diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..ee587816e77f2339f4b53eb7b3f22f6ba1609d68 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -1,5 +1,2435 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Analyse de l'incidence de la varicelle\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](https://www.sentiweb.fr/france/fr). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1990 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://www.sentiweb.fr/france/fr?page=table)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202239 \n",
+ " 7 \n",
+ " 1345 \n",
+ " 111 \n",
+ " 2579 \n",
+ " 2 \n",
+ " 0 \n",
+ " 4 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202238 \n",
+ " 7 \n",
+ " 1781 \n",
+ " 421 \n",
+ " 3141 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202237 \n",
+ " 7 \n",
+ " 1731 \n",
+ " 498 \n",
+ " 2964 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202236 \n",
+ " 7 \n",
+ " 1069 \n",
+ " 178 \n",
+ " 1960 \n",
+ " 2 \n",
+ " 1 \n",
+ " 3 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202235 \n",
+ " 7 \n",
+ " 1581 \n",
+ " 400 \n",
+ " 2762 \n",
+ " 2 \n",
+ " 0 \n",
+ " 4 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202234 \n",
+ " 7 \n",
+ " 2266 \n",
+ " 788 \n",
+ " 3744 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202233 \n",
+ " 7 \n",
+ " 7340 \n",
+ " 0 \n",
+ " 17399 \n",
+ " 11 \n",
+ " 0 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202232 \n",
+ " 7 \n",
+ " 7801 \n",
+ " 4086 \n",
+ " 11516 \n",
+ " 12 \n",
+ " 6 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202231 \n",
+ " 7 \n",
+ " 6896 \n",
+ " 4170 \n",
+ " 9622 \n",
+ " 10 \n",
+ " 6 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202230 \n",
+ " 7 \n",
+ " 9039 \n",
+ " 5770 \n",
+ " 12308 \n",
+ " 14 \n",
+ " 9 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202229 \n",
+ " 7 \n",
+ " 14851 \n",
+ " 10060 \n",
+ " 19642 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202228 \n",
+ " 7 \n",
+ " 15471 \n",
+ " 11028 \n",
+ " 19914 \n",
+ " 23 \n",
+ " 16 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202227 \n",
+ " 7 \n",
+ " 21191 \n",
+ " 16198 \n",
+ " 26184 \n",
+ " 32 \n",
+ " 24 \n",
+ " 40 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202226 \n",
+ " 7 \n",
+ " 16854 \n",
+ " 12806 \n",
+ " 20902 \n",
+ " 25 \n",
+ " 19 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202225 \n",
+ " 7 \n",
+ " 22246 \n",
+ " 18011 \n",
+ " 26481 \n",
+ " 34 \n",
+ " 28 \n",
+ " 40 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202224 \n",
+ " 7 \n",
+ " 22458 \n",
+ " 18105 \n",
+ " 26811 \n",
+ " 34 \n",
+ " 27 \n",
+ " 41 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202223 \n",
+ " 7 \n",
+ " 18772 \n",
+ " 14875 \n",
+ " 22669 \n",
+ " 28 \n",
+ " 22 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202222 \n",
+ " 7 \n",
+ " 18916 \n",
+ " 14941 \n",
+ " 22891 \n",
+ " 29 \n",
+ " 23 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202221 \n",
+ " 7 \n",
+ " 20310 \n",
+ " 16307 \n",
+ " 24313 \n",
+ " 31 \n",
+ " 25 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202220 \n",
+ " 7 \n",
+ " 23585 \n",
+ " 19004 \n",
+ " 28166 \n",
+ " 36 \n",
+ " 29 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202219 \n",
+ " 7 \n",
+ " 18593 \n",
+ " 14181 \n",
+ " 23005 \n",
+ " 28 \n",
+ " 21 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202218 \n",
+ " 7 \n",
+ " 17851 \n",
+ " 13963 \n",
+ " 21739 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202217 \n",
+ " 7 \n",
+ " 20314 \n",
+ " 16001 \n",
+ " 24627 \n",
+ " 31 \n",
+ " 24 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202216 \n",
+ " 7 \n",
+ " 19660 \n",
+ " 14860 \n",
+ " 24460 \n",
+ " 30 \n",
+ " 23 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202215 \n",
+ " 7 \n",
+ " 17799 \n",
+ " 13715 \n",
+ " 21883 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202214 \n",
+ " 7 \n",
+ " 17005 \n",
+ " 13162 \n",
+ " 20848 \n",
+ " 26 \n",
+ " 20 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202213 \n",
+ " 7 \n",
+ " 15448 \n",
+ " 11659 \n",
+ " 19237 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202212 \n",
+ " 7 \n",
+ " 14702 \n",
+ " 10794 \n",
+ " 18610 \n",
+ " 22 \n",
+ " 16 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202211 \n",
+ " 7 \n",
+ " 11729 \n",
+ " 8347 \n",
+ " 15111 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202210 \n",
+ " 7 \n",
+ " 13314 \n",
+ " 10036 \n",
+ " 16592 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1631 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1632 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1633 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1634 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1635 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1636 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1637 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1638 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1639 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1640 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1641 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1642 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1643 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1644 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1645 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1646 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1647 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1648 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1649 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1650 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1651 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1652 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1653 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1654 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1655 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1656 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1657 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1658 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1659 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1660 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1661 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202239 7 1345 111 2579 2 0 \n",
+ "1 202238 7 1781 421 3141 3 1 \n",
+ "2 202237 7 1731 498 2964 3 1 \n",
+ "3 202236 7 1069 178 1960 2 1 \n",
+ "4 202235 7 1581 400 2762 2 0 \n",
+ "5 202234 7 2266 788 3744 3 1 \n",
+ "6 202233 7 7340 0 17399 11 0 \n",
+ "7 202232 7 7801 4086 11516 12 6 \n",
+ "8 202231 7 6896 4170 9622 10 6 \n",
+ "9 202230 7 9039 5770 12308 14 9 \n",
+ "10 202229 7 14851 10060 19642 22 15 \n",
+ "11 202228 7 15471 11028 19914 23 16 \n",
+ "12 202227 7 21191 16198 26184 32 24 \n",
+ "13 202226 7 16854 12806 20902 25 19 \n",
+ "14 202225 7 22246 18011 26481 34 28 \n",
+ "15 202224 7 22458 18105 26811 34 27 \n",
+ "16 202223 7 18772 14875 22669 28 22 \n",
+ "17 202222 7 18916 14941 22891 29 23 \n",
+ "18 202221 7 20310 16307 24313 31 25 \n",
+ "19 202220 7 23585 19004 28166 36 29 \n",
+ "20 202219 7 18593 14181 23005 28 21 \n",
+ "21 202218 7 17851 13963 21739 27 21 \n",
+ "22 202217 7 20314 16001 24627 31 24 \n",
+ "23 202216 7 19660 14860 24460 30 23 \n",
+ "24 202215 7 17799 13715 21883 27 21 \n",
+ "25 202214 7 17005 13162 20848 26 20 \n",
+ "26 202213 7 15448 11659 19237 23 17 \n",
+ "27 202212 7 14702 10794 18610 22 16 \n",
+ "28 202211 7 11729 8347 15111 18 13 \n",
+ "29 202210 7 13314 10036 16592 20 15 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1631 199126 7 17608 11304 23912 31 20 \n",
