119/HYCFCxeycuVKmjdvXmQ5VdkvrVu35qOPPiI6Opp169Yxbty4wiR88eLFrFq1io4dO7JhwwZWrVpV6mXpD7XeSZMmMX36dDp37syiRYuYPHkyn376aYllrFy5ki+++IL9+/fTu3dvRowYwcKFC1m+fDkrVqxgx44d9OvXj8GDBxeZb/r06dxwww1ccsklHDx4kLy8PN57770S2z0nJ4frrruO2bNn06pVK2bOnMlvf/tbnnvuOc4//3yuvPJKAKZMmcLf/vY3rrvuukNut8TERO66665DthEREQk1JdfV4MCBA/Tq1Qvweq6vuOIKtm7dSocOHcqsY546dSr9+vUjOjqaP/3pTyWmz58/n9GjR9O4cWOAKl0Mpn///oWlHOPGjeOzzz4rklx/8sknLF26lH79+hU+j9atW5dYTlpaGq1atQKgU6dOfP/991x33XWMGDGiSM/u+eefD0Dfvn3ZsGFDpeMtbTlvvPEGAJ999hlvvvkmAMOHDy+8gmGPHj249dZbue222zjnnHMYNGhQqcssODgYPHgw+/btY8+ePaSnpzNhwgTWrVuHmZGTk1PY/swzzyyRWEPV9ktOTg7XXnsty5cvJzw8nP/973+F0/r370/Hjh3LXUZZ683IyODzzz9bz/B6AAAgAElEQVRnzJgxhW2zs7NLXcbIkSOJiYkhJiaG5ORkFi9ezGeffca4ceMIDw+nTZs2nHbaaYW/rBQ4+eSTuf/++9m8eTPnn38+nTt3LnW7r1q1ilWrVnHmmWcC3q8cbdu2BWDVqlXcddddhdu9IvXUrVu3ZuvWreW2ExERCSUl19UgsOY60BFHHFHmPLt27SIjI4OcnByysrJKbWtmpc4bERFRWOKRlZVV5jqKz1/8vnOOCRMm8MADD5S5DPCeX8F6mjVrxooVK/jggw946qmnePXVV3nuuecAiIqKArwTPHNzcw+5zEMpbTnOuVLbHn/88SxdupT33nuPO+64g6FDhzJ16tQS7UrbFr/73e9ITk7mzTffZMOGDSQlJRVOP9S+q+x+efzxx2nTpg0rVqwgPz+f6OjoCq2nIuvNz8+nadOmpb7+ypvfzMrcroEuvvhiBgwYwJw5cxg2bBjPPvssp59+eontPnr0aLp168bChQtLLKOg9CchIYHp06fzxRdfAEW3mXOOgwcPFs6TlZVFTExMufGJiIiEkmqua4lJkyZx7733cskll3DbbbeVmD548GDefPNNDhw4QHp6Ou+8807htPj4eJYuXQpwyJPOFi9ezPr168nPz2fmzJmceuqpRaYPGTKE1157jW3btgFewv/DDz+UWE7Xrl359ttvAa+WOD8/nwsuuIB7772Xr776qvJPvgpOPfVUXn31VQA+/PBDdu/eDXijWjRu3Jjx48dz6623lhlPQU3wZ599RpMmTWjSpAl79+7l6KOPBrw664qoyn7Zu3cvbdu2JSwsjL///e+l1rUDxMXFlXliZ1nrPfLII+nYsSOzZs0CvAR1xYoVpS5j9uzZZGVlsXPnTlJTUwtLQGbOnEleXh7bt29n3rx59O/fv8h833//PZ06deL666/nvPPOY+XKlaVu9y5durB9+/bC5DonJ4fVq1cDkJ6eTtu2bcnJySncj8W32ezZs4v8evC///2vRLmUiIhIbaOe61rgpZdeIiIigosvvpi8vDwGDhzIp59+yumnn17Ypk+fPvzyl7+kV69edOjQoUi5w6233spFF13E3//+9yLzFHfyySdz++238/XXXzN48GBGjx5dZPqJJ57Ifffdx9ChQ8nPzycyMpKnnnqKDh06FGk3YsQIUlNTOeOMM9iyZQuXXXZZYW9jeb3ewXL33Xczbtw4Zs6cyWmnnUbbtm2Ji4sjNTWVKVOmEBYWRmRkJH/5y19Knb9Zs2YMHDiQffv2Ffa0/+Y3v2HChAk89thjh9yOgaqyXyZPnswFF1zArFmzSE5OLrO3ukWLFpxyyil0796ds846iz/84Q8VWu/LL7/MNddcw3333UdOTg5jx44lISGhxPL79+/PiBEj2LhxI7/73e9o164do0ePZuHChSQkJGBmPPzwwxx11FFFynpmzpzJP/7xDyIjIznqqKOYOnUqX375ZYnt3qhRI1577TWuv/569u7dS25uLjfeeCPdunXj3nvvZcCAAXTo0IEuXboUlq5ceeWVjBw5kv79+zNkyJAi22bu3LmMGDGiQvtFREQkVKwiPwPXVomJia74WMpr1qyha9euIYqoYThw4ADJycksWLCA8PDwallHeno6cXFxZU7Pzs4mPDyciIgIFi5cyDXXXFOhUgjwRvF45JFHyh0SsCpSUlKIjY3l1ltvDfqy66vy9nWBwYMHM3v27ML6+kB639cdqampRUqupH7T/m5YqnN/FwyFHOwhlivDzJY658pNHtRzLZUWExPDtGnT2LJlC8cee2xIYti4cSMXXXQR+fn5NGrUqHAoOamftm/fzs0331xqYi0iIlKbKLmWKhk2bFhI19+5c2eWLVtWpXlTU1ODG0yAlFAeUtdjrVq1YtSoUaEOQ0REpFw6oVFEREREJEjqZXJdl+vIRaRy9H4XEZHapN4l19HR0ezcuVNfuCINgHOOnTt3FhkrXEREJJTqXc11+/bt2bx5M9u3bw91KHIYsrKylDA1EIe7r6Ojo2nfvn0QIxIREam6epdcR0ZGVujy0VK7paam0rt371CHITVA+1pEROqTelcWIiIiIiISKkquRURERESCRMm1iIiIiEiQKLkWEREREQkSJdciIiIiIkGi5FpEREREJEiUXIuIiIiIBImSaxERERGRIFFyLSIiIiISJEquRURERESCRMm1iIiIiEiQKLkWEREREQkSJdciIiIiIkGi5FpEREREJEiUXIuIiIiIBImSaxERERGRIFFyLSIiIiISJEquRURERESCRMm1iIiIiEiQKLkWEREREQkSJdciIiIiIkGi5FpEREREJEiUXIuIiIiIBImSaxERERGRIFFyLSIiIiISJEquRURERESCRMm1iIiIiEiQKLkWEREREQkSJdciIiIiIkGi5FpEREREJEiUXIuIiIiIBElIkmszu8nMVpvZKjP7l5lFm1lzM/vIzNb5t81CEZuIiIiISFXVeHJtZkcD1wOJzrnuQDgwFrgd+MQ51xn4xL8vIiIiIvVMSor3Vx+FqiwkAogxswigMbAVGAm86E9/ERgVothERERERKqkxpNr59wW4BFgI5AG7HXOfQi0cc6l+W3SgNY1HZuIiIiIyOEw51zNrtCrpX4d+CWwB5gFvAY86ZxrGtBut3OuRN21mU0CJgG0adOm7yuvvFIjcUvNysjIIDY2NtRhSA3Qvm5YtL8bFu3vhqUy+zstzbtt27Ziy65s++qQnJy81DmXWF67iJoIppgzgPXOue0AZvYGMBD4yczaOufSzKwtsK20mZ1zM4AZAImJiS4pKalmopYalZqaivZtw6B93bBofzcs2t8NS2X2d0G99bhxFVt2ZduHUihqrjcCJ5lZYzMzYAiwBngbmOC3mQDMDkFsIiIiIiJVVuM91865RWb2GvAVkAssw+uJjgVeNbMr8BLwMTUdm4iIiIhUTkGvcpcuIQ2j1ghFWQjOubuBu4s9nI3Xiy0iIiIiUifpCo0iIiIiIkGi5FpEREREJEiUXIuIiIiIBImSaxERERGRIFFyLSIiIiISJEquRURERESCRMm1iIiIiEiQKLkWERERkUIpKT9fGEYqT8m1iIiIiEiQKLkWEREREQkSJdciIiIiIkGi5FpEREREJEiUXIuIiIiIBImSaxERERGRIFFyLSIiIiISJEquRURERESCRMm1iIiIiEiQKLkWEREREQkSJdciIiIiIkGi5FpEREREJEiUXIuIiIiIBImSaxERERGRIFFyLSIiIiISJEquRURERESCRMm1iIiIiEiQKLkWEREREQkSJdciIiIiIkGi5FpEREREJEiUXIuIiIiIBImSaxERERGRIFFyLSIiIiISJEquRURERESCRMm1iIiIiEiQKLkWEREREQkSJdciIiIiIkGi5FpEREREJEiUXIuIiIiIBImSaxERERGRIFFyLSIiIiISJEquRURERESCRMm1iIiIiEiQKLkWEREREQkSJdciIiIiIkGi5FpEREREJEiUXIuIiIiIBImSa6lWKSnen4iIiEhDoORaRERERCRIlFyLiIiIiASJkmsRERERkSBRci0iIiIiEiRKrkVEREREgkTJtYiIiIhIkCi5FhEREREJEiXXIiIiIiJBEpLk2syamtlrZvaNma0xs5PNrLmZfWRm6/zbZqGITURERESkqkLVc/0E8L5z7gQgAVgD3A584pzrDHzi3xcRERERqTNqPLk2syOBwcDfAJxzB51ze4CRwIt+sxeBUTUdm4iIiIjI4QhFz3UnYDvwvJktM7NnzewIoI1zLg3Av20dgthERERERKrMnHM1u0KzROAL4BTn3CIzewLYB1znnGsa0G63c65E3bWZTQImAbRp06bvK6+8UkORS1WkpXm3bdtWbr6MjAxiY2ODH5DUOtrXDYv2d8Oi/V03Vfa7u6B9VFQGzZtXbH9XdR2VzSeCKTk5ealzLrG8dhE1EUwxm4HNzrlF/v3X8OqrfzKzts65NDNrC2wrbWbn3AxgBkBiYqJLSkqqgZClqlJSvNtx4yo3X2pqKtq3DYP2dcOi/d2waH/XTZX97i5o36VLxfd3VddR2XwiFGq8LMQ59yOwycy6+A8NAf4LvA1M8B+bAMyu6dhERERERA5HKHquAa4DXjazRsD3wGV4if6rZnYFsBEYE6LYRERERESqJCTJtXNuOVBazcqQmo5FRERERCRYdIVGEREREZEgqVBybWan+MPlYWbjzewxM+tQvaGJiIiIiNQtFe25/guQaWYJwG+AH4CXqi0qEREREZE6qKLJda7zBsQeCTzhnHsCiKu+sERERERE6p6KntCYbmZ3AOOBwWYWDkRWX1giIiIiInVPRXuufwlkA1f441QfDfyh2qISEREREamDKtRz7SfUjwXc34hqrkVEREREiqhQcm1m6YAr9vBeYAlwi3Pu+2AHJiIiIiJS11S05voxYCvwT8CAscBRwFrgOSCpOoITEREREalLKlpzPdw591fnXLpzbp9zbgZwtnNuJtCsGuMTEREREakzKppc55vZRWYW5v9dFDCteLmIiIiIiEiDVNHk+hLgV8A24Cf///FmFgNcW02xiYiIiIjUKRUdLeR74NwyJn8WvHBEREREROquio4W0gq4EogPnMc5d3n1hCUiIiIiUvdUdLSQ2cB84GMgr/rCERERERGpuyqaXDd2zt1WrZGIiIiIiNRxFT2h8V0zO7taIxERERERqeMqmlzfgJdgHzCzfWaWbmb7qjMwEal7UlK8PxERkYaqoqOFxFV3ICIiIiIidd0hk2szO8E5942Z9SltunPuq+oJS0RERESk7imv5/oWvCH4Hi1lmgNOD3pEIiIiIiJ11CGTa+fclf5tcs2EIyIiIiJSd5VXFnL+oaY7594IbjgiIiIiInVXeWUhZV3yHLyyECXXIiIiIiK+8spCLqupQERERERE6rryykJuPtR059xjwQ1HRERERKTuKq8sRONbi4hICYEXC9KFg0REflZeWci0mgpERERERKSuK68s5DfOuYfN7M94JzAW4Zy7vtoiExERERGpY8orC1nj3y6p7kDk8BX8NKufaEVERERCo7yykHf82xdrJhwRERERkbqrvJ5rAMzseOBWID5wHuecLn8uIiIiIuKrUHINzAKmA88CedUXjoiIiIhI3VXR5DrXOfeXao1ERERERKSOK2+0kOb+v++Y2WTgTSC7YLpzblc1xiYiIiIih0kDHtSs8nqul+INwWf+/VuLTe8U9IikVtMbVEREGgpdLEmqorzk+pfAJudcGoCZTQAuADYAKdUamYiIiIhIHRNWzvTp+GUgZjYYeAB4EdgLzKje0EREDl9KinqcRESk5pTXcx0eUFf9S2CGc+514HUzW169oYmIiIjUbyq3rH/K67kON7OCBHwI8GnAtIqONCIiIiIi0iCUlyD/C/iPme0ADgDzAczsOLzSEBERERER8ZV3+fP7zewToC3woXPO+ZPCgOuqOzgRERERkbqk3NIO59wXpTz2v+oJp/7ScD4SbKrTExERqX3Kq7kWEREREZEKUnItIiIiIhIkGvFDRETqDZVLSSipBFRAPdciIiIiIkGj5FpEREREJEiUXIuI1DBdkl0kNPTek5qg5FpEREREJEiUXIuIiIiIBImS61pMP19JfZeSAmlpep2LiFRUQW6gz83aS8m1iIiIiEiQhGycazMLB5YAW5xz55hZc2AmEA9sAC5yzu0OVXwNgcbjFBEREQmuUPZc3wCsCbh/O/CJc64z8Il/v9bSTzIiIiIiUlxIkmszaw+MAJ4NeHgk8KL//4vAqJqOS0RERETkcISqLOSPwG+AuIDH2jjn0gCcc2lm1jokkYlIraVSJhERqe3MOVezKzQ7BzjbOTfZzJKAW/2a6z3OuaYB7XY755qVMv8kYBJAmzZt+r7yyis1FXoRaWnebdu2lWtflXmqu31tiqlARkYGsbGxlZupganqtq1OVXl9REVlkJ0dW6F5auI1WxNqc0xQsbiqsi+g+t/btXHbNmS17bO8ur8na/J7tSbWUdn2UVEZNG9esf1dU/lEMCUnJy91ziWW1y4UPdenAOeZ2dlANHCkmf0D+MnM2vq91m2BbaXN7JybAcwASExMdElJSTUUdlEFvWbjxlWufVXmqe72tSmmAqmpqYRq39YVVd221akqr48uXVJZuzapQvPUxGu2JtTmmKBicVVlX0D1v7dr47ZtyGrbZ3l1f0/W5PdqTayjsu27dKn4/q6pfCIUarzm2jl3h3OuvXMuHhgLfOqcGw+8DUzwm00AZtd0bCIiIiIihyNkQ/GV4kHgVTO7AtgIjAlxPCINmuqbRYKj4P2j95FIwxDS5No5lwqk+v/vBIaEMh4RERERkcOhKzSKiIiIiASJkmsRERERkSBRci0iIiIiEiRKrkVEREREgkTJtYiIiIhIkCi5FhE5TCkpGmZNREQ8Sq5FRERERIJEybWIiIiISJAouRYRERERCRIl1yIiIhJyOndB6gsl1yIiIiIiQRIR6gBE6qOC3hf1wkgwBL6O9JoSEand1HMtIiIiIhIkSq5FRERERIJEybWIiIiISJAouRYRERERCRIl1yIiIiIiQaLRQqTOq+6ROWpipIaaXIdGmxD5md4XIhJs6rkWEREREQkSJdciIiIiIkGishBpcHRBDjkUvT5qD+2LitF2Eqld1HMtIiIiIhIkSq5FRERERIJEybWIiIiISJCo5lpERESCLiUFunSp3uWX9r9IqKnnWkRERERqNcvPI27fllCHUSHquRYRERGR0MrPh7Q02LAB1q8vcuvWr+euHzbhMNzDB7CI8FBHe0hKrkVEpEZUd5mAiNQB+fmwciUnfZFKy+1rYKGXPPPDD9jBg0Wa5rU6ipz2HTnY7SQWNh/Hzrh4LszKo1GskmsRERERaYjy82H1apg7F+bOxf3nP9ju3QwHMmJaktW5IznH9SbntNHktO9IztHx5B7Tkfz2xxJ2RAwRERAWBh8+CtnZcEFkqJ9Q+ZRci4iIiEhwOAfffPNzMp2aiu3YAUDusR3ZnzyKzAHJPL0mmfQm7bnlFggP6IgOAxqFJvKgUXItIiJSQRqhQqQY52ixcx3x6+fS84OZuJv+i/30EwC5bduTecpZZA5IJnNAMmGd4omMBDPIfBTCKZpY1xdKrkVERESkYpzzTjQM6Jm+bos3ikdm0xakDxpGZv9ksk5OxnXsRKMowwyiQxx2TVJyLSIiIiJl27jx52R67lxs40YA8lq2JrNfEnM6J7Pu6GTih27l9CHJmNX90o7DoeRaRERERApFH9hN53Xvwf/5yfT33wOQ36w5mf2SyJwwhcwBybiuJ9IoyvjyMW8+C0vDLISB1xJKrkVEREQE9uyBxx/nxif+SHT2PvKbNCWz32nsH3s9BwYkkX9iD6Jiwhp8z3R5lFyLiIjIIelEznpu3z544gnco49ie/ey9hfn81GvKZz/QD8axYQTFqZkujKUXEutUvChrQtNiByegveSEiEpjV4fAkB6Ojz5JO6RR7Bdu8g84zy2T07hhXm9CQuD6CNCHWDdpORaREREpCHZvx+efhr38MPYjh1kJo9g++QUwvon0igCwj4LdYB1m5JrERERkYYgMxOmT8c99BC2bRsHBg9j2+Rp2EkDaFQHrnxYVyi5FhERqUVU3yzBFpGbRd+lM3C/eAD78UeyTjmDbX+cBgMHKqmuBkquRUREROqrd97huj//mib7NnHgpCS2PTwTN2gwjXSGYrUJC3UAIiIiIhJkaWkwZgycdx6ZkU3408hP+Olfc4kcosS6uqnnWkRERKS+yM+HZ57B3XYbZGWx46bf81D2rYRHRyqpriHquRYRERGpD9asgdNOg6uvJqtbX9bP/prsm+8gPFqF1TVJPdciIiIidVl2Njz4IO73v8cdEctPv3+erF9OIDpa1yIPBSXXIiIiInXV/PkwaRJ88w0ZIy9h222PEX1sa6KUV4eMykJERERE6pjorD1w1VUweDC5+7PYNOPf7HriH8R0aI0psQ4p9VyLiIiI1BXOceKa1znr39fhMrex5/Jb2HXDNGJaHkF4qGMTQMm1iIiISN2QmsplL0ylw8b5bGrdh50vziG8Xx9ilFXXKioLEREREanN5s+H5GRITqbpru+YOfgpHh2ziEYn9SFciXWto55rERERkdro88/h7rvh44/Ja30UO+58god2T4LoaMJVV11rqedaREREpDZZtAiGD4dTTiF/+Uq23f4YGz75ntzJ12Mx0TphsZZTz7WIiIhIbbB0qddTPWcO+c1bsHPKw+wbP5noFkcQo4S6zlByLSIiIhJCR/24HEalwOzZ5Ddtxs6bfs++S68lulWckuo6qMaTazM7BngJOArIB2Y4554ws+bATCAe2ABc5JzbXdPxiYiIiFS7gwfh3Xe5+J/Pcfy6OeQf2YRd19/D3ok3EN36SCXVdVgoeq5zgVucc1+ZWRyw1Mw+AiYCnzjnHjSz24HbgdtCEJ+IiIhI9Vi5Ep5/HvePf2A7dtAmth3v9bubE6bfSFSbpkqq64EaT66dc2lAmv9/upmtAY4GRgJJfrMXgVSUXIuIiEhdt2sX/Otf8Nxz8NVXuMhI9g8ZyZ7zL+eRFWcS1iiCXkeFOkgJlpDWXJtZPNAbWAS08RNvnHNpZtY6hKGJiIiIVF1eHnz8MTz3HO6tt7CDBzl4Yi92//ZPZJx3MY3atiA8HMK/CXWgEmzmnAvNis1igf8A9zvn3jCzPc65pgHTdzvnmpUy3yRgEkCbNm36vvLKKzUWc6C0NO+2bdvKta/KPNXdvjbGFBWVQfPmsdW6jorOU5PbqSbWUdtiiorKIDs7VvuilsRU0XmqGlNV3tuVXUdNtK9N66iNMRXMU5s+y2tiHWlpEJu2mY7zP+C4BR8QvX07B+OOJO30M9gy9CwyjjuuxDB6P/3k3bZpU7GYCtpXZZ7qbt+4cQZxcRXb31VZh3PQvj0hG4owOTl5qXMusbx2Iem5NrNI4HXgZefcG/7DP5lZW7/Xui2wrbR5nXMzgBkAiYmJLikpqSZCLiElxbsdN65y7asyT3W3r40xdemSSkX3bXU/75rcTjWxjtoWU5cuqaxdm6R9UUtiqug8VY2pKu/tyq6jJtrXpnXUxpgK5qlNn+XVto5Nm2DuXJg7l91vpdJszwbyLYyswcPYMvpyss48l+gmUcSXkRC+/753e8stFYupoH1V5qnu9r17p3LSSUnVto7sbLjoIoiKqtg8oRKK0UIM+Buwxjn3WMCkt4EJwIP+7eyajk1ERETkkNLSCpNpN3cu9t13AOQ3a87G5qfxcY+bWfGL85k07WgiIiAmxOFKzQtFz/UpwK+Ar81suf/YnXhJ9atmdgWwERgTgthERERECh2xfxvxG1LhGi+hZu1aAPKPbMKBxMHsH/NrDpyUTF63nrz4dFhhyUKEriTSYIVitJDPgLKqZYbUZCwiIiIihfLzveT5889hwQJ+/fbntNrpJ9NHxHIgcTCZ511B5oBk8nr2plFMOGFhEIn3p8uSC+gKjSIiItJQZWbCl18WJtNu4UJs1y7AK/P4qclAPu88kXXtkxl9X1+ijogokkyLlEbJtYiIiDQIsRk/cuwP8+EmP5letgzLzQUg5xcnkHn6aA70HkhWn4G447vw3JNW2BsdExfCwKVOUXItIiIi9dPBg7BggTfUxAcfcOuKFQC4mBiyevYn8/IpHOg9kIN9Tya8dQsi/e7oRv7sKvOQqlByLSIiIvXHt9/CBx/ABx/gPv0U278fFxlJVp9T+ODkB/m2fTKj7+lNoyMiCQ+HMCA61DFLvaLkWkREROqsRgcz4J258P77uA8+KBwaL/fYTmSMnEDGqcPJPjmJRi3imP9Hb56YI0MYsNR7Sq5FRESkbnAOfvgBlixhyMdLOWbzQtpv+hzyc8hvfAQHBiSTcfFNZA4ahnU+jshICDONNS01S8m1iIiI1D7OwZYtsGRJ4Z9bsgTbuROAk8Mi2dqyJ3MTbqLLDcPJ6TeQqCOjCAuDWn4BP6nnlFyLiIhIaDnHkfu2cFTaMrjbT6SXLsV++smbHB5OzvHdOZA8igPdE8nunsgTn/bANfKS6W5nKqGR2kOvRREREak56emwahWsXAlffw0rV+K+/pqb9+wBwIWFkXNcVw4MHE5290QOdEskr3sCEXExhVc9jATs87KvSCcSSkquRUREJOjC8nM5cssP8OqrRZJoW7++sE1+bBwHO3cna9gv+TCtB1taJjDy7l5ENI0tkkjrgi1Slyi5FhERkcrLz4cff4T162HDBu/P/9+tX89vN2wkPN+7QIsLDyen4/Fkn9CP7JFXkHV8D3JO6AkdOhARaYSHw6JHvcVGtwzZMxIJCiXXIiIiUpJzsH07rF9Pt1UbaLZnPU33bICF63EbNsAPP2DZ2UVmyWvVhpz2HTnYtT9fNL2IIxKh/VkXkXd8VyJiowkP9y7MEoZOOpT6S8m1iIhIQ+Qc7Nr9c89zwK3ze6ItMxOAMf4sGTEtyTounpxOCeQMGknO0fHktO9Ibvt48o/pQFhsYyIiICwMPngUevdOpWP/3irrkAZFybWIiEh9c/AgpKV5f1u3lvi7ZvlWmuzdCPekF5ktv0lTL2E+ugsH+w0j95iO5Bwdz4vzOrL7yA78f3t3HyVXXd9x/P2dOw/7kITd7BJkN4FdaiJJEFhCApbyEIhFBcUnLFCfjgrKqbRAgOppj5bWntOjRUROaxHE1qpELKj8ASJqgq0i4SERSXgIkpU8ACGbkKfdzM7c+faPe2d3drObTMJkd2b38zrnnvu7v7lz5zf7Ozf5nN/87r25uqksXQpBMPieBIOPCxcRhWsREZHql8/D9u2wdSv09AxZv/2hHhp6tzJl98v4j6LwbFu37nMITyYJZxxNfkYbr0ydwzNvOjRNw9IAABJNSURBVJd5F3SSm9VJvr2DwjEdWHMTQTA0PBvQsy4qBwx9TUT2pXAtIiIylnK5KBgPC8nF9Xt/EYXl+r4e/HtRvW3fPurhFgUZ9tS1sLOxjT3HHEt+7tvIz2gjf1Qb4Yw28jPa8KPb8JZWEskEQQDfuTl675yrovCsaRsilaNwLSIiUik7duwzh/mSB7uZuutl/L+j8Gw7d4769kJ9A8ckW9lT18LuulZ2vaWDsKmVQnML+aZWwqYWwqYWCtNb8enR+pbbG7CEYQbXXz/0eArOImNP4VpERKRMiTBHS8/zNL++Hm5dv8/t5yx+EEpRoXEK0+o6eb2xjanz50ThuLl1cN3cQqE5Cso+vQVrqOeWW6I7agBcd92+bQjipSip9CxSVRSuRURERrJ7d/QUwVWrYPVqWLWKz69+mlQY337uLvC6enKzOsm1dZC74E/JtXfQ3x7fPeOYDpg+na/fGo0qlxOUIbrThojULoVrERGRLVuGhGhftQrWrcPcAQibW8jO7eI3J/41m1pP4rUj3swHr+/EW48kSNrA/Zth36kYCssik4vCtYiITB7u8OKLAyH6srtX8aZXVsONmwd2yc/qYO/xXew9/y/ZO7eL3Ald0N5OKm08cPPgodIzx6H9IlL1FK5FRGRiyuVg7dpoRDoelfbVqwcuKPQgYErTPJ5tO4+O93eRndtFbt5JJFqaSaX0JEEROTQK1yIiUvvc4dlnOfWxFbRtfhzuW4WvWYP19wPRXTj6jz+JvRd+mOzck9k7t4tw7gncensdiQQs/ezI859FRA6WwrWIiNQed1i3DlasgOXL8RUrsFde4UKiR3T3ntJF30evJju3i+zck/E3zyZVFww8ACUVL5oPLSKVpnAtIiLVzz265d3y5YNhetMmAMKjjmbPonPpXbSY255fzLam47j+BhsIzprWISJjSeFaRESq0hGv/5HO7uV0dC/Hv70Ce+klAMLWGfQuWsyeyxfTd/pimD2bdCa63d3Om6L/2DQiLSLjReFaRESqw6ZNgyPTy5dzzfr1QDTNY/fZ59D7sRvoO30xfvzcgTCtUWkRqTYK1yIiMj5efXVImLZ16wAoNDXTu/BsHmi/mnUzF7PlyPlcd0OCRALS49xkEZEDUbgWEZHDL5+n6fWNzHr0Yfi/H0ah+plnAChMnUbfqWex5wOfoXfRYgonnEi6PuC38T2lAzTNQ0Rqh8K1iIi8cWEImzdDd3d04WF390DZu7thwwauDkMACg2N7D31TPZc8HF6T1tMeGIX6YakRqZFZEJQuBYRkQMrFKJpHHFwPvN/u2navp6mHd34d9fDSy9hudyQt+SPaiM/s5P+t55B/zs7efC5DqafsZc5l11BZkqKRGLwlngiIhOFwrWIiIA7jb2v0fR6N9zdPTj6XBx57u7GstmB3c8DdjXMoGdqJ7sWnEr+vIvpb+sgP6uT/MwOCjOPIWisIwgGp3Q8eRN0zVlB/TTFaRGZuBSuRUQmMnfYsSOasjHK4ps38/cbXyYZRk8z5I5oFTa3kG/voL/jreTOeDe5mZ3k2jsIZ3Xw9fs6CDMNJBJw3XWDH5dAUztEZHJTuBYRqSVhCNu2wdat0NMz6voTq7bSuPtV/Mubsb6+fQ5TmHYE+Rlt0XLSmTw6vY0dU9rpmdbB+Z/upDDrWBJN0wgCBp5qCFF4TgD8XI8KFxEZicK1iMh46e/ff1COy5/8XQ8NvVup7+2BG7ePejjPZAibWwmbW+nzFra0LsTObCc/o40wDtLhUW0UjjqaxNRGEokoOJvBT28aPM67F4zBdxcRmaAUrkVk4nGHvXuht5dpO/sI8ll4Lh+N+pYu+fw+23/yQkjCw+g9P+iHbDYKwdns0HLJ+sJfZwkK/fD8yK/7sO1re/pJ9++GG3eN+hUK9Q0UmlsIm1vZYy1smX4su9tbmX9WK2FTy0CILjS34C3R2hobSATRY79vuzkKzUuXDh4zQKPNIiKHm8K1iJTHPQqjuVwUFHO5fZajXuknUcjDyv0H2GJ5/pqQ9q1PUb9hPdy2bygdvn7fyixBmCWV64Nf90FvL97bC31Rmbhsvb0Dzb62WLi1vK/5kdKNu/fz5wgCPJ2BVJo5+Qz5IENuexpPp/F0Bk+mKaQzeKoRnzYdT8X1qTRPP58hl6znhHNKg3ILheZWfHoLPr0Fa6gnkYguBvzmV6OgDDC7zLBc3F9ERMaWwrXIWCuG1OJIaDZL0/YsyTAbjZY+1r/fgFlcn/HrLIkwB18cFnSHB994+7K1OYIwBw/nIJ/Hc7nBsDzC+vodOYJCjkSYw/85h+XzB/xqVxYLt5f3p7i4dOO+Ef5U6cFA6ukMM/vS5BNpcskG+qY0UMjU480tFNoa8Lp6vK6BQl1ULtQ34HUN/Pw3DYRBmiXvSOKJeAJxEFBIJLFkgCeihWQSgoAf3htQsIB8kOHSj2cgbgPpNJ6JwjTpNJaMYq0ZfO1rUXuvvXYw1JqNHnDvjadgzFFQFhGZcBSuZXJwHwia9X39BPksqVwv/D4e7dyzZ+i6pPz2h3pJ5XoJwn74Y25oCB0hmHouxxUb8gRhP/797JAQzd69kM1i7kOad3Xpxm3lfaW3FwvLwZNJPJmKAmAyFZWTqSiUpqLtuh0pwkSK3t0pSKbxZANen4IgGb8nGb0nSOKpFE+tTVKwJPkgTdei+HjFJZ0euh0v9z8UfcaFF8WhNUgOhFlPBFGYLan77l0B8096glVrz+LjVwyGWDIZSKWwRJQqi0H15viJfcXpDuWEzifia/nOu3RoffGBf8MPsemJwXLqxPL6oniruUBzLkREJj2Fa6ms4m2/4oux3ryuh0x2J3x3/6OkxfWS5dFoacsj3fDwsgOOxnoux+V/zEVBdln/4GulSy435OEWf1va3jKmCixM1tOfbCAfZMi/EgVPD+IgGodajwMqQQZPT2FbOgql9XMy0chrOoOnBsuFTB2kB7d/9nCGMBlNLXjHe6JwWRytLYZNT5XUp9L8+x1pwiDNVdcODaGjrb/21ahcetu0/flJyQVu85aOvl+pZzbFn3fhvqF1JD3LYVfba+x6tYN0x4H3L30EtkZzRUSkGilcTxTuWKGAeQGyhehpagdYpu4skPAwmlqwdv9TEIrrhSuz1GV3wHXbBu9m0NODF8vbt2PxI44BPlws3FPGVwgCTiNJIZGEdILwyfoouKbSJSOxKTwZj8YGKTxVx+vpFPlEmsbj0gPBs/geT0dlSuoffiTavz/ZyHnvbsAbGvH6wTWNjRTqGqChAerrueXWKNGZwTXX7D/AFn07DqZLywylq3cMlt/1nvLeU2iIAmymrrz9FUZFREQOP4XrQ3TWr77Eka+thWf2f8EWYYjn83zqpegOBOYF/EclIdd91PB7zetR+PVvFAaPVyiMuDZ3vlhs3JfK+w5Dcl+ZF3tdEK8Lv6mP7mTQ1EJ4RAth54mEJ08njOsKTdF62UMt7E1P48OfSENx6kJxnYpGf0mlIAiwIDEwd3XBghWcffY5wIHD7J0HGWQfKZk6vOTiA4+wlv7Un9QZIyIiIvuhqHCIjnxtLW/a+Bj9vUE0ZzUouSgqUZxvGkCQxhP17ExGF0kVEgFTZyTwRCKeSFosx7cFSAxur3nGcAuYf2IQ18frIIDSskU3q33ksQAwTjsjGDiuJYYe30s+55crEhQsQZhIs+RdgxdrFeI7IESjvkOnJdz+X2mymWl89vroTgZmDKyHM2Dz81E5Na+8v2sxyJopyIqIiEjtUXw5RPd84Pv09MANNwwNlqOVv1Uyf7XcEdZ74vd0lrn/8nj/U8rc//GSqQhL/mJwBHd/12TtPSJap/V8YxEREZF9KFy/Qbo7gIiIiIgUJQ68i4iIiIiIlEPhWkRERESkQhSuRUREREQqROFaRERERKRCFK5FRERERCpE4VpEREREpEIUrkVEREREKkThWkRERESkQhSuRUREREQqpOrCtZm9w8yeM7MXzOxz490eEREREZFyVVW4NrMA+DfgncA84FIzmze+rRIRERERKU9VhWtgEfCCu7/o7v3AMuCicW6TiIiIiEhZkuPdgGHagQ0l2xuB08apLWXJ5crbLwwP/T2He/9qbJN79Xzvsfw7jcVnVFub3KO1+qI62lTuew61TYdybh/sZ4zF/tX0GdXYpuJ7qunf8rH4jGps0xv5jGr9v7vambuPdxsGmNnFwPnu/ql4+yPAIne/qmSfK4Ar4s23AM+NeUMHpJJgNn6fP5GF0yHYNt6tkLGgvp5c1N+Ti/p7chmL/s7lYNyy67HufuSBdqq2keuNwKyS7ZnA5tId3P2bwDfHslEy9szscff8qePdDjn81NeTi/p7clF/Ty7q70i1zbl+DJhtZp1mlgYuAe4b5zaJiIiIiJSlqkau3T1vZp8FHgQC4E53XzPOzRIRERERKUtVhWsAd78fuH+82yHjTlN/Jg/19eSi/p5c1N+Ti/qbKrugUURERESkllXbnGsRERERkZqlcC1jwszuNLMtZvb0sPqr4sfdrzGzL5fUf97MXohfO7+kfoGZ/T5+7etmuhViNTqY/jazDjPrM7PV8fIfJfurv6vcSH1tZj8o6c9uM1td8prO7Rp2MP2tc7v2jdLfJ5vZb+M+fdzMFpW8pvMbwN21aDnsC3AWcArwdEndYuDnQCbenhGv5wG/AzJAJ/AHIIhfWwm8DTDgAeCd4/3dtLzh/u4o3W/YcdTfVb6M1NfDXr8J+EJc1rld48tB9rfO7RpfRvm3/GfF/gLeBayIyzq/40Uj1zIm3P1XwPAby18J/Iu7Z+N9tsT1FwHL3D3r7uuBF4BFZnY0MM3dH/HobP0O8N6x+QZyMA6yv0ek/q4No/Q1APHo1IeAu+Iqnds17iD7e0Tq79oxSn87MC0uH8Hg80h0fscUrmU8zQHONLNHzexhM1sY17cDG0r22xjXtcfl4fVSG0brb4BOM1sV158Z16m/a9+ZwKvuvi7e1rk9sQ3vb9C5PRFdDXzFzDYA/wp8Pq7X+R2rulvxyaSSBJqB04GFwN1mdhzRz0bD+X7qpTaM1t8vA8e4e4+ZLQB+bGbzUX9PBJcydBRT5/bENry/dW5PTFcC17j7PWb2IeBbwBJ0fg9QuJbxtBG4N/6ZaKWZFYDWuH5WyX4ziX522hiXh9dLbRixv939NaA4VeQJM/sD0Si3+ruGmVkSeD+woKRa5/YENVJ/x1PAdG5PPB8D/iYu/xC4Iy7r/I5pWoiMpx8D5wKY2RwgDWwleuT9JWaWMbNOYDaw0t1fBnaZ2enx3L6PAj8Zn6bLIRixv83sSDML4vrjiPr7RfV3zVsCPOvupT8H69yeuPbpb53bE9Zm4Oy4fC5QnAak8zumkWsZE2Z2F3AO0GpmG4EvAncCd8a3+OkHPhaPaq4xs7uBtUAe+Ct3D+NDXQn8J1BPdMXxA2P5PaQ8B9PfZnYW8I9mlgdC4DPuXryARv1d5Ubqa3f/FnAJwy5sc3ed2zXuYPqb6E4TOrdr2Cj/ll8O3BL/WrEXuAJ0fpfSExpFRERERCpE00JERERERCpE4VpEREREpEIUrkVEREREKkThWkRERESkQhSuRUQEADP7tJk1j3c7RERqmcK1iEiNMrP3mZmb2fEVONYXgG3uvr0CTRMRmbR0Kz4RkRoV31P2aOAX7v4P49wcERFBI9ciIjXJzKYAZwCfJHqAB2Z2jpmtMLP/MbNnzex78RPRMLNuM7vRzJ40s98XR7vNrNHM7jSzx8xslZldFNcHZvaVuP4pM/v0OH1VEZGaonAtIlKb3gv81N2fB7aZ2SlxfRdwNTAPOI4ogBdtdfdTgG8A18V1fwf80t0XAouBr5hZI1Fo3xHXLwQujx9pLCIi+6FwLSJSmy4FlsXlZfE2wEp33+juBWA10FHynnvj9RMl9X8OfM7MVgMrgDrgmLj+o3H9o0ALMPtwfBERkYkkOd4NEBGRg2NmLcC5wAlm5kAAOHA/kC3ZNWTov/PZEeoN+IC7PzfsMwy4yt0frPw3EBGZuDRyLSJSez4IfMfdj3X3DnefBawH/uwQjvUgcFXJ3OyukvorzSwV18+Jp4uIiMh+KFyLiNSeS4EfDau7B7jsEI71T0AKeMrMno63Ae4A1gJPxvW3oV87RUQOSLfiExERERGpEI1ci4iIiIhUiMK1iIiIiEiFKFyLiIiIiFSIwrWIiIiISIUoXIuIiIiIVIjCtYiIiIhIhShci4iIiIhUiMK1iIiIiEiF/D9rJfyyim0KsgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12, 6))\n",
+ "plt.bar(data['Year'], data['Wheat'], color='blue', alpha=0.5, label='Prix du blé (shillings par quart de boisseau)', width=1.0)\n",
