
The Rough Road to Real-Life Reproducible

Research

Christophe Pouzat, Arnaud Legrand, Konrad Hinsen

3 septembre 2018

Outline

M4-S0 : The Rough Road to Real-Life Reproducible Research

M4-S1 : Data Hell

M4-S2 : Software Hell

M4-S3 : Numerics Hell

M4-S4 : Conclusion

Where are we?

M4-S0 : The Rough Road to Real-Life Reproducible Research

M4-S1 : Data Hell

M4-S2 : Software Hell

M4-S3 : Numerics Hell

M4-S4 : Conclusion

Reproducible Research Hell

Module 4. The Rough Road to Real-Life

Reproducible Research

1. Data Hell

2. Software Hell

3. Numerics Hell

4. Conclusion

Where are we?

M4-S0 : The Rough Road to Real-Life Reproducible Research

M4-S1 : Data Hell

M4-S2 : Software Hell

M4-S3 : Numerics Hell

M4-S4 : Conclusion

Two new problems

When we start to work on real data, we typically have to deal
with two problems :

I the data are of diverse nature

I the data occupy a lot of memory

Non-homogeneous data

I The in�uenza-like illness data from module can easily be
presented as a table (2 dimensional object)

I Often the table form must be abandoned because
I the columns don't all have the same length
I the data can be a time series and a set of images, etc.

Big data

I Text formats are not always appropriate for numbers

I Choice of a binary format because
I Numbers occupy less memory
I Numbers in text format must be converted to binary

anyway for computation

Text format features we wish to keep : metadata

I Text permits storing the data and all the rest. . .

I ⇒ add information about the data :
I provenance
I recording date
I source
I etc.

I This information about the data is what is called
metadata

I They are vital for doing reproducible research

Text format features we wish to keep : endianness

I Text format is universal

I Binary formats depend on hardware architecture and
operating system

I The four-bit sequence 1010 can be read as
I 1x1 + 0x2 + 1x4 + 0x8 = 5, which is little-endianness
I 1x8 + 0x4 + 1x2 + 0x1 = 10, which is big-endianness

I A binary storage for reproducible research much specify
endianness

Binary formats for composite data allow storing

metadata

Wanted : binary formats for

I working with big datasets of diverse nature

I storing metadata along with the data

I having endianness �xed once and for all

`FITS` and `HDF5`

I The Flexible Image Transport System (`FITS`), developed
in 1981 and still regularly updated

I The Hierarchical Data Format (`HDF`), developed at the
National Center for Supercomputing Applications, is at its
�fth version, `HDF5`

`FITS`

I `FITS` introduced and updates by the astrophysics
community

I Format su�ciently general for use in di�erent contexts

The anatomy of a `FITS` �le

I One or mode segments : Header/Data Units (HDUs)

I A HDU is made up of :
I a header (Header Unit) followed optionally by
I the data (Data Unit)

I Header = key-value pair � metadata

I Data stored as binary tables (one to 999 dimensions) or
as tables (text or binary)

Manipulation of `FITS` �les

I The developers of the format o�er a `C` library and
associated programs that are easy to use

I `PyFITS` for Python users

I `FITSio` for R users

`HDF5`

I Hierarchical organization, resembles a �lesystem tree

I Structuring element : a group (similar to a directory)
contains one of more datasets

I Groups can be nested

I No structure imposed on metadata

I No structure imposed on data - they can be text

Manipulation of `HDF5` �les

I More �exible format ⇒ the `C` library is more complex
thatn its `FITS` equivalent

I The library is distribued with `HDFView`, a powerful tool
for exploring and visualizing data

I `h5py` is a very complete `Python` interface

I Three `R` packages : `h5`, `hdf5r` et `rhdf5`

Archiving

Git (hub, lab, . . .) : not well suited for data storage

Conclusions

I Real data ⇒ size and structure problems

I Read data are complex ⇒ metadata

I `FITS` and `HDF5` = practical solutions

I In terms of complexity and �exibility : `FITS` < `HDF5`

I Archiving platforms ⇒ persistent storage accessible for
everyone

Where are we?