+ "1632 199125 7 16169 10700 21638 28 18 \n",
+ "1633 199124 7 16171 10071 22271 28 17 \n",
+ "1634 199123 7 11947 7671 16223 21 13 \n",
+ "1635 199122 7 15452 9953 20951 27 17 \n",
+ "1636 199121 7 14903 8975 20831 26 16 \n",
+ "1637 199120 7 19053 12742 25364 34 23 \n",
+ "1638 199119 7 16739 11246 22232 29 19 \n",
+ "1639 199118 7 21385 13882 28888 38 25 \n",
+ "1640 199117 7 13462 8877 18047 24 16 \n",
+ "1641 199116 7 14857 10068 19646 26 18 \n",
+ "1642 199115 7 13975 9781 18169 25 18 \n",
+ "1643 199114 7 12265 7684 16846 22 14 \n",
+ "1644 199113 7 9567 6041 13093 17 11 \n",
+ "1645 199112 7 10864 7331 14397 19 13 \n",
+ "1646 199111 7 15574 11184 19964 27 19 \n",
+ "1647 199110 7 16643 11372 21914 29 20 \n",
+ "1648 199109 7 13741 8780 18702 24 15 \n",
+ "1649 199108 7 13289 8813 17765 23 15 \n",
+ "1650 199107 7 12337 8077 16597 22 15 \n",
+ "1651 199106 7 10877 7013 14741 19 12 \n",
+ "1652 199105 7 10442 6544 14340 18 11 \n",
+ "1653 199104 7 7913 4563 11263 14 8 \n",
+ "1654 199103 7 15387 10484 20290 27 18 \n",
+ "1655 199102 7 16277 11046 21508 29 20 \n",
+ "1656 199101 7 15565 10271 20859 27 18 \n",
+ "1657 199052 7 19375 13295 25455 34 23 \n",
+ "1658 199051 7 19080 13807 24353 34 25 \n",
+ "1659 199050 7 11079 6660 15498 20 12 \n",
+ "1660 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 4 FR France \n",
+ "1 5 FR France \n",
+ "2 5 FR France \n",
+ "3 3 FR France \n",
+ "4 4 FR France \n",
+ "5 5 FR France \n",
+ "6 26 FR France \n",
+ "7 18 FR France \n",
+ "8 14 FR France \n",
+ "9 19 FR France \n",
+ "10 29 FR France \n",
+ "11 30 FR France \n",
+ "12 40 FR France \n",
+ "13 31 FR France \n",
+ "14 40 FR France \n",
+ "15 41 FR France \n",
+ "16 34 FR France \n",
+ "17 35 FR France \n",
+ "18 37 FR France \n",
+ "19 43 FR France \n",
+ "20 35 FR France \n",
+ "21 33 FR France \n",
+ "22 38 FR France \n",
+ "23 37 FR France \n",
+ "24 33 FR France \n",
+ "25 32 FR France \n",
+ "26 29 FR France \n",
+ "27 28 FR France \n",
+ "28 23 FR France \n",
+ "29 25 FR France \n",
+ "... ... ... ... \n",
+ "1631 42 FR France \n",
+ "1632 38 FR France \n",
+ "1633 39 FR France \n",
+ "1634 29 FR France \n",
+ "1635 37 FR France \n",
+ "1636 36 FR France \n",
+ "1637 45 FR France \n",
+ "1638 39 FR France \n",
+ "1639 51 FR France \n",
+ "1640 32 FR France \n",
+ "1641 34 FR France \n",
+ "1642 32 FR France \n",
+ "1643 30 FR France \n",
+ "1644 23 FR France \n",
+ "1645 25 FR France \n",
+ "1646 35 FR France \n",
+ "1647 38 FR France \n",
+ "1648 33 FR France \n",
+ "1649 31 FR France \n",
+ "1650 29 FR France \n",
+ "1651 26 FR France \n",
+ "1652 25 FR France \n",
+ "1653 20 FR France \n",
+ "1654 36 FR France \n",
+ "1655 38 FR France \n",
+ "1656 36 FR France \n",
+ "1657 45 FR France \n",
+ "1658 43 FR France \n",
+ "1659 28 FR France \n",
+ "1660 5 FR France \n",
+ "\n",
+ "[1661 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? non"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il n'y a pas de moint à éliminer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202239 \n",
+ " 7 \n",
+ " 1345 \n",
+ " 111 \n",
+ " 2579 \n",
+ " 2 \n",
+ " 0 \n",
+ " 4 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202238 \n",
+ " 7 \n",
+ " 1781 \n",
+ " 421 \n",
+ " 3141 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202237 \n",
+ " 7 \n",
+ " 1731 \n",
+ " 498 \n",
+ " 2964 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202236 \n",
+ " 7 \n",
+ " 1069 \n",
+ " 178 \n",
+ " 1960 \n",
+ " 2 \n",
+ " 1 \n",
+ " 3 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202235 \n",
+ " 7 \n",
+ " 1581 \n",
+ " 400 \n",
+ " 2762 \n",
+ " 2 \n",
+ " 0 \n",
+ " 4 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202234 \n",
+ " 7 \n",
+ " 2266 \n",
+ " 788 \n",
+ " 3744 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202233 \n",
+ " 7 \n",
+ " 7340 \n",
+ " 0 \n",
+ " 17399 \n",
+ " 11 \n",
+ " 0 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202232 \n",
+ " 7 \n",
+ " 7801 \n",
+ " 4086 \n",
+ " 11516 \n",
+ " 12 \n",
+ " 6 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202231 \n",
+ " 7 \n",
+ " 6896 \n",
+ " 4170 \n",
+ " 9622 \n",
+ " 10 \n",
+ " 6 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202230 \n",
+ " 7 \n",
+ " 9039 \n",
+ " 5770 \n",
+ " 12308 \n",
+ " 14 \n",
+ " 9 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202229 \n",
+ " 7 \n",
+ " 14851 \n",
+ " 10060 \n",
+ " 19642 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202228 \n",
+ " 7 \n",
+ " 15471 \n",
+ " 11028 \n",
+ " 19914 \n",
+ " 23 \n",
+ " 16 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202227 \n",
+ " 7 \n",
+ " 21191 \n",
+ " 16198 \n",
+ " 26184 \n",
+ " 32 \n",
+ " 24 \n",
+ " 40 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202226 \n",
+ " 7 \n",
+ " 16854 \n",
+ " 12806 \n",
+ " 20902 \n",
+ " 25 \n",
+ " 19 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202225 \n",
+ " 7 \n",
+ " 22246 \n",
+ " 18011 \n",
+ " 26481 \n",
+ " 34 \n",
+ " 28 \n",
+ " 40 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202224 \n",
+ " 7 \n",
+ " 22458 \n",
+ " 18105 \n",
+ " 26811 \n",
+ " 34 \n",
+ " 27 \n",
+ " 41 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202223 \n",
+ " 7 \n",
+ " 18772 \n",
+ " 14875 \n",
+ " 22669 \n",
+ " 28 \n",
+ " 22 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202222 \n",
+ " 7 \n",
+ " 18916 \n",
+ " 14941 \n",
+ " 22891 \n",
+ " 29 \n",
+ " 23 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202221 \n",
+ " 7 \n",
+ " 20310 \n",
+ " 16307 \n",
+ " 24313 \n",
+ " 31 \n",
+ " 25 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202220 \n",
+ " 7 \n",
+ " 23585 \n",
+ " 19004 \n",
+ " 28166 \n",
+ " 36 \n",
+ " 29 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202219 \n",
+ " 7 \n",
+ " 18593 \n",
+ " 14181 \n",
+ " 23005 \n",
+ " 28 \n",
+ " 21 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202218 \n",
+ " 7 \n",
+ " 17851 \n",
+ " 13963 \n",
+ " 21739 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202217 \n",
+ " 7 \n",
+ " 20314 \n",
+ " 16001 \n",
+ " 24627 \n",
+ " 31 \n",
+ " 24 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202216 \n",
+ " 7 \n",
+ " 19660 \n",
+ " 14860 \n",
+ " 24460 \n",
+ " 30 \n",
+ " 23 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202215 \n",
+ " 7 \n",
+ " 17799 \n",
+ " 13715 \n",
+ " 21883 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202214 \n",
+ " 7 \n",
+ " 17005 \n",
+ " 13162 \n",
+ " 20848 \n",
+ " 26 \n",
+ " 20 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202213 \n",
+ " 7 \n",
+ " 15448 \n",
+ " 11659 \n",
+ " 19237 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202212 \n",
+ " 7 \n",
+ " 14702 \n",
+ " 10794 \n",
+ " 18610 \n",
+ " 22 \n",
+ " 16 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202211 \n",
+ " 7 \n",
+ " 11729 \n",
+ " 8347 \n",
+ " 15111 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202210 \n",
+ " 7 \n",
+ " 13314 \n",
+ " 10036 \n",