+ "plt.plot(data['Year'], data['Wages'], color='red', label='Salaire (shillings par semaine)')\n",
+ "plt.fill_between(data['Year'], data['Wages'], color='blue', alpha=0.1)\n",
+ "plt.xlabel('Année')\n",
+ "plt.ylabel('Shillings')\n",
+ "plt.title(\"Évolution du prix du blé et du salaire moyen (1565-1810)\")\n",
+ "plt.legend()\n",
+ "plt.grid(True)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous allons maintenant tenter d'améliorer la présentation de ces données. Pour cela, nous allons combiner le prix du blé et le salaire hebdomadaire afin de représenter, dans leurs valeurs respectives, ces informations."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvYAAAGFCAYAAACWv7fSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8FHX+x/HXNwUSAkhHFGQt6I6AIic2ULF77lnvBHsXQVFPT8/9qYeIeq69N6zoqQd6lpO1nmI/CyCKOotnWaT3EhJCEvL9/TETXEISJo1NeT8fj33sTvnOfHazST7znc98x1hrERERERGRpi0j3QGIiIiIiEjdKbEXEREREWkGlNiLiIiIiDQDSuxFRERERJoBJfYiIiIiIs2AEnsRERERkWZAib1IPTLG5BhjrjTGtE53LCIiItKyKLEXqV/3AXOstevSHYiIiIi0LErsReqRtfZ8a+0/62t7xhhrjNmplm33N8bMqq9YNrOvpDHm0C20r1ONMW/X07beN8acV8u2Vb5nY8xQY8zcSubnGmM+NcYcVZt91oYx5ixjzMdban/+Pp8yxtwYcN03jDFnNnRMjZ0x5hNjzB7pjqOxMMZ0N8a4OvspUjNK7EXqgZ/krTXGrEl53L+FY9joIMBa+5G1dpctGcOWYK191lp7eLrjqKVHgNutta/XpnFVBwxNmbX299baCemOI52MMUcD+dbar/zpfsaYt4wxS40xm9we3j8gLUr5WzOrwvI2xpgH/farjDEfpiwba4wpqfC3aodqYjvIGDPF306ykuUDjDEf+cvnGmPGpCzrYYz5tzFmvv/3KVShbWtjzBPGmNXGmIXGmMvLl1lrFwFTgBGb/wRFpJwSe5H6c7S1tm3KY3S6A2pujDFZ6Y6hLqy1Z1hrX0p3HE1FU/9518BI4JmU6RJgEnBuNW1Gp/ytqXgAPx7oBDj+82UVlk+s8Lfq52r2UwA8AVxZxfLngA/9/RwIjDLGHOMvKwPeBP5YRduxQB+gN3AQ8FdjzJEpy58FLqgmNhGpQIm9SAPye6RWGmP6pczr6vfud/OnzzfG/GiMWe73bm1TxbY2KhtJLbFI6ZH72u+BG16xd9cY4/jbWGmM+S7ln2956cQDxpi4MSbfGPO5MWbHat7X6caY2caYZcaYayos26gMY3O9zH5P3iXGmJ/9HsbbjDEZKe/xE2PMXcaY5cDYCu97P79NL396d//9havY12HGmITfu3g/YFKWjTXG/CNlOuTHVl1yOcgY870xZoUx5kljTE4V+93GGPMvY8wSY8wvxphLqvk8WhtjbjfG/GqMWWSMedh4JTx5wBvANik9rZt8V4wxnf3v0WpjzBfAjinLNnlPFb9XFba1lzFmqr+tRcaYO1OWveD3sq4yxnxojOlbxTY6GmMm++99hf+6Z2X7r+zn7c8/x3hlGSuM15Pdu4p9lb+/s40xc/z1RxpjBhljvvG/G/enrJ9hjLnW/y4vNsY8bYzZyl8WN8ZcXGH73xhjjvNfh40x7xjv93aWMWZYynqBf5+MMa2Ag4EPyudZa2dZax8HvqusTXWMMbsAxwAjrLVLrLXrrbXTarqdlFi+sNY+A1SV/IeAZ/39/AR8DPT12y6y1j4IfFlF2zOAG6y1K6y1LvAocFbK8s+BHar6eYvIppTYizQg/yLal4CTU2YPAz6w1i42xhwM3OzP6wHMBmpco2+tPcB/ubvfAzcxdbkxJht4DXgb6AZcDDzrJwHlTgauBzoCPwI3VbYvY8yuwEPA6cA2QGegZ2Xr1sDxwJ7AQOBY4JyUZXvjJRXdKsZkrf0Ur7xlgjEmF6/X81prbaKSuLsA/wKuBboAPwGD6xj3qcAReMnzzv62K+43A++z/xrYFjgE+LMx5ogqtnmLv60BwE5+mzHW2gLg98D8lJ7W+ZW0fwAowvs+ncPGn2VN3QPcY61tj/ceJ6UsewOvt7UbMB2vd7UyGcCTeL2y2wFrgerK1Db6efuJ9NXACUBX4CPg+c3Evbcf23DgbuAa4FC8hHOYMeZAf72z/MdBwA5A25TYJgCnlW/QGLM73s/idf8g6x283upueL87D1Y4uAn0++THWWatrWmJ1c3+Qe0nxpihFd77bOB6f/lMY0zFHvOj/QOS74wxo2q434ruBs4wxmT7f0/2Bf6zuUbGmI54fz++Tpn9Nf5BAYC1thTvs9u9jjGKtBhK7EXqzyt+j2D543x//nNsnNif4s8DLzF8wlo73T8I+D9gX1OhFrUe7IOXtMSstcXW2veAyRXiesnvnSvFS9IGVLGtPwGTrbUf+jH/De+Ue13cYq1dbq39FS9RSI1rvrX2PmttqbV2bSVtxwJbAV8A8/ES28ocBXxvrX3RWlvi72dhHeO+31o7x1q7HC9xO7mSdQYBXa214/zP/me8nsmTKq5ojDHA+cBl/ueRD/y9snUrY4zJxCt7GGOtLbDWfouXoNZWCbCTMaaLtXaNtfaz8gXW2iestfn+d2AssHt5b3cqa+0ya+2/rLWF/vu5Ca9koyoVf94XADdba13/u/l3YMBmenFvsNYWWWvfxisled5au9haOw/vwKD8ItVTgTuttT9ba9fg/f6d5J/ReBXoY4zp4697Ol4JSzHwByBprX3Sj3M63kHjn1JiCPr71AHIr+a9VOYqvAORbfHKbl5LOSPQE+gHrMJLnEfjHfg6/vJJeCU6XfG+a2OMMZV9b4OajPe+1wIJ4HFrbVU99Kna+s+rUuatAtpVWC8f7zMSkQCU2IvUn+OstR1SHo/6898Dco0xe/vJyADgZX/ZNni9awD4ycUyvH/Y9WkbvGE4UxPw2RX2k5rkFvLbP95Kt1U+4fckL6tjfHNSXs/291HZsk34SfpTeMnMHdbaTS429FWM225u2wFUF3e53njlMxsO+vB6oLtXsm5XoA0wLWXdN/35QXQFsiqJq7bOxTt7kDDGfGmM+QN4BxDGmJgx5idjzGog6a/fpeIGjHch5yN+uctqvHrsDv5BSGUq/kx6A/ekfB7L8UqoqvsdWZTyem0l0+Xf7Y1+//zXWUB3/4BlEnCaf9blZH6rg+8N7F3hZ3oqsHXKtoL+Pq1g02S2Wtbaz8sPqvwLjz/BO3Atf38lwI3+geQHeBehHu63/d5aO98vnfkU76zMnwCMMVeb38q8Ht5cHMaYTnjfz3FADtALOMIYc2GAt7HGf26fMq89mx7ktANWBtieiKDEXqTB+cn0JLzE4BS83u7yf17z8ZIEAPxT/J2BeZVsqgAv6Su3dSXrVGU+0MtPUMptV8V+NmcB3j9wwEvc8GKuS5y9Ul5vhxdvuaoS9fL9bwtch1fucYepeni8inGbCvut77jLzQF+qXDQ185aW9mQl0vxErO+KetuZa0tTwqr/SyAJUBpJXGVK/CfA71Pa+3/rLUn45Wb3AK86H9HT8ErmToU72xJyG9iKtnMX4BdgL39kp4DqlkXNn2Pc4ALKnx+uX5SWlcb/f7hfVal/HYgMAEvYT8EKLTW/jclpg8qxNTWWlubspb/4X0d63Iwb/nt8/ymtm2ttX9PKfMaGaDtDsB6a+3T/pmLuXilhJsdztVauwLvdzK1zGZ3Uq4r8M+c7MTG5ToiUg0l9iJbxnN49b6n8lsZTvn8s403ZFxrvDKDz621yUq2MQM4we8B3YlNR8xYhPePtjKf4yV1f/VrYYcCR1OLen7gReAPxpgh/oV/49j4b8kM4ChjTCdjzNbAnwNs80rjXWTZC7gUmLi5BrAhOX8KeBzv81gA3FDF6nGgrzHmBD9huISNk9oZwAHGmO38kpL/CxDCRcaYnn7P5dVVxP0FsNoYc5XxLoLNNN5whoMqrugfBD4K3GV+u7h625R6/EVA58pKXvz26/Gu6Rjrf092Bc5MWb4E72DuND+Oc0i5uLYiY8xpxpiuflzlvabr8XpR1+GdqWmD972tSju8g5WV/ud0XTXrVuZh4P/K69eNMVsZY06s4Taq8jxwmTFme2NMW7z3MdEvn8FP5MuAO9h41JrJwM7Gu4g8238MSil3Ccw/4/QfUsqTjCcHaOVP55QfsBpjOhhjjvDnZRljTsU7WHrLb/4h8CveZ5ZljBkMDC1fbow51v9dM8aYvfB+D16tKj7jXWCcA2T7oeX4v/cAP/jzTvHX2xrv79zXKe1zgPKD7dZm4wvMnwau9eMJ45UGPZWyfC+8kqe6nHUSaVGU2IvUn9fMxmNDl5fbYK0tT6y3wbvosHz+u3g16v/CS0p3pOp66ruAYrzkbgKbXqw4Fq+WdqVJGaHD308x3kgZv8frFX4QOMNWcpHp5lhrvwMuwjsoWYBXSpB64d8zeP/Yk3gX6wZJ0l8FpuEl13G8RD2IS/BKWv7ml9acjXegtH8lcS8FTgRieAlpH7wShvLl7/ixfuPHMjnA/p/De48/+49NbsrkJ9tH45Vg/YL3+T+G19NdmavwLhj8zC9d+Q9ejzf+z+t54Gf/51xZ6c9ovLKPhXhJ0pMVlp+PN3ThMrwLFavr+T4S+M4YswavZOMka20RXkI2G+8g4Xvgs6o3wd1ALt77/gyvdCMwa+3LeGcL/ul/Ht/ifY/rwxN439cP8X42RXgXlqd6GugPbBgxyT/jdjje7+p8vM/6Fn5LYGvqEbwa/nK98Q6Gynuv1wLlY9Vn433PluB9phfjlQHO8mMrwTubchRezfqjbPy7fhLe9yvff2+32OrvI3CAv//X+e3i57f9fa3Gu6j5Mry/AzPwfj6pFwqv5beym4Q/Xe46vIvYZ+ONCnSbtTb1+3Eq3oGdiARkqi5HFRFpeMa7AU8fa+2P6Y5FpCJjzBl4Q0cOaeD9fAxcbP2bVLV0/hmrD4A9/INJEQmgpdz8Q0REpEb860cuxDvD1aAa+sChqbHWLsYbvUdEakClOCIiIhX41zUswSt9e24zq4uINAoqxRERERERaQbUYy8iIiIi0gwosRcRERERaQaa/MWzGRkZNjc3N91hiIiIiEgzVlhYaK21jbpTvMkn9rm5uRQUFGx+RRERERGRWjLGrN38WunVqI86REREREQkGCX2IiIiIiLNgBJ7EREREZFmQIm9iIiIiEgzoMReRERERKQZUGIvIiIiItIMNOhwl6Fo/AngD8DiZCzSz5/XCZgIhIAkMCwZi6zwl/0fcC6wHrgkGYu81ZDxiYiIiIg0Fw3dY/8UcGSFeVHg3WQs0gd4158mFI3vCpwE9PXbPBiKxjMbOD4RERERkWahQRP7ZCzyIbC8wuxjgQn+6wnAcSnz/5mMRdYlY5FfgB+BvRoyPhERERGR5iIdd57tnoxFFgAkY5EFoWi8mz9/W+CzlPXm+vNERERERBo1N+zkAB8CrfFy7BedhHudG3Y2KUN3Eu6KhoihMV08ayqZZytd0ZgRxpipxpippaWlDRyWiIiIiMhmrQMOdhLu7sAA4Eg37OyDX4buJNyNytAbQjoS+0WhaLwHgP+82J8/F+iVsl5PYH5lG7DWjrfW7mmt3TMrKx0nHURERERkS7HWUvjllxTPmZPuUKrkJFzrJNw1/mS2/7BUXYZe79KRFf8bOBOI+c+vpsx/LhSN3wlsA/QBvtjcxjp16sT777/fMJGKiIiISNqYNWvI/ewzcj/6mKxFiyg45GDWnHhiusLJMsZMTZkeb60dn7qCG3YygWnATsADTsL93A073Z2EuwDASbgL3LDTjQZirK202qVehKLx54GhQBdgEXAd8AowCdgO+BU4MRmLLPfXvwY4BygF/pyMRd7Y3D7y8vJsQUFBg8RfUyUlJcydO5eioqJ0h9Is5eTk0LNnT7Kzs9MdioiIiDSQ8t75lRMnkf/229iSEnL69uXrHfZgwYDBjDp1aFriMsYUWmvzgqzrhp0OwMvAxcDHTsLtkLJshZNwOzZIjA2Z2G8JjSmx/+WXX2jXrh2dO3fGmMouGZDastaybNky8vPz2X777dMdjoiIiNSz0hUrWPXyK6ycNIniZJKMtm1pe/DBtD/iCFqHwzz+0Y+UZWRz0bB90xJfTRJ7ADfsXAcUAOcDQ/3e+h7A+07C3aUhYlSBej0qKioiFAopqW8Axhg6d+7MkiVL0h2KiIiI1BNrLYVffMnKSRv3znf5y+W0PeBAMrfaqsnkVW7Y6QqUOAl3pRt2coFDgVuougy93imxr2dN5cvXmH3yySeUlZWx//77bzRfn62IiEjzULZ2LSue/+dvvfPt2tLuqKNof8ThtN4ljGmag6P0ACb4dfYZwCQn4U52w85/gUlu2DkXvwy9oQJokp+aVC0zM5P+/ftTWlqK4zhMmDCBNm3abLLeUUcdxXPPPUeHDh0q2Ur1xo4dS9u2bbniiisCrf/+++9z++23M3ny5E2WhUIhpk6dSpcuXQD46quvePLJJ3nooYdqHJeIiIg0fsVz5jB39MWsmzWLnH5+7/yBQ8ls375Jd+I5CfcbYI9K5i8DDtkSMSixb0B3vfNDvW7vssN23uw6ubm5zJgxA4BTTz2Vhx9+mMsvv3zDcmst1lpef/31eo2tvuyxxx489thj6Q5DREREGsCaTz5h3uWXQ5ml+/XX03bIkKbaO98oNaYbVEk923///fnxxx9JJpM4jsOFF17IwIEDmTNnDqFQiKVLl/Lll1+y2267UVRUREFBAX379uXbb7/dZFs33XQTu+yyC4ceeiizZs3aMH/o0KFMneqN/LR06VJCoVClsaxevZrjjz+eXXfdlZEjR1JWVrbJOv/4xz/Ya6+9GDBgABdccAHr16+vnw9CRERE0spay7LHHmPO+SPI6tSZbe++m7YHHqikvp4psW+mSktLeeONN+jfvz8As2bN4owzzuCrr76id+/eG9YbNGgQxxxzDNdeey1//etfOe200+jXr99G25o2bRr//Oc/+eqrr3jppZf48ssvaxzPF198wR133MHMmTP56aefeOmllzZa7rouEydO5JNPPmHGjBlkZmby7LPP1uKdi4iISGNSVljIvMsvZ/Htd5A3ZAjb3HkHrXfaqUmX3TRWOkxqZtauXcuAAQMAr8f+3HPPZf78+fTu3Zt99tmn0jZjxoxh0KBB5OTkcO+9926y/KOPPuL444/fUKt/zDHH1Diuvfbaix122AGAk08+mY8//pg//elPG5a/++67TJs2jUGDBm14H926Ndj9G0RERGQLKJ4zh7kXjWbdjz/S6eyz6XDyyWS0bp3usJotJfbNTGqNfaq8vKqHXV2+fDlr1qyhpKSEoqKiStet6qg6KytrQ1lNdTfmqti+4rS1ljPPPJObb765ym2IiIhI07Hmo4+Zd8VfvHr6cdfTdr/BmMzMdIfVrKkURxgxYgQ33HADp556KlddddUmyw844ABefvll1q5dS35+Pq+99tqGZaFQiGnTpgHw4osvVrmPL774gl9++YWysjImTpzIkCFDNlp+yCGH8OKLL7J48WLAO9iYPXt2fbw9ERER2YKstSx99FHmXHABWZ27sO3dd9F2yP5K6rcA9di3cE8//TRZWVmccsoprF+/nv3224/33nuPgw8+eMM6AwcOZPjw4QwYMIDevXtvNL78FVdcwbBhw3jmmWc2alPRvvvuSzQaZebMmRxwwAEcf/zxGy3fddddufHGGzn88MMpKysjOzubBx54YKPrAURERKRxKysoYP4115L/5pu0PfBAulx+GVkdOqY7rBbDWGvTHUOd5OXl2YKCgnSHAXgXgDqOk+4wmjV9xiIiIo1T8a+/evX0P/1Ep7POosNJJ9VrPf1jUxKUZWRz0bB9622bNWGMKbTWVl3b3Aiox15ERERE6mTNRx8x7y/ejSu3HjeOvP32U+lNGiixFxEREZFasdaybPyjLLn7blrtsD3dr7mGVjvsqKEs00SJvYiIiIjUWFlBAfOvvob8t96i7UFD6XLpn8nqqHr6dFJiLyIiIiI1Ujx7NnNHj2bdTz/T6bzz6DBsmManbwSU2IuIiIhIYGs+/JB5V1wJxrD1DePI21f19I2FEnsRERER2SxrLcseGc+Se+6h1Y470v2aq2m1/Q6qp29EdIOqZuamm26ib9++7LbbbgwYMIDPP/+8ynXPOuusam8qBTBmzBj+85//1HeYIiIi0oSsX1PAvEsuZcndd9N26IFsc/vttNZFso2Oeuybkf/+979MnjyZ6dOn07p1a5YuXUpxcXGdtjlu3LhK569fv55MnXYTERFp9oqTSeaMHk3xz7949fTDh5PRqlW6w5JKqMe+GVmwYAFdunShtX/xSpcuXdhmm20YN24cgwYNol+/fowYMYLKbkpW1TqpvfqhUIhx48YxZMgQXnjhBX766SeOPPJIfve737H//vuTSCS23JsVERGRBrfmgw/45cRhlC5ZytY33kDHU05RUt+Iqce+gSz8+99Z59ZvotvaCbP11VdXufzwww9n3Lhx7Lzzzhx66KEMHz6cAw88kNGjRzNmzBgATj/9dCZPnszRRx+9Udsg6wDk5OTw8ccfA3DIIYfw8MMP06dPHz7//HMuvPBC3nvvvfp6uyIiIpImXj39Iyy5517V0zchSuybkbZt2zJt2jQ++ugjpkyZwvDhw4nFYrRr145bb72VwsJCli9fTt++fTdJ2qdMmbLZdQCGDx8OwJo1a/j000858cQTNyxbt25dw75BERERaXC2pIR5f7mC/Lffpu3BB9Plkks0Pn0TocS+gVTXs96QMjMzGTp0KEOHDqV///488sgjfPPNN0ydOpVevXoxduxYioqKNmpTVFTEhRdeWO065fLy8gAoKyujQ4cOzJgxo8Hfk4iIiGw5y59+hvy336bTuefQ4aSTVXrThKjGvhmZNWsW//vf/zZMz5gxg1122QXw6u3XrFlT6Sg45Ul8detU1L59e7bffnteeOEFwDtl9/XXX9fH2xAREZE0KZ47jyX330+b/faj48mqp29q1GPfjKxZs4aLL76YlStXkpWVxU477cT48ePp0KED/fv3JxQKMWjQoE3adejQgfPPP7/adSrz7LPPMmrUKG688UZKSko46aST2H333ev7bYmIiMgWYK1l4Q3eaHhdRl6Ayc5Oc0RSU6ayEVKakry8PFtQUJDuMABwXRfHcdIdRrOmz1hERKRhrH7zTeb9+TI6jzifDiefgsloXIUdj01JUJaRzUXD9k3L/o0xhdbavLTsPKDG9RMTERERkS1u/erVLLzxJlr16UP7409odEm9BKOfmoiIiEgLt/iuu1i/fDldLx5NZps26Q5HakmJvYiIiEgLVvjVV6z850TaH3ssOf36pzscqQMl9vWsqV+z0JjpsxUREalftqSEhdeNJatrVzqdfhomMzPdIUkdKLGvRzk5OSxbtkwJaAOw1rJs2TJycnLSHYqIiEizseypp1j3ww90umAEWZ27pDscqSMNd1mPevbsydy5c1myZEm6Q2mWcnJy6NmzZ7rDEBERaRaK58xh6QMPkjd4MO0OHJrucKQeKLGvR9nZ2Wy//fbpDkNERESkWtZaFl4/DjIy6HyBxqxvLlSKIyIiItLCrH79dQo+/phOp59O9nbbpTscqSdK7EVERERakPWrVrHo5ptpvfPOtD/uOIwx6Q5J6okSexEREZEWZPGdd7F++Qq6jL5IY9Y3M0rsRURERFqIwulfsXLiRLY67jiNWd8MKbEXERERaQFscTELrxtDVrdudDxNY9Y3R0rsRURERFqAZU8+xbr//UjnUSPJ6tw53eFIA9jscJehaHxf4DRgf6AHsBb4FogD/0jGIqsaNEIRERERqZPiX39l6YMPkjdkCG0PODDd4UgDqbbHPhSNvwGcB7wFHImX2O8KXAvkAK+GovFjGjpIEREREamd8jHrTWYmnS8YgcnSbYyaq839ZE9PxiJLK8xbA0z3H3eEonHdf1hERESkkcp/4w0KPvmEzqNGkt1LY9Y3Z9X22FeS1NdqHRERERHZ8mxpKUvuvY9WO+xA+2OO1Zj1zVygczGhaDwfsP5kKyAbKEjGIu0bKjARERERqZvVr79OcTJJt2uu1pj1DcwNO72Ap4GtgTJgvJNw73HDzljgfGCJv+rVTsJ9vSFiCJTYJ2ORdqnToWj8OGCvhghIREREROrOlpay9IEHabXDDuTtf0C6w2kJSoG/OAl3uht22gHT3LDzjr/sLifh3t7QAdRquMtkLPIKcHA9xyIiIiIi9WR1PE7x7Nl0OOVkMnNz0x1Os+ck3AVOwp3uv84HXGDbLRlD0FKcE1ImM4A9+a00R0REREQaEVtaytIHH6LVjjuSN2T/dIfT4rhhJwTsAXwODAZGu2HnDGAqXq/+iobYb9Dxjo5OeV0KJIFj6z2aWujUqRPvv/9+usMQERERaTRyPvucrWbPZsW55/Drj/9Ldzj1okvrIsCkM+/LMsZMTZkeb60dX3ElN+y0Bf4F/NlJuKvdsPMQcANep/gNwB3AOQ0RoLG2aXe85+Xl2YKCgnSHISIiItIo2NJSfo78AbKy6Pngg2Tk5KQ7pHrx2JQEZRnZXDRs37Ts3xhTaK3Nq24dN+xkA5OBt5yEe2cly0PAZCfh9muIGIOW4uQA5wJ98W5MBUAyFmmQow0RERERqZ3y2vru117bbJL6psANOwZ4HHBTk3o37PRwEu4Cf/J44NuGiiFoKc4zQAI4AhgHnIp3QYCIiIiINBK2tJQlDz5Iq512Iu8AjYSzhQ0GTgdmumFnhj/vauBkN+wMwCvFSQIXNFQAQRP7nZKxyImhaPzYZCwyIRSNPwe81VBBiYiIiEjNrZo8mZLZv9L9b9eS0bp1usNpUZyE+zFQ2R3AGmTM+soEHe6yxH9eGYrG+wFbAaEGiUhEREREasyWlrL0oYe83nqNW98iBU3sx4ei8Y7A34B/A98DtzZYVCIiIiJSI+W99R1PPkm99S1U0DvPPua//ADYoT52HIrGLwPOw6s3mgmcDbQBJuKdDUgCw5KxSIOM8ykiIiLSXKi3XiBgj30oGu8eisYfD0Xjb/jTu4ai8XNru9NQNL4tcAmwZzIW6QdkAicBUeDdZCzSB3jXnxYRERGRamzorT/l5CbRW//oRz9teEj9CVqK8xTexbLb+NM/AH+u476zgNxQNJ6F11M/H++mVxOCyGUKAAAgAElEQVT85ROA4+q4DxEREZFmbaPeet1ltkULmth3ScYik4AygGQsUgqsr+1Ok7HIPOB24FdgAbAqGYu8DXRPxiIL/HUWAN1quw8RERGRlmDVa02rt14aTtDEviAUjXfGq4cnFI3vA6yq7U79C3GPBbbHOwuQF4rGTwva3hgzwhgz1RgztbS0tLZhiIiIiDRp6q2XVEET+8vxRsPZMRSNfwI8DVxch/0eCvySjEWWJGOREuAlYD9gUSga7wHgPy+urLG1dry1dk9r7Z5ZWUGH4hcRERFpXla9NpmSX9VbL56go+JMD0XjBwK74A28P8tPyGvrV2CfUDTeBlgLHAJMBQqAM4GY//xqHfYhIiIi0mxt6K3vo9568QQdFedEIDcZi3yHd0HrxFA0PrC2O03GIp8DLwLT8Ya6zADG4yX0h4Wi8f8Bh/nTIiIiIlLBb731p6S9t14j3DQOQetY/paMRV4IReNDgCPwLnx9CNi7tjtOxiLXAddVmL0Or/deRERERKqwUW/94CHpDkcaiaA19uUj4ESAh5KxyKtAq4YJSURERESqs+rfrzWa3nppPIIm9vNC0fgjwDDg9VA03roGbUVERESkntjSUpY+/DCt+vRRb71sJGhyPgzvBlVHJmORlUAn4MoGi0pEREREKqXeeqlK0Br7HkA8GYusC0XjQ4Hd8Ia8FBEREZEtpGztWpY+8IDfWz843eFIIxO0x/5fwPpQNL4T8DjejaWea7CoRERERGQTSx98iJJ58+h83rnqrZdNBE3sy5KxSClwAnB3Mha5DK8XX0RERES2gKJZP7DsySdpd8ThtNlzULrDkUYoaGJfEorGTwbOACb787IbJiQRERERSWXLylg4ZgyZbdvS6dxzMVlBq6mlJQn6rTgbGAnclIxFfglF49sD/2i4sERERESk3MpJk1j79dd0veIvZHXr3qD7Sr3R1Pn779ig+5L6FSixT8Yi3wOXpEz/gu4KKyIiItLgShYvZvEdd5I7cA/aHX4Exph0hySNVLWJfSgan5SMRYaFovGZgE1ZZACbjEV2a9DoRERERFq4RTffjF23ji6jRumC2WbMDTv7AqcB++Ndy7oW+BaIA/9wEu6qzW1jcz32l/rPf6hDnCIiIiJSC2s++ID8N96k4xmn02qnPukORxqIG3beAOYDrwI3AYuBHGBn4CDgVTfs3Okk3H9Xt51qE/tkLLLAf54disa7A+WXYH+RjEUW1+0tiIiIiEhVygoLWXj9OLJ796bDsOGYjKBjnkgTdLqTcJdWmLcGmO4/7nDDTpfNbSTQNyQUjQ8DvgBOxLsL7eehaPxPNYtXRERERIJa8sADlMyfT5cLR5HZrl26w5EGlJrUu2Gntxt2DvVf57php13FdaoSdFSca4BB5b30oWi8K/Af4MWaBi4iIiIi1StKJFj+1ATaHXmkxqxvQdywcz4wAugE7Aj0BB4GDgnSPug5nYwKpTfLatBWRERERAKy69ez4LrryGzXjk7nnqMx61uWi4DBwGoAJ+H+D+gWtHHQb8qboWj8LeB5f3o48HoNghQRERGRAFZMnEjR1994Y9Z3DZzTSfOwzkm4xW7YAcANO1lsPDJltQL1uidjkSuBR4DdgN2B8clY5KqaxyoiIiIiVSlZtJgld95F7u9+pzHrW6YP3LBzNZDrhp3DgBeA14I2rsm5nU+B9UAZ8GWNQhQRERGRzVr0979jS0rocqHGrG+hosC5wEzgArwKmceCNg6U2Iei8fOAMcB7eDenui8UjY9LxiJP1DhcEREREdlE/pQp5L/1Fh3PPJNWO+yY7nAkDZyEWwY86j9qLGiP/ZXAHslYZBlAKBrvjNeDr8ReREREpI7KCgtZeMMNtAr1psOJJ2rM+hbKDTuDgbFAb7w83QDWSbg7BGkfNLGfC+SnTOcDc4KHKSIiIiJVWXLf/ZTOX8A2t92qMetbtseBy4BpeCXwNVJtYh+Kxi/3X87DuynVq3hX5h6Ld8MqEREREamDou+/Z/nTT9Pu978nd+Dv0h2OpNcqJ+G+UdvGm+uxLz9k/Ml/lHu1tjsUEREREY83Zv1YMtu3p9M5Z2vMepnihp3bgJeAdeUznYQ7PUjjar89yVjk+rrFJiIiIiJVWXLXXRTNnEnXK6/UmPUCsLf/vGfKPAscHKSxDgtFRERE0mDly6+w7LHHaR+J0O7wwzVmveAk3IPq0l6JvYiIiMgWVjh9OgvHjCF3jz3ofNFFZLRqle6QJI3csHOak3D/4Yadyytb7iTcO4NsR4m9iIiIyBZUPHcec0dfTFa3bnS7+v/IzMtLd0iSfuVfgjoNiRT0BlU7Aw8B3ZOxSL9QNL4bcEwyFrmxLjsXERERaUnWrylg7qhR2OJiusduJrtb93SHJI2Ak3Af8Z/rdH1r0B77R/FuUvUIQDIW+SYUjT8HKLEXERERCcCuX8/8K65g3c8/s/X119N6513SHZI0Mm7YyQHOBfoCOeXznYR7TpD2QRP7NslY5ItQNJ46rzRokCIiIiIt3eI772TN++/TedQo8vbbTxfLNjNu2OkFPA1sDZQB452Ee48bdjoBE4EQkASGOQl3RRWbeQZIAEcA44BTATdoDEHvV7w0FI3viDfcDqFo/E/AgqA7EREREWnJVv7rJZY//gTt//AHOvzxj5jMzHSHJPWvFPiLk3AdYB/gIjfs7ApEgXedhNsHeNefrspOTsL9G1DgJNwJQAToHzSAoD32FwHjgXAoGp8H/AKcFnQnIiIiIi1V4dSpLLjuOnJ/N5DOF16Iyc5Od0jSAJyEuwC/49tJuPlu2HGBbYFjgaH+ahOA94GrqthMif+80g07/YCFeD39gQRK7JOxyM/AoaFoPA/ISMYi+UF3ICIiItJSFc+dy9yLLyG7Rw+6RaMaAaeFcMNOCNgD+Bzo7if9OAl3gRt2qrsT2Xg37HQE/gb8G2gLjAm6X2OtrXJhKBqvdCzNcslYJNCYmg2pV69e9plnnkl3GCIiIiIbMWvX0um228hYsZJlf7mc9Vtvne6QAlmav27D6y7tWteoTU3Xr1mbIsDQtWN6Do4OOuigYmBmyqzx1trxFddzw05b4APgJifhvuSGnZVOwu2QsnyFk3A7NkSMm+uxLx9LcxdgEN6RA8DRwIcNEVBNLV++nKFDh6Y7DBEREZEN7Pr1zL3wItYsWszWN4yjz36Dm8zFso9+9NOG18f137FGbWq6fk3aPDYlQVlGNicO3TfQ+g2g1Fq7Z3UruGEnG/gX8KyTcF/yZy9yw04Pv7e+B7C4mvYdgDPwym825OlOwr0kSIDVJvbJWOR6gFA0/jYwsLwEJxSNjwVeCLIDERERkZZm8e13sOaDD+hy0UXk7bNvk0nqpfbcsGOAxwG3wp1i/w2cCcT851er2czrwGd4ZwbKahpD0ItntwOKU6aLqUEhv4iIiEhLsfLFF1n+5JO0P+YYtjrhBI2A03IMBk4HZrphZ4Y/72q8hH6SG3bOBX4FTqxmGzlOwq22FL46QRP7Z4AvQtH4y3hDXh6Pd1WviIiIiPgKPvuMBWOvJ3fP39F51ChMVtBUS5o6J+F+DFR1auaQgJt5xg075wOTgQ0XIjgJd3mQxoHGsU/GIjcBZwMrgJXA2clY5OaAAYqIiIg0a9ZaVjz/PL+edz6tem7rjYDTpk26w5Kmpxi4DfgvMM1/TA3aOPBhZDIWmQ5Mr2l0IiIiIs1ZWXExC8eNY9WL/6LN3nvR9corye5a3YiGIlW6HO8mVUtr01jnh0RERERqqWTRIuZecglFX39Dh5NOouOZZ6qnXuriO6Cwto2V2IuIiIjUQuG0acy99FLKCtfS7eqraXfIIaqpl7paD8xww84UNq6xDzTcZaAa+1A0fkuQeSIiIiLNnbWW5c89x+wzzyIjJ5dt77yDdocfrqRe6sMrwE3Ap/xWYz8taOOg38DDgKsqzPt9JfNEREREmq2ydetYeP04Vr30Em323puuV16henqpN07CneCGnVxgOyfhzqpp+2oT+1A0Pgq4ENgxFI1/k7KoHfBJTXcmIiIi0lSVLFzI3Esupeibb+hwysl0PONMMnNz0x2WNCNu2DkauB1oBWzvhp0BwDgn4R4TpP3meuyfA94AbgaiKfPzk7FIoPE0pWW7650fNry+7LCd0xiJiIhI7RVOncrcS/9M2dq1dLvmatodrHp6aRBjgb2A9wGchDvDDTvbB21c7TcyGYusCkXj+UD/ZCwyuw5BioiIiDQ51lpWPPcci26Okd2jBz1uupHWYQdjqroPkUidlDoJd5UbdlLn2aCNN3vxbDIWKQO+DkXj29UiOBEREZEmqaywkAVXX8OiG26kzZ57su3dd5Hj7KqkXhrSt27YOQXIdMNOHzfs3Id3IW0gQc8h9QC+C0XjXwAF5TOTsUigeh8RERGRpqTo+++Z95crKE4m6XDKKXQ84wzV08uWcDFwDd5Ql88DbwE3BG0cNLG/vuZxiYiIiDQttqyM5U9NYPGdd5LVsSM9/n4TbfbaW/X0skU4CbcQL7G/xg07mUCek3CLgrYP9C1NxiIf1DI+ERERkSahZPFiFkT/j4JPPyVv8H50ufRSsrp1V+mNbDFu2HkOGIl3o6ppwFZu2LnTSbi3BWkfKLEPReP7APcBDt7wO5lAQTIWaV+rqEVEREQakfwpU1hw9TWUFRbS5eLRtD/mWDJatUp3WNLy7Ook3NVu2DkVeB3vnlHTgECJfaA7zwL3AycD/wNygfP8eSIiIiJNVtm6dSy84UbmjrqQzE6d2Paeu9nqhD8qqZd0yXbDTjZwHPCqk3BLqM9RccolY5EfgcxkLLI+GYs8CQytaaQiIiIijUXRDz+Q/NOJrHj2Wdoffzzb3H23N+pNRuD0SKS+PQIkgTzgQzfs9AZWB20c9EqQwlA03gqYEYrGbwUW+DustVA03gF4DOiHdyRyDjALmAiE8N7UsGQssqIu+xERERFJZa1lxfPPs/iWW8lo04bu119P2yFDdIGspJ2TcO8F7i2fdsPOr8BBQdsHPSQ9Ha+ufjTecJe9gD8GD7NS9wBvJmORMLA74OLd3fbdZCzSB3iXje92KyIiIlInpStWMPfCi1g07gZydtuNbR+4n7YHHqikXholJ+FaJ+GWBl0/6Kg45XedXUs9DH0ZisbbAwcAZ/nbLwaKQ9H4sfxW4jMB73a6V9V1fyIiIiKF079i3qWXsn7lSjqPGMFWf/wjGTk56Q5LpN4EHRXnFyop3E/GIjvUcr87AEuAJ0PR+O54V/teCnRPxiIL/G0vCEXj3Wq5fREREZENVr/9NvOv/CtZXbqwzV13ktO3n2rppVFxw04GsI+TcAPfabaioN/oPYFB/mN/vNqff9R2p3gHFAOBh5KxyB545T2By26MMSOMMVONMVNLSwOfnRAREZEWaPnTTzPv0j/Taqcd2eaO28ntv5uSeml0nIRbBtxRl20ELcVZVmHW3aFo/GNgTC33OxeYm4xFPvenX8RL7BeFovEefm99D2BxZY2tteOB8QB5eXmBhwASERGRlsOWlbH4lltZPmECeUMG0/XKv5LVoUO6wxKpzttu2Pkj8JKTcGuc4wYtxRmYMpmB14PfrqY7K5eMRRaGovE5oWh8l2QsMgs4BPjef5wJxPznV2u7DxEREWm5ytatY/5fryL/rbdof+yxdB45ksw2bdIdlsjmXI438mSpG3aKAANYJ+EGuils0EvAU08LlOIPRVmDICtzMfCsP4zmz8DZeAcNk0LR+LnAr8CJddyHiIiItDClK1Yw96LRrJ0+nU7nn0/H4cMx2dnpDktks5yEW+uOcwheihN4/MygkrHIDLye/4oOqe99iYiISMtQPGcOc0ZcQMm8eXSLRml32GEaylKaFDfsdAT6ABuGbHIS7odB2gYtxbm8uuXJWOTOINsRERERaShrZ85kzshR2JISetx0I7l7DtJFstKkuGHnPLyRInsCM4B9gP8CBwdpX5NRcUYB2/qPkcCueHX2dTplICIiIlJX+VOmMPuMMzGtWrHN7beRO2gvJfXSFF2KNwrlbCfhHgTsgTdEfCBBz011AQYmY5F8gFA0PhZ4IRmLnFezWEVERETq14p/TmThuHG07tOH7teNodW2PdMdkkhtFTkJt8gNO7hhp7WTcBNu2NklaOOgif12QHHKdDEQqkGQIiIiIvXKlpWx5K67Wfboo7TZe2+6/V+UrI6d0h2WSF3MdcNOB+AV4B037KwA5gdtHDSxfwb4IhSNv4x3B9rjgQk1jVRERESkPpQuWcLCcePIf+c/tD/qKDpffLGGs5Qmz0m4x/svx7phZwqwFfBm0PZBR8W5KRSNv4F311mAs5OxyFc1