M4-S0 : The Rough Road to Real-Life Reproducible Research

M4-S1 : Data Hell

M4-S2 : Software Hell

M4-S3 : Numerics Hell

M4-S4 : Conclusion

Scaling up

Complex code. . .

I A real spaghetti bowl
I No global view
I Interaction between multiple languages = danger

Complex code. . .

I A real spaghetti bowl
I No global view
I Interaction between multiple languages = danger

Complex code. . .

I A real spaghetti bowl
I No global view
I Interaction between multiple languages = danger

Complex code. . .

I A real spaghetti bowl
I No global view
I Interaction between multiple languages = danger

Complex code. . .

I A real spaghetti bowl
I No global view
I Interaction between multiple languages = danger

Complex code. . .

I A real spaghetti bowl
I No global view
I Interaction between multiple languages = danger

Complex code. . .

I A real spaghetti bowl
I No global view
I Interaction between multiple languages = danger

. . . that is di�cult to orchestrate

Work�ows :
I Clearer high-level view
I Composition of codes and data movement made explicit
I Safer sharing, reusing, and execution
I Notebooks are a variant that is both impoverished and

richer
I No simple/mature path from a notebook to a work�ow

Examples :
I Galaxy, Kepler, Taverna, Pegasus, Collective Knowledge,

VisTrails
I Light-weight : dask, drake, swift, snakemake, . . .
I Hybrids : SOS-notebook, . . .

. . . that is di�cult to orchestrate

Work�ows :

I Clearer high-level view

I Composition of codes and data movement made explicit

I Safer sharing, reusing, and execution

I Notebooks are a variant that is both impoverished and
richer

I No simple/mature path from a notebook to a work�ow

Examples :

I Galaxy, Kepler, Taverna, Pegasus, Collective Knowledge,
VisTrails

I Light-weight : dask, drake, swift, snakemake, . . .

I Hybrids : SOS-notebook, . . .

The mess of expensive computations

Long-running computations and big datasets

I JupyterHub and supercomputers : under development

I Checkpoints and caching

I Work�ows permit scaling up

Complex ecosystems
What is hiding behind the simple

1 import matplotlib

Package: python3-matplotlib

Version: 2.1.1-2

Depends: python3-dateutil, python-matplotlib-data (>= 2.1.1-2),

python3-pyparsing (>= 1.5.6), python3-six (>= 1.10), python3-tz,

libjs-jquery, libjs-jquery-ui, python3-numpy (>= 1:1.13.1),

python3-numpy-abi9, python3 (<< 3.7), python3 (>= 3.6~),

python3-cycler (>= 0.10.0), python3:any (>= 3.3.2-2~), libc6 (>=

2.14), libfreetype6 (>= 2.2.1), libgcc1 (>= 1:3.0), libpng16-16 (>=

1.6.2-1), libstdc++6 (>= 5.2), zlib1g (>= 1:1.1.4)

Complex ecosystems
What is hiding behind the simple

1 import matplotlib

Package: python3-matplotlib

Version: 2.1.1-2

Depends: python3-dateutil, python-matplotlib-data (>= 2.1.1-2),

python3-pyparsing (>= 1.5.6), python3-six (>= 1.10), python3-tz,

libjs-jquery, libjs-jquery-ui, python3-numpy (>= 1:1.13.1),

python3-numpy-abi9, python3 (<< 3.7), python3 (>= 3.6~),

python3-cycler (>= 0.10.0), python3:any (>= 3.3.2-2~), libc6 (>=

2.14), libfreetype6 (>= 2.2.1), libgcc1 (>= 1:3.0), libpng16-16 (>=

1.6.2-1), libstdc++6 (>= 5.2), zlib1g (>= 1:1.1.4)

Complex ecosystems
No standard :

I Linux (apt, rpm, yum), MacOS X (brew, McPorts, Fink),
Windows (?)

I Neither for installation nor for retrieving the information. . .