ilRERESkjqy1rHrpJRbdcit27Vo6nXceHYYPJ6NVq3SHJlIv3LAzEBiC15n+iZNwizfTZIPA4z8lY5HpwPSahyciIiJSd8XJJAuuG0vh55+Ts9tudBk9mtZ9+ugiWWk23LAzBu8+Ti/5s550w84LTsK9MUh7DewqIiIijZotKWHZk0+x9IEHMNnZdBk9mvZHH01GTs7mG4s0LScDezgJtwjADTsxvI51JfYiIiLStK2d+S0L/vY31iUS5A0ZQueRF5DdsxfGmHSHJtIQkng3piryp1sDPwVtvNnEPhSNZwJvJWORQ2sTnYiIiEhNlRUWsuTe+1j+9NNkduxIt2uvod3QgzDZ2ekOTaQhrQO+c8POO3g19ocBH7th514AJ+FeUl3jzSb2yVhkfSgaLwxF41slY5FV9RGxiIiISFXWfPQxC8eOpWTePNoddRSdzjmbrC5d1UsvLcHL/qPc+zVpHLQUpwiYGYrG3wEKymcmY5FqjxpEREREgipdsYLFsRirXv032dv1osctMdrsOQiTpcphaRmchFun4eSD/qbE/YeIiIhIvbIlJayYNIml993P+vx8Opx8Eh1OOZWs9u3THZpIkxJ0HHvdjEpERETqlbWWNe+/z+Jbb6P4l1/I2X13eowYQWvHwWRmpjs8kSYnUGIfisb7ADcDu+JdqQtAMhbZoYHiEhERkWasyHVZdMutFH72Gdm9etFtzN9ou/8ButGUiM8NOxlAWyfhrg7aJmgpzpPAdcBdwEHA2YCuYBEREZEaKVm0iCV338OqV14ho317Oo8aSfujjyEzLy/doYmknRt2ngNGAuuBacBWbti500m4twVpH/RWbbnJWORdwCRjkdnJWGQscHBtAhYREZGWp6yggCX33sdPR/6e1ZMns9UJJ9Dr8cfoMPwkJfXSbLhh5wk37Cx2w863KfPGumFnnht2ZviPo6rZxK5+D/1xwOvAdsDpQfcfeFScUDSeAfwvFI2PBuYB3YLuRERahrve+WHD68sO2zmNkYhIY2HXr2fVK6+w5O57KF2yhLwDD6DTWWfRKrQ9JiNo/6JIk/EUcD/wdIX5dzkJ9/YA7bPdsJONl9jf7yTcEjfs2KA7D5rY/xloA1wC3IDXW39m0J2IiIhIy1Pw6acsuuVW1s2aRetdd6XbVX8ld4+BGr5Smi0n4X7ohp1QHTbxCN7dZ78GPnTDTm+gfmvsk7HIlwB+r/0lyVgkv+ZxioiISHNXVljI6jfeZOWkSaz9+muytt6arlddRbtDDiGjdet0hyeSLqPdsHMGMBX4i5NwV1S2kpNw7wXuTZk12w07BwXdibF28737oWh8T7wLaNv5s1YB5yRjkWlBd9RQevXqZZ955pl0hyFVWJy/bsPrbu30B725089bpOXKmjuX3I8+Jufzz8koKqK0e3cKBw+mcPB+oIS+SVma8re8S8C/5eVtarp+zdoUAYauHdNzTcZBBx1UDMxMmTXeWju+4np+j/1kJ+H286e7A0sBi1f50sNJuOdUtg837FxeyexVwDQn4c7YXIxBz4U9AVyYjEU+AghF40PwEv3dArZvMMuXL2fo0KHpDkOqkFpzPWyoaq6bO/28RVoWr3f+DVZMmkTR199gWrUib/8htDviSHIHDFAPfRP16Ec/bXh9XP8da9SmpuvXpM1jUxKUZWRz4tB9A63fAEqttXvWtJGTcBeVv3bDzqPA5GpW39N/vOZPR4AvgZFu2HnBSbi3VrevoIl9fnlSD5CMRT4OReMqxxEREWmBihIJVkycyOrXJlO2Zg3ZvXvT+fzzaXvooWR166aLYkVSuGGnh5NwF/iTxwPfVrN6Z2Cgk3DX+G2vA14EDsAb/rJeEvsvQtH4I8DzeKcRhgPvh6LxgQDJWGR6wO2IiIhIE1RWWMjq119nxaQXKPrmt9759kf+npzdd1fvvAjghp3ngaFAFzfszMW7D9RQN+wMwMuhk8AF1WxiO6A4ZboE6O0k3LVu2FlXRZsNgib2A/zn6yrM388PUmPai4iINENFrsuKSZNY/e/XKCso8HrnR4zweue7dlXvvEgKJ+GeXMnsx2uwieeAz9yw86o/fTTwvBt28oDvN9c46Kg4ga/GFRERkaatrKDAq52fOImimTP93vn9aX/kkeqdF2lATsK9wQ07bwCDAQOMdBLuVH/xqZtrr4FkRUSkVsovltbNyJqPou+/93rnX5vs9c6HetP5ggtoe8gh6p0X2XK+Aubj5+lu2NnOSbi/BmmoxF5ERKQFKysoYNXrr7Ny0gu/9c4fcIDXO7/bbuqdF9mC3LBzMV7p+yJgPV6vvSXgSJRK7EVERFoYay1F33/PyhdeSOmdD9F55AW0PVi98yJpdCmwi5Nwl9WmcaDEPhSNnwi8mYxF8kPR+LXAQOBGjYbTuKSOIa5T4yIiksqWlVE0cyb577zD6nfeoWT2r5jWrX/rne/fX73zIuk3B++GVLUStMf+b8lY5AX/xlRHALcDDwF713bHIiIi0rBsaSmFU6eS//Y75L/7LqWLFkFmJrl7DKD9McfQ9oADyerSRb3zIo3Hz8D7btiJAxuGt3QS7p1BGgdN7Nf7zxHgoWQs8mooGh9bkyhFRESk4ZWtW0fBp5+S/85/WPPee6xfuRLTujVt9vwdHc84nTZ770NWp06YzMx0hyoim/rVf7TyHzUSNLGf59+g6lDgllA03hrQ4b2IiEgjsH7VKgo++YTV77xDwQcfUlZYSEbbtrTZay/y9tuP3EGDyGzfXj3zIo2ck3Cvr0v7oIn9MOBI4PZkLLIyFI33AK6sy45FRESkdkoWLWbttKkUTp1G4bRprPvhB7CWzI4dyTvwQPIG70fuHgPJaNNGybxIE+CGnbudhPtnN+y8hjcKzkachHtMkO0ETexzgPcBQtF4J7yanykB24qIiEgtWWsp+fVXL4mfOpXCaVMp+XUOACY3lxzHoeNpp5K722607tefjNxcjDFpjloak0c/+gmA8/ffMc2RSDWe8Z9vr8tGgib204FewAq88TQ7AAtC0fhi4PxkLDKtLkFI06GRd0REGpYtK2PdDz/4vfFTKfxyKuuXLgUgY6utyO3bl3ZHHEFO33603mUXMnJy1CvfgJQUy5bgJNxp/vMHddlO0MT+TeDlZCzyFkAoGj8crzRnEvAgGh1HRESkVmxxMWu/+47CqVNZO3UahV99Rdnq1QBkdetGbv/+5PTrS07ffrTafntMq1ZK5EWaGTfszKSSEpxyTsKt1xtU7ZmMRUaWTyRjkbdD0fjfk7HI5f6FtCIijZLOMkljU1ZQwNqvv95QWrP2m2+wRUUAZG+3HXmD9yOnb19y+vWnVc+ekJWl0hqR5u8P9bGRoIn98lA0fhXwT396OLAiFI1nAmX1EYiIiEhzVLZuHQWffELhl1MpnDaNou++g/XrISOD1jvtRLsjjyTX75HP6tYNk6Wbwrck5aU+oHKflsxJuLPrYztB/3qcAlwHvIJXY/+xPy8Tb8QcERERSbHup59YOWkSK195hbJVqzGtWtF6l53p8Kc/kdOvHzm77kpmhw5K5EUEN+zkU3kpjgGsk3DbB9lOoL8myVhkKXBxFYt/DLINERGR5q5s3Try33qLFZMmsXbqNMjKIm+//Wh3+OHkDBhAZps2ujGUiGzCSbjt6mM7gRL7UDS+M3AFEEptk4xFDq6PIERERJqydT/+yMoXXtjQO5+97bZ0Oucc2h1+GFnduiuZF5FquWGnvZNwV7thp1Nly52EuzzIdoKe/3sBeBh4DFgfsI1UUH4Rny7gk/qgi0JF0qusqIj8t99mxcRJrJ3m9c63HTyYdkceQc4eA8nMzU13iCLSdDyHdwHtNLySnNQr5i2wQ5CNBE3sS5OxyEM1Ck9ERKQZKp49mxXPPfdb73zPnnQ69xzaHabeeRGpHSfh/sF/3r4u2wma2L8WisYvBF7Gu+ssAMlYJNBpARERkaaurLCQpQ8/wrInngCg7ZDB3og2A39HRmuN/Cwi9cMNO9sCvUnJ052E+2GQtkET+zP95ytT5gU+LSAiIrIlNESJmrWW/LffYVEsRumCBbQ99FA6nX0W2T22Ue+8bEJ3qpW6cMPOLXjDyn/Pb+XvFqi/xD4Zi9TptICIiEhTtO7nX1h0440UfPoprXbckW1uu43cgQM1RKWINJTjgF2chLtus2tWotq/TKFo/OBkLPJeKBo/obLlyVjkpdrsVEREpDErKyhg6cMPs+zJp8jIyaHzyAtof+xxZLZpk+7QRKR5+xnIJqX0vSY21+VwIPAecHQlyyygxF5EpIY0olHjZa0l/623WBS7hdKFC2l32KF0PPtssrfZFmPM5jcgjZru8iqNlRt27sPLrQuBGW7YeZeU5N5JuJcE2U61iX0yFrnOfz679qGKiIg0fut+/tkvu/mvym5EZEub6j9PA/5d241srhTn8uqWJ2ORO2u7YxERkcagrKCApQ89xLKnJnhlN6NG0v7/27vzOLnKOt/jn6eqet+yQBZCsAgE6iQBA4R9MUFAmFJBhQw4V1HZ9Aqj3nGkwLnjyn3VHXQUZxSN6AwwDhKuImiBgsjmOApJCIueYkBDnjwAACAASURBVEsKyEKSTnfS3em96rl/nNOh0nTSp/fT1d/361WvPuepc87z6z5d4cfTv/M8779QZTciMm6crHt7/zY34UwH5jtZ97mg1xlsGGJUlreV4dGCVjIV6PdcJoq1ltZf/9oru9m2jbpzz2X6xz+mshsJPc28U7rchPMY8H68HH09sMNNOI87WfeAg+19BivF+cqIIxQREQmZrldf5c2vf532//4j5UceySGf/7zKbkQkDBqcrNviJpwrgX9zsu6X3IQzOiP28VTmOwd6P5dOBirkP8D1o3g1RZtz6eR746nMDOBuIA7kgJW5dLJ5JH3IgWm0VESmknzbHhpv/R5Nt9+hshsRCaOYm3DmAiuBLw755EHeXzuskIL7DOAC9f5+Cngkl06m46lMyt+/foxjGBbNaiEiMnlYa2l98EGv7Gb7durOO48ZH/8YsbmHqOxGRMLkq8BvgN87WfdpN+EsAF4OevJgpThvK+QfLfFU5lAgCdwE9NUNXQgs97dvBx4jpIm9iIhMDl2vvMKbX7+J9j/+kfKFR3LI9V+gaulxKrsRkdBxsu49wD1F+xuADwU9f7BSnG/n0snPxlOZX+LNrbmPXDr5/iHE2t+3gS+w7wO6s3Pp5Fb/2lvjqcysEVxfREqQysckqHzbHhq/9z2a7riDSFUVM//np6h/3/tVdiMioeMmnH8Avudk3ab9vH82UO1k3V8d6DqDDVfc6X/9xtBD3L94KvNeYHsunVwbT2WWD/V8Y8zVwNUA5eXloxmaiMiUVTL/02Qtc9Y9yYav3emV3bznPGZ87OPE5s5V2Y2IhNXzwC/dhNMJrAN2AJXAQmAp8Fvg/wx2kcFKcdb6Xx8fabT9nA68P57K/BVe0PXxVOY/gG3xVGauP1o/F9g+0MnW2lXAKoCampq3/SVBRESmpqodW1ly13eZ+fLzRBYu5JDU9VS9c6nKbkQk1Jysex9wn5twFuLlyXOBFuA/gKudrNsR5DqB/qWLpzKnA18G3uGfYwCbSycXDD10yKWTNwA3+NdeDnw+l07+j3gqczNwOZD2v943nOuLiMjU0/bkk5x289+Btbx8waWc97eXq+xGRCYVJ+u+zBAelu0v6BDGj4DP4c2Skx9uZwGkgdXxVOYK4HXgkjHsS0QGUTKlGVLSrLXsXPVDdnz723TOmod78VXsmXNoaJL6vsWEQAsKicjYCprY786lkw+ORQC5dPIxvNlvyKWTO4F3j0U/IiJSegp79rDlhhtpfeghalcs58mTL6K3tn7wE0VEStBgs+Ic728+6pfJ/Bzo6ns/l06uG8PYRERE9qv7tdfYdO21dL26gRlXXsm0lSvpfWrTRIclIjJhBhux/2a//WVF2xY4e3TDERERGVzbE0+w+fN/D8Ccr32VmlNPw0SjExyViMjIuAnnKOBWYLaTdZe4CedY4P1O1v16kPMHmxVnxSjEKCIiMiqstez8wSp23HIL5Uccwewbb6B8wRGaxlJESsUPgb8HfgDgZN3n3ITzn8DIE/s+8VTmM8C/Aa1+h8cDqVw6+dBwIhYRERmqfNsett5wA60PP0ztiuUc9JnPEps+faLDEhHZy004PwbeC2x3su4Sv20GcDcQB3LASifrNu/nEtVO1n3KTTjFbb1B+48EPO4TuXSyBTgPmAV8HG8GGxERkTHXncuRu/SvaX3kEWZceSWzbvyiknoRCaN/B87v15YCHnGy7kLgEX9/fxrdhHMEXsk7bsK5GNgatPOgiX3f3zj/Cvi3XDr5bFGbiMiU9q2HX9r7ktHX9vjjbLxkJb07Gpnz9a8x/cMfJqJVx0UkhJys+wTQ1K/5QuB2f/t24KIDXOLTeGU4CTfhbAY+C3wyaP9Bp7tcG09lHgIOB26IpzJ1QCFoJyIiIkNlCwV2rlrFjlu+49XTf/FGyg9foHp6EZlsZjtZdyuAk3W3ugln1kAHuQknAixzsu45bsKpASJO1m0dSkfGWjvoQfFUJgIsBTbk0sld8VRmJjAvl04+N5TOxsL8+fPtnXfeOe79bm/dO+sns+oqhnTOWB8fpj6GE5MEMx4/2zD/Do5lTENVKp+Lsb4XQ2E6O6n/99upXL+ejhNOYPdll0Jl5aDnNRb9bA8Kyc82jDFNVcO5F33njPXxUzWmoZ3TCRgOnl4T6PjRtmLFim7g+aKmVdbaVf2PcxNOHPhVUY39LifrTit6v9nJugPWEroJ5wkn65413BgHm8c+nksnc7l0sgDsnbPeX0hqZzyVMXgJ/oRNHNzU1MTy5cvHvd/iP7mvXB5sVc6+c8b6+DD1MZyYJJjx+NmG+XdwLGMaqlL5XIz1vQiqa+NGNl17Hd25HDOuvoppl6wMXHpTvMrrRceEY5XXMMY0VQ3nXvSdM9bHT9WYhnLObY9mKUTKuGT5qYGOHwO91tplgx/2NtvchDPXH62fC2w/wLEPuwnn83gP2+7pa3Sybv/yngENVopzsz9afx+wFtgBVAJHAivwVon9EqAVQUREZMRaH32ULX//BUws5s1Pf8qpmp9+iihO9K46U/8DJCXlfuByvIlnLsfLq/fnE/7XTxe1WWBBkI4Gm8f+kngqswj4G7+juUA74AIPADfl0snOIB2JiIjsjy0UaPz+92n8l3+l4sgjmHXjFyk//HDV04vIpOImnLuA5cBBbsLZhDcAngZWuwnnCuB14JL9ne9k3cNH0v+gD8/m0sm/AF8cSSciU01xqcXnzg1PqYVMXn2/U6X4+5Rva2NLKkXbbx+h9t3v5qC//Vti06YNfqKISMg4Wfey/bz17gOd5yacs52s+zs34XxwP9f9eZD+g86KIyIiMuq6Nmxk07XX0v3aa8y85moaLr5EU1mKyFT0LuB3wPsGeM8CSuxFRCS8Wn/3KFu+4NXTz73p61SfdLLq6UVkSnKy7pf8rx8fyXWU2IuIyLiyhQKNt95K47/8K+ULFzLnizdSFlc9vYgIgJtwksBivAlrAHCy7leDnBsosfentfwbYEEunfxqPJU5DJiTSyefGka8IiIyReXb2thyfYq2Rx6h9pxzOOi661RPLyLicxPO94FqvNknbwMuBgLn25H9vRFPZU6PpzJ9fxP9HnAq0PdAQCvw3eEELCIiU0+hs5Ndv/gFuYsvoe2xx5h5zTXMuv56JfUiIvs6zcm6HwWanaz7Fbz8e37Qkw80Ym+BW4GrgZNz6eTx8VTmGYBcOtkcT2X0dJOEwnjMQDMeM5KMdR+aqUcmQtfLL9O8+h5233cfhZYWyubPD1U9veZOF5GQ6fC/trsJ5xBgJxB4Csz9Jva5dPIP8VSm3d/t8UfvLUA8lTkYKAwvXhERKWWFjg5afv0bdq1eTcczz2DKyqg5/XTqLjifquOOJ1IRbPl4EZEp6FduwpkG3Aysw8u9bwt68mALVK33N78D3AvMiqcyN+HV+/zDsMIVEZGS1PnSS+xafQ+7779/7+j8jCuvoO7cc4kdPCsUI/QiImHmZN2v+Zs/cxPOr4BKJ+vuDnp+oIdnc+nkT+KpzFq8yfUNcFEunXSHHK1ISJTyYj8ycvr9CC7S3cWun9/rjc6vX++Nzp9xBnXnn0/VcceNeHS+r1RGZTIHpp+TyOS2v4Wp/PdGZ4GqeCozo2h3O3BX8Xu5dLIpSCciIlJaOl98CeeeVRzy9KNs7Wj3R+evpO7cczQ6LyIydAMtTNVn1BaoWutfbKDJhS2wIEgnIiIy+RU6Omh58NfsuvtuOp59lvnRGDuc41j60YupWjry0XkRkalqpAtT9Rmsxj7wU7giIlKaOl98iV13383uX/6SQmsrZYcdxoyrruRX9UfT1TCd009eONEhioiUjDFfoAognsp8EDgDb6T+yVw6+YshxikiIpNEob3dG51fvZqOZ5/FlJdTc8bp1L3nrdr5rqKpIkX6G4+pRPVsgZSakS5QFXTl2e8BR/JWjf0n46nMubl08tNDC1dERMKsdnOON796tzezTVvb3tH5unPOJTZrFiay33UNRURk5E5zsu6xbsJ5zsm6X3ETzjcJWF8PwUfs3wUsyaWTffPY3w48P/RYRUQkbLo2bqT1t7/l1Hvup+H1V9hVXk7NmWd4o/NLl6p2XkRk/IzNAlX9vAgcBrzm788HngvaiYiIhIe1lq5sltaHH6b14YfpevkVAMwh7+DVcz/E2VeuHJPRea3yKiIyqIEWqPph0JMHm+7yl/4FGwA3nso85e+fDPxhuBGLiMj4soUCHeuf3ZvM92zaBJEIlUuWMPOaa6g5/TTu2NiFjcYomzNnosMVEZmSxnqBqm8MOzIREZlQtqeHPU895SXzv32EfGMjxGJUH388DR/6IDWnnOqNzMe8/xTY1/UwrIjIRHATzonAG07WfdPf/yjwIeA1N+F82cm6gdaOGmy6y8dHHKmIiIwL29NDp+vSvmYt7WvW0L5mDYWWFkxVFdXLTqDmtNOpPukkotOnawGpEdBMLCIyBn4AnAPgJpyzgDRwHbAUWIU3O86gAk93KSIi4VLo6KDj2edoX7uGjrVraX9mPbbDe+6qbN48ak45hepTT6HqhGVE6+o0o42ISHhFi0bl/xpY5WTdn+GV5KwPehEl9iIik0SsvY3WRx/1kvg1a+l44QXo7QVjKF+wgLpzzqHymGOoXLyYstmzIRbDmIEWDhcRkZCJugkn5mTdXuDdwNVF7wXO15XYi4iEVM/27XuT+NMe/S/qtr7GJmshFqPiqKNo+MAHqFq8mIolS4hNn763Vl5ERCadu4DH3YTTiDfl5ZMAbsI5Ehi1h2cBiKcyG/Fmw9lHLp1cELQjERHZP2stPW+8QfvTa2hf69XI97z+OgCmspL83MN57awkp55/GhWLFnulNaqTFxEpCU7WvclNOI8Ac4GHnKzbl3dH8GrtAwk6vLOsaLsSuASYEbQTERHpp1CgduvrNP3kaW9U/uk19O7YAUCkvp7KRYuoO+88KpcspuKoo/ndmi0QiXDOaXpgUyaGHhoWGVtO1v3jAG0vDeUagRL7XDq5s1/Tt+OpzO+BfxxKZyJBfOth73f4c+ceNcGRiAxBoUBZxx66Nmwkv6uZfHMzvU1N5Jt3kW9q8vabvf2zNm+jvG03se4utgHRgw+icvESpi1eTOUxSyiLH06komLfh12H+OCrFoOSA9Hvh0hpClqKc3zRbgRvBL9uTCISEQmBSHcXPVu3vpWcNzeTb26it7mZfFOzv+8l7yu2NVLW3kqkUGDDANcyVZVE6xuINjQQqa+ndV6cnupa2mYfyrkfWEHZoYdiysr0oKuIiIxI0FKcbxZt9wI5YOWoRyMiMgpsdzc927fTs3kLh/xpHZW7Gol1dvDmn6opdHZgOzopdHRgOzsodHRS6Oyg0N6B7fTaz9vTTiTfyysDXTwSIVJfT7ShgWh9PWVz57CzYS69VbV019Ry2tLDMfX1xBqmEZ02jci0aUSrqsAYiEQwkQgPFI2WVizQo0oiIjI6gpbirBjrQEREgop2ttP50kv0bNlC79at9GzZQs/mLfT4273bt4P1njs61j+nEI2xu6oSU1nplbn4r0hFBdGGacRmzd7b/ufGTnorqzjx2DjROi+Jj0ybRnT6dO+h1VjsrUTdGH5VlKjXq6xBRoHq2UVkOA6Y2MdTmf91oPdz6eQ/j244IjLlFPKUte+h69VX961LH6D0pbe5mXMadxLr7mJj8TViMWIHH0xs1iwqjz2G2MGziM2eRdnBs7hvUzed02dSKKvgir4kyZi9r4HKX+7zk6pzlVSJiMgkMtiIfV8d/dHAicD9/v77gCfGKigRCS/b3U2+tZV8SwuF1lbyu1sotLaQb2nl8LWvUtbZTrS7ky2PVw5a8mI7Ozm/uxtgP7XpVV7JS0M9kbp6KufMYeMe6Kmp45QTjyY2axax2XOIzpxJpKwMotG3Jep7ikbTNc+7iIiUsgP+Vy6XTn4FIJ7KPAQcn0snW/39LwP3jHl0IjJ6rCXS002ss52ujRsptO2hsKeNfGurt93WRqGtlXxbm7ff2srxuW2Udbbz6i09FFpayLe2YDs699vF0UAhGiVfXkFbTfW+JS+VlW8reTEVFTy7vYPeyipOW7rAq12fVlSbXlm5T206wC/9RP08jaaLiIjsI+jw1WFAd9F+NxAf9WhEZFCFri7yzc3UvbGB8j0txDr20Ny8fu/oeb61hcLuFi9hb2kh77/O27WbSL4XGHh0vI8pLyNSU0ukuoqqQox8eSWxubOJLlhApLaGSG2t96qpJVpbQ6S2jkhNDZH6en7ywk7yZWUQiXDFGUcMWvICsNFP1FWbLiIiMjJBE/s7gafiqcy9eCvQfgC4fcyiEpkirLUU9uwhv3Mn0za4lLfupnnXs0XTKfo15kVzoRfa2wE4veg6b/ZtRKNEav2Eu6aWSE0NZYfOo6LmaP6yO09vRZU3Or5kvpeMV1d7r5oaInV1RKqqiPSNkhvDQ7/fAMaw7KwjA30/vRveGs1X2YuIiMj4Cjorzk3xVOZB4Ey/6eO5dPKZsQtLZHKy+TyFPXuobNpOrKOd8rbd7O58iXzTTnobd9LbtJN84056m5robWwk39SE7eoC4BT/Gn1Juqms3DulYqShgYqjj/LnQW8gOq2Bxzd30ltVQ09VNR88y9mbmJto1LtAUfkKwP1FteYNQUfHh7gokoiIiEycwENquXRyHbBuDGMRCZVCdze9W7bQvWkzh/7XOip37WTbmgqvBr21jUJbG/k9RdutrdiODgCWF11nS99GNEp0+jSi06YTbWigctEiv568gei06TyypZPemlouOmuxV19eXf22+vJi24sS9fL588fs5yAiIiKTg/5WLlOWyefp2byZ7k2b6dm0iZ7Nm+nZvGnvfvFc6EsAawy7qqsxfeUr/qts3iFeKUtVNZEar6zlD1vayZdX0lNdS/LMRURnzCBaX++NphfNf15sp5+ol7/jHeP9oxAREZESoMReSoLp7fHmQn/lFfK7d5PftYv8rt1vbe8u3t7Fu7Y2UtHSzCuF/FsXiUSIHXwQsVmzqTzmGMrmzCY2ew6x2bO4d3MvXfUz+MS7Fr71QOgAyXmfLUWj6ZVH66FQERERGXuBEvt4KrMol07+pV/b8lw6+diYRCVTTqG7259usY36N14l1rGHFl6j0NI3X3rLWzO++G1986if07yLWLdXpz7gbC/RqFenXldLtLaOaH0Du8um0V3XwPHLEt5CRrPnEJszx3twdIDSlw4/UTdlZWP8kxAREREZnqAj9qvjqcydwD8Blf7XZcCpYxWYTH75tj3MzK5nWu5Fylt2sfnh6N750r069VYKe7x92/3WbKqn+V83F1/MGK/cZe9UizXEZntTMG5syZOvqKKnqobTl8aJ1NURrav35kRvaCBSU/O2EpiMn6ifrSkWRUREpEQETexPBv4v8Ae81Wh/wr6z7YnQ8+abtK9dS8e6Z2h/Zh1d2Rc5sVDAGkNvZTXtDXVEqquIVNcQra0hNutgItXFUy5WE6mu4dHXWymUV3HBKUd6M73U1xPtl5wXz4tePNuL5kIXERGRqSpoYt8DdABVeCP2G3PpZGHMopLwK+TpzGZpX7fOS+TXrqV361bAm6axMpFg2l+v5EkOYvdhC+itquWKM494W1I+kB1+ol51rJJ0ERERkaCCJvZPA/cBJwIzgR/EU5mLc+nkxWMWmUyYQns7+eZmept3kW/2FkXqbWoi37yLxS/kqNq5jYbcS2zs9BZKis6cSeWiRdS/731ULlpExVFHEamsxESjNBaNpmvBIhERESllbsLJAa1AHuh1su6y8ew/aKZ1RS6dXONvvwlcGE9lPjLcTuOpzHzgDmAOUABW5dLJW+KpzAzgbiAO5ICVuXSyebj9lARrKXR3Y7u6sF1dFDq7sN1db+13de/dn7smR6S3m0hvL01vPoXt6cF2d3tf+7/89qWbmoh1trPx1m4ved+1C9vZOXAs0Sizqmrorm1gx+ITeOfZJ1O5aDFl8+ZhyssPOAovIiIiMkWscLJu40R0fMDEPp7K1OfSyRZgg590F8uMoN9e4O9y6eS6eCpTB6yNpzIPAx8DHsmlk+l4KpMCUsD1I+hnzEQ726nZvoVodxdtldspdHZgOzsptHdgOzsodHR6bR2dFDo6KHR2sPS1RiI93bx+Vzm220uwCz094Cfbhe7uvdu2p4dzu7qJ9vbwYsCY3lm0ve1tAUcx5WWYWBkmFvNmd4nFqOu25MsrMPMOpvKQQ4j2PXDaUO+vetpAdNo0b8Gkujp+/N85rIlAJMJZqmcXERERCY3BRuz/E3gvsBawQPGQrAUWDKfTXDq5Fdjqb7fGUxkXmAdcyFuLdt4OPEZIE/uG117hpH/93wC8sb+DIhFMZSWRigpMRQV1+QiFWIxeW7M3uY5WVkAs9lbCHYthyrz3nt/Wjo1GWXrELEx5BZGyMi85Ly/HlJV72xWVmDKv7d6/7MBGYxTKyrn0tCOKrlfmPXgK3sOnfYzhtt97E0Re9a6Fgb5vG1U5jYiIiMh+WOAhN+FY4AdO1l01np0b66+suT/xVMYA83Pp5OtjEUA8lYkDT+At7vl6Lp2cVvRecy6dnH6g8+fPn2/vvPPOsQjtgHa+uZPqjRsgEqWuoQZbXoYtL/dfFdiyMiiL7ZNIN7Z5UzoeVFcRqI/G1q5hHR+mPsIY00j6CGNMQc8JY0wj6SOMMQU9J4wxjaSPMMYU9JwwxjSSPsIYU9BzwhjTSPpQTGPRRydgOHh6TaDjR9uKFSu6geeLmlZZa/dJ3N2Ec4iTdbe4CWcW8DBwnZN1nxivGAcdfs2lkzaeytwLnDDancdTmVrgZ8Bnc+lkSzwVrLrHGHM1cDVAeXk5y5cvH+3QBvWth18iWnMEFS1NfOKcJYHO+aH/IOlFxwQrYRnu8WHqI4wxjaSPMMYU9JwwxjSSPsIYU9BzwhjTSPoIY0xBzwljTCPpI4wxBT0njDGNpA/FNPp93PZolkKkjEuWT9gySr3W2gM+DOtk3S3+1+1uwrkXOAlvAHtcRAY/BIA/xlOZE0ez43gqU4aX1P8kl07+3G/eFk9l5vrvzwW2D3SutXaVtXaZtXZZTDOtiIiIiMgEcxNOjZtw6vq2gfOAF8YzhqBZ8Qrgk/FUJgfswau1t7l08tjhdOqX9/wIcHPp5D8XvXU/cDmQ9r/eN5zri4iIiIiMs9nAvW7CAS/H/k8n6/56PAMImthfMMr9ng58BHg+nsqs99tuxEvoV8dTmSuA14FLRrlfEREREZFR52TdDew7SeG4G2y6y0rgk8CReA8L/CiXTvaOtNNcOvl79p1hp9i7R3p9EREREZGpZrAa+9uBZXhJ/QXAN8c8IhERERERGbLBSnEW5dLJYwDiqcyPgKfGPiQRERERERmqwUbse/o2RqMER0RERERExsZgI/bvjKcyLf62Aar8/b5ZcerHNDoREREREQnkgIl9Lp2MjlcgIiIiIiIyfEEXqBIRERERkRBTYi8iIiIiUgKU2IuIiIiIlAAl9iIiIiIiJUCJvYiIiIhICVBiLyIiIiJSApTYi4iIiIiUACX2IiIiIiIlQIm9iIiIiEgJUGIvIiIiIlIClNiLiIiIiJQAJfYiIiIiIiVAib2IiIiISAlQYi8iIiIiUgKU2IuIiIiIlAAl9iIiIiIiJUCJvYiIiIhICVBiLyIiIiJSApTYi4iIiIiUACX2IiIiIiIlQIm9iIiIiEgJUGIvIiIiIlIClNiLiIiIiJQAJfYiIiIiIiVAib2IiIiISAlQYi8iIiIiUgKU2IuIiIiIlAAl9iIiIiIiJUCJvYiIiIhICVBiLyIiIiJSApTYi4iIiIiUACX2IiIiIiIlQIm9iIiIiEgJUGIvIiIiIlICYhMdgIiIiIhIKXATzvnALUAUuM3Juunx7F8j9iIiIiIiI+QmnCjwXeACYBFwmZtwFo1nDErsRURERERG7iTgFSfrbnCybjfwU+DC8QxApTijwFob9MBxOT5UfYQxphH0EcaYAp8TxphG0EcYYwp8ThhjGkEfYYwp8DlhjGkEfYQxpsDnhDGmEfShmMagj/CbB7xRtL8JOHk8AzCT/Yc5f/58e+edd457v9tbu6BQwOTzHFRbHuicxrZugDE/Pkx9hDGmkfQRxpiCnhPGmEbSRxhjCnpOGGMaSR9hjCnoOWGMaSR9hDGmoOeEMaaR9KGYxqYPG4kwa1p1oONH24oVK7qB54uaVllrV/XtuAnnEuA9Tta90t//CHCSk3WvG68YJ/2IfVNTE8uXLx/3fr/18Et7ty8596ghnTPWx4epjzDGNJI+whhT0HPCGNNI+ghjTEHPCWNMI+kjjDEFPSeMMY2kjzDGFPScMMY0kj4U09j1sXJ5sOPHQK+1dtkB3t8EzC/aPxTYMrYh7WvSJ/YiIiIiIiHwNLDQTTiHA5uBS4EPj2cAenhWRERERGSEnKzbC1wL/AZwgdVO1v3zeMagEXsRERERkVHgZN0HgAcmqn+N2IuIiIiIlAAl9iIiIiIiJUCJvYiIiIhICVBiLyIiIiJSApTYi4iIiIiUACX2IiIiIiIlIHTTXcZTmfOBW4AocFsunUxPcEgiIiIiIqEXqhH7eCoTBb4LXAAsAi6LpzKLJjYqEREREZHwC1ViD5wEvJJLJzfk0slu4KfAhRMck4iIiIhI6IUtsZ8HvFG0v8lvExERERGRAzDW2omOYa94KnMJ8J5cOnmlv/8R4KRcOnld8XHGmKuBq/3d44GOcQ1UxkMM6J3oIGTc6H5PLbrfU4fu9dRS6ve7ylobtkHxfYTt4dlNwPyi/UOBLf0PstauAlaNV1Ay/owxa6y1yyY6Dhkfut9Ti+731KF7PbXofk+8sCX2TwML46nM4cBm4FLgwxMbkoiIiIhI+IXqzwm5dLIXuBb4DeACq3Pp5J8nNioRERERkfAL24g9uXTyAeCBxtFBgAAABZNJREFUiY5DJpxKraYW3e+pRfd76tC9nlp0vydYqB6eFRERERGR4QlVKY6IiIiIiAyPEnsZF8aYHxtjthtjXujXfp0x5kVjzJ+NMf9U1H6DMeYV/733FLWfYIx53n/vO8YYM57fhwQzlPttjIkbYzqMMev91/eLjtf9ngQGut/GmLuL7mnOGLO+6D19viexodxvfb4nt/3c66XGmD/693ONMeakovf02Z5o1lq99BrzF3AW3poDLxS1rQB+C1T4+7P8r4uAZ4EK4HDgVSDqv/cUcCpggAeBCyb6e9NrxPc7Xnxcv+vofk+C10D3u9/73wT+0d/W53uSv4Z4v/X5nsSv/fxb/lDfvQL+CnjM39ZnOwQvjdjLuLDWPgE09Wv+FJC21nb5x2z32y8Efmqt7bLWbgReAU4yxswF6q21/229fynuAC4an+9AhmKI93tAut+Tx37uNwD+yNxK4C6/SZ/vSW6I93tAut+Tw37utQXq/e0G3lpvSJ/tEFBiLxPpKOBMY8yfjDGPG2NO9NvnAW8UHbfJb5vnb/dvl8lhf/cb4HBjzDN++5l+m+53aTgT2Gatfdnf1+e7tPW/36DPd6n5LHCzMeYN4BvADX67PtshELrpLmVKiQHTgVOAE4HVxpgFeH+q688eoF0mh/3d763AYdbancaYE4BfGGMWo/tdKi5j39Fbfb5LW//7rc936fkU8Dlr7c+MMSuBHwHnoM92KCixl4m0Cfi5/6e5p4wxBeAgv31+0XGH4v2pb5O/3b9dJocB77e1dgfQV56z1hjzKt7ovu73JGeMiQEfBE4oatbnu0QNdL/90jt9vkvL5cBn/O17gNv8bX22Q0ClODKRfgGcDWCMOQooBxqB+4FLjTEVxpjDgYXAU9barUCrMeYUv47zo8B9ExO6DMOA99sYc7AxJuq3L8C73xt0v0vCOUDWWlv8Z3h9vkvX2+63Pt8laQvwLn/7bKCv7Eqf7RDQiL2MC2PMXcBy4CBjzCbgS8CPgR/702h1A5f7o7l/NsasBv4C9AKfttbm/Ut9Cvh3oArvyfoHx/P7kGCGcr+NMWcBXzXG9AJ54JPW2r6HtXS/J4GB7re19kfApfR7iNJaq8/3JDeU+403q4o+35PUfv4tvwq4xf8LTSdwNeizHRZaeVZEREREpASoFEdEREREpAQosRcRERERKQFK7EVERERESoASexERERGREqDEXkRE9jLGXGOMmT7RcYiIyNApsRcRmcSMMR8wxlhjTGIUrvWPQJO1tnkUQhMRkXGm6S5FRCYxf97oucAj1tovT3A4IiIygTRiLyIySRljaoHTgSvwFgfCGLPcGPOYMeb/GWOyxpif+Ks9YozJGWO+YoxZZ4x5vm+U3xhTY4z5sTHmaWPMM8aYC/32qDHmZr/9OWPMNRP0rYqISABK7EVEJq+LgF9ba18Cmowxx/vtxwGfBRYBC/CS/z6N1trjgVuBz/ttXwR+Z609EVgB3GyMqcH7H4bdfvuJwFX+UvEiIhJCSuxFRCavy4Cf+ts/9fcBnrLWbrLWFoD1QLzonJ/7X9cWtZ8HpIwx64HHgErgML/9o377n4CZwMKx+EZERGTkYhMdgIiIDJ0xZiZwNrDEGGOBKGCBB4CuokPz7PtvfdcA7Qb4kLX2xX59GOA6a+1vRv87EBGR0aYRexGRyeli4A5r7TustXFr7XxgI3DGMK71G+C6olr844raP2WMKfPbj/JLdEREJISU2IuITE6XAff2a/sZ8OFhXOtrQBnwnDHmBX8f4DbgL8A6v/0H6C+9IiKhpekuRURERERKgEbsRURERERKgBJ7EREREZESoMReRERERKQEKLEXERERESkBSuxFREREREqAEnsRERERkRKgxF5EREREpAQosRcRERERKQH/H8GaxaxKVYNpAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax1 = plt.subplots(figsize=(12, 6))\n",
+ "\n",
+ "color = 'tab:blue'\n",
+ "ax1.set_xlabel('Année')\n",
+ "ax1.set_ylabel('Prix du blé (shillings par quart de boisseau)', color=color)\n",
+ "ax1.bar(data['Year'], data['Wheat'], color=color, alpha=0.5, label='Prix du blé', width=1.0)\n",
+ "ax1.tick_params(axis='y', labelcolor=color)\n",
+ "\n",
+ "ax2 = ax1.twinx()\n",
+ "color = 'tab:red'\n",
+ "ax2.set_ylabel('Salaire (shillings par semaine)', color=color)\n",
+ "ax2.plot(data['Year'], data['Wages'], color=color, label='Salaire')\n",