1 import sys

2 print(sys.version)

3 import matplotlib

4 print(matplotlib.__version__)

5 import pandas as pd

6 print(pd.__version__)

3.6.3 (default, Oct 3 2017, 21:16:13)
[GCC 7.2.0]
2.1.1
0.20.3

1 library(ggplot2)

2 sessionInfo()

R version 3.4.3 (2017-11-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux buster/sid

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
[1] LC_CTYPE=fr_FR.UTF-8 LC_NUMERIC=C
[3] LC_TIME=fr_FR.UTF-8 LC_COLLATE=fr_FR.UTF-8
[5] LC_MONETARY=fr_FR.UTF-8 LC_MESSAGES=fr_FR.UTF-8

other attached packages:
[1] ggplot2_2.2.1

loaded via a namespace (and not attached):
[1] colorspace_1.3-2 scales_0.5.0 compiler_3.4.3 lazyeval_0.2.1
[5] plyr_1.8.4 pillar_1.1.0 gtable_0.2.0 tibble_1.4.2
[9] Rcpp_0.12.15 grid_3.4.3 rlang_0.1.6 munsell_0.4.3

Controlling one's environment

A controlled environment :

I Work in a virtual machine (heavy) or a Docker container
(light)

Preserve the mess

I Automatic capture of
the environment

I CDE, ReproZip, CARE

Cleaning up

I Start with a clean
environment

I Install only what's strictly
necessary (and document
it)

I Docker, Singularity, Guix,
Nix, . . .

http://www.pgbovine.net/cde.html
https://vida-nyu.github.io/reprozip/
http://reproducible.io/
https://www.docker.io/
https://singularity.lbl.gov/
https://www.gnu.org/software/guix/
https://nixos.org/

The test of time

Backwards compatibility
I Python and its rapidly evolving environment

1 python2 -c "print(10/3)"

2 python3 -c "print(10/3)"

3

3.3333333333333335

I Cortical Thickness Measurements (PLOS ONE, June 2012) :
FreeSurfer : di�erences were found between the Mac and HP

workstations and between Mac OSX 10.5 and OSX 10.6.

I Format incompatibility between orgmode 7.*, 8.*, 9.*, etc.

Backwards compatibility
I Python and its rapidly evolving environment

1 python2 -c "print(10/3)"

2 python3 -c "print(10/3)"

3

3.3333333333333335

I Cortical Thickness Measurements (PLOS ONE, June 2012) :
FreeSurfer : di�erences were found between the Mac and HP

workstations and between Mac OSX 10.5 and OSX 10.6.

I Format incompatibility between orgmode 7.*, 8.*, 9.*, etc.

Backwards compatibility
I Python and its rapidly evolving environment

1 python2 -c "print(10/3)"

2 python3 -c "print(10/3)"

3

3.3333333333333335

I Cortical Thickness Measurements (PLOS ONE, June 2012) :
FreeSurfer : di�erences were found between the Mac and HP

workstations and between Mac OSX 10.5 and OSX 10.6.

I Format incompatibility between orgmode 7.*, 8.*, 9.*, etc.

Rapid development tools

Rapid but also fragile and unstable :

I Correction or introduction of bugs

I It becomes necessary to check regularly if environments
can still be reconstructed and work (continuous
integration, regression testing)

Popper : http://falsi�able.us/

Another option :

I Limit onself to what is manageable (C for example)

http://falsifiable.us/

Archiving

Source code management

I Git (hub, lab, . . .) : stable, open, . . . durable ?
I Google Code, Gitorious, Code Spaces

Environment management

I Longevity of access to Docker Hub, Nix repository, Code
Ocean, . . . ?

I Once an environment is frozen, what's the lifetime of a
virtual machine, a Docker image, . . . ?

Preserve as much information as possible automatically

I Software, versions, installation procedures

Where are we?

M4-S0 : The Rough Road to Real-Life Reproducible Research

M4-S1 : Data Hell

M4-S2 : Software Hell

M4-S3 : Numerics Hell

M4-S4 : Conclusion

Floating-point arithmetic

1 def polynome(x):

2 return x**9 - 9.*x**8 + 36.*x**7 - 84.*x**6 + 126.*x**5 \

3 - 126.*x**4 + 84.*x**3 - 36.*x**2 + 9.*x - 1.