+ "ax2.fill_between(data['Year'], data['Wages'], color=color, alpha=0.1)\n",
+ "ax2.tick_params(axis='y', labelcolor=color)\n",
+ "\n",
+ "plt.title(\"Évolution du prix du blé et du salaire moyen (1565-1810)\")\n",
+ "fig.legend(loc=\"upper left\", bbox_to_anchor=(0.09, 0.82))\n",
+ "plt.grid(True)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous voulons maintenant montrer que le pouvoir d'achat des ouvriers a augmenté dans le temps.\n",
+ "\n",
+ "Pour cela, nous allons ajouter une nouvelle colonne à notre tableau, qui va être le pouvoir d'achat des ouvriers anglais. Ce pouvoir d'achat est calculé comme la quantité de blé qu'un ouvrier peut s'acheter avec son salaire hebdomadaire."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Year \n",
+ " Wheat \n",
+ " Wages \n",
+ " PouvoirAchat \n",
+ " \n",
+ " \n",
+ " rownames \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1565 \n",
+ " 41.0 \n",
+ " 5.00 \n",
+ " 0.121951 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1570 \n",
+ " 45.0 \n",
+ " 5.05 \n",
+ " 0.112222 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1575 \n",
+ " 42.0 \n",
+ " 5.08 \n",
+ " 0.120952 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1580 \n",
+ " 49.0 \n",
+ " 5.12 \n",
+ " 0.104490 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 1585 \n",
+ " 41.5 \n",
+ " 5.15 \n",
+ " 0.124096 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1590 \n",
+ " 47.0 \n",
+ " 5.25 \n",
+ " 0.111702 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 1595 \n",
+ " 64.0 \n",
+ " 5.54 \n",
+ " 0.086563 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 1600 \n",
+ " 27.0 \n",
+ " 5.61 \n",
+ " 0.207778 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 1605 \n",
+ " 33.0 \n",
+ " 5.69 \n",
+ " 0.172424 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1610 \n",
+ " 32.0 \n",
+ " 5.78 \n",
+ " 0.180625 \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 1615 \n",
+ " 33.0 \n",
+ " 5.94 \n",
+ " 0.180000 \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 1620 \n",
+ " 35.0 \n",
+ " 6.01 \n",
+ " 0.171714 \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 1625 \n",
+ " 33.0 \n",
+ " 6.12 \n",
+ " 0.185455 \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 1630 \n",
+ " 45.0 \n",
+ " 6.22 \n",
+ " 0.138222 \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 1635 \n",
+ " 33.0 \n",
+ " 6.30 \n",
+ " 0.190909 \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 1640 \n",
+ " 39.0 \n",
+ " 6.37 \n",
+ " 0.163333 \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 1645 \n",
+ " 53.0 \n",
+ " 6.45 \n",
+ " 0.121698 \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 1650 \n",
+ " 42.0 \n",
+ " 6.50 \n",
+ " 0.154762 \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 1655 \n",
+ " 40.5 \n",
+ " 6.60 \n",
+ " 0.162963 \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 1660 \n",
+ " 46.5 \n",
+ " 6.75 \n",
+ " 0.145161 \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 1665 \n",
+ " 32.0 \n",
+ " 6.80 \n",
+ " 0.212500 \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 1670 \n",
+ " 37.0 \n",
+ " 6.90 \n",
+ " 0.186486 \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 1675 \n",
+ " 43.0 \n",
+ " 7.00 \n",
+ " 0.162791 \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 1680 \n",
+ " 35.0 \n",
+ " 7.30 \n",
+ " 0.208571 \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 1685 \n",
+ " 27.0 \n",
+ " 7.60 \n",
+ " 0.281481 \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 1690 \n",
+ " 40.0 \n",
+ " 8.00 \n",
+ " 0.200000 \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 1695 \n",
+ " 50.0 \n",
+ " 8.50 \n",
+ " 0.170000 \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 1700 \n",
+ " 30.0 \n",
+ " 9.00 \n",
+ " 0.300000 \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 1705 \n",
+ " 32.0 \n",
+ " 10.00 \n",
+ " 0.312500 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1710 \n",
+ " 44.0 \n",
+ " 11.00 \n",
+ " 0.250000 \n",
+ " \n",
+ " \n",
+ " 31 \n",
+ " 1715 \n",
+ " 33.0 \n",
+ " 11.75 \n",
+ " 0.356061 \n",
+ " \n",
+ " \n",
+ " 32 \n",
+ " 1720 \n",
+ " 29.0 \n",
+ " 12.50 \n",
+ " 0.431034 \n",
+ " \n",
+ " \n",
+ " 33 \n",
+ " 1725 \n",
+ " 39.0 \n",
+ " 13.00 \n",
+ " 0.333333 \n",
+ " \n",
+ " \n",
+ " 34 \n",
+ " 1730 \n",
+ " 26.0 \n",
+ " 13.30 \n",
+ " 0.511538 \n",
+ " \n",
+ " \n",
+ " 35 \n",
+ " 1735 \n",
+ " 32.0 \n",
+ " 13.60 \n",
+ " 0.425000 \n",
+ " \n",
+ " \n",
+ " 36 \n",
+ " 1740 \n",
+ " 27.0 \n",
+ " 14.00 \n",
+ " 0.518519 \n",
+ " \n",
+ " \n",
+ " 37 \n",
+ " 1745 \n",
+ " 27.5 \n",
+ " 14.50 \n",
+ " 0.527273 \n",
+ " \n",
+ " \n",
+ " 38 \n",
+ " 1750 \n",
+ " 31.0 \n",
+ " 15.00 \n",
+ " 0.483871 \n",
+ " \n",
+ " \n",
+ " 39 \n",
+ " 1755 \n",
+ " 35.5 \n",
+ " 15.70 \n",
+ " 0.442254 \n",
+ " \n",
+ " \n",
+ " 40 \n",
+ " 1760 \n",
+ " 31.0 \n",
+ " 16.50 \n",
+ " 0.532258 \n",
+ " \n",
+ " \n",
+ " 41 \n",
+ " 1765 \n",
+ " 43.0 \n",
+ " 17.60 \n",
+ " 0.409302 \n",
+ " \n",
+ " \n",
+ " 42 \n",
+ " 1770 \n",
+ " 47.0 \n",
+ " 18.50 \n",
+ " 0.393617 \n",
+ " \n",
+ " \n",
+ " 43 \n",
+ " 1775 \n",
+ " 44.0 \n",
+ " 19.50 \n",
+ " 0.443182 \n",
+ " \n",
+ " \n",
+ " 44 \n",
+ " 1780 \n",
+ " 46.0 \n",
+ " 21.00 \n",
+ " 0.456522 \n",
+ " \n",
+ " \n",
+ " 45 \n",
+ " 1785 \n",
+ " 42.0 \n",
+ " 23.00 \n",
+ " 0.547619 \n",
+ " \n",
+ " \n",
+ " 46 \n",
+ " 1790 \n",
+ " 47.5 \n",
+ " 25.50 \n",
+ " 0.536842 \n",
+ " \n",
+ " \n",
+ " 47 \n",
+ " 1795 \n",
+ " 76.0 \n",
+ " 27.50 \n",
+ " 0.361842 \n",
+ " \n",
+ " \n",
+ " 48 \n",
+ " 1800 \n",
+ " 79.0 \n",
+ " 28.50 \n",
+ " 0.360759 \n",
+ " \n",
+ " \n",
+ " 49 \n",
+ " 1805 \n",
+ " 81.0 \n",
+ " 29.50 \n",
+ " 0.364198 \n",
+ " \n",
+ " \n",
+ " 50 \n",
+ " 1810 \n",
+ " 99.0 \n",
+ " 30.00 \n",
+ " 0.303030 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Year Wheat Wages PouvoirAchat\n",
+ "rownames \n",
+ "1 1565 41.0 5.00 0.121951\n",
+ "2 1570 45.0 5.05 0.112222\n",
+ "3 1575 42.0 5.08 0.120952\n",
+ "4 1580 49.0 5.12 0.104490\n",
+ "5 1585 41.5 5.15 0.124096\n",
+ "6 1590 47.0 5.25 0.111702\n",
+ "7 1595 64.0 5.54 0.086563\n",
+ "8 1600 27.0 5.61 0.207778\n",
+ "9 1605 33.0 5.69 0.172424\n",
+ "10 1610 32.0 5.78 0.180625\n",
+ "11 1615 33.0 5.94 0.180000\n",
+ "12 1620 35.0 6.01 0.171714\n",
+ "13 1625 33.0 6.12 0.185455\n",
+ "14 1630 45.0 6.22 0.138222\n",
+ "15 1635 33.0 6.30 0.190909\n",
+ "16 1640 39.0 6.37 0.163333\n",
+ "17 1645 53.0 6.45 0.121698\n",
+ "18 1650 42.0 6.50 0.154762\n",
+ "19 1655 40.5 6.60 0.162963\n",
+ "20 1660 46.5 6.75 0.145161\n",
+ "21 1665 32.0 6.80 0.212500\n",
+ "22 1670 37.0 6.90 0.186486\n",
+ "23 1675 43.0 7.00 0.162791\n",
+ "24 1680 35.0 7.30 0.208571\n",
+ "25 1685 27.0 7.60 0.281481\n",
+ "26 1690 40.0 8.00 0.200000\n",
+ "27 1695 50.0 8.50 0.170000\n",
+ "28 1700 30.0 9.00 0.300000\n",
+ "29 1705 32.0 10.00 0.312500\n",
+ "30 1710 44.0 11.00 0.250000\n",
+ "31 1715 33.0 11.75 0.356061\n",
+ "32 1720 29.0 12.50 0.431034\n",
+ "33 1725 39.0 13.00 0.333333\n",
+ "34 1730 26.0 13.30 0.511538\n",
+ "35 1735 32.0 13.60 0.425000\n",
+ "36 1740 27.0 14.00 0.518519\n",
+ "37 1745 27.5 14.50 0.527273\n",
+ "38 1750 31.0 15.00 0.483871\n",
+ "39 1755 35.5 15.70 0.442254\n",
+ "40 1760 31.0 16.50 0.532258\n",
+ "41 1765 43.0 17.60 0.409302\n",
+ "42 1770 47.0 18.50 0.393617\n",
+ "43 1775 44.0 19.50 0.443182\n",
+ "44 1780 46.0 21.00 0.456522\n",
+ "45 1785 42.0 23.00 0.547619\n",
+ "46 1790 47.5 25.50 0.536842\n",
+ "47 1795 76.0 27.50 0.361842\n",
+ "48 1800 79.0 28.50 0.360759\n",
+ "49 1805 81.0 29.50 0.364198\n",
+ "50 1810 99.0 30.00 0.303030"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['PouvoirAchat'] = data['Wages'] / data['Wheat']\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On peut maintenant regarder quelle est cette évolution dans le temps, sous une forme linéaire."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAGFCAYAAAAy1Q8BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VNX5+PHPkx1CEpYQyCYgoAEhCSEsQUSw1dai1g1wqUopWv3WvXVpa9Vq+231Z8W616XSr6Libl2oVmMERELCvm8SIAkJJCxJCCHb+f1xZ+IkTJJJZkuG5/16zSuZufee+8zcCTxz5jnniDEGpZRSSimlVOcF+TsApZRSSimlujtNqpVSSimllHKTJtVKKaWUUkq5SZNqpZRSSiml3KRJtVJKKaWUUm7SpFoppZRSSik3aVKtlA+ISISI3CUi4f6ORSmllFKep0m1Ur7xFLDXGHPc34EopZRSyvM0qVbKB4wx1xtj3vRUeyJiRGRYJ489S0S2eiqWds5VICI/9MW5vE1EThGRKhEJdqON+SLyJw/H1en3Qnc4n6fZruGpPjrXGyJysS/O1R2ISLiIbBGROH/HopQ3aFKtlBfZkspjtv/I7benfRxDsyTIGLPEGHO6L2MIBMaYPcaYXsaYBk+0JyJTRSTHE225EUPAfOhxle0afuft84hIKpAGfGi7Hy8i/xaRYtvf5OAW+88XkdoW/1YEO2wPFpE/2Y6vFJHVItLbtm22iDS0OHZqG7GNEpHPRKRMRE5YVllEBovIpyJySERKRORpEQmxbQsTkXds7x3T8jxieUREym23R0VEAGzf1P0TuKczr6lSXZ0m1Up534W2/8jtt5v9HZDyLFsiof+edmH2pNCHx/8SWGCMsSetjcB/gMvaOObRFv9WOH6A+yMwCcgCooFrgBqH7d+2ODanjfPUAW8Bv2hl+7PAfiAeSAfOBv7HYftS4GdAiZNjbwAuxvpAkQpcgPVa2L0OXKfjS1Qg0v8ElPID29egh0VklMNj/W292nG2+9eLyA4ROWjr4Upopa0cEZnrcH+2iCy1/b7Y9vBaW+/VLFsPaaHD/iNsbRwWkY0icpHDtvki8oyIfGLrHcsVkaFtPK9rRGS3rYfq9y22NSt9aBmHk7aMiNwqIt/ZetT+nz1xFZEgEbnPdq79IvJ/IhLTWrv2HlkRSbC9xn0dto2xtR/aTruDbTHZe+xyROTPIvINUA2cUFJga3uV7bVbCES08Xz/LiJ7RaRCRFaKyFkO24JF5HcistPW1koRSXY4/Icist3Ws/iMvWdQRIaKSLbtepSJyAL5vnfzVeAU4CPbe+PuVuK6S0T2idVDOqfFtnAReUxE9ohIqYg8LyI9bNtiReRj2/vqoIgsae2Dh4hMEpE8ETli+zmp5bVzuP+giLxm+/0/InJzi7bWisiltt+NiPxKRLYD2x0eG+ZC/FNFpFBE7hGREuCVjjwn4Hzga/sdY0ypMeZZIK+V/VslIn2A24HrjTG7jWWDMaamvWOdMcZsNca8DGxsZZchwFvGmBpjTAnWh4EzbMfWGmOeMMYsBZx9a3Md8DdjTKExpgj4GzDb4dyFwCFgYmdiV6or06RaKT+wfQ36HnClw8Mzga+NMftF5BzgL7bH4oHdQIdrso0xU2y/ptl6rxY6bheRUOAj4HMgDrgFWCAijuUhV2L1kvUBdgB/dnYuERkJPIfVg5YA9AOSOhpzC5cAmUAG8FPAntTNtt2mYSWzvYB2y2qMMcXAtzTvLbwKeMcYU9eJdq/B6pmLwrpGTUQkDPgAeBXoC7zteF5jTI4xZqrDIXlYvYJ9sXrz3hYRexJ+J9Z1+AlWL+UcrETe7gJgHFbv4EzgR/YwsN5HCcAIIBl40Hb+a4A9fP9NyqMtn5yI/Bj4DXAuMBxoWSryCHCaLe5hQCJwv23br4FCoD8wAPgd4KzUoC/wCfAk1nvmceATEenXcl8nXsfhb8j2Hhxka8/uYmACMNLJ8W3FDzAQ63oMwrrOrj6nSKzEtKNjF/7HlqyvFBHH9+hooB64XKxyjG0i8qsWx9o/HG4TkT+Iez3zfweuEJGeIpKI9QHhPy4eewaw1uH+WttjjjZjvVeVCiiaVCvlfR/Yerbst+ttjzdLCLCSu9dtv18N/NMYs8qWgP8WyJIWdZgeMBErcfyrrQcqG/i4RVzvGWNWGGPqgQVYCYgzlwMfG2MW22L+A9ZX3u54xBhz0BizB3jCIa6rgceNMd8ZY6qwXp8rXEwkml53W4/uFTR/3TvS7nxjzEZjTL0tKXc0EQgFnjDG1Blj3qGNXkpjzGvGmHJbW38DwgH7h5u5wH22HkZjjFlrjCl3OPyvxpjDttfpK2zXyBizwxjzX2PMcWPMAayE9WwXXiO7mcArtl7Ro9gScmh67a4H7rBdo0rgf7FeT7BKDOKBQbbnv8ShFMLRdGC7MeZV23N/A9gCXOhCfO8D6SIyyHb/aqz3q+MsO3+xxXfM8UAX4gfr/fuA7fU71oHn1Nv2s9KF52D3JNYHlzisv535InKmbVsSEIP1AWAI1t/agyJyrm37YmCU7djLsN7fd3Xg3C19jZUIV2B9iMjH+oDoil7AEYf7R4Be9m9PbCr5/jVSKmBoUq2U911sjOntcHvR9ng20ENEJtiSgnSsJAGsnsWmnk9bgleO1ZPmSQlYU/05Jr+7W5zHsW6yGus/zVbbst+xJWHlrezrqr0Ov++2ncN+rt0ttoVg9R625x2sDygJwBSsnsYlnWx3byuP29sqapF07W5tZxH5tYhstpVAHMZKomJtm5OBnW2cy+k1EpE4EXlTRIpEpAJ4zaFNVzS7pi3i7w/0BFbaPzBi9Wb2t23/f1jfbHwuVgnPvW2co+Xr0vI96JQtEf6E7xPhK7A++Dlq7Rq1Fz/AgRYlFq4+p8O2n1HtPQc72wdo+4eqT23P41LbZvsHgoeMMceMMeuwvrn6ie3Y74wxu4wxjcaY9cBDWIk3InK1fD94cVF7cdjKWT7D+iYtEuv90gerV98VVVjfpthFA1Ut/g6i+P41UipgaFKtlJ/YEtm3sHqVrsLq5bX3bBVjfeUMNH2d3A8octLUUazkwG5gB8IoBpJb1IWe0sp52rMPK/kDQER6YsXsTpyOdcOnYMULLV4f27Z6oLTlecSaQaEpUTLGHMYqd5mJ9bq/4fAfflvtOuOsl9JuH5DYoofuFGc7ilU/fY8tpj7GmN5YPXz2Y/cCrdayt+EvthhTjTHRWIPLHONpK35ocU1pHn8ZVrJ3hsMHxhhjTC+wEl5jzK+NMadi9TrfKSI/cHKOlq+5/Tz292B775s3gCtFJAvogdVT76i159hm/M6OdfU52T5Q7sTqWe4sw/fXal07z6XVY40xC8z3gxfPd+HYvljX/GlbD3058Aq2BN4FG2le2pHGibXbI2heIqJUQNCkWin/eh2YhfW19estHv+5iKSLNUr+f4FcY0yBkzbWAJfa6h+HceKI/lKcDKKzycVKWu4Wa6DeVKxkoTNzar8DXCAik231xA/R/N+YNcBPRKSviAzEGnjVnrtEpI9Yg/JuA+w14W8Ad4jIEBHphfX6LLSVqGwDIkRkuq1m/D6sUgpHrwPXYn1V7vi6t9VuR32LlZDfKiIhtsFz41vZN8q27wEgRETup3lv30vAwyIyXCypLtYcR2H1HB621ca2LAlo670B1oe+2SIy0vYh6QH7BtuHwheBefL94NpEEfmR7fcLRGSY7UNFBdagNmcD2z4FThORq2yv0yys+uePbdvXYJXghIpIJrYe2BbHD8J6vy1s8a1Lq9qL35kOPCd7XM1KbWw18vb3YrhDzTwicrmI9BJrsOx5WB+A/m2LdSfWtym/F2tw5Qisfzc+th17vogMsP2eglU+8mEbz0Ns5w6zx2X7dwZjTBmwC7jJdj16Yw0+XOtwvGPsYbbj7R8A/g/rw0ai7dugXwPzHY5NxErcl7cWn1LdlSbVSnmffXYF+81e4oExxp7UJgCLHB7/Eus/xnexeguH0rzW09E8oBYrQfoXJ379/SDwL9tX3DMdNxhjaoGLsAYilWFNpXWtMWZLR5+kMWYj8CusJHUf1gh/x1k4XsX6j7kAq6d4Ie37EFiJlVh9Arxse/yftvYWYyUANViDLDHGHMGa/uslrN7Ooy3iACtZGQ6UGmMce8xabbejbK/tpVgDHw9hJUHvtbL7Z1jXfxtW6UMNzcsWHsdKcD/HSuZexuqVbc8fsQZ5HsF6/Vqe/y/Afbb3xm+cPIdFWLXs2VhlD9ktdrnH9vhyW3nJF3xfBz7cdr8K6wPGs8bJNG+2ntALsJKvcuBu4AJbcgfW38FQrNfwjzT/EOQ46PeHLbe5oK34nXHpOdm8AFzd4puKY7Zjwaobd6zzvg3r/XoYq8zk+hZtX4n14aEc61r+wfbvBMAPgHUichQrmX8P6wNhawbZzm3vQT5G80GVlwI/xvqQtwPrA98dDtu32o5JxHrvHuP7bxv+gTX4eT2wwRbrPxyOvQr4l9HVZVUAEudjLJRSyr/EWpRiuDFmh79jUaozROR1rKnpXB3kF9BsveFrgSnGmP3+jkcpT9OkWinVJWlSrZRSqjvR8g+llFJKKaXcpD3VSimllFJKuUl7qpVSSimllHKTJtVKKaWUUkq5yZUlfbuc2NhYM3jwYH+HoTzo6NGjREZG+jsM5SN6vU8+es1PLnq9Ty6BfL1XrlxZZozp3/6e3TSpHjx4MPn5+f4OQ3lQTk4OU6dO9XcYykf0ep989JqfXPR6n1wC+XqLyG5X99XyD6WUUkoppdykSbVSSimllFJu0qRaKaWUUkopN3XLmmpn6urqKCwspKamxt+hqE6IiYlh8+bN/g4jIEVERJCUlERoaKi/Q1FKKaUCVsAk1YWFhURFRTF48GBExN/hqA6qrKwkKirK32EEHGMM5eXlFBYWMmTIEH+Ho5RSSgWsgCn/qKmpoV+/fppQK+VAROjXr59+g6OUUkp5WcAk1YAm1Mon6uvrefrppzl+/Hi3iEP/LpRSSinvC6ik2t+Cg4NJT09n1KhRzJgxg+rqap+cd+7cuWzatKlDxxQUFDBq1CjAml9y9uzZnTr34MGDKSsrc3n/NWvW8Omnn7a6ffXq1cydO7dTsXRGQUEBr7/+etP9/Px8br31VsB6XZYtW9Zsf2MMt99+O6mpqYSHh7fb/tSpUzs0p3pr+8+fP5+bb765zTg+/vhjHnjgAZfPpZRSSinP0aTag3r06MGaNWvYsGEDYWFhPP/88z4570svvcTIkSNPeLyhocEn5++I9pLq//3f/+WWW27xWTwtk+rMzEyefPJJwHlSLSI8/fTTTJkyxWcxOuMsjunTp/Pvf//bZx/mlFJKKfU9Taq95KyzzmLHjh0APP7444waNYpRo0bxxBNPAM17igEee+wxHnzwQTZv3sz48eObHi8oKCA1NRWAL7/8kjFjxjB69GjmzJnT9LW/Y+9mr169uP/++5kwYQLffvtts5hWrlxJWloaWVlZPPPMM02Ph4WFERMTA8CKFSuYNGkSY8aMYdKkSWzduhWwEvTf/OY3jB49mtTUVJ566qmm45966ikyMjIYPXo0W7ZsabWd2tpa7r//fhYuXEh6ejoLFy5sFl9lZSXr1q0jLS0NgPLycs477zzGjBnDL3/5SwYNGkRZWVmrrx3Aiy++yLhx40hLS+Oyyy5rSjBnz57NrbfeyqRJkzj11FN55513ALj33ntZsmQJ6enpzJs3j5ycHC644AIKCgp4/vnnmTdvHunp6SxZsoQDBw5w2WWXMW7cOMaNG8c333xzwnU/duwYV1xxBampqcyaNYtjx441bfv888/JysoiIyODGTNmUFVVdcLxAK+99hqTJk1i1KhRrFix4oTtrcUhIkydOpWPP/7YabtKKaWU8h5Nqr2gvr6eRYsWMXr0aFauXMkrr7xCbm4uy5cv58UXX2T16tWtHjtixAhqa2v57rvvAFi4cCEzZ86kpqaG2bNns3DhQtavX099fT3PPffcCccfPXqUUaNGkZuby+TJk5tt+/nPf86TTz55QrI9adIk/v73vwOQkpLC4sWLWb16NQ899BC/+93vAHjhhRfYtWsXq1evZt26dVx99dVNx8fGxrJq1SpuuukmHnvssVbbCQsL46GHHmLWrFmsWbOGWbNmNYsjPz+/WbL8xz/+kcmTJ7N69Wouuugi9uzZ0+5rf+mll5KXl8fatWsZMWIEL7/8ctO2ffv2sXTpUj7++GPuvfdeAP76179y1llnsWbNGu64446mfQcPHsyNN97IHXfcwZo1azjrrLO47bbbuOOOO8jLy+Pdd991Wqby3HPP0bNnT9atW8fvf/97Vq5cCUBZWRl/+tOf+OKLL1i1ahWZmZk8/vjjTp/D0aNHWbZsGc8++yxz5sw5YXtbcWRmZrJkyZJ2XyellFJKeVbATKnn6Pb/3M6akjUebTN9YDpP/PiJNvc5duwY6enpgNVT/Ytf/ILnnnuOSy65hMjISMBK+pYsWcJFF13UajszZ87krbfe4t5772XhwoUsXLiQrVu3MmTIEE477TQArrvuOp555hluv/32ZscGBwdz2WWXndDmkSNHOHz4MGeffTYA11xzDYsWLXK633XXXcf27dsREerq6gD44osvuPHGGwkJsd4yffv2bTrm0ksvBWDs2LG89957bbbTln379tG/f/+m+4sXL25qb/r06fTp06fdNjZs2MB9993H4cOHqaqq4kc/+lHTtosvvpigoCBGjhxJaWlpu2219MUXXzSrXa+oqDhhKsDFixc31WSnpqY2fcuwfPlyNm3axJlnnglAbW0tWVlZTs9z5ZVXAjBlyhQqKio4fPiwy3HExcVRXFzc4eemlFKq69txcAdxkXFEh0f7OxTlREAm1f5ir6l2ZIxxum9ISAiNjY1N9x2nPJs1axYzZszg0ksvRUQYPnz4Ce22JiIiguDg4BMeN8a4NAvEH/7wB6ZNm8b7779PQUEBU6dObfd4+0C54OBg6uvr22ynLT169Dhh6jdn52zrtZs9ezYffPABaWlpzJ8/n5ycnBPitD+fjmpsbOTbb7+lR48ebe7nLGZjDOeeey5vvPFGu+dpeXzL+23FUVNT0258Simlup+jtUdJez6NnqE9efDsB7lh7A2EBuuiXl1JQCbV7fUo+9KUKVOYPXs29957L8YY3n//fV599VUGDBjA/v37KS8vp1evXnz88cf8+Mc/BmDo0KEEBwfz8MMPN5VIpKSkUFBQwI4dOxg2bBivvvpqU6+zK3r37k1MTAxLly5l8uTJLFiwwOl+R44cITExEbBmnLA777zzeP7555k6dSohISEcPHiwWW+1q+1ERUVRWVnp9JgRI0bwt7/9ren+lClTWLBgAffddx+LFi3i0KFDAG2+dpWVlcTHx1NXV8eCBQuaYmhNW/FERUVRUVHR7DV4+umnueuuuwBr0KX9m4mWMU+bNo0NGzawbt06ACZOnMivfvWrputXXV1NYWFh0zcPjhYuXMi0adNYunQpMTExTfXursSxbdu2ZiU0SimlAsOqfauorqsmISqBmxfdzFMrnuLRcx/lwtMu1KlTuwitqfayjIwMZs+ezfjx45kwYQJz585lzJgxhIaGNg0ovOCCC0hJSWl23KxZs3jttdeYOXMmYPVAv/LKK8yYMYPRo0cTFBTEjTfe2KFYXnnlFX71q1+RlZXVam/m3XffzW9/+1vOPPPMZrOHzJ07l1NOOYXU1FTS0tKazZjRkXamTZvGpk2bnA5UTElJ4ciRI01J7gMPPMDixYvJyMjg888/55RTTgFo87V7+OGHmTBhAueee+4Jr6kzqamphISEkJaWxrx585ptu/DCC3n//febBio++eST5Ofnk5qaysiRI53O7nLTTTdRVVVFamoqjz76aNOg0/79+zN//nyuvPJKUlNTmThxYtOgzpb69OnDpEmTuPHGG5vVhNu1FcdXX33F9OnT233eSimlupfcolwAvpnzDR9e8SEGw0/f/Cnn/N85rNq3ys/RKQDpzNfg/paZmWlazuW7efNmRowY4aeIlLvsNcHz5s0jKirK6SDAwYMHk5+fT2xsrB8i7PpKS0u56qqr+PLLL0/Y1tX+PnJyclwqCVKBQ6/5yUWvt+fNfHsm+cX5fHebNZFBXUMd/1j5Dx7MeZCDxw5yTdo1/PmcP5MUneTz2AL5eovISmNMpiv7ak+16lJuuukmlxZVUSfas2dPs/IZpZRSgWNF0QrGJ34/5W5ocCg3j7+Znbfu5K5Jd/Hmhjc57anT+EP2H6g87rysUXmXJtWqS4mIiOCaa65xuq2goEB7qdswbty4E2q8lVJKdX+lVaXsPrK7WVJtFxMRwyPnPsLWm7fy05Sf8qclf2L4U8N5ceWL1DfW+yHak5cm1UoppZRSXdiKImshMGdJtd3g3oN547I3WP6L5QzrO4wbPr6BMf8Yw+Ldi30V5kkvoJLq7lgfrpS36d+FUkp1byuKVhAswWTEZ7S774SkCSz5+RLemfEOlccrufyty30QoYIASqojIiIoLy/XBEIpB8YYysvLiYiI8HcoSimlOmlF8QpGDxhNz9CeLu0vIlw28jJuyryJA9UHtMbaRwJmnuqkpCQKCws5cOCAv0NRnVBTU6OJn5dERESQlOT70eBKKeUt/935XyafMpkeoYG/2FWjaWRF0QpmjpzZ4WOTY5IBKKosIiW8/WlmlXsCJqkODQ1lyJAh/g5DdVJOTg5jxozxdxhKKaW6uE0HNnHea+fx3PTnuDGzY+s1dEc7Du7gcM1hJiRN6PCx9un19h7ZS0qsJtXeFjDlH0oppZQKfN/u/RaAjfs3+jkS33BlkGJr7El1YUWhR2NSzmlSrZRSSimn6hvrKa4s9ncYzdhXFtxS7nxV2kCTW5hLZGgkI2I7voBXYlQioEm1r2hSrZRSSqlmqmqreDL3SYY/NZxBTwzqUr3CTUl12cmRVK8oXkFmQibBQcEdPjY8JJy4yDhNqn1Ek2qllFJKAbCvch+/+/J3JM9L5rb/3EZCVAKhQaE8sfwJf4cGWMn+hv0biAqLorCiMOBntThef5w1JWuYkNjxemq7pOgk9lbs9WBUqjWaVCullFInuY37NzLnwzkMemIQf136V34w5Acsm7OMb+Z8w3Vp1/HqulfZf3S/v8NkZfFKGk0jM8+wZsLYWr7VzxF517rSddQ21HaqntouKTpJe6p9RJNqpZRS6iRkjCF7VzY/WfATRj03ijc3vMkNY29g+y3beWfmO2QlZwFw+8TbOd5wnOfynvNzxN+Xflybdi0Q+CUg9ufrVlIdpUm1rwTMlHpKKaWUal9dQx1vb3qbx5Y9xuqS1cRFxvHwtIe5KfMm+vXsd8L+p8eezgWnXcAzec9wz+R7iAjx35oCuUW5nNrnVCYmTSRYggM+qV5RtIKBvQY2zeLRGckxyRyqOcTR2qNEhkV6MDrVkvZUK6WUUieJ9za/x9Anh3L1e1dzrP4YL174Irtv3819U+5zmlDb3TnxTg5UH2DBugU+jPZEuYW5TEicQFhwGEP7Dj0pkuoJiRMQkU63odPq+Y4m1UoppdRJ4pZFtxAZFslHV37Exv/ZyNyMuS71PE8dPJX0gek8vvxxjDE+iPRERRVFFFUWNQ3aGxE7gs1lm/0Siy8cOnaIreVb3Sr9AE2qfUmTaqWUUuokUFxZTHFlMTeOvZELTruAIHE9BRAR7px4J5sObOLznZ97McrWtVwEJSU2he3l26lvrPdLPN6WX5wPuFdPDZpU+5Im1UoppdRJIK8oD4BxieM6dfysUbOI7xXP48sf92RYLsstyiU0KJQx8WMAK6mua6xj16FdfonH2+wfIsYldO562WlS7TuaVCullFJdhDdLK/KK8wiWYNIHpnfq+LDgMG4Zfwuf7/ycDfs3eDi69uUW5ZI2MK2pXCUlNgUI3BlAcotySYlNISYixq12IkIiiO0Zq3NV+4Am1UoppVQX8JvPf8PUf031Wvv5xfmMihtFz9CenW7jl5m/pGdoT+Z9O8+DkbWvobGB/OL8ZougBHJSbYxhRdEKt0s/7HSuat/QpFoppZTqAvKL81myewlHao54vG1jDHnFeWQmZLrVTt8efbku7TpeW/8apVWlHoqufZsObKKqtqpZUt07ojcDew0MyMGKeyv2Unq0lPEJmlR3J5pUK6WUUl1AYUUhBtO04Icn7Tq8i4PHDrpdnwvWYjC1DbU8l++7xWDsr8mEpObLdafEpgRkT7W9nrrl8+2s5OhkTap9oN2kWkSSROQ3IvKhiOSJyGIReVZEpot0YOiwUkoppZwyxlBUWQTAt3u/9Xj77g5SdHRav9O48LQLeTbvWY7VHXO7PVfkFubSJ6IPw/sOb/Z4Sj8rqfbXNH/ekluYS1hwGKkDUj3SXlJ0EuXHyqmuq/ZIe8q5NpNiEXkF+CdQCzwCXAn8D/AF8GNgqYhMaeP4H4vIVhHZISL3Otk+VUSOiMga2+1+d56MUkop1R0dPHaQmvoaAL4t9EJSXZxHeHA4o+NGe6S9O7Nsi8Gs981iMLlFuYxPHH/CIigpsSkcqjnEgeoDPonDV1YUr2DMwDGEBYd5pD37DCBFFUUeaU85115P89+MMecZY540xiwzxuwwxmwwxrxnjLkFmAoUOztQRIKBZ4DzgZHAlSIy0smuS4wx6bbbQ248F6WUUqpbsn81HxcZx/LC5TSaRo+2n1ecR/rAdEKDQz3S3tmDzmbMwDE8/q33F4Opqq1i44GNzeqp7Ub0HwHA5gOBU1dd31h/wqBMd+m0er7RZlJtjGmaM0dEeojI6S221xpjdrRy+HhghzHmO2NMLfAm8FN3A1ZKKaUCjT3ZuTTlUo4cP+LROuGGxgZWFq/0SD21nYhwZ9adbC7bzGc7P/NYu87kF+fTaBqd1hcH4gwgmw5sorqu2mMzf4BVUw3otHpe5lJNtIhcBKwB/mO7ny4i/27nsETA8eoV2h5rKUtE1orIIhE5w5V4lFJKqUBir6eeccYMAJbtXeaxtreUbeFo3VGP1FM7mnnGTBKiEnj8W+8uBpNbaA1SdJZkJkXf3P9fAAAgAElEQVQn0TO0Z0Al1S1XjvSExGgr/dKeau8KcXG/B7B6nnMAjDFrRGRwO8eIk8dafke0ChhkjKkSkZ8AHwDDTzwMROQG4AaAAQMGkJOT42LoqjuoqqrSa3oS0et98tFr3ralu5YSRBCNuxqJDonmvbz3GFYxzCNt/6fkPwCYQkPOoRyPtGk3PXY6L373Iv/8+J+c2uvUpsc9eb0/2fgJCREJbFjhfMGZxPBElm1bRk6EZ87nbx9s+4CokCgK1xVSJJ6rgY4OiSZ3Sy45DTkea9NO/74tribV9caYIy0HCLSjEEh2uJ9Ei/prY0yFw++f2mYViTXGlLVszBjzAvACQGZmppk6dWpHYlFdXE5ODnpNTx56vU8+es3b9n9H/o/4Q/H88JwfMrlkMrsO7fLY6/XOp+/QK6wXPzv/ZwQHBXukTbvUY6ksmLeApQ1LmTN1TtPjnrzeO1ftZOrwqa22l1meybeF3wbM++v2LbczadAkpk2b5tF2B28ZjOllvPI66d+3xdUp8TaIyFVAsIgMF5GngPa+m8oDhovIEBEJA64AmpWMiMhAsWXqIjLeFk95h56BUkop1c0VVhQ2DSbLSspic9lmDh075JG284rzGBs/1uMJNViLwfw8/ecsWL+AkqoSj7dfVFFEcWVxm4P2RsSOYPfh3QExXdzR2qOs37/eo6UfdsnRyVpT7WWuJtW3AGcAx4E3gArg9rYOMMbUAzcDnwGbgbeMMRtF5EYRudG22+VYCfta4EngChNok00qpZRS7SiqLGqqe52UPAnAI4vA1DbUsqZkjUcHKbZ024TbqGuo49m8Zz3edtOiL20k1SmxKRgM28q3efz8vrZq3yoaTaNXkmpdVdH7XEqqjTHVxpjfG2PGGWMybb/XuHDcp8aY04wxQ40xf7Y99rwx5nnb708bY84wxqQZYyYaYzw3MkMppZTqJgorCkmKsnqqxyeOJ0iCPLIIzPrS9dQ21Hp8kKKj4f2Gc9HpF3llMZjcwlxCg0JJH5je6j6BNAOINwYp2iVFJ1FWXdY0H7ryPFdn/zhNRF4Qkc9FJNt+83ZwSimlVKCrOF5BxfGKpvKPXmG9GB032iOLwOQV21ZS9GJPNViLwZQfK+fVda96tN3colzSB6YTHhLe6j7D+w0nSIICIqnOLcplcO/BxEXGebxtXQDG+1wt/3gbWA3cB9zlcFNKKaWUG+xJjj3pAauuennhchoaG9xqO68oj349+jG492C32mnPWaecxdj4sTyx/AmPLVzT0Njg0iIoESERDOk9hM1l3X8BmBVFK7zSSw06V7UvuJpU1xtjnjPGrDDGrLTfvBqZUkopdRKwz1Ftr6kGyErOorK2kk0HNrnVdl5xHuMSx52wvLenNVsMZodnFoPZeGAjR+uOOl30paWU2JRu31NdWlXK7iO7GZ/gnaRaV1X0PleT6o9E5H9EJF5E+tpvXo1MKaWUOgnYk5yWPdWAWyUgR2uPsvHARq+XftjNGDmDxKhEHl/umcVg7Iu+uLJcd0psCtvKt7nds+9P9npqVz5EdIYuAON9ribV12GVeywDVtpu+d4KSimllDpZ2JOchKiEpseG9R1GbM9Yt5Lq1SWraTSNZCZkuh2jK0KDQ7ll/C188d0X7Kza6XZ7uUW59O3Rl2F9218EJyU2hZr6GvYc2eP2ef1lRdEKgiWYMQPHeKX9XmG96B3RW5NqL3J19o8hTm6ntn+kUkoppdpSWFFI/579iQiJaHpMRMhKynJrBpD8Yqvvy1c91QA3jL2ByNBIFhYudLut3KJcxieOd6l0JRBmAFlRvIJRcaOIDIv02jl0rmrvajOpFpFzbD8vdXbzTYhKKaVU4HKco9pRVlIWW8u3cvDYwU61m1ecR2JUIvFR8e6G6LI+PfowN2Mu2fuz3eo1rjxeycb9G10q/QBrARig2w5WNMZ4dZCinc5V7V3t9VSfbft5oZPbBV6MSymllDopOK6m6Cgr2aqrXl64vFPt5hXleXV+6tbcmXUnAPO+ndfpNvKL8zEYl5Pqfj37Edszttv2VG8/uJ3DNYddfr6dpUm1d7WZVBtjHrD9/LmT2xzfhKiUUkoFLseFXxyNSxhHsAR3qgTkcM1hth/c7tPSD7tTYk7hnLhzeHHVi53uZbevpNiRntvuPAOINxd9cZQcncz+o/s5Xn/cq+c5Wbk6UBERmS4id4vI/fabNwNTSimlAl1NfQ1l1WVOe6ojwyJJHZDKssKOLzbsj3pqR1cmX8nRuqM8s+KZTh2fW5TLsL7D6Nezn8vHpPTr3kl1ZGgkI/uP9Op5mhaAqdQFYLzB1RUVnwdmAbcAAswABnkxLqWUUirgFVcWAzitqQarrnpF0YoOTxWXV2StpOirmT9aGhI5hOnDp/Pkiieprqvu0LHGGHILcztcCpESm8KB6gOUV5d36LiuILcol8yETIKDgr16Hp2r2rtc7ameZIy5FjhkjPkjkAUkey8spZRSKvA5m6PaUVZyFlW1VWzYv6FD7eYV5zGs7zD69Ojjdoyddc+Z91BWXcb8NfM7dFxRZRH7qvZ1OKke0d8arNjdequP1x9nTckar5d+gCbV3uZqUn3M9rNaRBKAOmCId0JSSimlTg7tJdWTkicBHV8EJq84z2+91HaTT5nMxKSJPLbsMeob610+rmnRlw4ugtJdp9VbV7qO2oZaTaoDgKtJ9cci0hv4f8AqoAB401tBKaWUUicDe3KTGOW8/GNI7yHERcZ1KKkuqSqhsKLQb/XUdiLCPWfew67Du3hn0zsuH5dblEtYcBhpA9I6dL5BMYMIDw7vdkm1rwYpAkSFRxETHsPeIzpXtTe4uvjLw8aYw8aYd7FqqVOMMX/wbmhKKaVUYCuqKCI6PJqo8Cin2zuzCIy/Byk6uuj0i0iJTeGRbx7BGOPSMblFuYwZOIbwkPAOnSs4KJjT+p3GlvLulVTnFuUysNdAkqN9U1WbFJ1EYaX2VHuDqwMVg0XkIhG5FfgV8AsRudO7oSmllFKBrbDS+RzVjrKSsth+cDtl1WUutZlXlEeQBJERn+GJEN0SJEHcNeku1pSs4b/f/bfd/esb68kvzu/0fM0j+o9g84HutQCMfdEXV1aO9ASdq9p7XC3/+AiYDfQDohxuSimllOqk1hZ+cdTRRWDyivMY2X+kV5e77oirR19NQlQCj3zzSLv7bty/keq66k6XQqT0S2HX4V3U1Nd06nhfO1xzmK3lWxmf4P3SD7vk6GRNqr3E1aQ6yRhzqTHmAWPMH+03r0amlFJKBbjWFn5xlJmQSUhQCMv2tj9ftTGGvOK8LlH6YRceEs4dE+8ge1d2U2lKa+yLvnR0kKJdSmwKjaaRHQd3dOp4X7NPfdjZ59sZSdFJlFaVUttQ67NznixcTaoXich5Xo1EKaWUOonUN9ZTUlXS6hzVdj1De5I2IM2lwYq7j+ymrLqsSyXVADeMvYGY8Bge/ebRNvfLLcylX49+DO0ztFPn6W4zgNgHKfpyppak6CQMpmmOdOU5ribVy4H3ReSYiFSISKWIVHgzMKWUUiqQlVSV0Gga2y3/AGtqvRVFK9qdms7e8zkusWsl1dHh0dyUeRPvbn63zV7k3KJct+qLT+t3GkC3qateUbyC0/udTu+I3j47p06r5z2uJtV/w1rwpacxJtoYE2WMifZiXEoppVRAa2+OakdZSVlU11WzvnR9m/vlFecRGhTK6LjRHonRk26beBuhQaE8tuwxp9srjlew6cCmTg9SBGtp90Exg7rFDCD2lSN9MZWeo+QYa5YRTao9z9Wkejuwwbg6H45SSiml2tShpNo2WLG9EpC84jzSBqZ1eDo6XxjYayDXpV3H/DXzKakqOWF7fnE+BuN2fXFKbEq3KP/YW7GX0qOlbn2I6Az7+03nqvY8V5PqfUCOiPxWRO6037wZmFJKKRXIiiqKgNYXfnE0KGYQA3sNbDOpbjSNrCxe2eXqqR39ZtJvqG2o5cncJ0/YZl9J0d2eW3tS3Wga3WrH2z7c8iHgm0VfHEWHRxMVFqU91V7galK9C/gSCEOn1FNKKaXcVlhRSERIBH179G13X1cWgdlWvo3K2sounVQP7zecy0ZexrN5z1JxvPnQrNyiXIb3He7S69GWlNgUquuqmz60dDWVxyu5/t/Xc+t/biUzIZP0gek+j0EXgPEOV1dUtE+h95hOqaeUUkq5z77wi6uD8rKSsth5aCf7j+53ur2rDlJs6e5Jd3Pk+BFeWPlC02PGGHKLcj0ytdyI2BEAbC7reoMVl+5ZStrzaby8+mXuOfMelv58KaHBoT6PIzlG56r2BldXVMwSkU3AZtv9NBF51quRKaWUUgHMlYVfHDXVVbfSW51XnEdkaGRTUtlVjUscx7TB05i3fF7TXMmFFYWUVJV4pL64K06rd7z+OPf89x6mvDIFEWHxzxfz1x/+1W+170lRSVpT7QWuln88AfwIKAcwxqwFpngrKKWUUirQFVUUuVRPbTc2fiyhQaGt1lXnFeeREZ9BcFCwp0L0mnvOvIfiymIWrFsAOCz64oGkOi4yjt4RvbtMUr2udB3jXxrPo8seZW7GXNb8cg2TT5ns15iSopMoqSqhrqHOr3EEGleTaowxLT/SNHg4FqWUUuqk0GgaKaos6lBPdY/QHoyJH+M0qa5rqGNNyZouXU/t6Lyh55E+MJ1Hlz1Ko2kktzCX8OBw0gamud22iHSJGUAaGht4ZOkjZL6QSWlVKR9d+REvXPgCUeH+H5JmXwBmX9U+f4cSUFxNqveKyCTAiEiYiPwGWymIUkoppTqmrLqM2obaDiXVYNVV5xXlndDDuGH/Bmrqa3y6Mp87RIS7J93NlrItfLT1I3KLchkTP4aw4DCPtJ8Sm+LXmurvDn3H1H9N5d4v7+XC0y9k/U3rueC0C/wWT0s6V7V3uJpU3wj8CkgECoF0232llFJKdVBH5qh2lJWUxbH6Y6wrXdfs8bzi7jFI0dGMM2YwuPdg/rL0L6zct9Kj8zWPiB1BSVUJh2sOe6xNVxhjeGnVS6Q9n8a60nX86+J/8c6Md+gf2d+ncbRH56r2Dldn/ygzxlxtjBlgjIkzxvzMGFPu7eCUUkqpQNSROaodtbYITF5RHn0i+jC0z1DPBOgDIUEh/Drr1+QW5VJdV+3RpNo+WHFr2VaPtdme0qpSLnrzIq7/6HrGJYxj/U3ruTbt2k4vue5NulS5d7g6+8ejIhItIqEi8qWIlInIz7wdnFJKKRWIOttTnRydTEJUwglJdf6+fDITMrtkAteWOWPmENszFsAj0+nZ+XoGEGMMP3z1h/x353+Z96N5fHHtF5wSc4pPzt0ZMeExRIZGalLtYa6Wf5xnjKkALsAq/zgNuMtrUSmllFIBrLCikJCgEOIi4zp0nH0RmGV7lzU9dqzuGOtL13ebQYqOeob25IGzHyArKYshvYd4rN1T+5xKaFCoz5LqJXuWsGH/Bp6b/hy3T7ydIHF5Hgi/EBFrrmpdAMajXL3q9pnJfwK8YYw56KV4lFJKqYBXWFlIQlRCp6a/m5Q8iYLDBZRUlQCwpmQNDaahW9VTO7p5/M0s+8Uyj/ayhwSFMLzfcJ8NVnxp1UtEh0cza9Qsn5zPE5Kida5qT3M1qf5IRLYAmcCXItIfqPFeWEoppVTg6ugc1Y6ykpovAtM0SLEb9lR7k6+m1Ttcc5i3N73NVaOuomdoT6+fz1OSopO0/MPDXB2oeC+QBWQaY+qAauCn3gxMKaWUClQdXU3RUUZ8BmHBYU111XnFecT3iicxunNJeqBK6ZfCzkM7vb7AyevrX6emvoa5GXO9eh5PS4pKYl/VPuob6/0dSsDoyOIvh4wxDbbfjxpjSrwXllJKKRWYjDFuJdXhIeFkxGd8n1QX5XWb+al9KSU2hfrGenYe2unV87y06iXSB6aTEZ/h1fN4WnJMMo2msamMSLmva1fSK6WUUgHmyPEjHK072umkGqwSkPzifMqqy9havlVLP5ywzwCy+YD36qpX7VvF6pLV/GLML7rdzCs6V7XntZtUiyXZF8EopZRSXdHR2qMeS846O0e1o6ykLGrqa/jn6n8C3WvRF1/xxbR6L696mfDgcK4efbXXzuEtOle157WbVBtjDPCBD2JRSimluqQ/L/kzGS9kUF1X7XZbnZ2j2pF9EZhn8p4B0PIPJ6LCo0iMSmRLuXeS6uq6ahasX8DlIy+nT48+XjmHN2lS7Xmuln8sFxH9GKyUUuqk9NnOz6ipr2FtyVq32/JEUp0UnURydDJ7juxhSO8hTQuoqOa8OQPIu5ve5cjxI91ugKJdn4g+9AztqUm1B7maVE8DvhWRnSKyTkTWi8g6bwamlFJKdQUHjx1k9b7VgFVD667CikIEIT4q3q127L3VWvrROntSbX3p7lkvrX6JYX2Hcfagsz3eti+IiDVXdYXWVHuKq0n1+cBQ4BzgQqyVFS/0VlBKKaVUV/F1wdcYrKRs5b6VbrdXVFlEXGQcYcFhbrVjn69aBym2bkTsCCqOV7Cvap9H291Wvo3FuxczJ31Otxug6EjnqvYsV+ep3m2M2Q0cA4zDTSmllApo2buy6Rnak3OGnOORpNqd6fQc/Wjoj+gR0oMfnvpDt9sKVN4arPjP1f8kWIK5Lv06j7bra5pUe5ZLSbWIXCQi24FdwNdAAbDIi3EppZRSXUJ2QTZnnXIWExMnsnH/Rmrq3VtQ2FNJ9Yj+I6j+fTXpA9PdbitQeSOprmuoY/6a+Uw/bToJUQkea9cfkqOTKa4spqGxwd+hBARXyz8eBiYC24wxQ4AfAN94LSqllFKqCyipKmHTgU2cM+QcxiaMpcE0sK7UvSFFnkqqVfsSohLoFdbLo0n1J9s/ofRoKXPHdM8Bio6SopNoMA26AIyHuJpU1xljyoEgEQkyxnwF6EdjpZRSAS2nIAeAc4ac07RinjuDFavrqjlUc8itOaqV60SElNgUNpd5bgGYl1a9RHyveM4ffr7H2vQXnVbPs1xNqg+LSC9gCbBARP4O6GLxSimlAlr2rmxiwmMYM3AMg2IG0bdHX1YWd76u2r7wi/ZU+86I2BEe66kuqihi0Y5FzE6fTUhQiEfa9CdNqj3L1aT6p1iDFG8H/gPsRGf/UEopFeCyd2UzdfBUgoOCERHGxo91a7CiJ+aoVh2TEptCYUUhlccr3W5r/pr5NJpG5oyZ44HI/C852lowW5Nqz3B19o+jQH/gJ8BB4C1bOYhSSikVkHYf3s3OQzs5Z8g5TY9lxGewYf8Gjtcf71SbmlT7nn2w4rbybW6102gaeXn1y0wbPI1hfYd5IjS/69ujLxEhETpXtYe4OvvHXGAFcClwOdYKi4HxMU0ppZRy4quCrwCaJdVj48dS11jHhv0bOtVmUaVV/pEYrTXVvuKpGUC+2vUVuw7v6rYrKDpjXwBGe6o9w9WCoLuAMfbeaRHpBywD/umtwJRSSil/yt6VTf+e/Tmj/xlNj41NGAtYi8DYf++IworCpuWhlW8M6zuMYAl2e7Diy6tfpndEby5JucRDkXUNmlR7jqs11YWAYzFSJaDfFSillApIxhiyd2VzzpBzmq2YN6T3EHpH9O70DCA6nZ7vhQWHMbTvULd6qsury3l387v8bPTP6BHaw4PR+V9ydLIm1R7ialJdBOSKyIMi8gCwHNghIneKyJ3eC08ppZTyve0Ht1NUWdSs9AOsr8sz4jM6PVhRk2r/GBs/lo+2fcQrq1/p1PEL1i+gtqE2oEo/7JKikyiqLNIFYDzA1aR6J/AB3y9N/iGwD4iy3ZRSSqmAkb0rG+CEpBogY2AG60rXUddQ1+F2CysKdY5qP3j6J08zZdAU5vx7Drctuq1D184Yw4urXiQzIZO0gWlejNI/kqKTqG+sZ//R/f4OpdtzqabaGPPHzjQuIj8G/g4EAy8ZY/7ayn7jsHq/Zxlj3unMuZRSSilPyd6VTXJ0MkP7DD1h29iEsdQ21LLxwMYOLRFe21DL/qP7tafaD/r26Muiqxdx1+d38UTuE2w4sIG3Ln+Lfj37tXtsXnEeG/Zv4Lnpz/kgUt9znKs6Pirez9F0b672VHeYiAQDzwDnAyOBK0VkZCv7PQJ85q1YlFJKKVc1mka+KvjqhHpqu7HxtsGKHVwEZl/lPgxGk2o/CQkKYd6P5zH/p/P5Zs83jHtxHOtL17d73MurXqZHSA+uHHWlD6L0PZ2r2nO8llQD44EdxpjvjDG1wJtYi8i0dAvwLqDfOyillPK7Dfs3UFZd5rT0A2Bo36FEhUV1eLCizlHdNVyXfh1fz/6amvoasl7O4t1N77a6b1VtFa9veJ2ZZ8wkJiLGh1H6jv39qHNVu8+bSXUizWcIKbQ91kREEoFLgOe9GIdSSinlMns99bTB05xuD5KgTg1WtCfVOke1/01ImkD+DfmMihvF5W9fzv1f3U+jaTxhv7c3vk1VbVVADlC0i+0ZS1hwmPZUe4BLNdUi8grfD1JsYoxpawGYE78zO7GNJ4B7jDENzr5iaxHDDcANAAMGDCAnJ6fN/VX3UlVVpdf0JKLX++TTna752xveJqlHEjtX72QnO53uE9cQx4f7PuTLr74kWIJdavfrvV8DULCugLKQMo/F2xV1l+v90KkPMa9hHg8vfpgvN37J71J+R2RIZNP2v63+G8k9kqnbWUfOdzn+C9TLYkNjWbljJTmhOZ06vrtcb29zdfGXjx1+j8DqXS5u55hCINnhfpKTYzKBN20JdSzwExGpN8Z80LIxY8wLwAsAmZmZZurUqS6GrrqDnJwc9JqePPR6n3y6yzWvb6xnw/INXDnqyjbjLepbxNvvv03cyDhGDxjtUtv//uzfRO6NZPoPpjut1Q4k3eV6A5w77VyeXvE0d3x2B3dvu5sPr/iQYX2HsfnAZjZ+vZFHf/go0850/q1FoBheMJxaU9vpa9adrrc3uTr7R7OCIxF5A/iincPygOEiMgRrnusrgKtatDvEoc35wMfOEmqllFLKF1btW0XF8YpW66ntHFdWdDWpts9RHegJdXcjItwy4RbOiDuDGW/PYNyL41h4+UI+3/k5IUEhXJt2rb9D9Lqk6CS+2fuNv8Po9jpbUz0cOKWtHYwx9cDNWLN6bAbeMsZsFJEbReTGTp5XKaWU8hp7PfXUwVPb3G943+FEhkZ2aLBiYUWh1lN3YecMOYf86/NJjk7m/AXn81z+c1x0+kUM6DXA36F5XVJ0EkUVRU7rypXrXK2prsSqhxbbzxLgnvaOM8Z8Cnza4jGngxKNMbNdiUUppZTyluxd2YyKG0VcZFyb+wUHBTMmfkyHBisWVRa1m6wr/xrSZwjLfrGM2R/M5t3N7/LLsb/0d0g+kRSdRF1jHQeOHjgpPkR4i6vlH7pqolJKqYB2vP44S/cs5fqM613af2z8WF5c9SINjQ0EB7U9WLGhsYHiymKSonQ6va6uV1gv3prxFrsO7WJo3xMX/wlE9rmq91bs1aTaDS6Xf4hIHxEZLyJT7DdvBqaUUkr5Um5RLsfqj7VbT22XEZ9BdV01W8u3trvv/qP7qW+s1zmqu4kgCTppEmpovqqi6jyXkmoRmQssxqqP/qPt54PeC0sppZTyrexd2QRJEGcPPtul/TuysqLOUa26Mk2qPcPVnurbgHHAbmPMNGAMcMBrUSmllFI+lr0rm4z4DHpH9HZp/5TYFHqE9HCprrqosgjQ1RRV19Q/sr8uAOMBribVNcaYGgARCTfGbAFO915YSimllO8crT3K8sLlnDPYtdIPsAYrpg9Md2kGEF2iXHVlQRJEYlSiLlXuJleT6kIR6Q18APxXRD6k/cVflFJKqW7hm73fUNdY53I9td3Y+LGsLlnd7lRkhRWFhAWHEdsz1p0wlfKapOgk7al2k0tJtTHmEmPMYWPMg8AfgJeBi70ZmFJKKeUrX+36ipCgECafMrlDx2XEZ1BVW8X28u1t7ldYUUhCVAJB0tnlIZTyLk2q3deR2T8mi8jPjTFfA98COtpCKaVUQMguyGZi0kQiwyI7dJzjyoptKaos0tIP1aUlRydTWFGIMcbfoXRbrs7+8QDWYi+/tT0UCrzmraCUUkopXzlSc4T84vwO1VPbjew/koiQiHZnALEvUa5UV5UUnURtQy0HqnUeis5ytaf6EuAi4CiAMaYY0AVhlFJKdXuLdy+m0TR2uJ4aICQohNQBqawqaX2wojHGSqp14RfVhem0eu5zNamuNdb3AQZARDr2/ZhSSinVRWXvyiYiJIKJSRM7dfzY+LGs2req1cGKB48dpKa+RueoVl2aJtXuczWpfktE/gH0FpHrgS+AF70XllJKKeUb2QXZTD5lMuEh4Z06fmz8WCqOV7Dz4E6n23WOatUdJMdYS5VrUt15rs7+8RjwDvAu1vzU9xtjnvJmYEoppZS3HTh6gHWl6zpVT22XEZ8B0Op81TpHteoO4iLjCAkKYe8Rnau6s1wdqBgJZBtj7sLqoe4hIqFejUwppZTyspyCHIBO1VPbnRF3BmHBYa3OAKJJteoO7AvAFFZqT3VnuVr+sRgIF5FErNKPnwPzvRWUUkop5QvZu7KJCotqmhqvM8KCwxgdN7rNnuogCWJgr4GdPodSvqBzVbvH1aRajDHVwKXAU8aYS4CR3gtLKaWU8r7sgmzOHnw2IUEhbrVjH6zobI7foooiBvYa6PY5lPK25JhkTard4HJSLSJZwNXAJ7bH9F8HpZRS3VZhRSHbyre5VU9tNzZhLIdqDrHr8K4Tz1Opc1Sr7iEpKkkXgHGDq0n17VgLv7xvjNkoIqcCX3kvLKWUUsq7vtpl/TfmTj21XVuDFXXhF9VdJEUnUVNfQ/mxcq+0X9dQx4b9G/i64GuvtO9vLvU225Ym/xpARIKAMmPMrd4MTCmllPKm7IJs+vXox+gBo91ua3TcaEKDQllZvJLLR17ebFthRSE/GGGzc2UAACAASURBVPIDt8+hlLc5zlUd2zO20+0YYyiuLGb9/vWsK13X9HPzgc3UNdYB8PXsr5kyaIpH4u4qXEqqReR14EagAVgJxIjI48aY/+fN4JRSSilvMMaQvSubaUOmESSufmnbuvCQcEbFjTphBpDK45VUHK/QnmrVLdjnqr72/WtJjkkmOjyamPAYosOjT/w9IqbpsU0Vm9ixagfrStc1JdEHjx1sajcpOonUAamcP+x8zuh/Bjd8fAPvbnr35EyqgZHGmAoRuRr4FLgHK7nWpFoppVS3892h79hzZA/3nHmPx9rMiM/ggy0fYIxBRABd+EV1L2kD0rgu7Tr2VuyltKqU7eXbOXL8CBXHK6ipr2n74NXQK6wXo+JGcfmIy0kdkMroAaMZHTeaPj36NNv17U1v88HWD3jix080/a0EAleT6lDbvNQXA08bY+pERKvYlVJKdUvZu7IBz9RT242NH8vLq19mz5E9DOo9CNA5qlX3Eh4SzvyL5zvdVttQS8XxCiqOV3Ck5sj3vx8/QsG2Aq76wVUM7j3YpW9+Lkm5hI+2fcSqfavcms6yq3E1qf4HUACsBRaLyCCgwltBKaWUUt6UXZBNfK94Tu93usfadBys2DKpToxK9Nh5lPKHsOAwYnvGOq21zjmYw6l9TnW5rQtPv5AgCeL9Le8HVFLt6jLlTxpjEo0xPzGW3cA0L8emlFJKeUVOQQ7Thkzz6FfPqQNSCZbgZnXVRRVW+UditCbVStnF9oxlyqApfLDlA3+H4lFt9lSLyM+MMa+JyJ2t7PK4F2JSSimlvKakqoSSqhLGJ4z3aLs9QntwRtwZzZJq+ywKESERHj2XUt3dxadfzO2f3c728u0M7zfc3+F4RHs91ZG2n1Gt3JRSSqluZV3pOgDSBqZ5vO2M+AxWFq9sWjxDF35RyrmLUy4G4P0t7/s5Es9ps6faGPMP288/+iYcpZRSyrvWlqwFrHINTxsbP5b5a+ZTVFlEUrS1Op3WUyt1okG9B5ERn8H7W97n7jPv9nc4HuFSTbWIJInI+yKyX0RKReRdEdGP3koppbqdtaVrSYpOom+Pvh5v2z5YcWWxVQJSVFGkPdVKteKSlEtYXric4spif4fiEa7OeP8K8G8gAUgEPrI9ppRSSnUr60rXeaWXGiB9YDpBEsSqfauoqa/hQPUBTaqVasUlKZcA8OGWD/0ciWe4mlT3N8a8Yoypt93mA/29GJdSSinlccfrj7O5bDNpAzxfTw3QM7QnI2JHsHLfyqbeN02qlXJuZP+RDO87PGDqql1NqstE5GciEmy7/Qwo92ZgSimllKdtKdtCfWO915JqsEpAVu1bpXNUK9UOEeGSlEv4quArDtcc9nc4bnM1qZ4DzARKbLfLbY8ppZRS3cbaUu8NUrQbGz+WfVX7yC/OB7SnWqm2XJxyMfWN9Xyy7RN/h+I2Vxd/2WOMucgY0992u9i2AIxSSinVbawtWUtESIRX58W1rxD34VarTlSTaqVaNyFpAvG94gOiBMTV2T9OFZGPROSAbQaQD0XE9fUolVJKqS5g3f51jIobRUhQmzPKuiV9YDqCsHTPUqLDo4kK12UdlGpNkATx09N/yqIdizhWd8zf4bjF1fKP14G3gHisGUDeBt7wVlBKKaWUpxljWFuyltQ475V+APQK68XpsafTaBq1nlopF1wy4hKq66r573f/9XcobnE1qRZjzKsOs3+8BhhvBqaUUkp5UklVCQeqD3hlJcWW7PNVa+mHUu2bOngqMeEx3b4EpM2kWkT6ikhf4CsRuVdEBovIIBG5G+j+FeVKKaVOGvblyb05SNFubLxVV61JtVLtCwsO44LTLuCjrR9R31jv73A6rb2ispVYPdJiu/9Lh22G/9/efYdXVWV9HP/uNErovZcQqiDFSBEiIEVAISCKMogFlSJWHMdxfNUZ26jj2EAFCyrowKCCoBJBxEiXTgQSQodIS0IogSSQZL9/5IYJkHKT3EKS3+d5zsO9p+yz4vaSxb77rA0vuiMoERERV8uq/OHOcnpZlFSLFMywVsP48vcvWXFgBb2a9PJ2OIWSZ1JtrW3qqUBERETcKfJoJA0rNaRquapuv9c19a6haZWmdG3Q1e33EikJbgy+kTK+ZZgXNa/YJtXOzqkWEREp1rYc3eKRqR+Q+bDinkf3MKj5II/cT6S4qxBQgf7N+vPtjm+xtng+tqekWkRESrzUtFSi46M9MvVDRApnWKthHDh5gI2HN3o7lEJRUi0iIiVeVHxU5vLkHqj8ISKFM7jlYHyMT7GtAuLs4i/GGHOnMeY5x/tGxpjO7g1NRETENbYccf/y5CJSNDXK1+D6xteX7KQaeB/oBox0vD8NvOeWiERERFxsy1HH8uTV3Lc8uYgU3bBWw9get52YhBhvh1JgzibVXay1E4EUAGttIhDgtqhERERcKPJo5vLkvj6+3g5FRPIwtNVQAL6N/tbLkRScs0n1eWOML45VFI0xNYEMt0UlIiLiItZathzdoocURYqBRpUb0alup2I5BcTZpPpdYB5QyxjzMrACeMVtUYmIiLjIkaQjxJ+NV1ItUkwMazWMNbFrOHT6kLdDKRCnkmpr7ZfAX4B/AoeBodbar9wZmIiIiCtkraSohxRFiodhrYYBMD96vpcjKZg8k2pjTLWsDTgGzAL+Axx17BMREbmiqfKHSPHSpmYbmldrXuymgOQ3Ur0BWO/4Mw6IAXY6Xm9wb2giIiJFF3kskkaVG3lkeXIRKTpjDMNaDeOXfb+QmJzo7XCclmdSba1taq0NAhYBg621Nay11YGbgbmeCFBEREoXay0Z1nXPwm854rnlyUXENYa1HkZaRhoLdy70dihOc/ZBxWuttRd+KmttONDTPSGJiEhptWTPEoInB3Pn3Dtd0l5KWoqWJxcphjrX70zdCnWL1RQQPyfPizfG/B/wBZll9e4EEtwWlYiIlCqJyYk8sfgJPt38Kf4+/sSeiuV06mkqlqlYpHaj4qJIt+kaqRYpZnyMD2Etw5gROYPk88mU8y/n7ZDy5exI9UigJpll9eY5Xo/M8woREREnfLP9G1q/15oZW2bwtx5/47uR33Eu/RyLdi8qcttZlT80Ui1S/AxrPYyz58/y056fvB2KU5waqbbWHgcedXMsIiJSihw+fZiJCycyL3oenep24sc7f6RDnQ6kZaRRrVw15u+Yz61tbi3SPSKPRlLOrxzB1YJdFLWIeEqvJr2oXKYy86LnMaTlEG+Hky9np3+IiIi4hLWWTzd/yhOLnyAlLYXX+r7GpG6T8PPJ/JXk5+PH4BaDWbBjAefTz+Pv61/oe205ukXLk4sUUwG+Adzc4ma+2/EdaRlpF/6OuFI5O/2jUIwxA4wxO4wxu4wxf83heJgxJtIYs9kYs94Y08Od8YiIiHftSdxDv5n9uG/BfVxd+2q2jN/CX7r/5bJflmEtw0hMSWT5geWFvpe1li1HtDy5SHE2rNUwEpITWHFghbdDyZfbkmpjjC/wHjAQaAOMNMa0ueS0n4H21toOwBjgY3fFIyIi3pNu03lr9Vu0fb8ta/9Yy9SbpvLL3b/QonqLHM/v36w/Zf3KFmlFtcNJh0lITqB9HSXVIsXVgOABlPUry7yoK78KiFNJtTHmdWNMJWOMvzHmZ2NMvDEmv3pHnYFd1to91tpzwGwgLPsJ1toka611vA0ks7KIiIiUIFuPbeWhTQ8xafEk+gT1YfvE7YwLGYePyf1XUGBAIH2D+jJ/x3z+92uiYLSSokjxFxgQyAu9XqBfs37eDiVfzo5U97fWniJz0ZdYoAXwZD7X1AcOZnsf69h3EWPMMGNMNPADmaPVIiJSQhw8eZCQD0M4nHKYWcNnseCOBTSo1MCpa8NahrH/5H4ij0YW6t5ZlT+UVIsUb092f5KbW9zs7TDy5eyM76ynRAYBs6y1x40x+V2T0wmXDTdYa+cB84wx1wMvAn1zbMyYscBYgNq1axMREeFc5FIsJCUlqU9LEfV36bEsbhmp6am83Pxl6sTX4ddff3X62mrnqmEwvP3j29zd5O4C3/unqJ+oXaY2m9dsLvC1UjT6jJcu6u9MzibV3zlGk5OBB40xNYGUfK6JBRpme98AOJTbydbaZcaYZsaYGtba+ByOfwh8CBASEmJ79erlZOhSHERERKA+LT3U36XHmhVrYDu0rt66UH3e9WBXIs9FFuraidsn0rlxZ/2/5gX6jJcu6u9Mzk7/eB7oBoRYa88DZ4H8CgauA5obY5oaYwKAO4AF2U8wxgQbx5C3MaYTEIBWahQRKTFiEmKoW6Eu5f3KF+r6oa2GsvHwRg6ePJj/ydmkpKWwI36HKn+IiMc4m1SvttYmWmvTAay1Z4DwvC6w1qYBDwGLgChgjrV2mzFmvDFmvOO04cBWY8xmMiuF3G4L+0SKiIhccWISYnKt8OGMsJaZz7fP31GwKiDb47ZreXIR8ag8p38YY+qQ+XBhOWNMR/43T7oSkO+wg7V2IbDwkn1Ts71+DXitgDGLiEgxEZMQw9BWQwt9fcsaLWlZvSXzd8znoc4POX1dVuUPldMTEU/Jb071jcA9ZM6H/jf/S6pPAX9zX1giIlLcJSYnEnc2LnOk+lzh2wlrGcaba97kRMoJqpSt4tQ1kUcjKe9fnmZVmxX+xiIiBZDn9A9r7edAH2C8tfYGa21vxxZmrZ3rmRBFRKQ42nl8J0CRpn8AhLUKIy0jjfCdec46vIiWJxcRT8t3TrW1NgMY54FYRESkBIlJiAGKnlR3qd+FWoG1nJ5Xba1ly1EtTy4inuXsg4o/GWP+bIxpaIyplrW5NTIRESnWYhJi8DE+BFUNKlI7vj6+DG4xmPBd4ZxLz38eyaHThziefFwPKYqIRzmbVI8BJgLLgA2Obb27ghIRkeIvJiGGplWaEuAbUOS2wlqGcSr1FBH7IvI9N2slRY1Ui4gnOZVUW2ub5rAVbehBRERcylrL2fNnvR3GBUUtp5dd36C+lPcvz7fR3+Z7btay5hqpFhFPcnakGmNMW2PMCGPMXVmbOwMTEZGCmbZhGg3ebEDSuSRvh4K11qVJdTn/ctzY7EYW7FhAfssZbDm6hcaVG1O5bGWX3FtExBlOJdXGmOeByY6tN/A6+a+oKCIiHjQveh6JKYmsPrja26FwOOkwZ86fcVlSDZlTQP44/QcbDm/I87wtR7aoPrWIeJyzI9W3klla74i19l6gPVDGbVGJiEiBpKSlsHz/cgBWHFjh5WhcV/kju5ta3ISP8WF+dO5VQFLSUtiRoOXJRcTznE2qkx2l9dKMMZWAY4DmVIuIXCFWH1xNcloyfj5+LD+w3NvhuCWprlG+Bj0a9ciztN62Y9vIsBmaTy0iHudsUr3eGFMF+IjMyh8bgbVui0pERApkyZ4l+BpfRl89mjWxa5wqPedOMQkxlPUrS4NKDVzabljLMH4/9jt7E/fmeFyVP0TEW5yt/vGgtfaEtXYq0A+42zENRERErgBL9i6hc/3ODGo+iOS0ZDYd3uTVeGISYmherTk+xunn4Z0S1jIMINfR6qzlyYtaG1tEpKCcfVDx+qwNaARUcbwWEREvO5FygvWH1tM3qC+hjUIBvD4FxJWVP7JrVq0ZbWu1zTWp3nJ0C+1qtdPy5CLicc4OITyZbXsW+A74u5tiEhGRAojYF0GGzaBvUF9qV6hN82rNvZpUp2WksTtxt1uSasgcrV62fxkJZxMu2m+tzaz8oakfIuIFzk7/GJxt6we0BY66NzQREXHGkj1LKO9fnq4NugLQo1EPVh5YSYbN8Eo8+07sIy0jza1JdYbN4IedP1y0/4/Tf5CYkqiHFEXEKwo72S2WzMRaRES8bMmeJfRs3PPCcuChjUJJSE4gOj7aK/G4o/JHdtfUu4Z6FetdNgVkyxHHQ4qqUS0iXuDnzEnGmMlA1hJWPkAHYIu7ghIREeccPHmQHQk7GHvN2Av7Qhs75lXvX06bmm08HlNWUt2yeku3tO9jfBjSYggzI2eSkpZCWb+ywP+WJ29Xq51b7isikhenS+qRWUpvA7AaeMpae6fbohIREaf8vPdnAPo07XNhX7OqzagdWJsVB72zCExMQgzVylWjevnqbrtHWKswzpw/w897fr6wb8vRLTSp0kTLk4uIVzg1Um2t/dzdgYiISMH9vPdnapavSbva/xudNcYQ2jj0wgqLnrYjYYfbpn5k6d2kNxUDKjJ/x3xuanETkJlU6yFFEfEWZ0vq/W6Micxh+90YE+nuIEVE5HLWWpbsWUKfoD6X1YMObRTK/pP7OXjyoMfjclc5vezK+JVhQPAAFuxYQIbNIPl8MjEJMXpIUUS8xtnpH+HAj8Aox7YQ+Bq4GRjsntBERCQv2+O2cyTpCH2b9r3sWI9GPQBYccCzU0DOnDtD7KlYWlRzb1INMLTVUI6eOcpvsb+xLS5zeXKNVIuItzibVHe31v7FWvu7Y/srcKO1dr+1dr87AxQRkZwt2bMEgL5BlyfV7Wu3p2JARY/Xq951fBfgvsof2Q1qPgg/Hz/m75ivyh8i4nXOJtWBxpgeWW+MMdcBge4JSUREnLFk7xKCqwXTuErjy475+vhyXcPrPJ5Uu7ucXnZVylahZ+OezN8xn8ijkQT6B2p5chHxGmeT6vuA94wx+4wxe4H3gTHuC0tERPJyPv08EfsiLqr6cakejXqw9dhWEpMTPRZXVlIdXC3YI/cLaxlGdHw083fMp13tdpfNLRcR8RRnV1TcYK1tD1wNdLDWdrDWbnRvaCIikpt1h9aRdC4px6kfWUIbZdarXnlwpafCIuZ4DA0qNSAwwDNfZg5pOQSA/Sf3az61iHhVnkm1MeZOY/73z35r7Slr7clsx5tlnxYiIiKesWTPEgyG3k1653pO5/qd8ffx92hpPU9U/siucZXGdKjTAUCVP0TEq/KrU10d2GSMyVr4JQ4oCwQDPYF44K9ujVBERC6zZM8SOtXtlOcCK+X8yxFSL8Sj86pjEmIY0WaEx+4HmVNANh/ZrJFqEfGqPJNqa+07xpgpwA1AdzKnfyQDUcBoa+0B94coIiLZJZ1LYnXsap7o9kS+54Y2CuWtNW+RfD6Zcv7l3BpXwtkEjicf9+hINcCD1z6IwdClQReP3ldEJLt851Rba9OttT9Za/9urR1nrX3MWjtNCbWIiHcs27+MtIy0POdTZwltHMr5jPOs/WOt2+PyZOWP7GoF1uL5Xs/j5+PUIsEiIm6hx6RFRIqZJXuWUMa3DN0bds/33OsaXgfgkSkg3kqqRUSuBEqqRUSKmZ/3/kz3Rt2dms5RrVw12tZq65GVFWMSYvDz8aNJlSZuv5eIyJVGSbWISDFyNOkokUcjc1yaPDehjUJZdXAV6Rnpbowss5xeUNUg/H393XofEZErkVNJtTGmtjHmE2NMuON9G2PMfe4NTURELrV071Ig56XJc9OjUQ9OnzvNlqNb3BUW4PlyeiIiV5Jck2pHjeo6jrefAYuAeo73McBj7g1NREQutWTPEqqUrUKnup2cviZrERh3TgHJsBnsTNhJi2pKqkWkdMprpHop8JbjdQ1r7RwgA8Bamwa493tEERG5iLWWJXuXcEPTG/D18XX6uoaVG9K4cmO3Pqz4x6k/SE5L1ki1iJRauSbV1tpDwHjH2zPGmOqABTDGdAVO5natiIi43u7E3Rw4eaBA86mz9GjUg+X7l2OtdUNkqvwhIpLnnOpsS5JPAhYAzYwxK4EZwMNujk1ERLJZsmcJAH2C+hT42tBGoRw9c5TdibtdHRagpFpExKlK+dbajcaYnkBLwAA7rLXn3RqZiIhcZMmeJTSs1JDm1ZoX+NrQxpnzqpfvX05wtWBXh0ZMQgzl/ctTr2K9/E8WESmB8kyqjTG35HKohTEGa+1cN8QkIiKXSM9IZ+nepQxtNRRjTIGvb1WjFdXKVWP5geXc2/Fel8cXczyz8kdhYhMRKQnyG6kenMcxCyipFhHxgE1HNpGYkligUnrZ+RgfejTq4bYKIDEJMVxT9xq3tC0iUhzkmVRba10/nCEiIgV2YT5104LPp84S2iiUBTsWcCTpCHUq1Mn/AiedSz/H3sS9jGw70mVtiogUN84u/lLdGPOuMWajMWaDMeYdRzUQERHxgJ/3/ky7Wu2oXaF2odvo0agH4Pp61XsT95Ju0/WQooiUas4uUz4biAOGA7c6Xv/XXUGJiMj/JJ9PZvn+5UUapQboVLcT5fzKuTypVuUPEREnq38A1ay1L2Z7/5IxZqg7AhIRkYutOriK1PTUQs+nzhLgG0DXBl1dvghMVlJdmKokIiIlhbMj1b8YY+4wxvg4thHAD+4MTEREMi3ZswQ/Hz+ub3x9kdsKbRTK5iObOZV6ygWRZYpJiKFm+ZpULVfVZW2KiBQ3eSbVxpjTxphTwDjgP0CqY5sNPO7+8EREZMneJXRt0JWKZSoWua0ejXqQYTNYE7vGBZFlyiqnJyJSmuW3omJFa20lx58+1lp/x+Zjra3kqSBFREqr48nH2XBoQ6GWJs9Jt4bd8DW+LN/vuikgO+J3KKkWkVLP2ekfIiLiBRH7IrDYIs+nzlIhoAId63Z02bzq06mnOZx0WEm1iJR6SqpFRK5gS/YsoUJABTrX7+yyNns07MFvf/xGalpqkdvaeXwnoMofIiJKqkVErmBL9iyhZ+Oe+Pv6u6zN0MahpKSlsPHwxiK3pXJ6IiKZnE6qjTE9jDH3Ol7XNMY0dV9YIiKek3Quidu/vp3NRzZ7O5SL7D+xn53Hd7ps6keWrEVgXDEFJCYhBoOhWdVmRW5LRKQ4c3ZFxeeBp4CnHbv8gS/cFZSIiCct3LmQOdvmMHzOcE6mnPR2OBf8vPdnAJcn1bUCa9GieguXJdWNKjeinH85F0QmIlJ8OTtSPQwYApwBsNYeAope20lE5AoQviuc8v7l2X9iP2O/H4u11tshAZlTP2oH1uaqmle5vO3QRqGsPLCSDJtRpHZiElROT0QEnE+qz9nM3zIWwBgT6L6QpLSZFzWPLw986e0wpJTKsBmE7wxnSMshvNj7ReZsm8NHGz/ydlikpKWwaPci+gb1xRjj8vZDG4WSmJLI9rjthW7DWqukWkTEwdmkeo4xZhpQxRjzALAE8P5vHSkRJq+dzMd7P+a32N+8HYqUQpuPbObomaMMDB7IUz2eon+z/jz646NEHo30alz/3fpfjicfZ0zHMW5p/8K86iLUq447G8fJ1JNKqkVEcDKptta+AXwNfAO0BJ6z1k7O7zpjzABjzA5jzC5jzF9zOD7KGBPp2FYZY9oX9AeQ4i8qPgqAJ3968or52l1Kj4U7FwIwIHgAPsaHmcNmUqVsFUZ8NYKkc0leiclay+S1k2ldozW9m/R2yz2CqgZRt0JdVhxcUeg2VPlDROR/nK7+Ya39yVr7pLX2z9ban/I73xjjC7wHDATaACONMW0uOW0v0NNaezXwIvCh86FLSXAi5QRHko7QuHxjlh9Yzncx33k7JCllwneFE1IvhFqBtYDMh/j+c8t/iEmIYeLCiV6Jae0fa9lweAMPdX7ILVM/AIwxhDYOLdJItZJqEZH/yTOpNsacNsacym3Lp+3OwC5r7R5r7TlgNhCW/QRr7SprbaLj7RqgQWF/ECmeouIyR6nva3ofLau35KklT5GWkeblqKS0OJ58nDWxaxgYPPCi/b2b9ua5ns8xY8sMPt/8ucfjmrJuChUDKjL66tFuvU+Phj04eOog+0/sL9T1MQkx+Pv407hyYxdHJiJS/OSZVFtrK1prKwFvA38F6pOZ+D4FvJRP2/WBg9nexzr25eY+IDy/gKVkiY6PBiAoMIhX+75KdHw00zdN93JUUlos3r2YDJvBoOaDLjv27PXP0qtJLx5c+OCFf/x5wtGko8zZNod7OtxDxTLuLbIU2jgUgF/2/VKo62MSYgiuFoyvj68rwxIRKZb8nDzvRmttl2zvPzDG/Aa8nsc1OX1nmeOEWWNMbzKT6h65NmbMWGAsQO3atYmIiMgvZikGFu1ehL/xp0JaBSodrkTbSm15evHTNDzRkHK+qntbUiUlJV0Rn+FPoz+lkl8lzuw8Q8Suy+OZWGcim/7YxE2f38QHHT+gjG8Zt8f0xf4vOJd+jhAb4vb/Ruk2nYblGvL0oqepnVC7wJ+5TQc2Ub9cfafivFL6XDxD/V26qL8zOZtUpxtjRpE5hcMCI4H0fK6JBRpme98AOHTpScaYq4GPgYHW2oTcGrPWfohjznVISIjt1auXk6HLlezfh/9Ny5otqVyxMr169eLD4A+5bvp1rPdbz7M9n/V2eOImERERePsznGEzGLFuBDe3vpk+vfvkel6FZhUY+OVA5p6dy7TB09waU1pGGne+fSf9gvpx16C73HqvLF8Gfcn1n13PT2k/8WafN52+Lj0jncMrDnNbh9uc6ssroc/Fc9TfpYv6O5OzDyr+CRgBHHVstzn25WUd0NwY09QYEwDcASzIfoIxphEwFxhtrY0pSOBSMkTFRdG6RusL77s17Mbw1sN5fdXrHE066sXIpKTbeHgjcWfjLptPfakBwQN4qvtTfLjxQ2Zvne3WmOZHz+eP03/wUOeH3Hqf7EIbhzL+mvG889s7rP1jrdPXHTx1kNT0VFpWb+nG6EREig9nS+rts9aGWWtrWGtrWmuHWmv35XNNGvAQsAiIAuZYa7cZY8YbY8Y7TnsOqA68b4zZbIxZX/gfRYqblLQU9p7Ye1FSDfBKn1dISUvhhV9f8FJkUhos3LkQg+HGZjfme+6LvV+kW4NujP1uLLuO73JbTFPWTaFx5cbc1Pwmt90jJ6/1e426Fepy34L7OJd+zqlrVPlDRORiTpfUKwxr7UJrbQtrbTNr7cuOfVOttVMdr++31la11nZwbCHujEeuLDsTdpJhM2hd8+KkukX1FoztNJZpG6axI36Hl6KTki58VzjX1r+WOW9CywAAIABJREFUmoE18z3X39efWcNn4efjx+1f305qWqrL49l6bCsR+yJ48NoHPf7gX6Uylfjgpg/Yemwrr614zalrlFSLiFzMrUm1SF6yFn1pVaPVZcee6/kc5fzL8belf/N0WCXKK8tfYcz8MVpU5xLxZ+P5LfY3BgVfXvUjN42rNObTsE/ZeHgjT/70pMtjem/te5T1K8t9He9zedvOGNxyMLdfdTsvLX/JqWonMQkxVCpT6UJ9bxGR0k5JtXhNVFwUBpPjnMzaFWrzl+v+wtyouaw6uMoL0RV/yeeTeW3la3y6+VM+WP+Bt8O5oizevRiLZWDzvOdTXyqsVRiPdXmMyWsnMy9qnsviOZFyghmRMxjZdiTVy1d3WbsF9e7Ad6kQUIEHvnuADJuR57kxCTG0qN7CbYvTiIgUN04l1caY2saYT4wx4Y73bYwx3hlOkRIjKj6KJlWaUM4/5zJek7pNok6FOlq+vJAW7FjAqdRTBFcL5onFT1yoCS6ZUz9qlK9BSL2Czzh7rd9rhNQLYcyCMew7sc8l8Xy++XPOnj/r0QcUc1IrsBZv9n+TlQdX8sG6vP8hlpVUi4hIplyTamPMncaYOo63n5H5wGE9x/sY4DH3hiYlXVR81GXzqbMLDAjkhV4vsOrgKubvmO/ByDzj8OnDbDy80W3tz4icQcNKDYm4O4JA/0BGzR3l9ENoJVmGzeDHXT8yIHgAPqbgX9YF+AYwe/jszJJ8X40gJS2lyPG8t+49ujXoRqe6nYrUlivc1f4u+jfrz19//isHTh7I8ZzUtFT2ndhHi2pKqkVEsuT1G2Up8JbjdQ1r7RwgAy5U9sivTrVIrtIz0olJiLms8sel7u14L61rtOapJU9xPv28h6Jzv6+2fcVV719F14+7ciTpiMvbP5J0hEW7FjGq3SjqV6rPR4M/YuPhjfwj4h8uv1dxs/7QeuLPxudbSi8vzao147Owz1h3aB1jvxtbpG9Sftr9EzuP7/T6KHUWYwzTbp5Ghs1gwg8TcvzZdifuxmI1Ui0ikk2uSbW19hCQVfrujDGmOo4VEY0xXYGT7g9PSqr9J/eTkpaS40OK2fn5+PFa39eISYjhk02feCg69zmdepox88cw4usRNKrciPMZ5/lko+t/rlm/zyLdpjO6/WgAhrUexr0d7uXVla+y8sBKl9+vOClIKb28DGs9jL/3/DszI2fy1pq38r8gF1PWTaF2YG1ubXNrkeJxpSZVmvDyDS+zcOdCZm2dddlxVf4QEblcnt99WmuzEudJZC7c0swYsxKYATzi5tikBMuqLpDfSDXAzS1u5vrG1/N8xPOcTj1dqPvtPr6biH0RrIldw+Yjm4mOj2b/if0cTTrKyZSTpKalun3e9m+xv9FxWkc+3/I5z17/LOseWEefpn34cOOHpGe49oufGZEzCKkXQpuabS7se2fAOzSp0oTR80ZzKvWUS+9XnITvCqdLgy4ueSDw2Z7PMrz1cJ786UkW7VpU4Ov3JO7hh5gfGHvNWAJ8A4ocjys93PlhutTvwqM/Pkr82fiLjmUl1c2rN/dGaCIiVyRnJxRuA3oC1wHjgKsAPfUkhZZVTi+vOdVZjDH8q9+/OHbmGP9e/W+n75Gekc73Md9z4xc3Ejw5mN6f96bbJ93oOK0jrd9rTZN3mlDn33Wo8loVyr5cFt8XfCn/cnmqvVaNev+uR/up7Xlz9ZucSDlR6J8zK46Xlr1E9+ndSctI49d7fuWF3i/g7+vPhJAJHDh5gIU7FxbpHtn9fvR3Nh/ZzF1XX7zMdcUyFZk5bCb7T+7n0R8fddn9ipO4M3Gs+2NdgUrp5cXH+PDZ0M+4quZV3PHNHexM2Fmg6z9Y9wE+xodx14xzSTyu5Ovjy8dDPuZEygkeX/T4RcdiEmKoU6EOlcpU8lJ0IiJXHj8nz1ttre1EZnINgDFmI+D9p2qkWIqKi6JWYC2qlavm1Pmd63dmxFUjeGPVG4y7Zhx1K9bN9dzE5ESmb5rO++vfZ0/iHupVrMeLvV+ke8PupKanknw+mZS0lAtbctol7x3Ht8dv54nFT/DsL89y19V38XCXhy8a+XXG/hP7uXPenaw4sIKRbUfy/k3vU6VslQvHh7QcQt0KdZm6YSqDWw4uUNu5mRk5Ez8fP+5oe8dlx65reB1P93ial5e/zOAWg7ml9S0uuWdxsWj3okKV0stLhYAKzL9jPtd+dC1hs8NYc/8ap5LNs+fP8smmT7il9S3Ur1TfZfG4UttabXm6x9O8uOxFRrUbxYDgAYAqf4iI5CTPpNpR/aM+UM4Y0xHIKkhaCSjv5tikBItOiHZq6kd2L9/wMnOj5vKPX//B1JunXnY88mgkU9ZO4YvIL0hOSya0USiv9nmVoa2G4u/rX6g4Nx/ZzOTfJvPp5k+ZumEqfYP68kjnRxjUfFC+q97N+n0W438Yj7WWL4Z9wairR112jr+vP/d3up+Xlr3E3sS9NK3atFBxZknPSOeLyC8Y1HxQrisFPt/zeX7c9SMPfPcAXRt0pV7FejmeVxKF7wqnVmAtl1fZaFq1KV/d9hX9ZvZj1NxRfHv7t079/5GYknjFPKCYm2dCn+Hr7V8z7vtxbJ2wlYplKrIjYQdDWgzxdmgiIleU/KZ/3Ai8ATQA3gT+7dgmAVrqTgrFWktUXFS+DyleKrhaMBNCJvDxxo8v1FxOy0jj6+1f0/OznrSf2p4vIr9gVLtRbB63mWX3LuO2q24rdEIN0KFOBz4J+4TYSbG8csMrRMVFMWT2EFpMacFbq9/KcWrIyZSTjJ43mj/N/RNta7Vly/gtOSbUWR7o9ADGGD7c8GGh48zy896fOZx0+LKpH9n5+/rzxS1fkHw+uVSttpiekV6kUnr56d20N+8MeIfvY77nuV+ey/Ncay1T1k2hXa12hDYKdXksrlTGrwwfD/mYgycP8szSZziRcoJjZ45ppFpE5BL5Paj4ubW2N3CPtbZ3tm2ItXauh2KUEubYmWMkpiQWeKQa4Nnrn6W8f3kmLZrEy8tepuk7Tbntq9s4cPIAr/d9ndhJsXw05CPa12nv0phrlK/B06FPs/fRvcy5dQ71KtZj0uJJNHizAQ/+8OCFBy9XHlhJh2kdmPX7LF7o9QK/3vNrvqPPDSs3ZHCLwXyy6ZMi15GesWUGVcpW4eYWN+d5XqsarXij/xss2r2I99a9V6R7FhfrDq3jePLxIpXSy8+D1z7I/R3v55UVr/Dfrf/N9bxVB1ex+chmHur8ULFYkfC6htcx8dqJTFk7hRlbZgCq/CEicqk8k2pjzJ2Ol02MMZMu3TwQn5RABXlI8VI1A2vy1x5/JXxXOP/3y//RukZr5t8xn10P7+LJ7k86PUe7sPx9/bntqttYfu9yNo7dyIirRjB903TavN+Grh935frPrsfH+LBizAqe7fksfj7OPbYwPmQ8cWfjmBtV+H+rnk49zdyoudx+1e2U8SuT7/kTQiYwMHggT/705IV/FJRkC3cuxMf40L9Zf7fdwxjDeze9R/eG3bl3/r1sOrwpx/OmrJtC5TKVGdUu928wrjSv9HmFBpUa8MTiJwAl1SIil8rvO9BAx58VgIqXbBXcGJeUYAUpp5eTSd0mMWXgFKImRrF49GKGtByS7/xVd+hYtyPTw6Zz8PGDvHzDy5xMPck97e9h07hNdG3QtUBt9W/Wn6CqQXywPu+lofPyTdQ3JKclc1f73Kd+ZGeMYXrYdCoEVCgVqy2G7wqna4Oubv+HV4BvAN+M+Ibq5asTNjuMY2eOXXT88OnDfL39a8Z0HENgQGAurVx5KpapyLSbp5GWkYaP8SGoapC3QxIRuaLkN/1jmuPlEmvtP7JvwM/uD09Kouj4aAL9A2lQqUGhri/rV5aJnScWeE62u9QMrMnfQv9G1MQoPgn7pFBlxrLKqi3bv4xtx7blf0EOZkbOpFnVZnRr0M3pa+pUqMNHgz9i05FN/D3i74W6b3FwNOko6w+td1kpvfzUrlCbb2//lrizcQyfM/yif7B8uOFD0jLSePDaBz0SiysNbD6Q+zreR+f6nZ36NkREpDRx9mmdyU7uE8lXVHzmQ4rFYS6pJ93b4V4CfAOYtmFa/idf4sDJA/yy9xfuan9Xgf+7Dm01lDEdxvDqildZvn95ge9dHCzanbkwiytL6eXnmnrXMH3IdFYcWMEj4ZlrZZ1LP8fUDVMZGDyQ4GrBHovFlT4a/BErx5TuVTlFRHKSX0m9bmQu+FLzkjnUlQDPf98uJUJUfBS9mvTydhhXnJqBNbm1za18vuVz/tnnnwWaGvBl5JdYLHdefWf+J+fg7QFvE7E/gtHzRhM5IbLELeoRviuc2oG16VCng0fvO7LdSCKPRvLqyldpX7s91cpV40jSkSu+jF5ejDEY9A9iEZFL5TdSHUDm3Gk/Lp5PfQq41b2hSUl0OvU0sadiCz2fuqSbEDKBU6mnmLV1ltPXWGuZETmD0EahhZ7nmrXa4sFTBy+MqpYUaRlpLNq1iIHNB7qllF5+XrrhJW5qfhOP/PgIzyx9hqCqQRcWURERkZIjvznVvzrmT3e9ZE71m9bagq3HKwIX6ksrqc5Z94bdaVurLVPXX764TW7WH1pPdHy00w8o5ua6htfxtx5/4/Mtn/PL3l+K1JarJCYn8ubqN7n6g6t5ZfkrhaqpvfaPtSSmJLq1lF5efH18+fKWLwmuFszuxN1MvHaiV5J7ERFxL2f/Zi9jjPnQGLPYGLM0a3NrZFIiZSXVV8pDhlcaYwzjrxnPhsMbWPfHOqeumbFlBmV8y3Brm6J/efTM9c9QO7A2r658tchtFcXvR39n3HfjaPBWZgm3pHNJPLP0GR778TEybEaB2lq4cyG+xpd+Qf3cFG3+KpetzHcjv+OxLo9xf6f7vRaHiIi4j7NJ9VfAJuD/gCezbSIFEhUfhZ+PX7F9SMsTRrcfTaB/oFPl9c6ln2PW1lmEtQqjStkqRb53Wb+yPNb1MRbvXpxrjWV3SctI45vt39D7895cPfVqZkTOYGTbkWwat4ldj+zi8a6P8+7ad7lr3l2cTz/vdLvhu8Lp1rAbVctVdWP0+QuuFsxbA94qcfPVRUQkk7NJdZq19gNr7Vpr7Yasza2RSYkUFR9FcLXgIi0dXtJVKlOJUe1GMXvrbBKTE/M8N3xnOAnJCXkuS15Q40PGUzGgIq+vet1lbeYl7kwc/1z+T4LeCeLWr25l34l9vN73df6Y9AcfD/mYDnU64GN8+Hf/f/PKDa/w5e9fMvS/Qzl7/my+bR9JOsLGwxs9VkpPRERKL2eT6u+MMQ8aY+oaY6plbW6NTEqkqLgozad2wviQ8SSnJV9YEjo3MyNnUiuwlktXCaxStgrjrhnHnG1z2JO4x2XtXmrDoQ3c8+09NHyrIX9b+jda1miZ5+qYxhieDn2aaTdPI3xnOP1n9udEyok87/Hjrh8Bz5bSExGR0snZpPpuMqd7rAI2OLb17gpKSqZz6efYdXyXkmondKzbkS71uzB1w9RcH847nnyc72K+409t/+Tykf/Huj6Gr/HlzdVvurRdgB3xO5i4cSIhH4XwTdQ33N/pfrY/uJ2fRv/k1OqYY68Zy5zb5rDu0Dp6ftaTw6cP53pu+K5w6laoS/va7V39Y4iIiFzEqaTaWts0h01r1EqB7D6+m3SbrocUnTQhZALR8dFE7IvI8ficbXM4l36uyFU/clK/Un1GXz2a6ZumE3cmzmXtWmu5b8F9xCbH8s6Ad4h9PJYpg6bQumbB/qF1a5tb+eFPP7D7+G56fNqD3cd3X3ZOWkYai3cvZmDwQC00JCIibud0XSdjTFtjzAhjzF1ZmzsDk5InKj4KoMAJVGk14qoRVC1blakbci6vN2PLDNrWauu2BU3+fN2fSU5LZvJa1y2eOmvrLFYeXMm4oHE80uURKpetXOi2+gb1ZendSzmRcoLu07uz5ciWi46viV3DiZQTmvohIiIe4VRSbYx5nsxlyScDvYHXgSFujEtKoKi4zKRaI9XOKedfjns63MPcqLkcSTpy0bGdCTtZHbua0VePdtsobOuarQlrGcaUtVNIOpdU5PaSziXx5E9PElIvhAF1XLP4Sef6nVlx7wr8ff3p+VlPVhxYceHYlVBKT0RESg9nR6pvBfoAR6y19wLtgTJui0pKpKj4KBpWakiFgAreDqXYGB8ynrSMND7Z+MlF+2dGzsRgGNVulFvv/1T3p0hMSbzs/oXxz+X/5NDpQ7w74F2XLn7SumZrVo5ZSZ0Kdeg3sx8/xPwAZM6n7t6oe5FGw0VERJzl7G+2ZGttBpBmjKkEHAM0p1oKJDo+WlM/CqhF9Rb0adqHDzd+SHpGOgAZNoOZkTPpG9SX+pXqu/X+3Rp2I7RRKG+uebNAtaEvtfv4bt5Y/Qajrx5Nt4bdXBhhpkaVG7H83uVcVfMqwmaH8caqN9h8ZLNK6YmIiMc4m1SvN8ZUAT4is/LHRmCt26KSEifDZhAdH02r6pr6UVATQiZw4OQBwneFA7DywEr2ndjnlgcUc/JU96c4cPIAs7fOLnQbkxZPIsA3gFf7um+lxpqBNVl691Kub3w9T/6UuTaV5lOLiIinOFv940Fr7Qlr7VSgH3C3YxqIiFNiT8Vy5vwZjVQXwpCWQ6hboe6FFRZnbJlBoH8gw1oN88j9BzYfyFU1r+L1Va/nWt4vL4t2LWLBjgU8e/2z1KtYzw0R/k+lMpVYOGohd7S9g2vrXUu7Wu3cej8REZEszj6oeH3WBjQCqjheizgl6yFF1aguOH9ff+7vdD/hO8OJiotizvY53NrmVgIDAj1yfx/jw1+6/4Wtx7ZeGC131vn08zy26DGCqwXzaJdH3RThxcr6lWXW8Fn8dv9vKqUnIiIe4+z0jyezbc8C3wF/d1NMUgKpnF7RPNDpAYwxjPh6BKdST3ls6keWkW1H0rBSQ15b+VqBrpuydgrR8dG8fePblPHz7LPNSqhFRMSTnJ3+MTjb1g9oCxx1b2hSkkTHR1OtXDVqlq/p7VCKpYaVG3Jzi5vZemwrDSs1pFeTXh69v7+vP5O6TWLZ/mWsiV3j1DVHk47y91//zsDggdzU4iY3RygiIuJdha1rFUtmYi3ilKj4KFrVaKXRwyKYEDIBgFHtRrm0JJ2z7u90P1XLVnV6tPqZpc+QfD6Zt258y82RiYiIeJ+fMycZYyYDWU8o+QAdgC25XyFysai4KIa01HpBRdG/WX8+GfKJxx5QvFSFgApMvHYiLy9/ObOSSx6L+Kz7Yx3TN03niW5P0LJGSw9GKSIi4h1Ol9Qjs5TeBmA18JS19k63RSUlSsLZBOLOxukhxSLyMT6M6TiGquWqei2Gh7s8TBm/Mryx6o1cz8mwGTzy4yPUCqzFsz2f9WB0IiIi3uNsUv0VsMmxfW2tXem+kKSk0UOKJUetwFqM6TCGmZEzOXT6UI7nfBn5JWti1/Bq31epVKaShyMUERHxjjyTamOMvzHmbeAg8CnwObDHGPNXx/GO7g9Rirvo+GhA5fRKiieue4K0jDTeXvP2ZcdOp57mL0v+Quf6nT1eoURERMSb8hup/jdQAWhirb3GWtsRaA0EGWM+AOa6O0Ap/qLioijrV5ZGlRt5OxRxgaCqQdzW5jamrp/KiZQTFx17efnLHEk6wrsD3vXKw5QiIiLekt9vvUHAA9ba01k7rLWngAnAHcBIN8YmJURUfBQtq7fE18fX26GIizzV/SlOnzvNtPXTLuzbmbCTN1e/yT0d7qFLgy5ejE5ERMTz8kuqM2wO6xJba9OBOGutcwVrpVSLio/SfOoSpmPdjvQL6sfbv71NSloKAJMWT6KsX1n+2eefXo5ORETE8/JLqrcbYy6bGGmMuROIck9IUpKcPX+W/Sf2az51CfRU96c4knSEmVtmsnDnQr6P+Z7nej5HnQp1vB2aiIiIx+VXp3oiMNcYM4bMcnoWuBYoB3inWK4UWvzZeG6dcytBVYP4V79/Ub18dbffMyYhBotVUl0C3dD0BjrV7cS/Vv0LYwwtqrfgkS6PeDssERERr8hzpNpa+4e1tgvwArAPOAC8YK3tbK39wwPxXTHmR8/nzdVvcvb8WW+HUigJZxPoO6Mva2LXMDNyJq3fa83srbPJYXaPS0XFZX6hkddCIVI8GWN4qvtT7Dy+k5iEGN6+8W0CfAO8HZaIiIhXOPV4vrV2qbV2srX2XWvtz+4O6koUviucJxY/QdA7Qby95m2Szye7rO0Mm8H3Md/Td0Zf7px7p8sT98TkRPrN7Ed0fDQLRi5gw9gNNKnShJHfjGTI7CEcPHnQpffLLio+Ch/jQ4vqLdx2D/Ge4a2H06ZmG4a2GsrA5gO9HY6IiIjXqOaVk6bePJVl9yyjTc02PL7ocZq924x3f3v3wkNahZGSlsJHGz7iqvevYvCswWyP286srbPo+VlPDp8+7JK4T6ScoP8X/dkWt425t8+lf7P+XF37albft5o3+7/J0r1LafN+G95b+x4ZNsMl98wuKj6KoKpBlPEr4/K2xft8fXxZ/8B65tw6x9uhiIiIeJWS6gIIbRzK0ruXEnF3BC2qt+DRHx+l2bvNmLJ2SoGS6/iz8bzw6ws0frsxY78fSzm/cnx5y5fsf2w/397+LVFxUXT5uAtbjmwpUrwnU05y4xc3suXIFr6+7WsGNR904Zivjy+Pd3ucrRO2cl3D63go/CFCPw1le9z2It3zUlFxUZpPXcKV8y+Hv6+/t8MQERHxKiXVhdCzSU8i7olg6V1LaVa1GQ+HP0zwu8G8v+59UtNSc71uZ8JOHvzhQRq91YjnI54npF4IS+9ayoaxG/hTuz/h7+vP4JaDWTFmBRk2gx6f9mDhzoWFivFU6ikGfDmAjYc38tVtXzG45eAcz2tatSk/jvqRGUNnEB0fTcdpHXnh1xc4l36uUPfNLi0jjZ3HdyqpFhERkRJPSXUR9G7am1/v+ZUlo5fQpEoTJi6cSPDkYD5Y98GF5Npay8oDKxn232G0nNKSTzZ9wp/a/YltD27jhz/9QO+mvTHGXNRuhzodWPvAWlpUb8HgWYOZ/NvkAsWVdC6JQV8OYt0f6/jvrf8lrFVYnucbYxjdfjRRE6MY3no4z0c8T6dpnVh9cHXB/oNcYm/iXs6ln9NDiiIiIlLiKakuImMMfYL6sPze5fw0+icaVW7EgwsfpPnk5rz464tcN/06enzag2X7l/FM6DPsf2w/Hw/5mDY12+TZbr2K9Vh2zzIGtxjMIz8+wsMLHyYtIy3feM6cO8NN/7mJNbFrmDV8Fre0vsXpn6VWYC3+M/w/fD/ye06lnqL79O48Ev4ISeeSnG4ju6j4zMofWvhFRERESjol1S5ijKFvUF9W3LuCRXcuon6l+jwX8RxxZ+KYMnAKBx47wIs3vFighTECAwL5ZsQ3PNHtCaasm0LY7DBOp57O9fyz588yeNZgVhxYwcxhM7ntqtsK9bPc1OImtj24jYnXTmTK2il0mNqB+LPxBW4nq5yepn+IiIhISaek2sWMMfRv1p9VY1ax+5Hd7HhoBxM7TyQwILBQ7fn6+PJG/zeYetNUFu1aRPfp3Tlw8sBl5yWfTyZsdhgR+yL4fOjnjGw3skg/R8UyFZk8aDK/3P0LsadiGTV3FOkZ6QVqIyo+iroV6lK5bOUixSIiIiJypVNS7SbGGIKqBuHr4+uS9saFjCN8VDj7T+6ny8ddWH9o/YVjKWkpDP3vUH7e8zOfhn3KnVff6ZJ7QuZDmZMHTmbx7sW8tOylAl0bHR+tqR8iIiJSKiipLkb6NevH6vtWU9avLNd/ej1zo+aSmpbKLf+9hcW7F/PxkI+5u8PdLr/v/Z3u5+72d/OPX//Bol2LnLrGWktUfBStqushRRERESn53JpUG2MGGGN2GGN2GWP+msPxVsaY1caYVGPMn90ZS0nRpmYb1ty3hvZ12jN8znCu/ehawneFM+3maYzpOMYt9zTG8P5N79O2VltGzR2V4/STSx1OOsyp1FMaqRYREZFSwW1JtTHGF3gPGAi0AUYaYy4teXEceAR4w11xlES1K9Rm6V1Luf2q2/n92O+8P+h9xl4z1q33LO9fnq9HfM259HOM+GpEvnWs9ZCiiIiIlCbuHKnuDOyy1u6x1p4DZgMXFUy21h6z1q4DzrsxjhKpnH85Zg2fxaFJh5hw7QSP3LNF9RZ8GvYpv/3xG39enPcXCyqnJyIiIqWJO5Pq+sDBbO9jHfvERYwx1K1Y16P3HN5mOI93fZzJaycze+vsXM+Ljo+mUplK1K3g2fhEREREvMHPjW2bHPbZQjdmzFhgLEDt2rWJiIgobFNSRIP8B/FTpZ+4d969pO5PpXFg48vOWbVzFfUC6vHrr7861WZSUpL6tBRRf5c+6vPSRf1duqi/M7kzqY4FGmZ73wA4VNjGrLUfAh8ChISE2F69ehUpOCmaH0N+pOO0jry27zXWPrCWCgEVLjp+ZMMR+jfrj7P9FBER4fS5Uvypv0sf9Xnpov4uXdTfmdw5/WMd0NwY09QYEwDcASxw4/3Eg+pXqs+s4bPYkbCDcd+Pw9r/fQlxMuUkh5MO6yFFERERKTXcllRba9OAh4BFQBQwx1q7zRgz3hgzHsAYU8cYEwtMAv7PGBNrjKnkrpjEtfoE9eGFXi/wn9//wwfrP7iwXw8pioiISGnjzukfWGsXAgsv2Tc12+sjZE4LkWLq6dCnWRW7isd+fIyQeiF0rt+Z6PhoQOX0REREpPTQiopSJD7Gh5nDZlKvYj1u++o2Es4mEBUXRYBvAE2rNvV2eCIiIiIeoaRaiqxauWp8PeJrjiQdYfS80WyL20bzas3x83HrFyEiIiIiVwwl1eISIfVCeGfAO4TvCmfhzoWaTy0iIiKlipJqcZlx14xjVLtRWKzmU4uIiEipou/nxWWMMUy7eRqB/oGMuGqEt8MRERER8Rgl1eLW/cfEAAAGWElEQVRSgQGBTBs8zdthiIiIiHiUpn+IiIiIiBSRkmoRERERkSJSUi0iIiIiUkRKqkVEREREikhJtYiIiIhIESmpFhEREREpIiXVIiIiIiJFpKRaRERERKSIlFSLiIiIiBSRkmoRERERkSJSUi0iIiIiUkRKqkVEREREikhJtYiIiIhIERlrrbdjKDBjTByw39txiEvVAOK9HYR4jPq79FGfly7q79KlJPd3Y2ttTWdOLJZJtZQ8xpj11toQb8chnqH+Ln3U56WL+rt0UX9n0vQPEREREZEiUlItIiIiIlJESqrlSvGhtwMQj1J/lz7q89JF/V26qL/RnGoRERERkSLTSLWIiIiISBEpqRa3MMZMN8YcM8ZsvWT/w8aYHcaYbcaY17Ptf9oYs8tx7MZs+68xxvzuOPauMcZ48ucQ5xWkz40xTYwxycaYzY5tarbz1efFQE79bYz5b7Y+3WeM2ZztmD7jxVhB+luf7+Ivl/7uYIxZ4+jT9caYztmO6fMNYK3Vps3lG3A90AnYmm1fb2AJUMbxvpbjzzbAFqAM0BTYDfg6jq0FugEGCAcGevtn0+aSPm+S/bxL2lGfF4Mtp/6+5Pi/geccr/UZL+ZbAftbn+9ivuXy9/nirP4CBgERjtf6fDs2jVSLW1hrlwHHL9k9AXjVWpvqOOeYY38YMNtam2qt3QvsAjobY+oClay1q23mp3MGMNQzP4EUVAH7PEfq8+Ijl/4GwDEaNQKY5dilz3gxV8D+zpH6u/jIpb8tUMnxujJwyPFan28HJdXiSS2AUGPMb8aYX40x1zr21wcOZjsv1rGvvuP1pful+MitzwGaGmM2OfaHOvapz0uGUOCotXan470+4yXbpf0N+nyXRI8B/zLGHATeAJ527Nfn28HP2wFIqeIHVAW6AtcCc4wxQWR+LXQpm8d+KT5y6/PDQCNrbYIx5hrgW2PMVajPS4qRXDxqqc94yXZpf+vzXTJNAB631n5jjBkBfAL0RZ/vC5RUiyfFAnMdXwOtNcZkADUc+xtmO68BmV8rxTpeX7pfio8c+9xaGwdkTQnZYIzZTeaotvq8mDPG+AG3ANdk263PeAmVU387pnvp813y3A086nj9FfCx47U+3w6a/iGe9C1wA4AxpgUQAMQDC4A7jDFljDFNgebAWmvtYeC0MaarY87eXcB874QuhZRjnxtjahpjfB37g8js8z3q8xKhLxBtrc3+ta8+4yXXZf2tz3eJdQjo6Xh9A5A13UefbweNVItbGGNmAb2AGsaYWOB5YDow3VGi5xxwt2MEc5sxZg6wHUgDJlpr0x1NTQA+A8qR+eRwuCd/DnFeQfrcGHM98IIxJg1IB8Zba7MeilGfFwM59be19hPgDi55YM1aq894MVeQ/iazcoQ+38VYLn+fPwC84/h2IgUYC/p8Z6cVFUVEREREikjTP0REREREikhJtYiIiIhIESmpFhEREREpIiXVIiIiIiJFpKRaRKSUM8aMM8ZU9XYcIiLFmZJqEZFixhgzzBhjjTGtXNDWc8Bxa22iC0ITESm1VFJPRKSYcdSErQv8bK39u5fDERERNFItIlKsGGMqAN2B+8hceANjTC9jTIQx5mtjTLQx5kvHCmYYY/YZY/5hjNlojPk9a3TbGBNojJlujFlnjNlkjAlz7Pc1xvzLsT/SGDPOSz+qiEixoqRaRKR4GQr8aK2NAY4bYzo59ncEHgPaAEFkJt5Z4q21nYAPgD879j0DLLXWXgv0Bv5ljAkkM1k/6dh/LfCAY+lhERHJg5JqEZHiZSQw2/F6tuM9wFprbay1NgPYDDTJds1cx58bsu3vD/zVGLMZiADKAo0c++9y7P8NqA40d8cPIiJSkvh5OwAREXGOMaY6cAPQ1hhjAV/AAguB1GynpnPx3++pOew3wHBr7Y5L7mGAh621i1z/E4iIlFwaqRYRKT5uBWZYaxtba5tYaxsCe4EehWhrEfBwtrnXHbPtn2CM8Xfsb+GYFiIiInlQUi0iUnyMBOZdsu8b4E+FaOtFwB+INMZsdbwH+BjYDmx07J+GvtUUEcmXSuqJiIiIiBSRRqpFRERERIpISbWIiIiISBEpqRYRERERKSIl1SIiIiIiRaSkWkRERESkiJRUi4iIiIgUkZJqEREREZEiUlItIiIiIlJE/w/FW4Wn9WwzQgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12, 6))\n",
+ "plt.plot(data['Year'], data['PouvoirAchat'], color='green', label='Pouvoir d\\'achat (quantité de blé)')\n",