Floating-point arithmetic

1 def horner(x):

2 return x*(x*(x*(x*(x*(x*(x*(x*(x - 9.) + 36.) - 84.) + 126.) \

3 - 126.) + 84.) - 36.) + 9.) - 1.

Floating-point arithmetic

1 def simple(x):

2 return (x-1.)**9

3 # trop facile!

Floating-point arithmetic

Floating-point arithmetic

Rounding

I Every operation includes implicit rounding.

I a+b is actually arrondi(a+b).

I Unfortunately :

arrondi(arrondi(a+b)+c) 6= arrondi(a+arrondi(b+c)).

I Operation order therefore matters.

For a reproducible computation, operation order must be
preserved ! ! !

How to explain it to my compiler ?

To speed up computations, compilers may change operation
order, and thus results.
Two options for computing reproducibly :

I Insist on the preservation of operation order,
I if the language permits it.
I Example : Module `ieee_arithmetic` in Fortran 2003

I Make compilation reproducible :
I Record the precise compiler version
I Record all compilation options

Parallel computation

I Goal : get results sooner → Minimize communications
between processosrs → Adapt data distribution → . . .
hence the operation order

I Consequence : results depends on the number of
processors !

Minimizing the impact of parallelism is an active research
topic.

Parallel computation : example

Source : Ra�fe Nheili, PhD. Thesis, University of Perpignan,
2016

Parallel computation : example

Source : Ra�fe Nheili, PhD. Thesis, University of Perpignan,
2016

Computing platforms

I Computing platform : hardware + infrastructure software

I Computation = platform + software + data

I The platform de�nes the interpretation of the software.

I Platform and software de�ne the interpretation of the
data.

I Other platform-de�ned aspects :
I integer representation (16/32/64 bits)
I error handling

Random numbers

I Used to simulate stochastic processes.

I In practice : pseudo- random numbers.

I Series of numbers that appear to be random. . .

I . . . but are generated by a deterministic algorithm.

Pseudo-random number generators

graine

Pseudo-random number generators

graine état 1

Pseudo-random number generators

graine état 1

nombre 1

Pseudo-random number generators

graine état 1 état 2 état 3

nombre 1 nombre 2 nombre 3

Reproducibility in theory

I Principle : same seed + same algorithm � same series

I The seed is often chosen as a function of time

I It must be de�ned in the application code

Reproductibility in practice

I Same seed + same algorithm � same series :
not obvious with �oating-point arithmetic !

I A simple trick to permit veri�cation :
test the �rst values of the series.

Example : the Python language

1 import random

2

3 random.seed(123)

4 for i in range(5):

5 print(random.random())

0.0523635988509

0.0871866775226

0.40724176367

0.107700234938

0.901198877952

Example : the Python language

1 import random

2

3 random.seed(123)

4 assert random.random() == 0.052363598850944326

5 assert random.random() == 0.08718667752263232

6 assert random.random() == 0.4072417636703983

Take-home message

I The results of a numerical computation depend on
I the software
I the input data
I the computing platform : hardware, compilers, . . .

I Platform in�uence is important for �oating-point
arithmetic. Record all parameters on which your results
may depend :
I compiler version, compilation options
I hardware (processor type, GPU, . . .)
I number of processors

I When using a random number generator, de�ne your own
seed and verify the �rst elements of the series.

Where are we?

M4-S0 : The Rough Road to Real-Life Reproducible Research

M4-S1 : Data Hell

M4-S2 : Software Hell

M4-S3 : Numerics Hell

M4-S4 : Conclusion

The take-home message of the MOOC
A major concern

I Scienti�c method

I Inspectability and reusability

Tools exist

I Computational documents and work�ows, version control
and archives, software environments, continuous
integration, . . .

I These tools evolve constantly
I Choose those that are best adapted to your context
I Find a compromise between modern and durable tools

Use in practice, don't get discouraged !

I Takes notes rigorously

I Make information useable and accessible

I Improve in small steps

	M4-S0: The Rough Road to Real-Life Reproducible Research
	M4-S1: Data Hell
	M4-S2: Software Hell
	M4-S3: Numerics Hell
	M4-S4: Conclusion