+ "plt.xlabel('Année')\n",
+ "plt.ylabel('Quantité de blé (quarts de boisseau par semaine)')\n",
+ "plt.title(\"Évolution du pouvoir d'achat des ouvriers (1565-1810)\")\n",
+ "plt.legend()\n",
+ "plt.grid(True)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous pouvons aussi représenter cela sous la forme d'un nuage de points, avec en abscisse le prix du blé et en ordonnée le salaire hebdomadaire des ouvriers."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGECAYAAAD6PtKMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcXFWZ//HPt/fOnpCFQICwKyCgRARZTHDDQQWdGREXcFRQR8RlFlFnRAdx/M0o4zYjgiL7poIggopLQJBFVtkhEMBIyL6n00vV8/vj3k5Xuqu7qytddburv+/X67666tztqVPV3U+de865igjMzMzMzEaKuqwDMDMzMzMr5ATVzMzMzEYUJ6hmZmZmNqI4QTUzMzOzEcUJqpmZmZmNKE5QzczMzGxEcYJqQyZpvqQl27H/eZL+fThjGokkfUnSZVU611GSnhymY10k6Stl7rtQ0of7WTdXUkhq6FVeJ+kGSaeWc84S46rae1FwzpC0Vwnb7Sppo6T6asQ1UknaT9K9Wccxkkg6Q9LXso7DLAtOUMcoSc9Jakv/Mb6UJiUTKnCeD0i6vbAsIj4aEWcP97m2RxYJzHCKiD9ExL5Zx1Gmc4DfRsQF5ezcX+I7WkTECxExISJyWceSsbOBr3c/kXS6pHsltUu6qHDDgvd8Y8Hy7722eZWk29J1yyR9smBd4d+/jZJ+PVBgks6W9LCkLklfKrL+E5IWS1qfxnxkwbp3SfqjpM2SFhbZ92BJ96Xr75N0cMHq84H3SZo5UHxmtcgJ6tj2toiYABwMvBL4XMbxjFhKjMjfl9GamHWLiM9FxLeyjmMkGsmfu+EkaTawAPhZQfGLwFeACwfYdUqa3E8o/NIraTrwS+D7wA7AXkDvJPRtBfu+aZAQFwH/CvyiSOyvAb4G/B0wGfghcF1Bi/hq4JvpNr33bQKuBy4DpgIXA9en5UTEFuBm4ORB4jOrOTX/h88GFxEvAb8iSVQBkNQs6euSXkhbH86T1Fpsf0lnSnpG0gZJj0l6R1r+cuA84PC0lWJtWr7NJWRJp0paJGl1eql3p4J1Iemjkp6WtEbS/0pSP3HUFcSyStI1kqal67pbXE5JX9NKSV9I1x0LfB44MY3zobR8oaRzJN0BbAb2kDRZ0g8lLZX0V0lfKfXSrKTD0paUtZIekjR/gG2fk/S5tD7XSPqRpJZ03XxJSyR9VtJLwI9U0O1C0p5pXb4qfb5T+nqLnk/SKyXdn75/VwMtBev6tIBr8EvXe0q6R9I6Sdd3vwdFzltyXQ703gK3pT/Xpu/f4QPE1n28obwXn03j2yDpSUmvT8sPlXRneoylkr7bnVgUOcZxkh5Q0sL2FxW0wqlXC/D2fu6UXA34saTL0pgflrRP+nlanp7/TQXb75T+3q1W8nt4alq+o5JWvR0Ktj1E0gpJjenzD0p6PP2M/krSbgXblvy7C7wRuD9NyACIiGsj4mfAqv7emwF8BvhVRFweEe0RsSEiHi/jON2xXBwRNwMbiqyeCzwaEfdFcmvGS4DpwMx0399ExDUkCXdv84EG4JtpnN8GBBxTsM1C4LhyYzcbrZygGpLmAG8haSXo9v+AfUiS1r2AnYEv9nOIZ4CjSFoPvgxcJml2+g/ho8CdaSvFlCLnPgb4T+BdwGzgeeCqXpu9FXg1cFC63Zv7ieMM4ATgdcBOwBrgf3ttcySwL/B64IuSXh4RvwS+ClydxnlQwfbvB04DJqaxXQx0pXXySuBNQNE+l71e584krS9fAaYB/wz8VNKMAXZ7b/pa9yR5L/6tYN2O6XF2S+PbKiKeAT4LXC5pHPAj4KKIWFgkriaSVqtL0+P9GPjbwV7PIE4GPkjyHnQB3+5nu6HU5UDv7dHpz+7WtDsHCm4o74WkfYHTgVdHxESS9+O5dHUO+DRJMnI4yWfqH/s57SaSeplCkmx8TNIJA4S5vZ+7t5G8p1OBB0i+gNaR/B7/B0nLYrcrgSUk9fp3wFclvT794rqQ5Heu2/uAqyKiM43/88A7gRnAH9JjFSr1d/cVQDl9qJ9Pv6z9SEmrabfDgNXpl5Dlkn4uadde+16eJtu/lnQQ5bsZqJf0mvRLwweBB4GXSth3f+DPse09x/+clnd7nKT+zMaWiPAyBheSf7IbSVoEAvgtyT94SL7BbwL2LNj+cGBx+ng+sGSAYz8IHJ8+/gBwe6/1FwFfSR//EPivgnUTgE5gbvo8gCML1l8DnNnPeR8HXl/wfHZ6rAaSVo4A5hSsvwd4d/r4S8BlvY63EPiPguezgHagtaDsJOD3/cSz9ZgkCeOlvdb/CjhlgPfnowXP/wZ4pqD+O4CWgvV93hPgBuBhkn94zf2c52iSlh0VlP2x4P0p9v4FsFc/x1sIfK3g+X5prPUF70FDGXVZynvbMMBnsqz3giQhXA68AWgc5HfqU8B1JdbTN4H/SR9vE/8wfe5uKXj+NpLf9fr0+cT0fFOAXUgS7YkF2/8nyRcagBOBO9LH9SRJ16Hp85uBDxXsV0fS4rtbGb+7FxR+bnqt+0p3PAVlE4B5BZ+ln5C0mHavfwpYS5Ict5B8SbqjYP0RQCswjqRr00ukf/8GeY8vA77Uq0wkiXonyZeIlSRfaHrv+2FgYa+yfydJ+AvLLi88B7A3kBssNi9eam1xC+rYdkIkrULzgZeRtARB0hoyDrgvvXy5lqQ/V9HWPkknS3qwYNsDCo41mJ1IWogAiIiNJJf0di7YprAlYjPJP6didiPp+9Udx+Mk/3xnlXGsbn/pdfxGYGnBOb5PeilvELsBf9+9X7rvkSSJVinnfp6krrqtiILLof24gOS9+E5EtPezzU7AXyOisAXn+X62LVXvuBvp+3kYal2W8t6WquT3IiIWkSSeXwKWS7pKaReU9LL5jUoGGa4naYUv+rlPW9d+n7bYrSO5sjDQ78j2fu6WFTxuA1ZGzyCstvTnBJL3f3VEFF66fp6e37/rgf0k7UFyGX5dRNxTENe3CmJaTZKslfO7u4YkcS5JRGyMiHsjoisilpG0cr9J0qSC13hdRPwp/T35MvBaSZPT/e+IiLaI2BwR/0mSzB4FIOlR9QyeOqqEcD5M0mq6P9BE0sp8owq6Kg1gIzCpV9kktu1KMBFYV8KxzGqKE1QjIm4ladXsHkG7kuQP/P4RMSVdJkcyoGobaZ+zC0j+QewQyWX8R0j+UUHSijKQF0n+0XUfbzzJoIa/lvFS/gK8pSDmKRHREhGlHKu/OAvL/0LSkjW94PiTImL/fvbtHdulvWIbHxEDTSGzS8HjXdm2D9uA9apkRoZvkrRQf0n99AMFlgI79+obWHgpdBPJl5Xu4+440Hn7ibuT5DNVaKh1OdB7O9hnrNixSn4vIuKKiDiS5HMaJN1fAL4HPAHsHRGTSFrR+utjeQVJi/YuETGZpG92f9vC8H3uBvMiME1SYXK4K+nvX5rcXUPS3eT9JN0GCuP6SK96bI2IP5YRx59JurGUq7u+uuv0z2xbh73XF9tfABGxf/QMnvpDCec+CPh5RDwVEflIugwtBV5bwr6PAgf2+v07MC3v9nLgoRKOZVZTnKBat28Cb5R0cETkSZLO/1E6vYmknSUV6z82nuSP+4p0u38gabXrtgyYo34Gj5D84/4HJVOtNJO0Qt0dEc+V8RrOA87pHqghaYak40vcdxkwVwOMmI6IpSQjgb8haZKSgTt7SnpdCce/DHibpDdLqpfUomRg05wB9vm4pDlpcvl54OoSXwvAt4D7IuLDJP0tz+tnuztJLkueIalB0juBQwvWPwTsn74/LSQtiYN5n5I5LceR9Hf8SfSaQqmMuhzovV0B5IE9SogNhvBeSNpX0jHpZ3MLyRe37tcyEVgPbJT0MuBjA5xzIklL5RZJhwLvKTHW7f3cDXbsv5B06fjPtB4OBD5Ecpm52yUkXT3eTlJ33c4DPidpf9g66O3vywzlFuBV6WeM9HgN6fN6kj6eLeoZSPaa9L2pUzKI69skl8+7Wxp/BLwj/dw2klxKvz0i1iqZd/YISU3pMf+FpDX7jv6Ck9SYxlIHNKT7dQ9S+xNwnKQ9lHgjSbL9SLpvfbpvA1CX7tuY7ruQ5PN0hpKBqaen5b8rOP3rSLpTmI0pTlANgIhYQfKPqHsuwc+SDJq6K718+RuSwUW993sM+AZJorOMZLBD4R/635G0BrwkqXcrGhHx2/ScPyVpddgTeHeZL+NbJK1Uv5a0AbgLeE2J+/44/blK0v0DbHcyyWW8x0guS/6EgS/TA1sTgeNJEs0VJK1P/8LAv4NXkCQmz6ZLSZPnp4nbsSSXkSEZ0fwqSe8tElcHySCXD6Sv50Tg2oL1T5Ekmb8BngZu732MIi4laZF/iaT/3xn9bDeUuuz3vY2IzSRzqd6RXm4+bKDghvheNJNMD7QyfT0z0/0gGVz1HpLLsRcw8BeIfwT+I439iyStkkNR1ueuRCeR9IN9EbgOOCsibuleGRF3kHwBuL/wi2NEXEfSmnxV+jfiEZLBlkOWXqb/Hcn70u3fSL4QnEly2byNnoGCe5B0O9qQnrc9fR3dx/sdyfv0C5I+xHvR86VgIknr9xqSluJjSVrnB5ot4IL0/CcBX0gfvz9ddwnJwM6FJF9Yvk3SsvxEuv796fbfI+lG0JYer/v37wSS93ctSVeBE9Jy0sT2b0gGyZmNKdq265mZjQSSngM+HBG/yToWM0m/A66IiB9U8Bz7kSRih4b/MQHJDQBIuoX8a9axmFWbE1SzEcgJqo0Ukl5Ncgl+l16DqczMKsaX+M3MrChJF5N07/iUk1Mzqya3oJqZmZnZiOIWVDMzMzMbUZygmpmZmdmI0pB1AKWYPn16zJ07N+swhsWmTZsYP3581mGMCK6LhOuhh+uih+uih+si4XroMVx1cd99962MiKJ3SayWNy8YH6tW5wbfsB/3/bn9VxFx7DCGNCKMigR17ty53HvvvVmHMSwWLlzI/Pnzsw5jRHBdJFwPPVwXPVwXPVwXCddDj+GqC0nbe2vn7bZqdY57frXr4Bv2o37206XeWnxUGRUJqpmZmVktCiBPPuswRhwnqGZmZmaZCXLhBLU3J6hmZmZmGUlaUD3lZ28exW9mZmZmI4pbUM3MzMwy5D6ofTlBNTMzM8tIEOR8V88+nKCamZmZZch9UPtyH1QzMzMzG1GcoJqZmZllJIAcUfZSCkkXSlou6ZGCsoMl3SXpQUn3Sjq0YN3nJC2S9KSkNxeUHyLp4XTdtyVpOOuiUMUSVEktku6R9JCkRyV9OS2fJukWSU+nP6dWKgYzMzMbXSLaiS2/JDZfQXQtyjqcqsgTZS8lugjofTvU/wK+HBEHA19MnyNpP+DdwP7pPv8nqT7d53vAacDe6VKxW6xWsg9qO3BMRGyU1AjcLulm4J3AbyPia5LOBM4EPlvBOMzMzGwUiM7HidUnA10Qyf3po/U4NOmrVLCxLlMBFR8kFRG3SZpb5NST0seTgRfTx8cDV0VEO7BY0iLgUEnPAZMi4k4ASZcAJwA3VyLmiiWoERHAxvRpY7oEyQufn5ZfDCzECaqZmdmYFhHEmo9CrNt2RdtN0HQEtL41m8CqYDsnmZou6d6C5+dHxPkl7Pcp4FeSvk5yRf21afnOwF0F2y1JyzrTx73LK6KifVAl1Ut6EFgO3BIRdwOzImIpQPpzZiVjMDMzs1Gg6/G+ySkAbcTmq6seziiyMiLmFSylJKcAHwM+HRG7AJ8GfpiWF2uqjgHKK6Ki00xFRA44WNIU4DpJB5S6r6TTSPo5MGvWLBYuXFiZIKts48aNNfNatpfrIuF66OG66OG66OG6SNR8PUQb5D4C5Pqu0zioX7j1aS3VRQxhsNMwOwX4ZPr4x8AP0sdLgF0KtptDcvl/Sfq4d3lFVGUe1IhYK2khSWfaZZJmR8RSSbNJWleL7XM+cD7AvHnzYv78+dUIteIWLlxIrbyW7eW6SLgeerguerguerguErVeDxGdxPLXFmlFbYWJ/0rd+PlbS2qqLgJy2UyD+iLwOpKulscAT6flNwBXSDoX2IlkMNQ9EZGTtEHSYcDdwMnAdyoVXCVH8c9IW06R1Aq8AXiC5IWfkm52CnB9pWIwM7Pak8+tomPTxbRv+C65joeyDseGidSIppwLtABNaeE4aNwPjfv7LEOrqCDpg1ruUgpJVwJ3AvtKWiLpQ8CpwDckPQR8lfSqdUQ8ClwDPAb8Evh4ekUckm4BPwAWAc9QoQFSUNkW1NnAxenUBHXANRFxo6Q7gWvSynkBqN1PnZmZDauuLbexec2pEAF00r7hOzS0HkvrlG/W7CjvsUTNR8GMXxFt10FuBWo+Eprn0zPLUS0SuaLdO4dPRJzUz6pD+tn+HOCcIuX3AiV319welRzF/2fglUXKVwGvr9R5zcysNkW0s3nNR5O+ilu10bXlV3Rt+TWNrW/ud18bPVQ/G034x6zDsIz5TlJmZjYq5DruKb4iNtO5+cfVDcZsmASQj/KXWlWVQVJmZmZmVlylL/GPRk5QzcxsVKhvOpSiUzFqHI01PIjGalvgBLUYX+I3M7NRQWpm3NTvgVpJRnrXA600tBxLQ8ubMo7OzIaTW1DNzGzUaGg5mgkz/0jXlhuJ/AYamo+ivumgrMMy2y75cAtqb05QzcxsVKmr34Gm8acMvqHZKOBL/MU5QTUzMzPLSCBy7nHZhxNUMzMzswz5En9fTtnNzMzMbERxC6qZmWUioostbb+gre1G6uomM278+2hqOjjrsMyqyn1Qi3OCamZmVRfRxaqV76az80EiNgN1bG67jkmTPseECR/OOjyzKhK58AXt3lwjZmZWdVvaflGQnALkIdpYv+4c8vk1mcZmVk0B5Kkre6lVtfvKzMxsxGpru7EgOe0hNdLefmcGEZllJ4fKXmqVE1QzM6u6urpJ9PcvSBpX3WDMbMRxgmpmZlU3bvz7QM19V6iJ5uYjqh+QWUYikj6o5S61qnZfmZmZjVhNTa9k0qQzgWakCclSN5UddrgCqTHr8MyqKo/KXmqVR/GbmVkmJkw4ldbWd9LRcSfSBJqbj3ByamNOMs2U2wt7c4JqZmaZqa/fgdbWt2YdhpmNME5QzczMzDLjeVCLcYJqZmZmlpHueVBtW05QzczMzDKUi9od7FQuJ6hmZlaSXH4dqzecz8bNv6CubiJTJ36Iia3HI/mfq1m5AnmQVBFOUM3MbFD5/GaeX/YWurqWErQD8NLqx2kb/wCzpn454+jMrNY4ZTczs0Gt23Q1XV3LtianABGbWbfxEjq7lmYYmdnol4+6spda5RZUMzMb1KYtCwna+pRLjWzpeIDGhtkZRGU2+nke1OKcoJqZ2aAaG3YG6oHcNuVB0FA/I5OYzGpBIA+SKsIpu5mZDWrKhA8gNfUqraehfiYtTfMyicnMapcTVDMzG1Rz4z7stMP/UVc3FWk8UgvNjfuzy4yrPYrfbDvlqSt7qVW+xG9mZiWZ0Ppm9trpIdo7n6K+biKNDbtkHZLZqBeB7yRVhBNUMzMrmdRAS9N+WYdhVkNEHl+F6M0JqpmZmVlGAregFuMaMTMzM7MRxS2oZmZmZhnyPKh9OUE1MzMzy0gg8p4HtQ8nqGZmZmYZcgtqX05QzczMzDISQN6DpPpwjZiZmZnZiOIWVDMzM7PMiJznQe3DCaqZmZlZRnyJvzgnqGZmZmYZcgtqX07ZzczMzGxEcQuqmZmZWUYi5Ev8RThBNTMzM8tQzglqH05QzczMzDISQN59UPtwgmpWpoggl19LXV0rdWrJOhwzMxuV5BbUIpygmpVhXdtCnlv9BTpzywExbfzb2W3q2dTXtWYdmpmZ2ajnBNVsiDZ1PMKilR8jH21by1Zv/jm5/Hr2nnF+hpGZmdlok8yD6kv8vTlBNRuipeu+Rz62bFMW0c66tlvp6HqJpoYdM4rMzMxGo5xn/ezDCarZEG3pWkzynXdbUhMdub86QTUzs5IFcgtqEU5QzYZoQvMhtHU+BXRtUx7RQUvjXtkEZWZmo1beLah9VKxGJO0i6feSHpf0qKRPpuVfkvRXSQ+my99UKgazSpg96SPpqP2eb7x1amXmxJNpqJucXWBmZmY1opItqF3AP0XE/ZImAvdJuiVd9z8R8fUKntusYpob5rDfjtezZO1/sWHLXTTUT2HHiacyY8J7sw7NzMxGmQjI+RJ/HxVLUCNiKbA0fbxB0uPAzpU6n1k1tTbuyd4zvp91GGZmVgPcB7WvqnR6kDQXeCVwd1p0uqQ/S7pQ0tRqxGBmZmY20iSDpOrKXmqVIvqORh7WE0gTgFuBcyLiWkmzgJUkw6DPBmZHxAeL7HcacBrArFmzDrnqqqsqGme1bNy4kQkTJmQdxojguki4Hnq4Lnq4Lnq4LhKuhx7DVRcLFiy4LyLmDUNIZZu53w5x4mXHlr3/dw+5IvPXUAkVHcUvqRH4KXB5RFwLEBHLCtZfANxYbN+IOB84H2DevHkxf/78SoZaNQsXLqRWXsv2cl0kXA89XBc9XBc9XBcJ10OPWquLHL7E31slR/EL+CHweEScW1A+u2CzdwCPVCoGMzMzs5Gs+05S5S6lSLtULpf0SEHZ1QUzKj0n6cG0fK6ktoJ15xXsc4ikhyUtkvTtNNeriEq2oB4BvB94uPtFA58HTpJ0MMl78hzwkQrGYGZmZjaCqRp9SS8Cvgtc0l0QESdujUD6BrCuYPtnIuLgIsf5Hkn3y7uAm4BjgZsrEG9FR/HfDkXbrG+q1DnNzMzMRpt8hS/xR8Rt6YD1PtJW0HcBxwx0jPQK+KSIuDN9fglwAhVKUGt3+JeZmZmZDeYoYFlEPF1QtrukByTdKumotGxnYEnBNkuo4PShvtWpmZmZWUaGYaL+6ZLuLXh+fjrQvFQnAVcWPF8K7BoRqyQdAvxM0v4UvypesamgnKCamZmZZWg7+6CuLHeaKUkNwDuBQ7rLIqIdaE8f3yfpGWAfkhbTOQW7zwFeLDfowfgSv5mZmVlGkon6KzuKfwBvAJ6IiK2X7iXNkFSfPt4D2Bt4Nr1D6AZJh6X9Vk8Grt/eAPrjBNXMzMwsQ3lU9lIKSVcCdwL7Sloi6UPpqnez7eV9gKOBP0t6CPgJ8NGIWJ2u+xjwA2AR8AwVGiAFvsRvZmZmVtMi4qR+yj9QpOynJDdZKrb9vcABwxpcP5ygmpmZmWWke6J+25YTVDMzM7MMVWGi/lHHCaqZmZlZVoZnsFPNccpuZmZmZiPKgC2okg4H3kdyl4HZQBvwCPAL4LKIWDfA7mZmZmY2gKDytzodjfpNUCXdTDIB6/XAOcByoIVkstYFwPWSzo2IG6oRqJmZmVkt8iX+vgZqQX1/RKzsVbYRuD9dviFpesUiMzMzM6txHsVfXL8JamFyKmk3YO+I+I2kVqAhIjYUSWDNzMzMbAicoPY16CApSaeS3Eng+2nRHOBnlQzKzMzMzMauUqaZ+jhwKHA3QEQ8LWlmRaMy66W9awXLN/+GiBwzxi2gtXHnrEMyMzPbboGnmSqmlAS1PSI6pKTyJDWQdJkwq4qlG27gsVVfBAQRPL3m6+w55QzmTvlg1qGZmZltN4/i76uUeVBvlfR5oFXSG4EfAz+vbFhmifbcSh5b9UXy0U4+tpCnnXy088zab7OxY1HW4ZmZmW2fSPqglrvUqlIS1DOBFcDDwEeAm4B/q2RQZt1WbPodFPlmmY8uXtp0c/UDMjMzG0bdo/idoG5r0Ev8EZEHLkgXs6oK8v2uieiqaixmZmZWHaWM4j9C0i2SnpL0rKTFkp6tRnBmM8bNp1iX5zo1MWv8m6oej5mZ2XBzC2pfpQyS+iHwaeA+IFfZcMy21dKwI3tP/WeeXvN1InIEeerUxC6T3sek5v2zDs/MzGy7eBR/caUkqOsiwp39LDO7Tn4fO4w7kmUbbybIMXPcG5jY/LKswzIzMxsW4QS1j1IS1N9L+m/gWqC9uzAi7q9YVGa9jG+cyx5TP5Z1GGZmZlYFpSSor0l/zisoC+CY4Q/HzMzMbGzxPKh9lTKKf0E1AjEzMzMbayKdB9W21W+CKul9EXGZpM8UWx8R51YuLDMzM7OxwX1Q+xqoBXV8+nNiNQIxMzMzG3s8ir+YfhPUiPh++vPL1QvHzMzMzMa6QfugSmoBPgTsD7R0l0fEBysYl5mZmdmY4Ev8fQ16JyngUmBH4M3ArcAcYEMlgzIzMzMbCwLfSaqYUhLUvSLi34FNEXExcBzwisqGZWZmZjYGRDKSv9ylVpUyD2pn+nOtpAOAl4C5FYvIzMzMbAzxPKh9lZKgni9pKvDvwA3ABOCLFY3KzMzMzMasUibq/0H68FZgj8qGY2ZmZjZ2BB4kVUwpo/inACeTXNbfun1EnFG5sMzMzMzGgtoe7FSuUi7x3wTcBTwM5CsbjpmZmdnYUsuDncpVSoLaEhFFb3dqZmZmZjbcSklQL5V0KnAj0N5dGBGrKxaVmZmZ2RjhPqh9lZKgdgD/DXyBpC8v6U8PmLKa055by6K1l/HS5jtobZjB3lPez4zWV2cdlpmZ1ahkPlMnqL2VkqB+hmSy/pWVDsYsS+25Nfz2LyfSkVtHng7WdTzBirY/ccAOn2LPySdmHZ6ZmdUoD5Lqq5Q7ST0KbK50IGZZW7T2cjpya8nTsbUsF1t4ZNW36Mq3ZRiZmZnVMt9Jqq9SWlBzwIOSfs+2fVA9zZTVlJc2/4H81hun9RB1rO9YxLQW3+HXzMysGkpJUH+WLmY1raV+Out4qk95ni6a66dmEJGZmY0F7oPaVyl3krpYUiuwa0Q8WYWYzDKx95T3s3LL/eRiy9Yy0cCUpn0Z3zgnw8jMzKxWBXKCWsSgfVAlvQ14EPhl+vxgSTdUOjCzaps57jD2n3YG9WqhoW489WpmavN+HLbj/2QdmpmZ1bDYjqVWlXKJ/0vAocBCgIh4UNLuFYzJLDN7TTmJuZNOYF3HUzTXT2NC4y5Zh2RmZrXM00wVVUqC2hUR66RtKq+Wk3Yb4xrqWtmh5aCswzAzMxuzSklQH5H0HqBe0t7AGcAfKxuWmZmZ2RjhZr8+SpkH9RPA/iRTTF0JrAc+VcmgzMzMzMaKCJW91KpSRvFvJrnN6Rck1QPjIwqGOZtGlj0TAAAgAElEQVSZmZlZ2Wp5wv1ylTKK/wpJkySNJ7mr1JOS/qWE/XaR9HtJj0t6VNIn0/Jpkm6R9HT60xNMmpmZmdlWpVzi3y8i1gMnADcBuwLvL2G/LuCfIuLlwGHAxyXtB5wJ/DYi9gZ+mz43MzMzG3MCX+IvppQEtVFSI0mCen1EdFJCd96IWBoR96ePNwCPAzsDxwMXp5tdnB7XzMzMbOwJIFT+UqNKSVC/DzwHjAduk7QbyUCpkkmaC7wSuBuYFRFLIUligZlDOZaZmZlZLYkof6lViiG+OiUTotZHRFeJ208AbgXOiYhrJa2NiCkF69dERJ9+qJJOA04DmDVr1iFXXXXVkOIcqTZu3MiECROyDmNEcF0kXA89XBc9XBc9XBcJ10OP4aqLBQsW3BcR84YhpLI177Fz7PyVj5e9/+L3fiHz11AJpcyDuo1IMtpSk9NG4KfA5RFxbVq8TNLsiFgqaTawvJ/znA+cDzBv3ryYP3/+UEMdkRYuXEitvJbt5bpIuB56uC56uC56uC4SrocerovaN+QEtVRpS+sPgccj4tyCVTcApwBfS39eX6kYbOyKCJ5cdy0Pr76EttxqJjftxqunn8FO4w/NOjQzM7MCtT3YqVwD9kGVVCfptWUe+wiS0f7HSHowXf6GJDF9o6SngTemz82G1SNrLuPelf/L5twKghxrO57ld0s/y0ubH8g6NDMzs23Fdiw1asAW1IjIS/oGcPhQDxwRtwP9fSV4/VCPZ1aqfHTx8JpLyPW6n0Qu2nlg1fd5y7jzMorMzMysl8AtqEWUMor/15L+Nr1kbzbitefWkY/OouvWdTxX3WDMzMxsyErpg/oZkimmuiRtIWkVjYiYVNHIzMrUXD8Z0QB09Fk3qWnX6gdkZmY2kBq+VF+uQVtQI2JiRNRFRFNETEqfOzm1EatODRww9T00qGWb8no188odTssoKjMzs/5oO5baVNIofklTgb2Brf/xI+K2SgVltr0OnPYPNNS18vDqS2nPr2Vi4xxePf2TzB5Xc1PFmZnZaOcW1D4GTVAlfRj4JDAHeBA4DLgTOKayoZmVTxL7Tz2J/aeeREQeqZTu1mZmZhmocIIq6ULgrcDyiDggLbsa2DfdZAqwNiIOTtd9DvgQkAPOiIhfpeWHABcBrcBNwCdjqHd8KlEp/7U/CbwaeD4iFpDcsnRFJYIxqwQnp2ZmNsZdBBxbWBARJ0bEwWlS+lPgWgBJ+wHvBvZP9/k/SfXpbt8jucvn3umyzTGHUyn/ubdEJPP1SGqOiCfoybjNzMzMrFwBhMpfSjlF0i1zdbF16SxN7wKuTIuOB66KiPaIWAwsAg5N7/45KSLuTFtNLwFO2L4X379S+qAukTQF+Blwi6Q1wIuVCsjMzMxsLKnMRfKSHQUsi4in0+c7A3cVrF+SlnWmj3uXV8SgCWpEvCN9+CVJvwcmA7+sVEBmI1lnfgtbcusY17AD9arYnYLNzGws2b4Edbqkewuenx8R5w9h/5PoaT2F4lMDxADlFVHqKP5XAUemgdwREX0nmDSrYfnI8Ydl/8tj625CiDo18Jrp/8BB096ZdWhmZjbabd+dpFZGRFlT1EhqAN4JHFJQvATYpeD5HJIr50vSx73LK2LQPqiSvghcDOwATAd+JOnfKhWQ2Uh0x/LzeHzdzeSig65opyO/iTtXXMCi9QuzDs3MzKxcbwCeiIjCS/c3AO+W1Cxpd5LBUPdExFJgg6TD0n6rJwPXD3RwSbtJekP6uFXSxFIDK2WQ1EnAqyPirIg4i2SaqfeWegKz0S6X7+DRtTfSFe3blHdFO/esvDSjqMzMrFYoyl9KOr50JckUoftKWiLpQ+mqd7Pt5X0i4lHgGuAxki6dH4+IXLr6Y8APSAZOPQPcPMA5TwV+Anw/LZpDMp6pJKVc4n+OZIL+Lenz5jQoszGhPb+JIF903aaulVWOxszMakpQ8XlQI+Kkfso/0E/5OcA5RcrvBQ4o8bQfBw4F7k73fVrSzBL3LSlBbQcelXQLSRW+Ebhd0rfTE55R6snMRqPW+sk01Y2nLbe2z7qZLZ5xzczMtkfp00WNMu0R0ZH0Btja37XkVLyUBPW6dOm2cCjRmY12Uh1HzPwYC186t+Ayv2hQM4fP/HCmsZmZmY1Qt0r6PNAq6Y3APwI/L3XnUqaZung7gjOrCS+b/EZa6yfxp5WXsr7zJWa07MNhMz7IjJa9sg7NzMxGu2znQa2UM0lul/ow8BGSW6P+oNSdPZGjWYl2m/AadpvwmqzDMDOzWlODCWpE5CVdBtwWEU8OdX/fpNzMzMwsS7EdywgiaXLB47cDD5Le3EnSwZJuKPVYQ0pQJdVJmjSUfczMzMysH0EySKrcZWQ5UdLfpo/PIhnFvxYgIh4E5pZ6oFIm6r9C0iRJ40nmxHpS0r8MOWSzCogI/rr5Se5aeS0Pr/09Hfktg+9kZmZmwy69xep+6dOuiFhX7rFK6YO6X0Ssl/Rekg6unwXuA/673JOaDYd85PjpX/6TxRsfIB856usa+PXS83jv3P9kx9Y9sg7PzMysJKVOuD8aRMTZ6cNHJL0HqJe0N3AG8MdSj1PKJf5GSY3ACcD1EdHJiOv1YGPRQ2tuYfHGB+iMdnJ00ZHfwpb8Jn7yl68Q4Y+omZmNEjXSB7WXTwD7k8ynfyWwHvhUqTuX0oL6fZK7ST0E3CZpt/QkZpl6cO2v6ex1+1GAzV3rWNn+AjNadssgKjMzM4uIzcAX0mXISpkH9dvAtwuKnpe0oJyTmQ2nfBS//SgS+X5uTWpmZjbS1NIl/m6S9gH+mWRg1NZ8MyKOKWX/QRNUSZ8pUrxO0n3piCyzTBw45RhWLvtLwd2dEs1145jZ7NZTMzOzDP0YOI9kcv7cUHcu5RL/vHTpvj3VccCfgI9K+nFE/NdQT2o2HF419S08sf6PvLRlER35LTSoCamOd875LJKn+DUzs1Fi5E0XNRy6IuJ75e5cSoK6A/CqiNgIIOks4CfA0SSj+Z2gWibq6xp539yv8uymB3hh08NMaNiB/ScfzbiGyYPvbGZmNhKM/MFO5fq5pH8EriMZKAVARKwuZedSEtRdgY6C553AbhHRJqnvCBWzKpLq2HPCIew54ZCsQzEzMytPbSaop6Q/C+fOD6CkeSBLSVCvAO6SdH36/G3AlQUT95uZmZmZbRURu2/P/qWM4j9b0s3AEYCAj0bEvenq927Pyc3MzMzGulocxQ8g6bX0HcV/SSn7ltKCCvAA8GL39pJ2jYgXhhammZmZmfVRgwmqpEuBPYEH6RnFH8DwJKiSPgGcBSxLT6D0BAeWEa+ZmZmZFarBBJVkBqj9osxbO5bSgvpJYN+IWFXOCWxwL7Yt5oXNTzGxYSr7TnwlDXWNWYdkZmZmVaCo2Uv8jwA7AkvL2bmUBPUvwLpyDm4Dy0WOK57/Bk9teIggqFc9jXXNfHTPs5nePDvr8MzMzMzKNR14TNI99EwzFRFxfCk7l5KgPgsslPQLtp3H6tyhRmrbunvVr3lqw0Nb7yffFdCR38Jlz3+dT+3zjYyjMzMzs6qozYn6v1TwWMCRwEml7lxKgvpCujSliw2Te1bfsjU57RYEK9uXsqZjBVObZmQUmZmZmVVNDV7ij4hbJR0MvAd4F7CY5NanJSllmqkvlx+eDSQXXUXLhfpdZ2ZmZrWllvqgStoHeDdJa+kq4GpAEbFgKMfpN0GV9M2I+JSkn1Mkt4+Itw8tZOvtoMlHsXDFtXRF5zbl4xsmskPTjhlFZWZmZlVVQwkq8ATwB+BtEbEIQNKnh3qQgVpQL01/fn3osVkpjp75Nh5dfzerOl6iI7+FBjVSp3pO2vVTSDXZH8XMzMxq29+StKD+XtIvgatI+qAOSb8JakTcl/68tdwIbWBNdS2cvvfXeGzdn3h206NMaZzOq6bOZ2LjlKxDMzMzs2qosWmmIuI64DpJ44ETgE8DsyR9D7guIn5dynEGusT/MAM0OkeEJ+ofBvVq4BVTDucVUw7POhQzMzPLQg0lqN0iYhNwOXC5pGnA3wNnAtuXoAJv3f7wzMzMzGxANZigFoqI1cD306UkA13if344grKR6YXNi7luyWU8v+lZxjdM4A2z3srRM97kvq9mZmaWuYEu8W+geE4vkjsBTKpYVFZRS9uW8K2nzqYjn8zBurZzNTe8eDVrO1dz/M4lz6FrZmZmw6CW+qAOl7r+VkTExIiYVGSZ6OR0dPvVSz+jM9+xTVlHvp1bl/+aLbm2jKIyMzMzSwzUgjopItanHVv7SPsT2Cj0wubFRJHG8XrVs7J9OXPG7ZZBVGZmZmOUW1D7GGiQ1BUkA6XuI6m6ws6JAexRwbisgnZs2YkV7S/1Ke+KLqY27ZBBRGZmZmNUjU0zNVwGGiT11vTn7tULx6rhzTuewBPrH6Ezei7zN6qJQ6YdzviGCRlGZmZmZjZAH9RCknaW9FpJR3cvlQ7MKme38Xty6p6fZnrTLEQdTXXNHDnj9bx71w9mHZqZmdnYE9ux1KiBLvEDIOn/AScCjwG5tDiA2yoYl1XYyycdyFkHnEtHvoMGNVCnkr6rmJmZ2XCr4USzXIMmqCS3qdo3ItqHcmBJF5L0YV0eEQekZV8CTgVWpJt9PiJuGspxa017rp07Vt7Bo+sfZXrzdBbMXMCOLTtW7fxNdU1VO5eZmZltS7gPajGlJKjPAo3AkBJU4CLgu8Alvcr/JyK+PsRj1aRNXZv48mNfZl3nOjryHdRRx8IVCzl9r9N5xeRXZB2emZmZVYMT1D4GmmbqOyRVthl4UNJvKUhSI+KMgQ4cEbdJmjs8Ydamm1+6mTUda+iKLgDy5OnId/DDxT/k3IPO9WV3MzMzG5MGakG9N/15H3DDMJ7zdEknp8f/p4hYM4zHHlXuXX3v1uS00JbcFpZtWcbs1tkZRGVmZmZV42mmilJE6bUiaSqwS0T8ucTt5wI3FvRBnQWsJGmZPRuYHRFFh45LOg04DWDWrFmHXHXVVSXHOZJt3LiRCROSqZyWbllKe75vzwkh5rTOoV711Q6vqgrrYixzPfRwXfRwXfRwXSRcDz2Gqy4WLFhwX0TMG4aQytY6e5fY/YOfKXv/x7/6mcxfQyWUMop/IfD2dNsHgRWSbo2IIddmRCwrOO4FwI0DbHs+cD7AvHnzYv78+UM93Yi0cOFCul/L7Stv57LnL9smSa2jjrnj53LKfqdkFGH1FNbFWOZ66OG66OG66OG6SLgeetRcXbgFtY9SBklNTm95+mHgRxFxlqSSWlB7kzQ7IpamT98BPFLOcart2Y0v8Iulv2F5+ypeMWlfjp19DJMat/+b2xE7HMEzG5/hjpV3UK96gmBK4xQ+vtfHhyFqMzMzs9GplAS1QdJs4F3AF0o9sKQrgfnAdElLgLOA+ZIOJvmu8BzwkaEGXG13r3qA7y76EZ35ToJg8cbn+c3yP/D/Dvw3pjZN3q5jS+KUuadw3OzjWLxpMVMap7DXhL2QNPjOZmZmVhPcB7WvUhLU/wB+BdweEX+StAfw9GA7RcRJRYp/OMT4MpWPPBc8ezkd+Z5bgnZGFxs7N3Ptkpv40B7FXuLQTW+ezvTm6cNyLDMzMxtlnKD2MWiCGhE/Bn5c8PxZ4G8rGdRIsWzLim2S0245cjywdlT0TjAzM7ORrMZvWVqufifalPRvkqYNsP4YSW+tTFgjw7iGVvKRL7puYsP4KkdjZmZmtUhR/lKrBmpBfRj4uaQtwP0ktydtAfYGDgZ+A3y14hFmaHLjJF42aW8eW/8UuchtLW+ua+KtO70xw8jMzMzMale/CWpEXA9cL2lv4AhgNrAeuAw4LSLaqhNi9XXmu7jpxdu5Zdnd5CPH1MYprO9aT4Ma6Mx38ZYdF/DaHWpuyjEzMzPLQg23hJarlD6oT1PCoKhaERGc9ch5PLF+Me35TgCa6xrZc8JcTp77N8wdvwsTh2GKKTMzMzOo7Uv15SplFP+Y8ud1T/Pk+ue2JqcA7flOnt24lKDByamZmZkNLyeoffQ7SGqsenzd4m2S027t+U4eW/9sBhGZmZlZzYrtXGqUE9RepjZNpLmusU95c10jUxsnVT2eXORpy7UTUcOfQjMzM7MCg17il7QP8D1gVkQcIOlA4O0R8ZWKR5eBo2a8kh88+7M+5fWq46gZB1ctjlzkufCZm7nur7fTke9ietNkTt/7eI6c+YqqxWBmZmaVpXSxbZXSgnoB8DmgEyAi/gy8u5JBZWlcQytfPfB0ZjZPo7muiea6JmY1T+OcA09nXENr1eL4v6ev56dL/kBbroNc5FnWvoavPHY5D65ZVLUYzMzMrAp8ib+PUgZJjYuIe3rdH76rQvGMCHtP3JULDz2LJW3LEbBz60x6vf6Kautq58YX76Ijv201t+c7uXjxrzl46l5Vi8XMzMwqy6P4+yqlBXWlpD1J83RJfwcsrWhUVbKpq52f//VPXPjMb7ln1dPb3DVKEruMm8WccbOqmpwCrO7YQJ2KvzVL2lZWNRYzMzMb3SRdKGm5pEd6lX9C0pOSHpX0X2nZXEltkh5Ml/MKtj9E0sOSFkn6tiqYIJXSgvpx4HzgZZL+CiwG3lupgKpl0YalfOxP36cr8rTnOmipb2KfiTvxrUM+RHN930FS1TSjeXLRcgF7T9i5usGYmZlZZVW+BfUi4LvAJd0FkhYAxwMHRkS7pJkF2z8TEcUG3nwPOA24C7gJOBa4uRIBD9iCKqkOmBcRbwBmAC+LiCMj4vlKBFMtEcHnH7qcjV1b2JLrIIC2XAdPrP8rVz9/R9bh0VTfyHt3ez0tdU3bltc18g97vDmjqMzMzKwiKtwHNSJuA1b3Kv4Y8LWIaE+3WT7QMSTNBiZFxJ2RTC10CXBCaREM3YAJakTkgdPTx5siYkOlAqmml7asYfmWtX3K2/Od3LT0vgwi6uu9u72e0/c5ntkt02ipa+QVk3fn3Fd+jL0nzsk6NDMzMxsukfRBLXfZDvsAR0m6W9Ktkl5dsG53SQ+k5UelZTsDSwq2WZKWVUQpl/hvkfTPwNXApu7CiOididswksRxOx3GcTsdlnUoQ7axcwvfefIWfvniQ+QJFszaj0+/7FimNo/POjQzM7ORZ/sSzemS7i14fn5EnF/Cfg3AVOAw4NXANZL2IBlntGtErJJ0CPAzSftTfDasinVOKCVB/WD68+MFZQHsMfzhVMeOLVOZ1TKVFzav2Ka8ua6R43Y6JKOoakM+8px69w95dsNyOiMHwC9ffIj7Vy/m2qM/RVO9765rZmY2jFZGxLwy9lsCXJterr9HUh6YHhErgO7L/vdJeoaktXUJUHgZdw7w4vaF3r9BR/FHxO5FllGbnELSOnnOQe9hYkMrrfVN1CFa65t4+aSdOXG3I7MOb1S7Z+Wz/GXTqq3JKUBX5FnbsZnfLXs0w8jMzMxGpowu8f8MOAa23pSpiWTmphmS6tPyPYC9gWcjYimwQdJh6ej9k4HrtyuCAfTbnCXpmIj4naR3FlsfEddWKqhq2GvibH529Jn8ftnDrGhfzwGTd+WQaXtWfUqpWrNowzI687k+5ZtzHTyxbinH7nRQBlGZmZmNYBUexS/pSmA+SXeAJcBZwIXAhenUUx3AKRERko4G/kNSF5ADPlrQrfNjJDMCtJKM3q/ICH4Y+BL/64DfAW8rsi6AUZ2gAoxraOa4nctpFbf+7DJ+Go119XTmtk1SW+ubmDthekZRmZmZjVyVnqg/Ik7qZ9X7imz7U+Cn/RznXuCAYQytX/0mqBFxVvrzH6oRSC3JR77fifZr3REz9mFK0zja27rIkdz4oA7RUt/Im2cfmHF0ZmZmNhqUNGJF0nHA/kBLd1lE/EelghqN8pHnvCdv4+Jn7mJD5xZ2n7ADnz/wLRwxc2zdlrShrp4fHf4RvvLwdfxx5SKC4FVT5/LFA99Ba0PT4AcwMzMbS4Ywn+lYMmiCmt7iahywAPgB8HfAPRWOa9T570du4Zrn7qUt1wnA4o2r+MTdV/OjI07moGm7ZBxddc1omci3Xn1y2hc1aKzzyH0zM7N+OUHto5Tr0K+NiJOBNRHxZeBwYGxlXIPY1NXOVYv/tDU57bYl18l3n1iYTVAjQGNdvZNTMzOzAYjMRvGPaKUkqG3pz82SdgI6gd0rF9Los2LLBur76XP6zIYVRcvNzMzMgIrf6nQ0KqV560ZJU4D/Bu4nqY4fVDSqUWZWyyTyRT4lAvadtGP1AzIzMzMbxUqZqP/siFibTjuwG/CyiPj3yoc2erQ2NHHynq+htb5xm/Lm+kZOf/n8bIIyMzOzUUERZS+1aqCJ+otO0J+uG/UT9Q+3T7789UxpGs+FT9/B2o7N7DtpFp99xbHsP2WnrEMzMzOzkarGL9WXa6BL/MUm6O9WExP1DydJfGCvw/nAXodnHYqZmZmNIrU82KlcA03U7wn6R7hVWzYRBNNbJmQdipmZmZXLCWofnqh/FFq8YRWfvvtaFq1PZgjYfeIOnHvoO9h78syMIzMzMzPbfoMOkkon6j8R+ATJwPS/JxksZRnYkuvkpIUX8fjal+jI5+jI53hq3XLes/BiNna2Zx2emZmZDZHnQe3LE/WPMr/565NsyXVtczUggI58jpuXPJZVWGZmZlYuz4PaRymX+HtP1L8KT9SfmRc3r6O91x2rANpynby4eV0GEZmZmVnZarwltFzlTtR/QUWjsn69YtpONNc1sLlXkjquoYkDp3pKKzMzMxv9Bk1QI+Ls9OFPJd0ItESEm+oyctiMuew7ZRaPrXmJ9nwXAM11DcydMI2jZ++VcXRmZmY2ZG5B7aPfPqiSXi1px4LnJwPXAGdLmlaN4KwvSVx89Ps47WWvZedxk9lp3GQ+uM9hXDH/FOpVSpdiMzMzGymEB0kVM1AL6veBNwBIOhr4GslI/oOB84G/q3h0VlRLfSOf2O91fGK/12UdipmZmW2vGr5labkGSlDrI2J1+vhE4PyI+CnJpf4HKx+a2fZ7cdN6Xty8jr0mTWdKc2vW4ZiZmfVRyy2h5RowQZXUEBFdwOuB00rczyxzm7s6+MTt1/HHZc/TVF9PRy7HyfscwpkHH4OkrMMzMzOzAQyUaF4J3CppJclUU38AkLQX4EFSNqJ94Z6buWPZc3Tkc1sHk1329P3sPnEa797rlRlHZ2Zmlqrx+UzL1e+omog4B/gn4CLgyIitHSTqSPqimo1IbV2d3PyXJ+jI57Ytz3XygyfuzigqMzOz4pQvf6lVA16qj4i7ipQ9VblwzLbfQLd8XdvR1u86MzOzTLgFtQ/PS2Q1Z3rLeKY1j+tTXidx2My51Q/IzMxsAJ5mqi8nqFZzJHHOoW+hpb6BOpIBUY2qY0JDE/9y0PxsgzMzM7NBeTS+1aQFO+3FNW84mfMfv4vnNqzmkBlzOPVlh7HT+ElZh2ZmZtYj8DyoRThBtZp1wLQd+fYRJ2QdhpmZ2YBq+VJ9uZygmpmZmWXJCWof7oNqZmZmZiOKW1DNzMzMMiJ8ib+YirWgSrpQ0nJJjxSUTZN0i6Sn059TK3X+WpDL5/nDi4v58aI/89TaFVmHY2ZmZsMtYvuWGlXJFtSLgO8ClxSUnQn8NiK+JunM9PlnKxjDqPXipvW865eXs6a9jSDIR7Bg5z35ztHH01DnnhlmZma1wi2ofVUs04mI24DVvYqPBy5OH18MeIh1P06/9Wcs3byeTV0dbO7qZEuui4V/fYZLn7w/69DMzMxsOMV2LDWq2k1xsyJiKUD6c2aVzz8qrGjbxCOrl5Hr1XTfluvisqceyCgqMzMzs+pQVLD/gqS5wI0RcUD6fG1ETClYvyYiivZDlXQacBrArFmzDrnqqqsqFmc1bdy4kQkTJgy4TWc+x1NrV5Iv8t401dez75QZlQqvqkqpi7HA9dDDddHDddHDdZFwPfQYrrpYsGDBfRExbxhCKtvEKXPiVUd9suz9b7vxXzN/DZVQ7VH8yyTNjoilkmYDy/vbMCLOB84HmDdvXsyfP79KIVbWwoULGey1RARfvvY8lmxat015U109H3jZIcyfN/D+o0UpdTEWuB56uC56uC56uC4SroceNVUXAeRr+Fp9map9if8G4JT08SnA9VU+/6ggiW8e9TbGNTTSVFcPwLiGRnYaP4mPH/jajKMzMzOzYeU+qH1UrAVV0pXAfGC6pCXAWcDXgGskfQh4Afj7Sp1/tJs3cw6/O+E0rn76IV7YsJbX7Lgrb5/7cloaGrMOzczMzIaRR/H3VbEENSJO6mfV6yt1zlqz47iJfPKgI7MOw8zMzKyqfCcpMzMzsyzV8IT75XKCamZmZpYhX+LvywmqmZmZWVZqfLBTuXzPzCp5as1K/uf+21m2eSNPrF6RdThmZmZmI5YT1Cr434fu5G03XMJ3HrqTFW2bOP7nl/LNB+7IOiwzMzPLmABFlL3UKieoFbZ43f9v777DpCyvxo9/z5TtsHSUXqQpAkqRHsGGYkJsERON3fhqEmNiTEzi6xuNrybxTTFGf7HEEgWs2FCkKCWhSZcivUhdOsuW2Snn98fzbJ9B2DIz7JzPde21s/c85Tz3zO6eudtzkCeXz6c4HCKsigLF4RDPrFzIhsMHEh2eMcYYYxItUouvBsoS1Ho2fftGwlr9HRSKRJi+bUMCIjLGGGNMMrEW1OpsklQ983o8eESqlYuAx1O93BhjjDEpxCZJRWUtqPVsTMfuOCNMKvOIh8s69Yh/QMYYY4wxSc4S1HrWNqcxvx18AeleLxleHx4g3evlwUGj6NCoSaLDMwmUV1jA35bM56v8I/xr1TKOlZQkOiRjjDFxp85C/TX9aqCsiz8OruvRl9HtuzBt20aytu1hzpg7OC27UaLDMgm0av9exr/3OsFImB82acPTC2bz1LKFfHDVDbTKyk50eMYYY+LIFuqvzlpQ46R1ViNu6HUOzTMyLTk1/PyzqRwLlhAIh9VOJ18AACAASURBVAEoCoU4UFjAHxfOTXBkxhhj4s5aUKuxFlRj4uxoIMCGQ9WXGAupMn3rxgREZIwxJmEUpAEvF1VT1oJqTJz5PZ4o0+Yc6V77zGiMMcZYgmpMnGX6/Yxo1wmfp/KvX7rXx/heZycoKmOMMQljXfzVWIJq4iq/JMDzyxZzw7tvsTP/KGv25SU6pIT446gxdM5tSrbfj0eEDJ+PwW3ac/e5gxMdmjHGmHjTWnw1UNafaOLmSHExl7/+L/YXFlIcCnHeae246q2JPHHhGMZ2S601YZtnZjHtOzfx+Z6d7Fq5ismjRtGrectEh2WMMSYBGvIdoWrKWlBN3Dy/fDH7CgooDoUAp2eiOBTiV59NJ+jOZk8lIsKg09vRJD3DklNjjDGmAktQTdxM27SxbFmliiIRZcPB6rPajTHGmJRgY1CrsQTVxE1uRkbU8pBGaJSWHudojDHGmCSgQKQWXydARP4pInkisqpK+Y9EZJ2IrBaRP1Qof0BENrrPXVKhvL+IfOE+96SIxFqUptZsDGoUR4qLeXzuHD5avx6Ay7r34JcjRsRMsMyJuaVvf1bl5VEUCpaVeUXo1qw57XNzExiZMcYYkxiCxmMM6kvAU8ArZecVGQWMA/qoakBEWrnlZwLjgbOANsAMEemuqmHgGeAOYAHwETAG+Lg+ArYW1CpCkQhXTZrIO2vWkF9SQn5JCe+sWc3Vr08iFLGVdGvjkq5ncFPfc0j3eslJS8MjQucmTXl27LhEh2aMMcYkTj138avqHOBgleL/Ah5X1YC7TemyOuOASaoaUNUtwEZgkIicDjRW1fmqqjjJ7rfr4OqjshbUKj7bspm9x44RrJCMBiMR9uTn89mWzVzU9YwERndqExHuHzqCW/r1Z+XePQQ2bWbaBddQjz0ExhhjjImuOzBCRB4FioH7VPVzoC1OC2mpHW5Z0H1ctbxeWAtqFV/u209hMFitvDAYZN3+/QmIqO5EVPnP1m289cVq1u9L3LW0yMpidOcuZPp8lpwaY4wxtWtBbSEiiyt83XGCZ/UBTYHBwM+BN9wxpdH+MetxyuuFtaBW0alpE7L8fgqqJKlZfj+dmjRNUFS1tzs/n+9OeIODRUVEFFSVkZ078eS4sdXuaGSMMcaYOCmdJFVz+1V1QA322wG843bXLxKRCNDCLW9fYbt2wC63vF2U8nphmUkVF3c9g5y0NLwVWva8IuSkp3NR164JjKx27n3/I3YdzaegJEhRMEhxKMScLVt5ZcmyRIdmjDHGpDRRrfFXLbwLjAYQke5AGrAfeB8YLyLpItIZ6AYsUtXdQL6IDHZbWr8PvFebAI7HEtQq0n0+3hp/HUM7dMArgleEoR068Pb460j3nZoNzgcLi1i5Zy/hKm/k4lCIictXJigqY4wxxgD1PklKRCYC84EeIrJDRG4F/gl0cZeemgTcqI7VwBvAGmAqcLc7gx+ciVXP40yc2kQ9zeAH6+KPqm3jxrx85VWUuIvKp3m9CY6odgLhELGGehaHTu07OO06cpSn5ixg3tbttMjO4vYhA7mkV7dEh2WMMcYkDVW9LsZT18fY/lHg0Sjli4HedRhaTJagHsepnpiWOi0nh9Y5OWw/fKRSud/r4dIex0/mCkuCvLdiDf/ZtI3Tcxtx3cC+dGnRrD7DPWF7juYz7rnXOBYIEFZl15F87n9/KtsOHuKOYYMSHZ4xxhhzAhr2HaFqyhLUJBYIhvh07Sb2HD3G2e1a079j2xrNehcRnhg7hpveeIdQJEJJOEym30/L7CzuGnJezP3yiwNc/ewE8vKPURQM4fMIby5dxZ+vHsuoHl1qc2l14rl5iykoKak0dKEoGOKpuQv53sB+ZKelJTA6Y4wx5gQolqBGYQlqktqy7yA3PPcGxcEQJaEwfp+Xs9u25tmbriCtBmNhz23bhum33cSbX6xi+6EjDOrQjst79iDDH/tYL85bwu4j+WVDHUIRJRQJ8cC7n/Cfn/8Ab4Jn/y/c9lXUmyf4PB427z/I2W1Oq9XxS0IhXpy9hHcWrSIYjjCmb3fuvPA8GmfaHcWMMcbUIbsPUDWWoCapn036iEOFRWUfqkIlEVZ8tYeX/r2UO86vWfd160Y5/HDo4BPe/pO1G8qS04pKwmE27jtIj9YtahRHVQXFJYQ1ctKJX5vcxqzfd6BaeTASpmVOTq1iUlXufvE9lm7ZRSAUAmDivBXM+XIL79x7fY0+JBhjjDHmxNgs/iSUd/QYm/cfrNbiHwiFmLx0ddziyEmP3kUejkTITvPX+vjBcIRb/v4mIx58hvMf/AfX/XkCm/dWTzhjuX3oADKqJIppXi+DOrbjtMa1S1C/+GoPy7eWJ6dOvGHyjhxjxhcba3VsY4wxpqIELTOV1CxBTUIR1ai3awAIR+L3Zrx+0DlkVhkC4BGha8vmtGuaW6tjB8NhtuYdZOnmnYTCEUKRCGu+2suNf3uDY8WBStsWlQT5y7tzueBX/+D8XzzDo5NmcqSgmIEd2vHI2AvJzUgny+8nzetlRNeO/PXKsbWKDWD1jr1EovziF5YEWbat3tYlrrWNO/cze8Umdu4/8vUbG2OMSQ71vMzUqcj6KZPQabmNaNOkMVv2H6pUnubz8q1+PeMWx+Vn92DFjl28uXRV2d2mmmdn8dS13/zafYsCQeav2kokopx3VgcaZVXuvp+7ZgvhiFZKAhVnYtjHS9dxzdA+TpkqP/jb23z5VR4l7pJYk+evYsG67bz9qxsYd3Yvxp7Vgx2Hj5CbkUHTrMw6ufbTmzTC5/UQqLIMV4bfR/tmTerkHHUpvyjAPU+9y5fb8/B6PITCYc7vdwaP3DwGn9c+hxpjTNJSII6NT6cKS1CT1BPXXsZNL7xJMByhOBgiK81Px+ZNuGXkQAA27zzAzIXriKgyemB3unVoWecxiAi/uWw0tw4byIodu2mZk825Hdp87UoC/1m5mQeemYJHBEUJR5Rf33gRlw7pVbbNzoNH0Sif/IqDIbZXSMyXbtrJhl37y5JTgFA4woGjBXy6YhNjBvTA5/HQqVnd3oZ2eI/ONMpIp6gkVCmJ9nk9fKt/r+PsmRiPvjqD1Vv3EqxQT7NXbOKVaYu55VJbcssYY5JXw24JrSlLUJNUrzatmPHz25iy4kt2H8mnX/vTGdmjM16Ph1c+WMTzkxcQCodR4LWPlvC9Swfwg6uH1kssp+c24vTcRie07eFjRfzi6Q8JlIQqlT/60nT6dmtDmxbO0IBebVuxeMemavtnpfvp3aF89v2XX+URinIzgcJAkNXb9zBmQI+TuZQy6zbvZeqcNQRDES4Y2p1+vdpVSrx9Xg+v3HUtv5jwMat27EFE6NC8CY+NH0OT7Lpppa0rJcEQny3bSDBceRpocUmIN2atsATVGGPMKccS1CTWKCOd8ef1rVS2M+8wz09eQCBYngAGSkK89vFiLhrcnS7t6mZmfU3NWroRT5QW1kgkwrSFX3LTWGfd1f5d2/LFUh9pPm9Z66jf66FV4xxG9z6jbL+2zXPx+7zVkq/MNB8dWtasq/2VyQt58e0FlARDoPDR7NVcPLwnv7jjokpJapumjfnX3ddyuKCIUCRCi0bZNTpffQuGI1HHywIUBkriHI0xxpiTZi2o1djgtFPMnCWbCIWrL5hWEgwxe0n1Fslo2x08VECknsa7FAeChKPEF4pEKCgOlv0sInRq2YQbRp5Ly8bZNMvJ5OohZ/PqPePx+8rv4DX8rM7kZmXg9ZQnjgL4fT4uHXDy43F37zvKP9+aT6Ak5Iwvd2Oe9u+1rFofffJTk+zMpE1OAbIz0ujYuvoQBxEYcmbHBERkjDHmpNgkqWqsBfUUUxwIOQlglUZKjUBhUSD6TkAoFObvz3/GlE9WoqpkZaVx162juOSCur2l7pCzO/PUW3Orlaf7fYzoW/nuUyLCPZcP557Lh8c8ns/r4aWfXsuD//qEpZt2gkLP9q14+IaLyclMP+n4FizbEnUMbSAQYtbCDZzdo+1JHzMZPHjDRdz1l3cIhcMEwxHS/V4y0vzcc+WIRIdmjDHmeGySVFSWoJ5iJBT7dhMSjP0Gf/IfM5k6c1XZ2NCSI0X839+n0SQ3i/MG1N1tSzue1pTxF57L6zOXOa2UQGa6nwsHdOfsrqfX6Jitmzbi2R9fTVEgSDgSqVFiWiotzRt1CILHK6Snnbq/Dn27tuGNh25g0qfL2bz7AP26tuHqb/ShaaOsRIdmjDHmuNRpZTKVnLr/kVNAJKKsWLGN/fvy6dmzDe07NMej4C2OEM6onGR5AorEeH8XFZfw8YxVlFSZuBQIhHh54rw6TVABfnjNCIb37cKUeWsIhcOMGdyLQWd2+NrZ/18nM732NwcYMeAMnnh+ZrVyn9fLJSPPrPXxE6lti1x+9p1vJDoMY4wxptYsQU1S+/KO8tOfvMahQwUAhMMRhg3vToczWuINgadQibhDNT1hkIjzPZrDR4qithoC7MmrnwXd+3VvS7/uyddd3jgng9/dezm/+fOHeD2C4tTtj7//DTq2aZbo8IwxxqSiBjyWtKYsQY2hsCDAsoWbATh3cBcys2rerVwTj/x2Mnv2HK40mWnef9ZTHAzjCUWI+ARvhRZTCSppvuhz3lo2z8HjrZ6gikDPbjXrdj+VDevflQ+evZN5SzcTCkUYfE5nmuVaV7gxxpgEsDGoUVmCGsW/P13DHx58B697B55wOMIvfnclw0bFpwv40KEC1q/fU22mfSAQYtP6PXgCESQkRLwCAp6QImGlW9fWUY/n83m59foRPPfyHIoDzkx6EUhP83PrDbEnKDVkOVnpXDw8+RbcN/VLVfli8VaWzt9Ao9wszr+sD81bNk50WMaYVGctqNVYglrFwf35/P43b1MSqDxe8/Ffv83L77enWYsTW7C+NkoCIcQTvUu+uDCAVyEc1vIWVHUe791+EIZFP+bV4/rTrFk2/5o0n/0H8unV/XRuv3EkXTu3qp+LMCbJhMMRfnfvBJYt2ERxUQn+NC+vPDWD3/zpOgaOqNkNH4wxxtQPS1CrmDN9dczn5s5Yzbjxg+s9hlatG9O0STZ791YeH+r3e+nUqQVrl38FQMTvtPB6ghE84QiFBbGXmQIYPaIno0ec/NqhxjQEcz75gmULNlJc5PQiBEvCQJjH7n+dSbN/RdopvIqDMeYUZy2o1dhC/VUUF5UQjrKUUzgUKfvHVt9EhF/++ptkZPjx+52ZUBkZflq0bMTNt3wDv9eDJxTBVxTCVxTCE4qQke6n/3ld4xJfKguWhDh84FjUmxGY5Dbz/WXRf4cV1i7fHv+AjDEGcJaZsoX6q7ImgyoGDuvGhBfmVEtAfH4vA4Z1i1scffp04MVXfsCUD5exa+ch+p3TiQsuPIuMDD+jLu7NrBmry/7ZZmT6OW9YN3r1Tr5Z8w1FOBzhpT9N5YNX5xEJK5nZadxy36Vcco3d5/5U4Y0xiRDAE2NIjTHG1DsFItboUZUlqFV07XE6F13ejxlTlldKAC/6Zj+6dj8trrG0atWYm2+pvq7lvQ9czpAR3fnkwxWoKhde2odh3+hZ63VGk8m29Xv452MfsPrzzTRums3Vd45i1Lj+qEJWo4y4x1OanAbKuodDPPO798nJzWLYxbHvxhWJRFg8czXL5q6jWavGXHDNeTRrnRuvsE0FF1/RnxWLNldrRfX6PJzZr0OCojLGGBp0S2hNJSRBFZGtQD4QBkKqOiARccTyw1+OZfgFZzJzygoALhzbl74DOyc4qnIiwpARPRjSACd2FBUUs3HFdh669QWKCwOoQsHRIp761Vv87ecT8ARDdOvXkZ/9/Wbad6/ZElmqyr8nf87HL84iWBLiwu8O44LvDsPnj/7rECwJVUpOSwWKgkx4akbMBDVYEuJX1z7JxpVfUVwQwJ/u47X/+4iHXrmTc2wscNwNHX0mI8f0YfbHK4mEI3j9XgR46K/X4/V5Ex2eMcaYChLZgjpKVfcn8PwxiQjnDOrCOYPq9g5LJrZgSZCn73mRaS/PIpLTGNLTnbWwXKqKen2EiwKsW7KFn455nJeWP05248yTPtdf7nqBWW8uoNidVLZu8WY+e2M+//vB/Xg81buBC/KLqy35VSpv9+GY5/lkwjw2LN9OoKjEuUZ3ZYjH73iBCat+X7aMmYkPEeGnD1/Jt783lGULNtIoN4thF55Jdk78W+SNMaYSa0Gtxv5DmqTw9E9eYvq/ZlNSHES93krJaSUeD6pKSSDIrLcXnfR5tq3dyaevzy9LTgEChQHWLtzIkhmrou7TqEkWmVlpUZ/r2qtNzHPNfHNhWXJaUTAYYuNKm5STKF16nMZVNw7n4m+fa8mpMSYJqLNQf02/GqhEJagKTBORJSJyR4JiMEkiUBRg2suzCBQ6yZyGQmisT5NueaCwhJ2b9p70uVbMXhP1k2pxQYAl01dG3cfr9XDLfZeSnumvVJ6e4efmn10a81y+GN3Gqs6kO2OMMcaZxB+p8VdDJTETgfo8qUgbVd0lIq2A6cCPVHVOlW3uAO4AaN26df9JkybFPc76cOzYMXJychIdRlIorYtQMMzWVdvR0k+CIuDzQdVGVC3/tOjxCK3aN6dR0+yTOmf+oQLytu8nUmWVBvEIzU5vetwJTAVHizmQd5RQMEx6hp8Wp+VWS1ornetwIXk7DlQbHuD3++hUoeXV3hPlrC7KWV2Us7pwWD2Uq6u6GDVq1JJEz4PJ9bXUIU2uqPH+nxx4LuHXUB8SMgZVVXe53/NEZDIwCJhTZZtngWcBBgwYoOeff368w6wXs2bNoqFcS22V1kU4HOY7372NoweOlT0nGel4mjTBUzpxKRQiUlgMOK2PLds14x/zHyYtPXaCGE1xYYDvdvkxBUcKK5WnZ6bxwso/0rJds9pdVAWRSIQnfvQy86YsR1Xx+r14vR4ee+snnHF2+7Lt7D1RzuqinNVFOasLh9VDuQZXFw24q76m4p6gikg24FHVfPfxxcDD8Y7DJA+v18vtf7iBp370Qlk3P4ESfPmHeWzqg3Q6sx2v//kjZkyaTzgcZuS4Adz4mytOOjkFyMhK5/Epv+C/r/oTxQUBRATxCL986b/qNDkF8Hg83P/3m9ly9w5WzttAbotGDLmkD+mZ0cezGmOMSVE2SaqaRLSgtgYmu2t2+oAJqjo1AXGYJDLm5tE0bZXLq4+8Rd72/fQYdAY3PzKezmd3BOC2h6/htoevqZNzde/fhQmbn2T94s2EgmF6DOyKvx5vc9n5zHZ0PrNdvR3fGGPMKUzVFuqPIu4JqqpuBvrG+7wm+Z03tj/nje0fl3N5PB56DjojLucyxhhjjstaUKuxZaaMMcYYY0xSsVudGmOMMcYkkFoXfzWWoBpjjDHGJIxaF38UlqAaY4wxxiSKYstMRWEJqjHGGGNMIjXgO0LVlE2SMsYYY4wxScVaUI0xxhhjEkSh/FbfpowlqMYYY4wxiaJqXfxRWIJqjDHGGJNA1oJanY1BNcYYY4wxSUX0FFh7S0T2AdsSHUcdaQHsT3QQScLqwmH1UM7qopzVRTmrC4fVQ7m6qouOqtqyDo5TYyIyFed6amq/qo6pq3iSxSmRoDYkIrJYVQckOo5kYHXhsHooZ3VRzuqinNWFw+qhnNVFw2dd/MYYY4wxJqlYgmqMMcYYY5KKJajx92yiA0giVhcOq4dyVhflrC7KWV04rB7KWV00cDYG1RhjjDHGJBVrQTXGGGOMMUnFEtR6IiIZIrJIRFaIyGoR+a1b3kxEpovIBvd700THGi8i4hWRZSLyoftzStaFiGwVkS9EZLmILHbLUq4uRKSJiLwlIl+KyFoRGZKi9dDDfS+Ufh0VkZ+kYl0AiMi97t/MVSIy0f1bmnJ1ISL3uHWwWkR+4palRD2IyD9FJE9EVlUoi3ntIvKAiGwUkXUickliojZ1zRLU+hMARqtqX6AfMEZEBgO/BGaqajdgpvtzqrgHWFvh51Sui1Gq2q/CMimpWBd/Baaqak+gL857I+XqQVXXue+FfkB/oBCYTArWhYi0BX4MDFDV3oAXGE+K1YWI9AZuBwbh/G5cLiLdSJ16eAmouq5n1GsXkTNx3iNnufs8LSLe+IVq6oslqPVEHcfcH/3ulwLjgJfd8peBbycgvLgTkXbAWOD5CsUpWRcxpFRdiEhjYCTwAoCqlqjqYVKsHqK4ANikqttI3brwAZki4gOygF2kXl30AhaoaqGqhoDZwBWkSD2o6hzgYJXiWNc+DpikqgFV3QJsxEnszSnOEtR65HZpLwfygOmquhBoraq7AdzvrRIZYxz9BbgfiFQoS9W6UGCaiCwRkTvcslSriy7APuBFd9jH8yKSTerVQ1XjgYnu45SrC1XdCTwBbAd2A0dUdRqpVxergJEi0lxEsoDLgPakXj1UFOva2wJfVdhuh1tmTnGWoNYjVQ273XbtgEFut03KEZHLgTxVXZLoWJLEMFU9F7gUuFtERiY6oATwAecCz6jqOUABDbe78oSISBrwLeDNRMeSKO64wnFAZ6ANkC0i1yc2qvhT1bXA74HpwFRgBRBKaFDJS6KU2fJEDYAlqHHgdl3Owhkfs1dETgdwv+clMLR4GQZ8S0S2ApOA0SLyKqlZF6jqLvd7Hs5Yw0GkXl3sAHa4vQoAb+EkrKlWDxVdCixV1b3uz6lYFxcCW1R1n6oGgXeAoaRgXajqC6p6rqqOxOnu3kAK1kMFsa59B07rcql2OMNCzCnOEtR6IiItRaSJ+zgT5w/vl8D7wI3uZjcC7yUmwvhR1QdUtZ2qdsLpwvxUVa8nBetCRLJFpFHpY+BinO68lKoLVd0DfCUiPdyiC4A1pFg9VHEd5d37kJp1sR0YLCJZIiI474u1pGBdiEgr93sH4Eqc90bK1UMFsa79fWC8iKSLSGegG7AoAfGZOmYL9dcTEemDM5Dbi/NB4A1VfVhEmgNvAB1w/hhfo6pVB4M3WCJyPnCfql6einUhIl1wWk3B6eaeoKqPpmhd9MOZNJcGbAZuxv1dIYXqAcAdZ/gV0EVVj7hlKfeeABBnSb5rcbq0lwG3ATmkWF2IyFygORAEfqqqM1PlPSEiE4HzgRbAXuAh4F1iXLuI/Bq4Bec98xNV/TgBYZs6ZgmqMcYYY4xJKtbFb4wxxhhjkoolqMYYY4wxJqlYgmqMMcYYY5KKJajGGGOMMSapWIJqjDHGGGOSiiWoxqQAERkmIiMSHYcxxhhzIixBNeZriEhYRJaLyCoRedNdszLadh+V3pyhBuf4HxG57yS2P19EPozx3FYRaVHh53Nw1hhdcJzjveWu0Rrr+VkiMiBK+QARedJ9fJOIPFX1ekTkYRG58ESvraESkSYictcJbnuy74eT3b6NiLx1otvXNfdGJlMTdX5jTPKzBNWYr1ekqv1UtTdQAtxZ8UlxeFT1Mve2tklFVZep6m3urSOrEZGzAK+qbq7BsRer6o+/Zpv/VtUZJ3vseBARX5zO4wWaACeUoNY3Vd2lqlcn8Pz7gN0iMixRMRhjkpslqMacnLnAGSLSSUTWisjTwFKgfWnLpYgMFJGVIpLh3tp0tYj0rnogEfm1iKwTkRlAjwrlZa2V7vG2xoilsYhMFpE1IvL/RKTa77OIXC8ii9wW4H+4iVJV38O9baCIeEXkJbe1+AsRubfCdte4x1pfOlzgeC25FWJ4SUSudh9vFZHfishS9/g93fKWIjLdLf+HiGxzrz1bRKaIyAo3pmujHH+WiPxFROa52wxyywe5Zcvc7z3c8pvclvAPgGlRjlf2uojIxAotwVFfF/e9MNeNfamIDK1QN5+JyATgC+BxoKv7WvzxeOel8vuhq4hMFZEl7nl6xqjqviLyqYhsEJHb3X1FRP5Y4fW8tkLMq9zHZ1V4j6wUkW6x6l1E+ovIbDeWT6T83ui3i8jn7vZvi9vLUPG1d38+ViHed3Hee8YYU01cWg+MaQjEaW27FCjtmuwB3Kyqd7nPA6Cqn4vI+8DvgEzgVVVdVeVY/YHxwDk4v4dLgSUnGdIg4ExgmxvTlUBZt62I9MK5ZeQwVQ2Kk0x/D3ilynGGUX4P+H5AW7e1GKk8ZMGnqoNE5DKcWw/WtNt+v6qeK0539304t7J8CPhUVR8TkTHAHe62Y4BdqjrWjSc3xjGzVXWoiIwE/gn0Br4ERqpqSJwhBv8LXOVuPwToU/U2kTV8XfKAi1S1WES64dRl6XCIQUBvVd0iIp3cx/2qHuBrzvsscKeqbhCR84CngdFR4ugDDAaygWUiMsW9zn5AX5zbRn4uInOq7Hcn8FdVfU1E0nBuz3wZVepdRPzA34BxqrrPTVofxbnF5Duq+py77e+AW91tj2cxzu+IMcZUYwmqMV8vU0SWu4/nAi8AbYBtqhprXOfDwOdAMRCtC3wEMFlVCwHchPZkLSrtlhfn3tXDqZCgAhcA/XGSEnCS5bwoxzkd2Oc+3gx0EZG/AVOo3ML4jvt9CdCpBvFGO86V7uPhwBUAqjpVRA655V8AT4jI74EPVXVujGNOdPedIyKN3cS6EfCymzQq4K+w/fQY9zCvyeviB54SkX5AGOhe4blFqrrlBI4R9bwikgMMBd4s/QAEpMc4xnuqWgQUichnOMnxcGCiqoaBvSIyGxgIrKyw33zg1yLSDifR3CAi1epdnF6A3sB0NxYvsNs9Rm83MW0C5ACfnMA15+H8HhljTDWWoBrz9Yqqtnq5/6ALjrNPM5x/1H4gI8a2GmPfEOXDbzKOc46q+1f9WYCXVfWB4xwDoKj0PKp6SET6ApcAdwPfwWkhAwi438PU7m9HtONItA1Vdb3bungZ8JiITFPVh6NtGuXnR4DPVPUKt/VyVoXnj/fanezrci+wF6eV0oPzoeREznMi5/UAh6O1up7A/kqMeq20keoEEVkIjAU+EZHbVPXTqvUOTAZWq+qQKId5Cfi2qq4QkZuA893ysjoT55cmrcI+v0utMQAAAqxJREFUGTjvPWOMqcbGoBpTP54FHgReA34f5fk5wBUikikijYBvVnhuK07LJ8DxJrIMEpHO4ow9vRb4d5XnZwJXi0grABFpJiIdoxxnLXCGu00LwKOqb7vxn3uc89elf+Mkw4jIxUBT93EboFBVXwWeOE48pWMkhwNHVPUIkAvsdJ+/6QTjqMnrkgvsVtUIcANOy2I0+Tituid8XlU9CmwRkWvc6xP3A0Q048QZ99wcJ0H83D3uteKMLW4JjAQWVdxJnNUbNqvqk8D7QJ8Y9b4OaCkiQ9z9/OJMsMO9rt3uMICK40q3Ul5n46jcit0dqDT0xRhjSlkLqjF1TES+D4TclikvME9ERqvqp6XbqOpSEXkdWI4zhrRi1/UTwBsicgPwKbHNx5l4czZOIjK54pOqukZEfgNMc5PYIE6r6LYqx5mCk9DMANoCL0r5hKuva32tK78FJrrjGmfjdB3nu3H9UUQiOPH/V4z9D4nIPKAx5S2+f8Dp4v8px6/HMjV8XZ4G3naTyM+I0WqqqgdE5D/iTE76WFV/foLn/R7wjPta+oFJwIoop1iE81p2AB5R1V0iMhlnHOoKnBbV+1V1j9uiXOpa4HoRCQJ7cIanDKRKvatqiTvh6Ul3LLAP+AuwGufDzEI39i8oT8SfA94TkUU4H5gq1s0oN15jjKlGVGP1ZhljUoGIZOIkVsPcsYqJiCEdCLsTmoYAz5xgtzYiMgu4T1UX10Nc/wMcU9Un6vrYqc6drDVOVQ997cbGmJRjLajGpDhVLRKRh3BaT7cnKIwOOK2THpy1Zm9PUBwmDtzhBn+y5NQYE4u1oBpjjDHGmKRik6SMMcYYY0xSsQTVGGOMMcYkFUtQjTHGGGNMUrEE1RhjjDHGJBVLUI0xxhhjTFKxBNUYY4wxxiSV/w89ttfF/frkVgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12, 6))\n",
+ "plt.scatter(data['Wheat'], data['Wages'], c=data['Year'], cmap='viridis', label='Données')\n",
+ "plt.xlabel('Prix du blé (shillings par quart de boisseau)')\n",
+ "plt.ylabel('Salaire (shillings par semaine)')\n",
+ "plt.title(\"Relation entre le prix du blé et le salaire moyen (1565-1810)\")\n",
+ "plt.colorbar(label='Année')\n",
+ "plt.grid(True)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Je trouve que le premier graphique est le plus représentatif du pouvoir d'achat des ouvriers anglais."
+ ]
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +1658,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-
diff --git a/module3/exo3/wheat.csv b/module3/exo3/wheat.csv
new file mode 100644
index 0000000000000000000000000000000000000000..b3eb3be85fe158a478acc24e0100ea2d8f5e722b
--- /dev/null
+++ b/module3/exo3/wheat.csv
@@ -0,0 +1,54 @@
+rownames,Year,Wheat,Wages
+1,1565,41,5
+2,1570,45,5.05
+3,1575,42,5.08
+4,1580,49,5.12
+5,1585,41.5,5.15
+6,1590,47,5.25
+7,1595,64,5.54
+8,1600,27,5.61
+9,1605,33,5.69
+10,1610,32,5.78
+11,1615,33,5.94
+12,1620,35,6.01
+13,1625,33,6.12
+14,1630,45,6.22
+15,1635,33,6.3
+16,1640,39,6.37
+17,1645,53,6.45
+18,1650,42,6.5
+19,1655,40.5,6.6
+20,1660,46.5,6.75
+21,1665,32,6.8
+22,1670,37,6.9
+23,1675,43,7
+24,1680,35,7.3
+25,1685,27,7.6
+26,1690,40,8
+27,1695,50,8.5
+28,1700,30,9
+29,1705,32,10
+30,1710,44,11
+31,1715,33,11.75
+32,1720,29,12.5
+33,1725,39,13
+34,1730,26,13.3
+35,1735,32,13.6
+36,1740,27,14
+37,1745,27.5,14.5
+38,1750,31,15
+39,1755,35.5,15.7
+40,1760,31,16.5
+41,1765,43,17.6
+42,1770,47,18.5
+43,1775,44,19.5
+44,1780,46,21
+45,1785,42,23
+46,1790,47.5,25.5
+47,1795,76,27.5
+48,1800,79,28.5
+49,1805,81,29.5
+50,1810,99,30
+51,1815,78,
+52,1820,54,
+53,1821,54,