+ " 16592 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1631 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1632 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1633 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1634 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1635 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1636 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1637 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1638 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1639 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1640 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1641 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1642 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1643 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1644 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1645 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1646 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1647 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1648 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1649 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1650 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1651 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1652 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1653 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1654 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1655 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1656 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1657 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1658 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1659 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1660 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1661 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202239 7 1345 111 2579 2 0 \n",
+ "1 202238 7 1781 421 3141 3 1 \n",
+ "2 202237 7 1731 498 2964 3 1 \n",
+ "3 202236 7 1069 178 1960 2 1 \n",
+ "4 202235 7 1581 400 2762 2 0 \n",
+ "5 202234 7 2266 788 3744 3 1 \n",
+ "6 202233 7 7340 0 17399 11 0 \n",
+ "7 202232 7 7801 4086 11516 12 6 \n",
+ "8 202231 7 6896 4170 9622 10 6 \n",
+ "9 202230 7 9039 5770 12308 14 9 \n",
+ "10 202229 7 14851 10060 19642 22 15 \n",
+ "11 202228 7 15471 11028 19914 23 16 \n",
+ "12 202227 7 21191 16198 26184 32 24 \n",
+ "13 202226 7 16854 12806 20902 25 19 \n",
+ "14 202225 7 22246 18011 26481 34 28 \n",
+ "15 202224 7 22458 18105 26811 34 27 \n",
+ "16 202223 7 18772 14875 22669 28 22 \n",
+ "17 202222 7 18916 14941 22891 29 23 \n",
+ "18 202221 7 20310 16307 24313 31 25 \n",
+ "19 202220 7 23585 19004 28166 36 29 \n",
+ "20 202219 7 18593 14181 23005 28 21 \n",
+ "21 202218 7 17851 13963 21739 27 21 \n",
+ "22 202217 7 20314 16001 24627 31 24 \n",
+ "23 202216 7 19660 14860 24460 30 23 \n",
+ "24 202215 7 17799 13715 21883 27 21 \n",
+ "25 202214 7 17005 13162 20848 26 20 \n",
+ "26 202213 7 15448 11659 19237 23 17 \n",
+ "27 202212 7 14702 10794 18610 22 16 \n",
+ "28 202211 7 11729 8347 15111 18 13 \n",
+ "29 202210 7 13314 10036 16592 20 15 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1631 199126 7 17608 11304 23912 31 20 \n",
+ "1632 199125 7 16169 10700 21638 28 18 \n",
+ "1633 199124 7 16171 10071 22271 28 17 \n",
+ "1634 199123 7 11947 7671 16223 21 13 \n",
+ "1635 199122 7 15452 9953 20951 27 17 \n",
+ "1636 199121 7 14903 8975 20831 26 16 \n",
+ "1637 199120 7 19053 12742 25364 34 23 \n",
+ "1638 199119 7 16739 11246 22232 29 19 \n",
+ "1639 199118 7 21385 13882 28888 38 25 \n",
+ "1640 199117 7 13462 8877 18047 24 16 \n",
+ "1641 199116 7 14857 10068 19646 26 18 \n",
+ "1642 199115 7 13975 9781 18169 25 18 \n",
+ "1643 199114 7 12265 7684 16846 22 14 \n",
+ "1644 199113 7 9567 6041 13093 17 11 \n",
+ "1645 199112 7 10864 7331 14397 19 13 \n",
+ "1646 199111 7 15574 11184 19964 27 19 \n",
+ "1647 199110 7 16643 11372 21914 29 20 \n",
+ "1648 199109 7 13741 8780 18702 24 15 \n",
+ "1649 199108 7 13289 8813 17765 23 15 \n",
+ "1650 199107 7 12337 8077 16597 22 15 \n",
+ "1651 199106 7 10877 7013 14741 19 12 \n",
+ "1652 199105 7 10442 6544 14340 18 11 \n",
+ "1653 199104 7 7913 4563 11263 14 8 \n",
+ "1654 199103 7 15387 10484 20290 27 18 \n",
+ "1655 199102 7 16277 11046 21508 29 20 \n",
+ "1656 199101 7 15565 10271 20859 27 18 \n",
+ "1657 199052 7 19375 13295 25455 34 23 \n",
+ "1658 199051 7 19080 13807 24353 34 25 \n",
+ "1659 199050 7 11079 6660 15498 20 12 \n",
+ "1660 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 4 FR France \n",
+ "1 5 FR France \n",
+ "2 5 FR France \n",
+ "3 3 FR France \n",
+ "4 4 FR France \n",
+ "5 5 FR France \n",
+ "6 26 FR France \n",
+ "7 18 FR France \n",
+ "8 14 FR France \n",
+ "9 19 FR France \n",
+ "10 29 FR France \n",
+ "11 30 FR France \n",
+ "12 40 FR France \n",
+ "13 31 FR France \n",
+ "14 40 FR France \n",
+ "15 41 FR France \n",
+ "16 34 FR France \n",
+ "17 35 FR France \n",
+ "18 37 FR France \n",
+ "19 43 FR France \n",
+ "20 35 FR France \n",
+ "21 33 FR France \n",
+ "22 38 FR France \n",
+ "23 37 FR France \n",
+ "24 33 FR France \n",
+ "25 32 FR France \n",
+ "26 29 FR France \n",
+ "27 28 FR France \n",
+ "28 23 FR France \n",
+ "29 25 FR France \n",
+ "... ... ... ... \n",
+ "1631 42 FR France \n",
+ "1632 38 FR France \n",
+ "1633 39 FR France \n",
+ "1634 29 FR France \n",
+ "1635 37 FR France \n",
+ "1636 36 FR France \n",
+ "1637 45 FR France \n",
+ "1638 39 FR France \n",
+ "1639 51 FR France \n",
+ "1640 32 FR France \n",
+ "1641 34 FR France \n",
+ "1642 32 FR France \n",
+ "1643 30 FR France \n",
+ "1644 23 FR France \n",
+ "1645 25 FR France \n",
+ "1646 35 FR France \n",
+ "1647 38 FR France \n",
+ "1648 33 FR France \n",
+ "1649 31 FR France \n",
+ "1650 29 FR France \n",
+ "1651 26 FR France \n",
+ "1652 25 FR France \n",
+ "1653 20 FR France \n",
+ "1654 36 FR France \n",
+ "1655 38 FR France \n",
+ "1656 36 FR France \n",
+ "1657 45 FR France \n",
+ "1658 43 FR France \n",
+ "1659 28 FR France \n",
+ "1660 5 FR France \n",
+ "\n",
+ "[1661 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de semaine est collé à l'année, donnant l'impression qu'il s'agit de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ "\n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de semaine. Il faut lui fournir les dates de début et de fin de semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous écrivons une petite fonction Python pour cela. Ensuite, nous l'appliquons à tous les points de nos donnés. Les résultats vont dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation comme nouvel index de notre jeux de données. Ceci en fait une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm8HUWZ9vOec+692fdLCAmShIQlBEESYyCgQoREcQZUGNERcGQGRVDHcflgZlRUGEFHmWFGHEUUcGERVJBVZAcDIZBAgBCSkEBC9n292zn1/dFd3dXVby1nvffm9pNffqdvdXVVdXVVvfWuRUIIZMiQIUOGDCpy3d2ADBkyZMjQ85ARhwwZMmTIkEJGHDJkyJAhQwoZcciQIUOGDClkxCFDhgwZMqSQEYcMGTJkyJBCRhwyZMiQIUMKGXHIkCFDhgwpZMQhQ4YMGTKkUOjuBlSKUaNGifHjx3d3MzJkyJChV+H555/fLIRodeXrtcRh/PjxWLBgQXc3I0OGDBl6FYjoTZ98mVgpQ4YMGTKkkBGHDBkyZMiQQkYcMmTIkCFDChlxyJAhQ4YMKWTEIUOGDBkypJARhwwZMmTIkEJGHDJkyJAhQwoZccjQ6/H6hl2Yv3JrdzcjQ4b9Cr3WCS5DBonTrnkCALDqqtO7uSUZMuw/yDiHDBkyZMiQQkYcMmTIkCFDChlxyJAhQ4YMKTiJAxH1I6L5RPQiEb1CRN8O0y8noreJaFH4/0PKM5cR0XIiWkpEc5T0aUS0OLx3LRFRmN5CRLeF6c8S0fjav2qGDBkyZPCFD+fQDuAUIcQxAI4FMJeIZob3rhFCHBv+vw8AiGgKgHMAHAVgLoDriCgf5v8JgAsBTA7/zw3TLwCwTQgxCcA1AK6u/tUyZMiQIUOlcBIHEWB3+GdT+F9YHjkDwK1CiHYhxEoAywHMIKIxAIYIIeYJIQSAmwGcqTxzU3h9B4DZkqvIkCFDhgyNh5fOgYjyRLQIwEYADwkhng1vXUJELxHRL4hoeJg2FsBq5fE1YdrY8FpPTzwjhOgCsAPASKYdFxLRAiJasGnTJq8XzJAhQ4YM5cOLOAghikKIYwGMQ8AFTEUgIjoUgahpHYAfhtm5Hb+wpNue0dvxMyHEdCHE9NZW50FGGTIYUSwJ3PPSWgRMbIYMGXSUZa0khNgO4DEAc4UQG0KiUQJwPYAZYbY1AA5WHhsHYG2YPo5JTzxDRAUAQwFkLq8Z6oYbnnoDl/x2If646O3ubkqGDD0SPtZKrUQ0LLzuD+ADAF4LdQgSHwHwcnh9N4BzQgukCQgUz/OFEOsA7CKimaE+4TwAdynPnB9enwXgEZFt6TLUEet3tAMAtuzu6OaWZMjQM+ETPmMMgJtCi6McgNuFEPcQ0a+I6FgE4p9VAD4LAEKIV4jodgCvAugCcLEQohiWdRGAGwH0B3B/+B8AbgDwKyJajoBjOKcG75YhgxGZuUOGDHY4iYMQ4iUA72LSz7U8cyWAK5n0BQCmMultAM52tSVDhgwZMjQGmYd0hv0KP/zzUlxxz6ve+TPhZYYMPDLikGG/wv88shw/f2qlM18mVcqQwY6MOGTo0xBWf84MGfouMuKQoU8iU0hnyGBHRhwy9GnUW+dw49Mrccfza9wZM2ToYchOgsvQJ9Go0F2X/ylQjp81bZwjZ4YMPQsZ55AhQ4YMGVLIiEOGPo1MHZ0hA4+MOGTok8j00Rky2JERhwx9GpkTXIYMPDLikKFvImQdMj+HDBl4ZMShh2P9jja8vmFXdzdjvwOF1CHjHDJk4JGZsvZwzPzewwCAVVed3s0t2b+QOcFlyGBHxjlkyJAhQ4YUMuKQIUOGDBlSyIhDhj6JTKrU+3H3i2uxcvOe7m7GfouMOGTo08hOo+2d2NnWiS/eshDn/eLZ7m7KfouMOGTok8gU0r0bxWJA1Fdv3dfNLdl/4SQORNSPiOYT0YtE9AoRfTtMH0FEDxHRsvB3uPLMZUS0nIiWEtEcJX0aES0O711LYfQzImohotvC9GeJaHztXzVDhjT2N8bhG398GeMvvbe7m1F37GefrUfCh3NoB3CKEOIYAMcCmEtEMwFcCuBhIcRkAA+Hf4OIpgA4B8BRAOYCuI6I8mFZPwFwIYDJ4f+5YfoFALYJISYBuAbA1TV4t5ridwtWY8vu9u5uRoYagfZTrcOvnnmzu5vQEGTiwPrDSRxEgN3hn03hfwHgDAA3hek3ATgzvD4DwK1CiHYhxEoAywHMIKIxAIYIIeaJ4MverD0jy7oDwGxqVExlD6zZthdfu+MlfO7Xz3d3UzJkyJChIfDSORBRnogWAdgI4CEhxLMARgsh1gFA+HtAmH0sgNXK42vCtLHhtZ6eeEYI0QVgB4CRlbxQPdAZyjc37co4h/0N2f6zdyL7bvWHF3EQQhSFEMcCGIeAC5hqyc7t+IUl3fZMsmCiC4loAREt2LRpk6vZGTIY0XP40gyVIJMq1R9lWSsJIbYDeAyBrmBDKCpC+LsxzLYGwMHKY+MArA3TxzHpiWeIqABgKICtTP0/E0JMF0JMb21tLafpGXoQNuxsQ0dXqbubAaD3LTLFksAfF76NUqmXNbzGyAIm1h8+1kqtRDQsvO4P4AMAXgNwN4Dzw2znA7grvL4bwDmhBdIEBIrn+aHoaRcRzQz1Cedpz8iyzgLwiOiBGqdVW/bie/ctyZRhVaCzWMJ7/uNhfOV3L3rlf3v7Ppzxv09h656OmrajtzIOv3n2TfzzbYtwy3NvdXdTuhfZFKw7fDiHMQAeJaKXADyHQOdwD4CrAJxKRMsAnBr+DSHEKwBuB/AqgAcAXCyEKIZlXQTg5wiU1CsA3B+m3wBgJBEtB/AvCC2feiJ++sQbeKMGXpnrd7Th7e19z0a7GO54H3xlvVf+6594Ay+u2YE/Lny7Lu3pLTvQDTuD6LySSG7cmem/MtQXzqisQoiXALyLSd8CYLbhmSsBXMmkLwCQ0lcIIdoAnO3R3h6BWnAOfT7aah3W5L0dXf6Ze5nS4T3/EYyXr552GACgq9QzxHLdhd5B0ns3Mg9pD+jEIJMqVQ6q4yE7dy9a686kobd9y3wumLJdfV3n0LdfvyHIiEMF6OPzsirUc1K3NPkP597FN8Qo5IKWy/ARfRW9RRzYm5ERBw/o/ng9xdKmN6NcIuGTvaWQd2fq5chL4uDZgdc9thyPLt3oztjLkHEO9Ud2ElwF6CgW3ZkyWFGPud1SKH+v09vWmEI+IA5dDOeweuveVNr3H1gKoA/rtjJUjIxz8ICuc2jPOIeKIbuyHubAA5r99zq9TB8dQXIOus6hvauIk77/aHc0qVvQ24h6b0RGHCpAowxF9md/Ct83ixTYHn3RXKhgxe9lfRzpHLRB2NdEnfvz3OgpyIiDB3SdQ6OUYcX9UPMt+64ec7uc7uqtUVkja6W+rpDu26/fEGTEoQdjfxz/9ZzUlZTd2/o4H85YXSHdg4IYZ9hPkBGHCtCoXUsp2x6VhXJEDb11LZUcj+tVM7FLhmqREYcK0Khptz/O73q+kq95py927O3E+EvvxX2L10VpG3e24enlm2taTzmInQjt2B/Hjor9/f16AjLiUAEatSvbHzmHcvuuHN3AJ68v/7B5W3OWbwrOuPrZE29EaWf++Gn8/c9rf6h9sSTwo4dex/a96QCDl9/9SipNHxspL/7aNq/HIXOCqz8y4lABGjUs90N9dI9BpVKltTvaatoOiceWbsS1Dy/DtxhCcONfV0XX1zz0OgA3kd3fxUr7+ev1CGTEoRJkOoeKwb1RW2cRP3jwNbR11te5cNHq7dgcngP+8Gsbw/a4+7gR+glpitreaTdJXbUlcHTTh0baom7/JhD775v1HGTEwQNplr0xQ1Psh6br3Hr1y6dX4cePrsDPn3wjfbOGOPPHT+P0a5/Evo4iFq3e7v1cLdbYlZv34Jt3vWw8pEcm+xIil1hpb3sx4zwzVIWMOFSAzFrJD48u3Yi7X3RHSpW75kY4cm3Y2Y5tilzf1sW15Bgu+vXzuHnem3ht/S72vtxw+BMH+/1jvvNnzF+ZOkxxv8H+zBX1FGSxlTyQYtkz4uCFf/jlcwCAvz3moDjR8kqNetvtezsbVFMapsVffmpfBbzP0PjE9c94tqr3QX39u19ci3HD++O4dwzvtvbsj8iIQwXIFNKVgxPJNdrnoKNYHodSi8/g9EuQF5590desk3Sor//FWxYCyIIL1hqZWMkD6cN+GqRz6OWcQ7lo1OuqYUlsVdaSZm0NRVlmzkGUVWdv5yqrR19///rDSRyI6GAiepSIlhDRK0T0pTD9ciJ6m4gWhf8/pDxzGREtJ6KlRDRHSZ9GRIvDe9dSKK8hohYiui1Mf5aIxtf+VWuHjHOoHNyaJhfERnEV3bGwbtoVWEmZxEYyVpJvGAz9Der9Sl3FEl5+e0d9K8nQo+DDOXQB+IoQ4kgAMwFcTERTwnvXCCGODf/fBwDhvXMAHAVgLoDriEiewvITABcCmBz+nxumXwBgmxBiEoBrAFxd/avVDo2eiBLqIra/cBHcW1RDAHz7Rc2nBq3zeryGfW9616/87kUAQM5brKQnVN4mH/zgwaX48P88hdc38Ar1RmM/mQ49Gk7iIIRYJ4R4IbzeBWAJgLGWR84AcKsQol0IsRLAcgAziGgMgCFCiHkimKk3AzhTeeam8PoOALPJdwvVAKQHYuM9pLPJwMOXu1Lz1YJzqJRYuwZ1znPYN5r7eWlNwDVIDkjH8o278f4fPIotu/n7tUY2HeqPsnQOobjnXQBk/IBLiOglIvoFEUlTgbEAViuPrQnTxobXenriGSFEF4AdAEaW07b6onuGojr/95fJwC2qch9QyXrX5XG4xrY9Hbh9QTwkkzqHynq20rW5Vlsevf56+97E52rw93/6+Aqs2rIXDy9pzJGk2Wap/vAmDkQ0CMCdAP5ZCLETgYjoUADHAlgH4IcyK/O4sKTbntHbcCERLSCiBZs2bfJtetVITcQ+JlZq6yziuseWo7NMKx8Otreo5A19uuWLty7EZb9fHP1di3My6vU1fDmCp5ZvxuI1sQ6g3sPDRdTk2JDHmNYbWWyl+sOLOBBREwLC8BshxO8BQAixQQhRFEKUAFwPYEaYfQ2Ag5XHxwFYG6aPY9ITzxBRAcBQACkPHiHEz4QQ04UQ01tbW/3esA6o5bC0LfqlHsI5/OSxFfj+A0tx63Or3ZnrBFM3+SyKG3cmRR1rtqXPWuZgk2xWTqzti2c5dOtv/vepCttQPqJQ4YaR2Bk2/OnlWxJEK0PvhY+1EgG4AcASIcSPlPQxSraPAHg5vL4bwDmhBdIEBIrn+UKIdQB2EdHMsMzzANylPHN+eH0WgEdED9LA1lMhrZ8FrELdRTZKxvzK2h34+E/nYb0SYG7HvsBprKsWnIPNCa6CV6xkB/mNu5Tgdh6PN3IgmsJruFDvNko6aWqeHBt3vrCm7kTrdwtW48wfP13XOjL4OcHNAnAugMVEtChM+1cAnyCiYxGMy1UAPgsAQohXiOh2AK8isHS6WAghI6pdBOBGAP0B3B/+BwLi8ysiWo6AYzinutcqH0vW7URTnjDpgMGpe/WU73Z0ldCU52m06AaF9I1Pr8KzK7fiiWWb8HfTAwZQOo2Z2lkObOaqlfRrPfvFtsevvFr7k5VuArrb96aRx5Z+7Y6XGlZXX4aTOAghngI/T+6zPHMlgCuZ9AUApjLpbQDOdrWlnvjgfz8JgPey1BetWs5Dmxy/O/wcYsVjXLmMedRcA+LA1mlZhustwa60iysdA65v2lOd2yKjAcP9zjIG69Y9HWjrLOKgYf1r0LIM9ULmIV0Bajl9bcHmusOUlTuGMiIOhXi4LNuwCwvf2lZ+BTV+j0Z0C9f3lXKPrsW/0g1Bvfsh8r9wiJV8MP2Kh3DCVY9U36gMdUUWW8kDaWulGoqVbJyDcqtR1hncMZSSu1GJw6nXPAGg/Hg21reoROfg8S1slja25+3POaut6LlKx1bdrZXCXxNxK4fj2R89//dHZJyDAcs37sL4S+/FI69tqOvE62mcA1dfZKbo675bJnzPReZQz26pR5/Xi3OoN6rxRclQHa556HWceHXjOa2MOBjwwlvBYTD3LV5fZ52DubDucILjdsuyHb7euwBw5/Nr2HRbbKVKUO236E6iy6FSH4y6O8E57/eYgAb7Hf774WVYs21fw+vNiIMHammttK+jiAdeXh/97c851H8Vm79yK26ZH/gyqO9YSc0yVpAOW9/Z3tH4XD2tlbpBrFSxQtrymA9Nf+jVDVi3w70AZYxD30Gmc3CgrbOYiidTzTr9zbtexu+UXbVV5yCqW6DLxW+ffTOuz1DhzrZOFGtstugKzWBDd3nKVhx2w/FcPfYAeQ/q8E83L8CYof0w77LZ7P1YrMQ3sOdEQstQK2TEwQA51u95aR3ueWld4l41E/itrUnvXDvnUJs6a4njvvOQ1XHPBV6sVPnKUrVYyStPOletTVkntg7EG5v24P2Hpz3/iTwU2ZZ7vgv3OsXx0VRGtTqRrXs6nHmeeWMLvvOnV/H7z5+Afk15Z/4M9UEmVqoAlc6PR1/biGe1c31tfg6iO5QOTHXq2lIJYdjVFh/LaXuau+da2J5esbns9iTqtIljLESrcv8I/slRA1sA8Ep/n7W90vfwRVxCsiIpivIlQMd99yFnnm/d9QpeXbcTKzfv8W9ghpojIw4VoFL5/2d//XwqzZtzaAB1SNRQhUhL759vKeEq+KisZVYQYuueDlzy24WVPSzb02Cqy9HWrmIJ81dtDdtTe9RC5MOJ/h5/fROO/94jeODl9VYCdPb//RWzyvBr6NcULEvtlrnRF3GHwcijXsiIQwPBEQK7h3RjTVldjIrvIqO3dfu+Tj6j4zkXrr7/Na981R4NwjrBVfxB0s+9qYgaWbGbR/ttRM5kgry7vQu72jr9fEWiwHsx5Mlwi1Zvtz773KpteHu7v7VNSyEQJZ3546fxzBtbvJ/b3/FVg5FHvZARhwpQy3XaJqVptEK6VrCKjiw3u0O5bBXH2KyVKqzPJZWrXFxlvmcyQZ76rQdx9OV/9ip/aXgCnDom1WIrob8motTSFC9L1z68rPyCM9QEGXEwwLpbq+EaZjNdTOzkG8A6qDVUU53eVqeNfIU7+1ydnPIkah1BFqg86mo1cPWTz7vUQ/5v8unIK+2txdkbGSpDRhwqwNfvrF1USNvQ707OoRpiVI+28uKWOlTki9q7IwAITKd3t3fVtNy8iziUUw8nYqvYrNddR7WBCB99bSPuX7zOnTFDChlx6Gb4HvbTiGidpraUSyjK3XGT5V53oh7Eh/uOOxSdzA8eXIqp33qw7HJt38jl2f7sSn+5ftKKrfa6HL2OahmHf7jxOVz0mxeqKySEEALLN+6uSVm9AX2eOPz3X5Z168EhtgUxsZA0eOGsZlKmwo1Y7gGVL8LdSUwq1o8wj330ur9W1xgHXJHWP3n9s6m0x1/fxCqRzU5w5X9E04ZHraMniZV+/8Lb+MCPHsfjrzfuiOLuRJ8nDtf85XXW2qJREgu7zqGxYqXkjk1VPJp7g5Oh13LRti86fhVZS/BoLG+t5FV1CpWsddX6OZQTE0vi/F/Mx9z/esK7nnrNl1pxzN+662XsqUBcp+LltYF1VndyD3q0hnqizxOH7oaVcyj55asFNuxsw72KJ7hvfdc9ttyZR1047CKnnrNLBFyWVW5wZynrHMcjr20os1Xlo6VQ2TTf1ZZeTFmOqWJCaeIc4utacQ43zXsTv3hqZU3K6k488Mp6d6YaISMODQS3gbPtjJIKaXO+59/chulXPITxl95rrX/Zhl3GQ1k+pznoLVm/M67b0sZn3tiaSksHKuSvJRznyBhRC1piNbutMEigBHeWcjIkisBnblzgLKdaHDCkX83K2rI7Dn9RvSmrIV3p91pKlYo12nx05yamkTYYGXFoIDj23m6tpOSzZPzYT/6KzbvtMWtWbt6DU695Aj94cCl7f4fmqPanF9dG1ys27TG2gQ3xXeYyX62TWr3BvY3rDZ9blSaaQHJhqWUY5katV1fcu6RmZfk0ebUWi6waZGHFy4OTOBDRwUT0KBEtIaJXiOhLYfoIInqIiJaFv8OVZy4jouVEtJSI5ijp04hocXjvWgpXBSJqIaLbwvRniWh87V+1+8ENTWuY6hrqHKSs8gXPoz07iwJ/WBi468tggb5tqFR0VO4CV+8Fcf5KfoH3wdn/N49NV9tcyNdusbIS5Dr0096OrkiGL1DZjtZHrLS7vQs79vp62NtftIfvQbzQyHfw4Ry6AHxFCHEkgJkALiaiKQAuBfCwEGIygIfDvxHeOwfAUQDmAriOiGRoxZ8AuBDA5PD/3DD9AgDbhBCTAFwD4OoavFtVqMdHsB2kw0EXQTQav332rcTffFyk8rghVqzk0dfcc8e+Y5j7QUf5tm617ZIrP3ahfEucasdiPTzPZ1z5MP7nEbe+SYVuvGAUK2npO9v8iIOrO6ud0t3BeWzYaY6UW284iYMQYp0Q4oXweheAJQDGAjgDwE1htpsAnBlenwHgViFEuxBiJYDlAGYQ0RgAQ4QQ80SwytysPSPLugPAbOrpsoYKwA0u7/AZ3SDm1Ntr0xck8lXY2HIXsQHN3RfOedtesxjP6ruiqHxWba6dyKQe3tw2qI56Qggv0eAzuj+FoV060bTFH7M9p6M3riivrtuZ+LuRBKosnUMo7nkXgGcBjBZCrAMCAgLggDDbWACrlcfWhGljw2s9PfGMEKILwA4AI5n6LySiBUS0YNOmXmhrXIVCuu6oYVVWzqGGTnC1UUhXVogaaTZVpifB/9QNaf+CSlEut1Zr+CxZ//NwktMwje+VW5KhOmxH6fqUJ9Eb95ttHcVuq9ubOBDRIAB3AvhnIcROW1YmzSSWlF/Tdi9OEOJnQojpQojpra3pQ1FqgUaLb3wX0no3y6d43zbY83lqtX3qqcGy5yPZ4caE9RwOW1kebdJRvSdyebVWMgd8PuE8LcKqqRa9b21h7VW4iEO1ZrHdQVv2dSaJQ0/TOYCImhAQht8IIX4fJm8IRUUIfzeG6WsAHKw8Pg7A2jB9HJOeeIaICgCGAqhcG1gF5Piq9CPsbu/C+EvvxU1/XZW6V64IxteUtW5INZjTOTDP9Sx3BStMpr0u2PUY1ZnApp7x6FBTuSdNHlX256hsDS1/whi9rbW/bUfpqnAt/r7iqZ6E7jzTwsdaiQDcAGCJEOJHyq27AZwfXp8P4C4l/ZzQAmkCAsXz/FD0tIuIZoZlnqc9I8s6C8Ajoo5b+L/936dw/RNvsPeqrVQqkG7kiENVCukqG2aAEMJ7wbKJhBL5rP4B5jJ8dRq2sjjYFvL+FR5DWekpcXX7jjWss5Kp9/Ty8k/kM63luvjHtqhfcOKEuDzHOtrkiiPiiTXb9jXMU1nnhnqan8MsAOcCOIWIFoX/PwTgKgCnEtEyAKeGf0MI8QqA2wG8CuABABcLISRvdBGAnyNQUq8AcH+YfgOAkUS0HMC/ILR8qgeKJYGX1uzAlffxlijV0qSI8/DMb9U5KLPH34w0nXPZhl345dMrE+2TmPLNB1lnLSC9q+asRlhrpTKtKrlTxnRcxRzsU4uFNp+rfMGYddUjZYWYACoNn1H5klBZzKPy8guRFn94Pec5qm1iJdUc2CVWGjagya9hBsiabvzrKrz7yr9UVZYvuiPEu0TBlUEI8RTMa91swzNXAriSSV8AYCqT3gbgbFdbagGblQlgX4S/NudwoxMZEBCeV8L4K1yPcZPcNp7V85rL2d3r68Gp18QLWKc22PZ1FvHy2zsxYdTAdFna33va/RaARg1ntZ7T3zkmEf7DhA8dfSDuWxyHIKhUXDff4OTmKrNe4sFqQ30k8zfmC/rGabKJi9RT7lwe0L6K7Z6E7gw82Oc8pF2UON75pxfyY8al7eqFEBHb+19/eR1funURAN4butzwGUWFT/YdIk6LDc9ygrKSf1/32Aqv8ip3dLO3ffyl92KBYVE+bcpozJqUMnBLQf8u9RDz1JpzsCEOJmeR35etkC6vDZW+kpE4aIPKtkCqnJ97bvP3X3hrG0743sNOfwq9XfKY1HqiO+lZnyMOrr627Zr6N+fxngkj8J4JI6K0q+5/DZP/7X50FkuJ6K7c+SrlMvhJzsHvmUqPoeQmjp62eXdazsrJce3WOoxSW55P7PGOZymex+kT59w9bDpPWeL/Hl+Bs35SvxDaFYktLU3+0q0L7Y9SBZyD9kC9RBvmuZZ8YRtHkCdVrGSvz7Rxuuah17F2RxsWvmU/C1vHs1V40PtC7/tGWis5xUr7G1xz03Y/nyPkiBI7mRvCSI/67sZXTmznHCoQK7mWAlPIAv+sCfRrYoiD51ryxOub0FzIVX6eg3Jtk62r30I/MlPvV063UUvUmlN5Ze1Oa7lUQZ36mNy8x658rfSdzAppLZ+Vc4ivdSKif1uTXluOnfU7yot1NbABTphdmVipcahGnpqjYOCqk0d+PJ8JUq7ytstDIe0bksBVDlu2x0v1Y6x99D5+dOnG+J5y67xfzMc5P3uGvecFLb8PkcnrYiWPal5bv8t6f+Fb2/C3//sU2kKlrF3+X69dOA8iKrtO/bu7ZPUdxcoctXw3PFbOwSJW2qbFZDKNZ7lf+H93Lra2Q5+//RtBHDSK1mM9pPcHuMajbUHMUcA5sLtsCGfZ3GfVNwZ/enEtPvCjx1EqCY1z4Mtcph08Us37udrGgSMOege5nPlqMdx9y9DPU67FTv7yP72Kl9bswJIw1IFtMXaZW9YalXAOavZZVz2CXzrOQWjrrOylTO3SJX+2cahyDvrY1rl5EwdSyWFI1TxXDrrTN6PviZVc9y0ZckQpzkGiJJKLArvb8Qhv/ZXbX0RHsYTOUgldyo7NtODM0UwpXYt/cqGuTIGngpsgj1V4jCL7jlrxanVqft95qu/+1DJ+9cybfoXoSIkzLFkrq8FZta9yV0UhR6zYQijr0dvb9+HnDuJwx/NrrPdNMLVZ33DYxErq+NOJgT6eTMU41FAR9GyNCG/ToXNtPc1Den+Cc0G03MvlgsHIDbKSSHIOvt/wDy90KgawAAAgAElEQVS8zbdDJAmMv0K6HOLAX5dTJ1cf5x0elWnxsvYSzallJfqbEgv/xl18NMuTD0+GXZHfcuueDnzjjy+7G+AB22uo/TWxNTYf/uR73mF8Rr7V4H4FHDQ0eXCPLM9m0WPqV5Pdf8NMWW0WVgps75ZLKKR1ljX5p2luVBpzqRHEoTs5hz5IHFz3LfJNIuTIZNnjLpsbgrpYCMpCmTBl9RyHerY2zTlJGK45VHpylnXnzDIHtlgUWl5lIqu3ikIkSllq0BOcdtSBib/lrlQ/Ca8c+3J99+0dPkO5tFlRqaX959nHJO7Jqr9zjykQIC8GVZ/1Ta81TN2k128bh+od/Tn9KZfOoVw0QkTY0VXCiIHN0d89zUO6T8E2LyjUOXCDTAjhFHP47FBkjpIQmkLab8aKEnDvS+vw5LJAtLNlT9LpL3GAkGPx99kZsX3h01AFjy8zi6H0skwTubPLrLizdbtUtq7dnrRUufMFf1GJjQDr2Lmvi83nI78mACdMGoWjxw5N1cYd13rzZ2YEpqzMN/rDwjXYuod3CG1U8EnjYT+6OEiZB2kDDEWU6zDOMBMHvyVXP1uhEb3UWSyhqYaHQpWDPkccfE1ZufGSzwWiC47T08ut1qqgJASKqs7Bm3MQuPi3L+DcG+Zj2YZd+Mrti4ztFNpzTGHu+lhxVHnTRno2c0+l7LyVflWr6SqVjPoIGyR3ptezVzmvwAVdIWt7/SvvWxLVpfaTjXPQY0+pWU11DWjO472HtbKjsK2ziC/f9qKxvlpwDns73P1n5Gi0+aVyDru1ctX3d+kcTBIaH+Lwv48swx8XrU2kNUbnUEr4EjWIqQPQF4mD0w/AfCtHQFOeEuIeiS/dtggblWBcPOfg28rgWM9KbJzVR776uxdTO0r1/V06B5/Bz/Wn/pzKFpcrckp1gYEAdBZFReRYhhPRRRdvlnF2cSpypucQU7PpVlQ2mERriTqUTY7ery6RWS10Drc/t9qZx3cToRLudo0Q2w7ESomZjDoHe/079nXiP//8urVd9UJnUaBZJQ4N4uqAvkgcHH37lmVRyBGhpZBjw+g+8fomvLFpD/NUjHIWr1N++DjuWhQrqytRSA/pn1Y4JjkHO2dSEu4QAdz8qKWdv05oTLvmSuzBDx89OOLO9AXzl0+v8m5je0qslCzrnHcfnLwvJOcQp+nOeSpIYx3UrO5wKXY/h48eNzaVVov1xyZCveyDR1jrSTuvmcWr6l9uJzi3WEnneBat3o5jvv1n9rlKdXLloLMr4BzGDusPoDHmsxJ9jzgo1+MvvTd13xS9FAgmcEshn9q9cOAmh5fOQcmiOvF46xyUbAOb05bKqgLcZdb61ta9+PD/8BFbuTKiNO1vVbZt22z5cCGmRb+z6HdUpYq8Ysrp801NaOvSiIP2Gt8+46jk/eg3zlhOy9UFwrjAhmW7umTc8AH49Anjk88ayjziwMEY3OJn/W6rd9zwAWEbeaQV0mrjkvesYiUHJyGhEtsp33wwoUNatsHsANmIoHidxRKaCoSfnjsNANBcaNyS3feIg4Pay8WCG9w5AlqacmjvcnuE+k72Awa3aM/xT3rrHDwy/vzJN1JlVjrOfWIyAUFwM2f7PERb6kT+d8X0tLNUMva5Kb2QJ3SFIkLfQ1VUEVlUt2aLrr+GvtuT76RKJ3eXoeNIEgcP0Z++oCrXTTnCqEHJdzJxI4W82fKpHMjmV6KQlldfPGUS/nTJiRgxMOaOXX3xi3Djp0P/Pt9TwvkPG5D+3ly76gWpcxgYEuUGSpX6HnFwwRoB0iJW0mFSaOvw/da/97SeSW6y+NK/H4YdV+9Xqlzz4RwAYHUorit3Pun5TWx1Z5fGYXhQ50IujpPle9rYISMHOPPoi1QqZIdye9zw/mG5A7U85o5KKN4d/ckF3lO/dSGfYxwDeeRzOW+Ztz3WVViPoSibKesfFwai1gOH9sfR44bi7GkH4+xpwQGTLs7Bt62q7nBwPzOn1Ih1ujMkDqoVY6PQ54iDq2vlTpK1x6dArKSbLvqimYtg6vmtb5qX9t6dt2JLKs2moItvpO9XugliB6uNOfC0WTfmN5myFktlKfwBoJDL1cXJSH8PU7uEEJg5cSTuvmQW/kET7di+R4JzMLUhvEGgVB+qHtCcmaRpR9yU8+ccbJ9CLsZmnYPWnkhHI/C9MDDi1jAYYC5H+OhxIXHQ39OztTZbANt7NMIfRCqkc44+qwf6HnFwdO7gfgGbyg2sHAW7/5Jws7DcglBg7ZX9vrZu6ri7vQufuP6ZVL7E0aKOMtX7FXMOnmle95g26IZhu9p48UtnqYRyXYQKeSpbblyJOjC1M5fEOSzvneOGIZcj/Muph0V55PdYsWl3ZCorW5qzxBOK6lAabOUccuRNVPM5qpGyOt0OFSliFv6pfis14J7kyFPiM19RbKr++NqqI2uEKWtX4Ofg6rN6oM8RB9eSKUMacN9Ahuw23VfB6Q44W3a9HNNxi7oiynR0os+AVXdiEiaHKN+yXG2QhyCVK6f1tQjpKvNUFEno6xES2elLAxHlUxfmw0YPTpUx+4ePp57XFdI2TpaCCrX6Y+TzudRYtekcfGEjOC6xUoqYMebGKhMup1Xaz4Epm6nUFhuq3PPQa41IrCQjJ9S/yghO4kBEvyCijUT0spJ2ORG9rZ0pLe9dRkTLiWgpEc1R0qcR0eLw3rUUbqeIqIWIbgvTnyWi8bV9xSScE5cRuUgU8rloIDpNCFmFduVmaIM0KxETEVCTH3p1A5snCjPuqPMdI+zy9UKO2ZY6yrVbK6Ux3PPc3yPHDDEvSNqNX10wA49/7eQgnHUdZptLnBFzDsLoyW0juionUhICn//NC8a6iIkirJbdnE9zDqY+yedy3qIamymx3OnrhP/1DbtQKgmUhMAnZhyMJd+Zm8iXMP1VGp0zlMdyolrS8o32cOy28dEwJ7hCThHF9SzO4UYAc5n0a4QQx4b/7wMAIpoC4BwAR4XPXEdEMsTiTwBcCGBy+F+WeQGAbUKISQCuAXB1he/iBZ+u3b63A1/5XdqDdFBLIRqILtHSS2uS/gGdxVI6jpJnewDg3JmHeD1Xztix5c1RYLpoQ94gg66ln8OYof2dee743PH42HFjvUU+J01uxcEjBhjjZFUK8tzelZTFzqyPsNSj5XtMOS/DllevHwD6Nxe8o40WyhArWaPBhtt+1Tdl0ertOO2aJ/Dzp96AEEBLIR+dlyAXdJMIMG9YOLncumHH2crJghIPvBKfMW4jAI1Ypts7S2jJ5yLdUCpKax3hJA5CiCcA+J6HdwaAW4UQ7UKIlQCWA5hBRGMADBFCzBPBF7wZwJnKMzeF13cAmE1UxRbbATfnIPDmFrMjnCr7e2ypf2hqUyA438WpydO+uZzdjDXIYI6PPptoUz5nCF9eGSte6Tp9aOuglFzfZwCZIuzawBF4HVyRX/7AYan7Apq3c0LWbW5YwhEQgn8HJc0kwweAAU359MlrhqoLFoW0bsVl6/+m8AVUE+A3twQOpC+t2ZF4d5WAm0SMkovQbQu47F+746XE3/qBQDq6m3PY11nEgJY8BrcEHPSeMkyeq0U1OodLiOilUOw0PEwbC0D1m18Tpo0Nr/X0xDNCiC4AOwC4T4qvED4sv8qyLr78tMR9VeewiTlTOVlWXJe0ivn23/IOUS6kDi4xDMy9Hf6WVNbdqSHAoAqTgvLAIf3SiR51+k621NnRlPz1BZVRJwCs2bbXqBBXwRX5hVMmpe4LIcycA5O2J/y25TrB2cRKA5rzjAjIonMw1Pf3lpDjOuRGp4sJQ0Nhg+UrqoEujYf1hKtYmrOofvGudKNTK+zt6MKA5gL6NQUi7d0e469WqJQ4/ATAoQCOBbAOwA/DdJM5js1Mx9uEh4guJKIFRLRg06YKD5RxcQ5ILjLSeklC1Tmwp6ApUAervBw/Srdnt7cnzqcRB4MF5gMvr/MrEPapQ3CfX9uU5wnIMQcPMz5jm2y+EV71ZsnFzSTnNqsiYuLm47+wbIOda4jCYnCWbsntfphfb5s6Xsz95BNbKcoLuxVPv+ZyOAezzkHXp7kOGQKSRgSyTZJgy/JU7s7UrthaKZlh5Wb/+FhDmVAzQPnWdbVEsSTQ1lkKCDgRBrYUynKWrBYVEQchxAYhRFEIUQJwPYAZ4a01ANRAMuMArA3TxzHpiWeIqABgKAxiLCHEz4QQ04UQ01tbW7ksHm1337cpjuW9YADby0qE3A4r1p/xDj6mZTOx2L6evq66idyWRSadg8081Lbo+ZqVevk+eHAROYrbc6yFoEm4+jYSFzk3IJKImB3ahKWqY8bFIbvdhhHp2ErqM005f9+bsnQOlg8go4yqPiayjXe/uBZ7OorR0+o4NB2bG4mVtMb9080L/BoLs/GFbY7U289BRmKQm9BCzs3N1xIVEYdQhyDxEQDSkuluAOeEFkgTECie5wsh1gHYRUQzQ33CeQDuUp45P7w+C8Ajoo4k2SlWgsD2fWazToqIg/vsXI5zqNRiSR8UpoW7HAc9W0/kyO0DUDB4zFaqxONDoXPl88+X27U5hXPwGXGuzUBsheSZTyStldTnbH148cmT8N7DWhNlmaBzDnvau3Dtw8uiv3O5tB9GJeEz9HFtm2fSJPbCX8UHLOlVSk4rryyIrvMYqol1ZGqv7UCfeq/TcnMpOS0fUW8t4YyiRUS3AHg/gFFEtAbAtwC8n4iORTCeVwH4LAAIIV4hotsBvAqgC8DFQgi5Wl2EwPKpP4D7w/8AcAOAXxHRcgQcwzm1eDETXH3b0VXCJ69/NpF218WzMCC0nJALhBDC6V3blSAOsQw40R6PNgNpYmAaJOUc9u6yiHEShzy/k7Q9t2CV2bbBd+CngvFVqHPI5RTLIY/8LjuJONpq8HvJyZNwxrEHpfKpdapFJg93srWbcNRBQ/CE5azuqIso+Z2//8BruH1BrP5jQ7oYxTfm8Bm+5rBAsKlw1SmLS4qV+EJNTnAS//GRo7FpVzuu+Us67LarvbbvUK+Fel9HEXs7uqL3ikVsjdFzSDiJgxDiE0zyDZb8VwK4kklfAGAqk94G4GxXOxoFbsFXZeg5hXNwDY4iQxxSnIPHx+Ysh0wLsE9QwLhqu1zb5YBmYnNt/fLjR1cY7/mLlZJ/V2rapu7EfJhVVz26WOkdIwdg8ui0ObCaTy1T5frcobj92qKLd7bvS1rnFHKU4ohMdTeVxTmYwYXsSOVXCL7rnGy5szbFxxo+oMl5+JCpu7vDlPXMHz+NpRt24Z9OmgBAJeDlW9dVgz7nIV0t5VUV0q4P1cWcAW2bREZrDGLESoYXKcsM2sY5kAfnkMux/XnLfPdBLxwq5xzsCmkTVJGLrWZpfcVseBPwJVpJa6U4l6rT4Ppi9hEH2BvgAX3zkyP/XlPFcDr0Pc9qw7ko933xpAS3ItujE+eWUC+h1mkS8QwJjUZMlmTVGMbbhmS9pN9LwzDh1z+5EkAsYgt+erjOoTfDvlt2Px/rHIRzcPCcg9YepYxfPfOmsU59nTYfDs/f4IL+2dZ+H7FSjlFIVxqUEACeXLY58XdHV4ltg6lVnGmkDTnVe9i2CHhOSNW5DTCLoUwKafXQIO4zqhZPvgseUXKMdWjRazmxkmkMWUNiaDeve4znEKccNCRR5/odwbnMeo0tTbEYV44BlZNVv8mgMHLqzn28z4KPJ7zptl0hnb43b8UWvG45AwIINoHlzBPp5Bco570fqxp9jzg4FkQXN6D6ObgGnGqqV4oWDK09yvWNf11lqDM9EE0Lt2kwTzpgUDqvS6yk1MHFhSKmvkvvfCmVr1Ic9u/3R1E4VaQPAAqwT9G3mMJSqFD71SeGjo+lm1qWcS1VylPbeeDQ2D+Eq0sP/e0DQnKM6QQ0R2QMDKijpWA23S6nZep7lOJO0+oKliYfhXQ+RxjQnDc6iAV9YP94pnmjTzM1xhn3yCeufwanXfOEta5/v+tlHPGNB7w5D7mvc53qV2v0PeLguO8SbSTFSv6cAxcX5/R3jknkNym4c0QpkZOJOJh2FkePHZpKsxJKjSDNnXpgul25dBnz3kiHEa81dDNP2aX6cZ0uqA5Wpr44cdKoaIFwEwedc0jel99AKPnVPKcfPQYfeVfgG8qNLXXH7RIGye9FmhJTH2N5JiorV/c3PzwlWrC5Ra2c0OcqByTH8Q5t1y/NN1Wu2WZarRPBxD0PzmGpYbfPLcb9m5JhPcrFb599C0D5OrZgM1NZnZWg7xEHyyjRB5EezwhIKqRd7KNL5zCouZCozxRZNM+KlUw7Hf/RY8rZOrgFOaKkHTqTmZBWSPua6toc5VwwHR1aboRVIoqIqanbgoUsFgPZoN/Xu+KToRdxwlpJa8/xh45M5Em3hS9bxZ0XnYBr/u7YIJ+229RPrQtCdruVyQNbYmc5rq/uX7w+nWgAxzlcqZy+BsScg0/4DMBOAGyEQ57NfOKkUex9zun6qf93cnhZ3UrtO15XbAqcL+sVKNKEvkccLPcCsVKc4/2Hpx3tothKJeFUvO5pT1ufpHQOSotMMnN9Fx+Ux9dZzvpoIpQtheDkqRWb9ijlMosVpfvT24+jilFuelIlZj7NUBce00TPK7s1F+F1mcXKJqliKr2deh69LT4YM7RfJP5wcQ65HBM8g6mcwn8A/36mhZvbHatEzrRA9ot0DrF407bTdomObJ/ufYe14mfnTjc8l35w5KAW9G/KV71Qm95nzNBk+JnI4IKqJ0jloO8RhzJEKdxCV86JTM8pNv2qE9zn338oAKBfU06buOlCDxzSL1D8Vqlz4PPy6Zyogc3LcDTrd7axZc6YMMK7XS6Y/By4/rOBPNj0vNL3eh+kjQvkbyhC1JbdaOct80Okdu228ZXgHBxt1uuUSImVmDHOcomktJ/JYCKc3Lkjar+ZxrFKHLzEemS+bxMBCyHQOrgligCbvm+ojtwRBFwoh6DKOjPOoa6w7T6Six23+5TmjD7imyvujVll1Qnua3MOx9Ir5qJfcz7RGjko/m76ODx96Sl46Mvvxf1fOinYPaU4h+rFSibkGSWlkXPwIFrHHjwslY9byOVBSy74niAmId+kdXBLIj2nhJYwipVUiyZt7JjMkqVJaporkAt/XKc+xGzj68gDh/CN1KBbIKklvfz2Tq0+TueQLpMUk1euq0zrJEcc1PaZdGSRWCmniJUM4TMAO7F0+Spwnu9y4b/s94sT6bMmBWK/5LioDEXDZiYdOwxxnQ2kDn2OOLh3H36cQ7mLcBxbKVh4WwphNEyG5R/YUsDYYf0xefRgDB/YzIaWNiqkyxIr8emcqIFdMCxlqBjYkk89zznr+XZpamEIG+tS8OnmvKqyUwAY3JL2CW0q5FAqCSxZtxO/fuatxL1cjieg0sJq0ertWkPj9q/cvCcgIlpH28bXBSdOUBufui+R5AZiObWu9AVCLlEP/8eKlWDVOXC76LXb92HF5nSwQnVemXbPSc5BWPMCUh5v2onbrJFE6v0Beexs+mTG6/5+WlAfqt+ImURqpthhPtaUtUTfIw6We4TkToYjDmpsJQndOWnssP4YNagF7x4/PErjYivpxZsGC7dD1wfmb/7xPWw6V9fEMDLs8k2xQl09aS7gHJLPswsG+ZnWyQmulsEFsfMP2c2nl3s6X0LnIIBxTPC15nwOAsAH//tJPLV8c+r5ZMOCH3k2gX70qvrtr7z3VQDA5l18HC9uKOjEyIS04joojLMo4r41X3c89rlvPow5se+Eqx7BR6/7a7rOhLUSzzrECmlVrGQjDua5XRTCHB5D8HTWZBwixU+1EPGYNjO2cysaSBv6IHGw9G5a55DOo8ZWkvjpudNSZzwfPKJ/IqS3j0LaNFhyilVNVJ7BnJMb1KOHJMUpclf0mRvjqJXqexOlCaNZrMQ2WcsXTHA1bzXEoSQEdrXFu+BYXOP1eKpdAQQrmrBFIjX1EReSOmhnnG/Bm9sAAPs6k7b5cZkOQme5V9B0E7Z+acpzpzlwnEOciyvvyjOPTvz9oaPTps/yyFeVszFZwLY0xQp1uVjarGVt71kqmbcwAryzoss0l9MD+uDHjy6ProtCYOXmPfjCLQsT4jedCyOFdejxUVl7M6y7j5TOwSZWSqapRx52FEupwXrvS+tSZZoGtD5dc5TeTczXAtjF5pxxO9Sgbycr3E07E5xPHXR5Rqz0GVWkodTpM1jlDl3Ny/kkuLw/T5syOmqrSlwiCzKVwDHPp3QAymQz7SCbCuZgcyMHNSf+ltlkYDnd+kwVy8gFUicg3PjiYLPGUu+pO2r9NZryhIJyeL3+HnqZtjqHDYw5h1GDmqOw3BIfPW4s7vniSQB4P4epY5P6FOlwl1fERVZrJQsXWyyJ1AZJwnTgkrP/PfJw+MGDS+N2FQW+fseL+NOLa7HwrW3GuuV75WzsUR3Q54gDh3u+cCJe+facVKgBG+eg77TVD9rWUUwoOwHg/pfXp8r0/dY5JsCdGnZZLVdV9KqxZuYcFe/kuF37v50+JbrOM7bvUw9KO9HprDUnd/7pudMisZJK4IYyYgi1759jorfKMAnq4gqoO/LUI9jV1okX3toe5tOJrhKyG/ziJ8VK/ZrSU+X685LmjxHnkDdwDpI4IF4gdVGi/I6Vhp+eOnYI+imezATzDvdXF7wnyqOCI/iBQtpMHVRuJTg+Nnn/g1PHRD4FXF06F9asipVK6XbpLbRyDkLgI+8ah4HN+RQR4owC9Lo46PO7EnSVSoqoLpmu4uDhgbizFnqOctDniAPXtYNaChjYUkh1Psc5qLGVTPnauorGOCgJnYNh4jYVzIsYh0KOlMUmrpSLmwPwyuBzZx6CH5z1zlQbo7YyRanEYVdbJ55Xdj8Sc446MHI2U9/hgMHpo0Tl7b0dXezB73JxUk8KU8EtqFJ8wyHJOQSKyfHaiXAy8iwXOqJ1UHI3KmsvyMNsDOIBIUQsetLyyG/mIg6mhfqeL5xkdJbTF7NofHhwDupQ4uIC5TXioI9rXewqYdKzycit6jeyn45n3miVhEBzIYeZE0cm3u3t7fuwZU8Hu6lwman6mEHr0PvklB8+nvJr6egqpSy85BGsrnWg1uh7xIHpXDmw9QB3POfglm+PGz7AGAdFV0irOWQ4jS+cMll7Jp4YyzfuTsjbAeD4Q0dGg0zdrerWOU9+/WR8ZtYEtHeVWKI0IVRU53OUikBqErHJdzz68j+zC7ra/u8pXrAbGH8I+Y6dXXznyibcPO/NRN9Guy+GYOeJXyij9mucgy6+y4dnVnCEdqROHMJHxw4LCN8EjdAkOAeSRCC5EERcRw3NUmRJt2lOm7IN+puxnANixfVjS9PnSKhnNHDnfHCBHwHzItyST/s5qAST2b4Y56SU+Oqc7pk/fhoA8PLbO9LtCvN9WAtxE9VWgVkp96qSi5fj+a2te9OmrJQmlI1A3yMOzIIdEQckFwd+QQx+TR/p6o8djVv+aabRmiEhD06VTZgwamDCckimywHzgR89jr//efIwomIpdqZSFWn6gnbwiAEYMbAJQvB+BnLy5RkRgolzKAl3JFa5CN80780ojScO1mKivr/hqZWJvpVNS0TtDK9N3JMsL6FzQPosYQoXHYu4PVXn8RMDW/iLT56ULEvZWMh2pcNZBFNSEo3j3lF5mBEgKW754UPJw27UTZEK7jMERgrBtcuxLc+IXEycg4lDalb8HDjOISVWIlPL1XERW/u8tWUvNu1qZ/Orz3ABJwGgKUdlO11y7yrNnWUTbZGFKbNWqjOY3i0o7LVb52BXGM456kAcOLSfkTjo5ohqnmKpxC5mgYgqzvjSmuROp6Qo1dQdJ7eg58PFhyNuckJwykeTz4euaOagTnCJgxj5s2snpio5dZ1PkMbUzegm1HuJkBcMUQxChKQ9mTnI6mU7CrpfhcyniJX0BaOgEI0tu9uxZF1gbty/yRwR1QbbDregbIpUcPlzZPfBSBhaMCLVFgNxMH1xKVbKK9/IZrBg1TmU4nEt323Lnpgw7GaiucpnTPN8UL8CdhvOjzDBJiqUbXeGCMk4h/qB61qVc3D7OQS/W/ckdx3yTF8pmzaJlRI7U638zqJgdypq2GIOBw7pF7VVFStxyxln2SMh3z2fo9S7y7904qWbqHLgzr697cLjI98MtSwbDj8wPlXthqdWpu4nuImw/WpzU8UrcuNA58CH5igJfqOgQ9/h6s+oYiUJXXwkCUqxJPC+HzwWOWE9/JX3sWX5wNStkVjJQ+cAxGPCdUJgjvneOucgTV1N41r2gyrq3aOc5qY/ZtqMqXWo30MVg3Fmq7IsU/sGtRRSRMWlp7D1m8tTHwAbBbmecBIHIvoFEW0kopeVtBFE9BARLQt/hyv3LiOi5US0lIjmKOnTiGhxeO9aCmcvEbUQ0W1h+rNENL62r5gE17lyoOiLmM1DeuFbSe/Xn35qGv50yYlGJ5lCjvDZ901MiIzUnSQQLAgFJroaN9kkvjh7Mq74yNGKtZLDPlsuUEpxMycGcY/ePWE45hw1GlecOZXdZS/8xqlY+M1T8bU5h+NbfzMlYnO9LDu0LAcO7YdZk0YlQyk4ypnUGp9JoR4mwxkJSNjFSkmlD6dklEYDPotxvKAk26WWJfNJh7svaKKnWNxUSiw+OqflSxuIYKQOpr7hOTBVpMqXN254/7DOtPhD1zlccnKgV3MtdtIM+pHXNuBLty4y5rOddSB346rptTrPZBtOUcy95UJuat+gfk1p4uB4GVO4jODZZFs5+JqO1wo+nMONAOZqaZcCeFgIMRnAw+HfIKIpAM4BcFT4zHVEJPnhnwC4EMDk8L8s8wIA24QQkwBcA+DqSl/GB6zOIWEZEadzC4IkDvqRhP2b8zh63NBEPllUV7GErpLAgKakLoG0hbqzWGIPX+dOgpM4/egxGNRSUPwc3As1kBzIn5gRWEO0FPL46d/zMqcAACAASURBVLnTMbF1UGr1IQKGD2zGkH5NuPjkSfiHWRNi/wWHfwJ3WJF6T0LuvEyTvMUhWuHk86oYT28Cp3NIKrWlWInfKOhQLZ9k+SpizkFg5MBmvGPEAHwg9N2QkOIUl7XS4H7O49+DOkM5u0lUFPzqok5ebCT70rRD/tMlJ+LPX34vK/5o0jiHeOz7cSFPvJ70Ttc/h41zkOlqHvWdbYEETWOxOZ9LbcRcHJWVc5AbREseLgpyPeEkDkKIJwDoRudnALgpvL4JwJlK+q1CiHYhxEoAywHMIKIxAIYIIeaJoBdu1p6RZd0BYDbpW64aguccYrGSO7ZS8Gs6r1ZCtSyQOwzdVl4PgVwsCfbw9RyZJ2R06lgk7orDMdhNcdXymXxsbek8QvhxDqa1btiA2JEsshwy5OV8DVRc+4l3KWWFO0SVODCB89RFgIjwzb+J/T2OHjsUCLkevY/OnjYOAPDvpx+J9x2WDO1ust2POUVpjpt+B7mb/9c/LE7fVPCpmYdY70d1hgScIzaqjkkF962EiM2H1bLuvOh4PP619wMINg+HjR7Mij90ziGy+nO0Xw3ZnWyP40EFseI9OdckbKaspo1PU55SxEEV6XIEx6pzMDx3jLLhhGUe1QOV6hxGCyHWAUD4K/mxsQBUe7k1YdrY8FpPTzwjhOgCsAPAyArb5QTXt0lTVoU4ML0jF1fOVyBVV1jUSVc/CiCtlNMnZVdRsKy+1DlwA04mcTtJVucQPReXxdWpL2xGhTSEc8fEyfIlrj0nXtB1YqriuX/7AGsO+cXZsdnvgOa4D2RtNsetROC9kHM44dBR+MPnT4jucwv4k18/GVd/LPAJ+ceTJuLyvz0qKiN4j+A3RRwUi7ISQ3CAWMS5YafZkgYIZPIHDkn7ipjALSpyMRvYnBw7n/v18wCAz753YkT4gr5IE4dph4zAISOT0XQ58Uc66KFsl2NjkQva7tou6tKzrXs6oo2WPGRJ9StKWj5xnEO6ff/2oSOj66Z8LmWtpBILztHUyg1GYqVk8iBlXnMx1uqJWiukuU8oLOm2Z9KFE11IRAuIaMGmTWlbax9wnRsd4A33jtrXg1WVu+6KOAdTzPggZ1eplAo7IMsqCcMOJ3xWn6AmcDoHH6c3oylryczVfDQ88lI/wUoN6zF+VOwLIIv5+h3pc6hbB7ewgecOGmpfIK2OU+Hv6q178dcVW1JWTzniiUtzIceeraArpPU+27Y34Or+smRjwsJMhc+mI6rXg72TiybXD1IEOfvIYG+nn8731TmHRxsHVefQ6ZAjcuIPfaOljsOOrpJF7MhbW500OXlymzrG7l+8Dsd99yF0FgU++96J8bxT2tXFcA5qd8bfMk47413xuC1onMOmXe3459sWpZ5XYdtE7Qx9l9zWSsbbNUelxGFDKCpC+LsxTF8D4GAl3zgAa8P0cUx64hkiKgAYirQYCwAghPiZEGK6EGJ6a2v6lDYfcH2bU9hOZ+A9Tw/WHAWD/ou3LIzSdKepaBcf/naVeM5Bysa5STJcEcvolk5yp6rqMSK5sYNz4EJNpPJECunULRx10BD86OPHJtov8ZVTD4/rVmW/YU+s2hKfQKeCO5jGtEBGIiomTUK+0xmhM5R+3kIQXj1dtp6kO0aqMm4VMkrvAYNbEmIaFapFlgteor9Qzs6N10kHDArzEI6fOBLNmkgzCIMREzo5dkxOinGdafFHeozF4/Cwf78/dc6EhBRJquPxya+fjKncmejh1356RayfUDdbFGQCwJ8NoTZZ3k9w2Mr30nUO37tvScI5kNP92RTSUtmuz/HPvz82WKhFyI5yUClxuBvA+eH1+QDuUtLPCS2QJiBQPM8PRU+7iGhmqE84T3tGlnUWgEdEPXkna8nJHa7NCc4d3gBYsm4n7n5xbZSmHzajK6S7ioJVSEvZOFelasWiLzajh7TgkpMn4eYLZih1hsRNeVE1tLjeNvV9UnkQyrNZhV6y/QnLLWURUnfg8pl1O/jT5HyImIScRAnxQYo4BL9ST9MeTnaVc5Axnt7evi+uMyUuku2XcuqYuKgYGFqq5XNBOBGOOLQU8vj0CeMxxEPh7KOakwHp9G80Y/yIZJj2nF22T4opq81RK6gzvcilxZTBryk0tlqW3i6Og1StstQyVVGuys0nywyuD1DmZywiVDeLcb26WEnnFDhC4BK/AsDPNRPtWcrZ1pJTbxR8TFlvATAPwOFEtIaILgBwFYBTiWgZgFPDvyGEeAXA7QBeBfAAgIuFEJJPvgjAzxEoqVcAuD9MvwHASCJaDuBfEFo+1Qsq5Z05cQQWfuPU6O8058DvlgG3VRA3cbnDZmSbfvTnpVi+cTfr55ALB4Vr18CJgr4653AcqpiAyizqwFaVwqb2myy3hODFSgnFfs7crwnOwTB5jgh309yi4BLD2PYZenn7Qjv6eLdMWLNtX+o5k8hN1iR/9fEj37VYEkaxkiyvVtsjKYoQ2qLyjQ9PSfydyxG4dTqS/SpiJZcxBme6bNO/6PivkOOMy0r2lYmDFAAeW7oRD7+2MUofoJmOcxFe5eU3/2ZKpGP59TNvJu4ByfGii5X0rmM5B8fK/uaWPXhEabsOm7luPeDcngghPmG4NduQ/0oAVzLpCwBMZdLbAJztaketoA7alkIewwfGCyMhOWjsHtJuziH1rIEUr9/RhmsfCeK82/wc9CplQC4Jm02/WhbAh0BQkRICGCZkwNFwnINQ8mkxq3LqdZpz0PG59x0atj19b08HTxzk7tH2meQrNedz6CiWsDcsS1bTUsixfaqXqcd2MjnByXcVIRdoMo+VZtDvmTACz65kJawA/L63lLP/cdHbiWTV7BoA8mQn8kQUhZu48a+rXFWmxkSqL8K/OeLwbuW88cAYQ3uWMxQJlc2f/uVzifTlG+MDrVRrJbV98npAcwHvPawVj7++CbctWI2rz3pnYilW+1sXK+ltZK3DHLt+m/GEbH9vsFbqtVDHrD659B0b97H82eH0s9yORwfPOQQ7MX1ROv3oMal8iTZY2u/acZsIWaL8cLJxE+G/Ph5bIelWFmo/+DjByexc/5kW/6/87sWwTDUvL+qQbZDE4d3jR+Cz752I/zz7GPZ76OVQlC7fQ7ZbF6XEnIMQwtjHUkfj4k53tqWP/dQhj6J92LIjBXzESm6OQYLjHFJzLey1DmYe6SFsSiJ5EJONc9CxV9k8SC4K0BTSynWXtoKbwukEnINZrMQRPZc4jtsYqsjOkK4z1K5NOSlpJngmUQrgY63EpfGiGnUR1+PxALFYxhhy2VCnycII8OEc/OTZOufw5Q8chhe/eRqmHBTHzdc9vFUilghvIUzOWkEmTqxkYrPlLtd+uFMSUveQyxEu+9CRGD2kH885GNoXiZWEwYch4jqln4OZcygJkVqodGzf60EcPJgLtU6Jc2ceAiDu3xyRH6eCtHg2SOPHqusdOeW2yS+H+9T/dNLERFnyfZ5XzgtRH1OJxqLV2/Hksli5rc6JpnwuEA8yimuAXx9U2nDTZ2ak/HZcjpaFPE/A64W+Rxw0cYeKlM7BpPiCh1KOSTPtnlSYOIcio5DWdxo+k9cm603mcxYVWX+o7erfnEsd5KM7wan9mvbOTdcj36sczkHCNpd8vJ79xEqyrlisxC5guThfYLtvqD8UH5Qb9dMEAZ5YqVA5B6L4SE85zInMEUp1+OhM5Kvb4hoBsQOoGleJn5d8xFLVqkklIK9v2M3Wp7ZHhvSO642vm6IzO0qpMgBe56CuGU25dJBHlz7BxN3VC32POCjXac5Bt7JJP+/LOXCLg7646YsKYNM5AM9rB9fkc/adBzeVZR7OScf1LFeWLlbiCJ5OdNUFNx3Ij+Mcwl/PxUmFOuH0kmV32axI/AhuWL4iVrJ9f8ltmUqWMZ9qsRDkKVhQXG8RKKSDnbAQ8diKPPCR7j/9VLWoLHIrTiPdl4MASgfQW5SzKHirNbeDmOoLoZoMq899cGogqtVFtr/73PGJA5+atNP+UtZKHOegzQF9iOjN/8CRydAqhRzV9JwPF/wCtOxHSO5K9MWaNBkjv1ADbrM0m0gn+jv8Vcvi7L2lzP78X8xPpOs7OZ+1U+ZxipU8dtVy0U8QBwNBVeXVajt1gskHfQs5Bw/5f/o+f62WaxNt6H38mVkTUucR6/4RJkskWd+Gne14ctlm41kNUs7ucjbzQXMhOLLTxYRIPYFcfOQmRdWfqN+5dXAL7vjcCWxZPopTE+dw/MSRUQA/Wa++8LK6O4POQa+T95COcdjowLJP+oBIvHv8iMTfEeegmT9LcJIFVU9ZyKcjH6tt+tUFM3DS5KQvV8Y51B32xd8deC/49bHP1mHSEagKMXn4R7JOPhpjujy30sFb5+BFaMjoYJXMp5Wt7GN1bsD2nhzx07N/afZk632uXbbmq318yMgB+GYYjZYrJ9Y5GMZOONtkuPG9BkurWOcQlPjx6Qez+Xwg7fzViLZ3XnR8Kl+egu8YHfikWFYFbUp+myH9CkaPfx/FKUeYzzj2INxy4cxE/3LKbQNtSFEHbjMmsyRNWZOiZk5nokPqBjuKvFiJPUxLlRDkciluTi1j1qGjoKOQyzWUc+hzxEH9ANM156+UzoFdXD1l9qylEL/iqoPm0g8ewdbJVafvan2soWJ2vnqxUiCGE4kTtUzHiSaesxTOERrJznP9p+eedkjym9pi6PiIqVSnRFPuKJhh2HaTM6P+fUxjSIo3u4olnDVtHK4Oz/auBJI49G+O2zOgOS0wyIW7UrnjLUTEIWyTxjm49DVOziH8VTdDpnA1Kc7BqHOwcxiqLkSdc989I2lhn9fe9cL3ToSOZk2spBPDfQzhV8vMB7FZEpBF/PDsY9ixuX1fB5Zv3O08N6JW6HvEIfz96bnT8OkTxifu6eywLbaSS1lo2zlGeZDWX8hznFXkc7z4RJ8knA4l3a6QODg4hxfeSnMwXFlCAJt2x8Rhypi0HFonGPqO854vnIiLTw58GbidkTwoxkc5rD/tE1vJBpvyXC9H1tRVKhl1RypMTYs2ICU+Sm85aA4J6572eLFilf4ht5LiHKI2JRdUG3FQw9WbIN/xuVWxHo0rURpj6G1NlYf0e40flQ4IGHnOlwT6N+Wx6qrTcbbGmUn9i4R+dCyQFCuVSgI79iUtx/Z1ps1+1Xl+aOsgo1jJ1LVPL98CIPbarzf6HnEIv8/4kQPT1krQdQ7p572dyMrYQauDhg/ZzYuV9N2pXqd+FnVQVvDrar+Kr805nE2XMly1rOMPTQfUVfvxvYelY2JNHTsUw/oHzojcrkg9MlKHvlvU+0n9Ky2ecC+8CaJsyK7HVuo0hUHRBpRJbyXLM53vUQ4k57C3w+6jkI84h1DnwIiVTj48PgzH1nW6XwsH+fyRymbCNGd08b1Jn6dXqZ80qOYpCbOxQV4TZXFnTatngF/7yDIs0IxFOJGhnOd3XTwL/Zvz0Sl/ErJKF1e2x/Eta4W+Rxxgps5EmuUNk0nuYvUPmyqLSTOJfdQ6zbGVmPI0QiIfPXXKaFz2wSNwvsYZBe3yE4tJTBg1EBdrp5XFZQFrd7S5HeqU9zaLZoJfjnOIJo0H56BSg1Wb91gXKZfFVqqNjhuSMBVLJaPZp5ps0tWoBNzlGOVCU0Qc4m80oDmtK8jldM4heO5fTj0cg/sVcPiBQzBz4kiMHxlE0bURVk6JnKqP0TmYdHwpp0OWc0iKlWZMGIHRWkjzQp4icWqxZA5fktPWge17O5g8Mb94/+L1qfs24iAJi75BU02JbWjvbEyApb5HHKQMlbmX10zFuPntuxOzWauo9QHJBZFbDEwKMpPOoV9THp9936Gpc3uDNgS/cmG8/rzplrewW0DdtSgIKqiaGbrKME/ItIhNwiZjTdOGOOUfbnwOHUoEUT3vgy+nJ3Wq/ISBgn3Bv+LeJQBCnYNhUU94hBveS7Xk4UK4lwM5JtSFSBe3yHwc53Di5FFYfPmciAu1GQdI5JhdvA75uLpJMXHqPiJ2nXPglOUHDeuP7Xs7sbu9CyXBR0AGYv2LBHe+SDxe+U2LzZTVVO+TyzaF72KnDpWYdFeCPkccbGjK5RKTiI2aGQ46l86B1VcYevsvSzZE15z1YsBa++gcpPjF3K5I5xBOypGD0kH3AOCrpx0GwD7JZRm6vNVUp9pGHfJV7tJiAAVtjE1HJzILmwq1/1Zu3hMdXAMwFiVaZx8zzhwGGnArpONyhXFRV/OaLE9iowfh7XgGABecOCGVJpvh4pKkWElGEzUtYPF567bS3At6TnnH+Cl+zviem6zm6sdsjAb3C3QHO/Z14uZ5b6LNwP1L3wrJJZ01bRyTJ/g1nejHO8HZ+1YGeXR9cc/uqBp9jjioCjYdeqRFbiHTI6uadt4m5ZqK3aHt/08ffyNK40Q0XPAxgDu/QeY3f1b5yNbdAavcZMgrFzefMMP9HWc7q6fUmQa+3A3dPO/NRPofL56VUNIfeZCm8LboGFzQzZFPO+rAVJ4k58CXo8/1rqJZrKSKFs1ipThPOcSBO0bVV0cmd+iSOLs4H7tC2q1zkANB9Qcwnby4ZU9arMPlU/tzrOIrISH7/rbnAk63zSCekVzUqEEtmDVpJOZOHZPKEx+3y3Mg3GZu8ds7AJi/6bBQ8W3q2y9/QG7YMmuluiDu2PQH8PFAbMrHno0HDG7BqdoB8RGY7+vjbcvt8ExiJb28KMyE5avKQS3jxjcV+DZFxMGDp3e91wGK7NfEMst0nQs5Qjv8Rn9ab57vLhNI7u7yOcJFYfRXFUl9tKHtWnpnUbAxsmQ9EmaFdHxtKoctm+lbWZ9LL5TPBd/6hw+9nmqnCkk0bKIPzjchnSf4TcaHSpe5fkeb1xgkJEVUur4BiOeFK55TLtyMFQ1hUICkEQLr08C0WW4CTUYG/ZulyTbfrg8eHWxeGsQ49D3iIMFzDjm0K6ymaScj9Q62XZ0pjIQK7iPriyFgnmz6ILN5Esd57GVISEWmj0213JX+36emsfeTB67wZchk3bNUz58yB9V60bar0i2pDm2NOZKpBw1xBvYztl1Ltymk1bymk8EoQRzM3/KTWsh2rv0yzeXXoptvmhXqIXGwlKVvZrii4rPY43ZxdNB08BNXp8odcYQyartjj5ajYNzb4l9FzrAlgSXr0lENbJsU3ZBEQm5WXHOknA1QNehzxMGmkC7kKDof4Befnp6IpaJCDjzTRwYME0IPtMV844mtg1JpuvVE1A6Dh7SdOCTvmezopZOPTawkD2Vp6yqidXAL5k5Ni2X0Ok1Ni87J0NawtLmusTkA7PLYH2jOZJcpB8abFoFK/I26Sn4KaROXmjhxzCIi1DcStgXRJVbKp/RaJp2DFCuZy9L9HPiQKHwbbPnGDO2HP3zeHLJD5Ry4OeAjEpPtKIogrLppissyrn/yDfa+jdtpMnSe5Ghc3HWjnKT7HnGITFkZsZIyEqaMSSsnJeRuzGaDrhd/9rRxKesh31OdpIKMS0+0S+ocbINf5xwMYgsfsZK0UW/vLKV0MaYqTaKZyLlQow4mpbuEywlOhW7BoupKTAT1qo8eHV2bJm2/pjwGNOcxLIxk2t5VSnBLKtT2myL7qvXYOIdUGA9uQfQlDppIVXVs1PMBjgXWIAZNZjFzOYk0pZ5PnzAe73pH+khbWV6nFrtIh2y7jzVQwDmYxUoyeZHBWdQmnjaNNdl+U+uiMC0Z51Af2DmHuDt8dt/l7NA/w1iS+H5jImLtpvXqo4lbDudgyOtDHGKz2KJxMQzaE1+7TFl9TSAlqtE5qN/P1GUTWwdFsY1sS8rsI0djeHjcakAczHGHJEwWb746B709Ngu5VVv2GssB0o5eOw0WaLHOwVyWybpOBfc8yzkonWEbYz6cg49ITD4bRKg1ExLT3L/izCAUh+39TZtKuVkwEyS/OVIr9F3iwPS/KmKxLfySci/fuNuYx/dgFB/kKGlrfcnJkzDvslPSHt4kORp/cVc1nIPK5trs8ROB9hw7MRdcu75yJk4h524XEC9Q9gUxHhftnWZiqfb/NR8/hs2jVmP/lsl73CfwibcFpHUS7z887cke1CFNWe1jzH3GOlc2x/nE180GgiuhmqaazkUx1Z2sk6Jzvl1iUBVD+hXwyRmBHsgaBt7ADcrNgu2EQKCX6ByIaBURLSaiRUS0IEwbQUQPEdGy8He4kv8yIlpOREuJaI6SPi0sZzkRXUs+cQ0qRGyrZGY79WsdOz2OS1QXy4tPPpRVNPt+4rSeIIcxQ9OmerLJ5XAOJrFFc8Et38wlJq6niK2MycaJqvRsBw1LWqWUM23yvsSB3HkIcV91dJUifxhTnSMHNuMj70rbzwPJ72c1etBu8ZyD31RSichHjxuLow7ixao+OgeC28qN06WYDvGRsHIOSHolc+bcsbWSm3AJEfx3bWbUhfp7H31n9A52zsFEHEKdg1H02vs4h5OFEMcKIaTB/6UAHhZCTAbwcPg3iGgKgHMAHAVgLoDriEjOoJ8AuBDA5PD/3Bq0i0V8YHr6ni9x8IE6ib425wivOD4muCx09Hy23aJ+Z4BhEfMTK8Wl2YlDnK/d4HjE7ZaWXpEeBlLckc8Rbjh/Oj71nkMS98uRxxY8v3fei3MIwjcsXb8Lb2zegw0GK5t492oubOXmPdG1jSMziRW5+lxQNwm28RP1hUU4kyNyWhnlcoRPzEhaW7kU0i2MH0cETfRq4xxcllvSIbAkbOd8B2Wp3MqHQlNTKZYywUQcJNFyfbJewTkYcAaAm8LrmwCcqaTfKoRoF0KsBLAcwAwiGgNgiBBinghm9s3KMzWHrVvVCevLjpsgxTVWIuP5kbdpsV1M67Vss323qXMOlTvBqQvPQCbIX5wvvv7LEv6ge30RO2nyKHYBnTUpiHMvhMDsI0endpvlzBv127zKmCPqbbOOCAosre58YQ0AYL4hcqZcbGzD4qTJcSz/chTSNgsdF9R8tjrlGLPGA9QeV50gk3Um/3YppE16HFmlGtLG1hc+DoHBsbzCYsoqiYMaGyrenNnoj+mbSJ2Dsc5c7+IcBIA/E9HzRHRhmDZaCLEOAMJfGcpxLAA1CM+aMG1seK2np0BEFxLRAiJasGnTpspbDJ46qwOxWs5B6i98d24AMNiwwMoYRhKzjziAzSdhFyv5taXZw89BfTUZaoDN5xEcW58Qowa1sPlk+2sheVTL2Grxwo2+oVX05OYuAMUM2vIhDhkZ+19YLeJM7WTqcyFpbmwhDh7jWr/3p0tO9MpnM8UFgtPnTCBKbppYziFMu2neKmM5QGgdGPo5uMK9cAE4A87DTB1MYzfSORi6NrJWapAbXLXEYZYQ4jgAHwRwMRG915KXe2VhSU8nCvEzIcR0IcT01lZeYeaCzZRVTamWOPg8P0fxCxjUUsDib8+x5A7wy0+/G8cczB8vGdXtoVx1odmHc/C0JPGpUmaRoTK+e+ZUPp/cuRrKlF6kOn54Nq/89UFEkCx5CLCaPsZluRdX1eTWdp6DKZBjol2ew9g3ZIdPOA81x9hh/dlAf3qdgEGhrtQ3yhAHTK9Tfy5K02T2VxjGWGStZFFIy3F4CLMpCohD+pkh/QqpM2RUSI7G5YnfK/wchBBrw9+NAP4AYAaADaGoCOGvlCOsAaCeqjEOwNowfRyTXhfYTFnVgVCtsZEUy9hYwKMOGhqJEM6ezisnAeD842O5+iADiw7Eogzbgq6+1mfflz7hSsKn/b4mlz6n6qjOWkePHcqeRaHmM02glkIe72QC6H2MCZ7mCx9rJanElFlMi7pPWar/hVUJrt16z4QRqTzqIjn5gEF44RunmivW2sjBL7ZSfK8c4sYrpONrGxelEwNOV6PnOe0oPvSNjDNVLJmJvSzrAIabyRGvF+gs8oc3PfrV9wOIuVcX59DjdQ5ENJCIBstrAKcBeBnA3QDOD7OdD+Cu8PpuAOcQUQsRTUCgeJ4fip52EdHM0ErpPOWZmiOyVnKIlaoVW8gdlutDrt4a2J/b5KBSzg4gsqW3YQ8TYlhCfa8JI80RTn1OIPPdbfqIBmKfCfsZBlE1toXafKsi+Ogc5IFM1z22AoB5IfOxfFID6NlMQtUyVl11Outdry6IBw7thxED+fGTEKla2ublIa28uk1PoK/fXL3qIm/Tc+jEgA9Xnyzf9o1KpeAMbyORD5M7GMsnqdBW8etn3sS+ziK72Ro5qBkthRyeWr4ZALCzjfcxabSHtHkb6sZoAH8IG1wA8FshxANE9ByA24noAgBvATgbAIQQrxDR7QBeBdAF4GIhhBTYXQTgRgD9Adwf/q8LYs6B26XUblkpeIhlgNg56a8rthjzqBN8pGFyq/DVOdgWKJ9zBHx3dWot//ep4/h2hQ3rtEQ0BVSxjLN5NYOsy+qQRklZqHlRCdI5p0YJtS9thzL5DNd+BbcXuF6W3XLL7eegfnE7oU/eW7Ep7TeUsCC01KkTA1b/or2X8SS4XHyetumby/JfXJ32kOaslf79jy8D4M+GyBNh2IAmbNgZOCLKXx3RKzWIc6iYOAgh3gCQEuQKIbYAmG145koAVzLpCwDwAsAaw3YSXC0XHP2Adhd8TCkB/jxbHb4sv21+20xTubJ8rWoOZPwz1LI6uuxHY0a6YSvrUFvKEUW7tYp4kkfMcselAvFiv9kQngJIcmF24uB+T5VTs/Wrr89KMfLiNde5T7EaOv/48eY6tULuX7we3z8ruaSofW6bI7pPDJdVfy9bcMGiEIEYyJDH1vVSoc2hQ/PiLpaCkN/D+jdHRMG0ucs1mHPoux7SzL1yLItcKPd4R9tuOeGs5UHBbARJfUUfzsEqPvAWK8XXY4eZiEPw21F0iZXcnEOtmQqfgIaEZL9/54zK9zrqN7Y5bPlsZvorR4L6iv5sxgW3LwgMC5es22XM80fFuu7v3n2wMZ9ObLmzkdU+txHDJp1zYN5VP+l6jQAAEq1JREFUfy/T91z41nbMX7kVO/Z14sU1O9g8VosuMof+V8XH584MdImFHCU2fTJcS7rO4LfH6xx6K6JuZb5tLTectmiaHFyDrbyy/OqxLXY+prjq4z4ii4mtZh1HfOyi/fQz2a32M4yNtypCbNtvX1zVKcsdU1kJTrGYLfuYCANBuBXAn7uz6QlqCb07r/roO9N5cn7jtUXhHOYcNRrHMQH6dOJgGmfq7n4RIzYCHPNC4xzUaxmsEgC++eEpeO27c1HI59BPIeImzk1+70b5OVSjc+idkB7SNdA52CZu2ZyDzfGoTHmXr2zZ9rox5+C3oNgUpz79mtBfWL2CKZU/VZb2t8lnwhexKMueR93RmXQOKzbtYdNNGG7RMfmeAxTpTDy5O6sncoiBLW4CYnJ+i+rU2jNtfHpBV7vRtklSdWTfPXMqOwf0kCbVmKvbrAZ1nYOcG7OPOACff398oFQuR+iXC48ddjjmAQCFr5hxDnWCzVqpXHx97uHGe+Wc4AX46xx8YI8BFN+zjbGWQg6nThmNGz7NH4Ma1KOWa4ZP633NHyWhKadHfve54433JGtvwy+fXgkAePx1s+OlfiCT6+jUWkDqEFyWZbLP+jebFzR1yNjCr1/394FBgQ/XctNnZljvpyME2+Mt2ZhxVXxmIiJ6P1VjgNJq2XDIwH0S8vrdE0YY65z3htkgRaI3xlbqVbDpHHYZTMhcZXHY5nHurYpaOK5FZXmIZQBg4VvbjPmICNefNx0nTTY7G6qT2zZefXQ5SXGXW3FqFysl700wOGEBZmc7FdzRrRzUHZ2pfaOHVMfFqPDxVlbb1WpxIjt+YmwubStOnlnhg3e5nDV16yHuDAalMbb3VAMwmsZ/S96PYB8+Oh0kU0dzIWf1ZVHHgjyjpJzzwDnIp3uLh3SvQxx4L/2h7nlpXZllme/ZrEw42MRK5Q4q33MmqrV68DnhDYgXG1/9hclCRC3DV6x03DvsC5TM85VTDzPelyfe2cyIc7otqwEXMOd6VAq503aNj32h2awt/tWJSjwnG3G2cRUSMty3a2c+oDm5WHO51dMFbRuoIf1iomXaTA0d0IRxw3mDCBWXfvCI6Pqw0WnfEQnTeRyFHCUMCeRxsNUSh0ZbK/U5nUMcstsMW5wgFQePMA+0cllWm3NbuVZU9rLi678zWEX4wtfyycfCyFfxKMtKHkyfhKr/8PkOv//8LOv9UaE5qD1oY7xDt4mUfJXIPvA53AmIFxPfcWQTU0nZvq2on547LSJINuhh57n2zT4y9mK2vaeqc7AtwrMOHYXbFqw23tfrkWK0ciAdIoHAyfW19YFlV75MUbMO2T2N0jn0PeJgCbwn4ZpEiy8/DURkDPEAwBp4i4NNvOGr3J50wCAs37gbH7eYD0qyOHZYfxzNhJkoB76H5fjkSfpMmCfRxl3uA+dVMZArAqcP5A7dFg48R/FOUlU66pCvWQudhBwXrh2pXEy8z3aw5JPmpjYupKWQ97J40jmHIf0rX45UU9ZqTdJVDmWYZaPFeULr6Sd9/9G4jdWKlcLHM2ulOsPuRGV/dnA/t9zVxHKaYNvtm0Ie6Lj3iyeisygcO+/wtwYCxXLPv/AWK1mIoesQGQDo6Coq19UTB7kIu8K9SxNIuyd1UNY5M6rj2oCYKNjEQCp816b3HWbWMx0zbhhmTRqJy//mKL/CLJD9OmJgM+b/6+yyjThUqAuvzbv/jc3m0xsl1O60iRLzRChC4OqPHY2zpsXfM5cjcNO/2mCesUI64xzqggYRXZx7/CH4wYNLvfPbxk3roBbMGD/C6HUrEezY/Oqr9rwKICmy8dmV2tawxFkanjoTE1Q7ddfBLj6QxMpWM3kSt0ip6BiIJxw6EkePtXN2BU+dgySovjtq2+ZnYEsBv/nHmV7luBAHdxRVEQa1rImtA63j57lVgREGdzKjhDo3bGLJfI6AYlB3MswHH+r+/7d37jFSVXcc//x2WZ7LLkJ5CMhDg+gKgoJYFMXYoIBFbLWJ1giC8VUt1pjGR2uIqbW2taY+mliqEGxrbRttRGtrKS0ara1CFRURAR8FpKVGUGCLPPz1j3vu7uzO3Mfs3p17L/v7JJO5e/bMme/8Zu75nefvxAlJE4avq9yGZ1vpfM4hbLmSI4md0nUxehfQ3AWNWn3zm5DlmOVQ7vhzXCaNKI4I2vye0ZVTy55D8E0Up9V00vC+bP5oK5BQz8FVwmEb2wp7ouUc7RnEI5dHV8B+yzuqRVrusFKlaAoxk0RZzhaloqSWImwYt9wDkkrFbAoabmoPVVVCz67VoYE1k6TTrVbyKWcTVUfy9ILTWDiroWLv51cU7f2htmZ0SEvss6Z5nphzDiHaog6uB7jjy2ObruMuQw3D39AU5hwKJYcOK7nnJIYG/AoobO4LChsE7X7LRIkTFr7csqKYd+oIACaU2EHtE9eJNm8ubPneNdVVJVcrxmmQLbn0pND/N+47yIPPv1sygF/SdDrnEKPjkFirelrDQL55dvBGOfAq1XmnJre8MQq/QknaOcR5zyTiNMWZcyisxAvnH9qKX16pkAw+sYeVJLnWsh8OovBY0VL4QxxJrpRKgqa5nAjvEPX5IN7vAuDWcxpYf/v08DMrYiyXhuCeQ4+aavaW+N3FqVbC5nsKWRVwDG2SdL5hpZCT4HwO6xV/o08YP5sTvLs4LfybKMnw5FFojGGluOEzokKgtyaJOYchfXrw2NWncNzgusA8LZ1bsP7pYwZxz4oNsXZmRzFqYG8e/9opHB81N+Eq4QNlrqDraHw7RX2jD809qWRlW8hRA7z9CPMjGlpVVUK3qvCVVH5lHzWXE5Sve9fqkiHZ49xxcXstu/Z2fM+h8zmHkJ5D95oq9u7/jB9e0PYjJbOO//njHOaTFHGGNQrr/LBezcEyJ+OSmHMAmDA8uNcALX9Ppc4l8BlY1z3WaWxxCevN+PhLRsPOkEgD/zcYtey1a5eqyBDyQ/r04N3vzUyk0RPnKFeAD3d7URBaO90eNdXs3XewaGgprLjHrp7MCxujQ2j47GwsLwJDW+h8w0ruudQX5VdQ7Q3UlmUaBtcxd/Jw7rvohIq952chu9J99h1srrg2bQ+uXP1NUdMaSh/x6LNm4VnuvWPLbBf//qR5/0UlxoPLwY+pFLUxbdzQ+tBzmpPGnw+qb8f+hkKS6g3H7Tn4fLCz5d6bnl2radx/kK07/hdb34ThfVnwhVGxNc4aNzh23rbS6XoOM8YM4uiBtSVbK75zSGIPQFaprhJua8dZA6155PKTI51p0yR4yM1ROHHcMyTiZ8PgOt6785xIXX58/KgWf1LsKNix7YePyAqXTRnJex/uaZqMDeKJa6dURpBjWN+eHD2wltvOrcg5X7HxRzXjDvG0DkXftbqKnY37OeOulS3STw+JUxaXh+dPYvOOxtDNeUnR6ZzD8H69GB5wdvJFk45g6Yvvh44ZGy055ajoyULfEQedHw0th38WnBm/BRXG8utPZ1B99+iMCVDYyjzzmPBeTaWp71HDvRXsKcale001f7p+atoyiqjt5jUsola6/eWGqax6fwdnjG4Zun/FW9uL8t5+3pgWkWPbyukxJ6yTIDPOQUSmA/cA1cCDqnpnpTUsnHUcN888tqIreToDJw7rwx1fGsuscYcH5inc8DWgLpkKfVSM6JpJUW6gRSO7+I2YwRENiyP713Jk/+DAfD6b7piZyzolE85BRKqBnwDTgC3AyyKyTFXfrKSOwsM3jOQQEb568rDQPP1qu9G7Wxd2ZWy8vlwqOZdjdAzVVcLS+ZNCI7KG0TpuVh4dA2RnQnoSsFFV31HVfcCjwOyUNRkVZsUNU3nq65Ud904Kv7cTd729kW2mHt2/KGpsXK6cemTTddjy56yTiZ4DMAQojKO7BTg5JS1GSgyo657YkFKluXH6MdR268KMsYOiMxuHNLPHD2H2+CFs/qiR+jIOR8oaWXEOpfpdRU0wEbkCuAJg2LDwYQrDqCT1PWq4ZeaxacswMsQRfeOdC5NVsjKstAUojGE8FPigdSZVXaSqE1V1Yv/+2VouaBiGcSiRFefwMjBKREaKSFfgQmBZypoMwzA6LZkYVlLVAyJyLfAM3lLWxaq6NmVZhmEYnZZMOAcAVX0aeDptHYZhGEZ2hpUMwzCMDGHOwTAMwyjCnINhGIZRhDkHwzAMowhJ4izbNBCRXcD6Ev8aBvwrRhH1wMcJ5UuyrCT1p/EZO4P+JHXFzWf609VV6Xs3br62lDVaVaOjUqpqLh/AqoD0/8Z8/aKk8iVcVmL6U/qMh7z+JHWZ/nT1Z/Xe7Uj9QXVn68ehOKy0M2a+JxPMl2RZSepP4zN2Bv1J6oqbz/SXX1ae7924+ZL+LpvI87DSKlWdGDc9L5j+dDH96ZJn/XnRHldnnnsOi8pMzwumP11Mf7rkWX9etMfSmdueg2EYhtFx5LnnYBiGYXQQuXAOIrJYRLaLyBsFaeNE5EUReV1EnhSROpfeVUSWuPQ1InJGwWsmuPSNInKviFTk/L4E9a8UkfUi8qp7DCjxdklrP0JE/ioi60RkrYhc59L7ishyEdngng8reM3NzsbrReTsgvSK2z9h/Zm3v4j0c/l3i8j9rcrKvP0j9FfU/m3QPk1EVjsbrxaRMwvKSqXuaRdxljSl/QBOB04E3ihIexmY6q7nA99x19cAS9z1AGA1UOX+fgmYjHe40B+AGTnTvxKYWGHbHw6c6K57A28DDcAPgJtc+k3A9911A7AG6AaMBDYB1WnZP2H9ebB/L2AKcBVwf6uy8mD/MP0VtX8btJ8ADHbXY4Ctadq+vY9c9BxU9Tngo1bJo4Hn3PVy4Hx33QCscK/bjre8bKKIHA7UqeqL6n1bDwPndbR2p6Pd+isgsySquk1V/+mudwHr8I51nQ0sddmW0mzL2cCjqvqpqr4LbAQmpWX/pPR3tM4gytWvqntU9Xlgb2E5ebF/kP40aIP2V1TVP6RsLdBdRLqlWfe0h1w4hwDeAM5111+h+SS5NcBsEekiIiOBCe5/Q/BOnPPZ4tLSolz9Pktcl/rWSndNRWQEXuvoH8BAVd0G3k2E18uB0ueBDyED9m+nfp+s2z+IvNg/ilTs3wbt5wOvqOqnZMD2bSHPzmE+cI2IrMbr8u1z6YvxjL8K+DHwN+AAMc+priDl6ge4WFXHAqe5xyWVEisitcBjwDdU9ZOwrCXSNCS9IiSgH/Jh/8AiSqRl0f5hpGL/crWLyHHA94Er/aQS2TK/TDS3zkFV31LVs1R1AvArvLFhVPWAql6vquNVdTbQB9iAV+EOLSii5DnVlaIN+lHVre55F/AIFRruEJEavJvjl6r6uEv+j+su+0MW21160Hngqdk/If15sX8QebF/IGnYv1ztIjIU+B0wR1U3ueRM1T1xya1z8FcqiEgV8G3gAfd3TxHp5a6nAQdU9U3X/dslIp933dE5wBPpqC9fvxtm+pxLrwG+iDc01dE6BXgIWKeqdxf8axkw113PpdmWy4AL3VjrSGAU8FJa9k9Kf47sX5Ic2T+onIrbv1ztItIH+D1ws6q+4GfOWt0Tm7Rmwst54LWstwH78bzwZcB1eKsH3gbupHlD3wi8aK3rgD8DwwvKmYj3g9oE3O+/Jg/68VZxrAZew5vsuge3iqaDtU/B6wK/BrzqHjOBfngT5xvcc9+C13zL2Xg9Basy0rB/UvpzZv/38BZA7Ha/t4ac2b9Ifxr2L1c7XiNvT0HeV4EBadm+vQ/bIW0YhmEUkdthJcMwDKPjMOdgGIZhFGHOwTAMwyjCnINhGIZRhDkHwzAMowhzDobRAYjIVSIyp4z8I6Qgaq9hpE2XtAUYxqGGiHRR1QfS1mEY7cGcg2GUwAVa+yNeoLUT8DYrzgGOBe4GaoEPgUtVdZuIrMSLg3UqsExEegO7VfUuERmPtwO+J94mqPmqukNEJuDF0moEnq/cpzOMaGxYyTCCGQ0sUtXjgU/wztq4D7hAvZhYi4HvFuTvo6pTVfVHrcp5GLjRlfM6sNClLwEWqOrkjvwQhtEWrOdgGMFs1uYYOb8AbsE7xGW5ixZdjRcWxefXrQsQkXo8p/GsS1oK/LZE+s+BGcl/BMNoG+YcDCOY1rFldgFrQ1r6e8ooW0qUbxiZwYaVDCOYYSLiO4KLgL8D/f00EalxsfsDUdWPgR0icppLugR4VlV3Ah+LyBSXfnHy8g2j7VjPwTCCWQfMFZGf4kXgvA94BrjXDQt1wTuQaW1EOXOBB0SkJ/AOMM+lzwMWi0ijK9cwMoNFZTWMErjVSk+p6piUpRhGKtiwkmEYhlGE9RwMwzCMIqznYBiGYRRhzsEwDMMowpyDYRiGUYQ5B8MwDKMIcw6GYRhGEeYcDMMwjCL+DwGTyjIBwXdMAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXeYZGd95/t5K6fOcaa7J2lGYZRG0iCEAgYJIYk1KxaDLdbGeBesNRen9doXuOu0xtw1GNsLNuguBnYJa5NsLDAgkYRAQmmUZ0aTY/f0zHTuyvG9f5zznjoVuru6u3K/n+eZp6tPVZ05ferU+b3fXxRSSjQajUajseNo9AFoNBqNpvnQxkGj0Wg0JWjjoNFoNJoStHHQaDQaTQnaOGg0Go2mBG0cNBqNRlOCNg4ajUajKUEbB41Go9GUoI2DRqPRaEpwNfoA1kp/f7/ctm1bow9Do9FoWopnn312Wko5sNLrWtY4bNu2jX379jX6MDQajaalEEKcruR12q2k0Wg0mhK0cdBoNBpNCdo4aDQajaYEbRw0Go1GU4I2DhqNRqMpQRsHjUaj0ZSgjYNGo9FoStDGQaPRaNaAlJJ/enaceCrb6EOpCdo4aDQazRo4MR3lv3ztRR4+cL7Rh1ITtHHQaDSaNRBNZgBYTKQbfCS1QRsHjUajWQOJdA6AcCLT4COpDdo4aDQazRpIpI1YQySpjYNGo9FoTOLKOGjloNFoNBqFVg4ajUajKSGpYw4ajUajKSaRMZRDWGcraTQajUahit+0W0mj0Wg0FiqVtdg4ZLI57vn4T/ncYycbcVhVQxsHjUajWQPKrVScrRROZHhlcpEPffsgD+2fbMShVQVtHDQajWYNqGylcJFyUErC7XDwB19/CSll3Y+tGmjjoNFoNGtAGYdUJkcyk2++FzNjETsHQ4QTGdJZbRw0Go1mw6BiDgDRZN44KOXQF/IYr8u0ZtdWbRw0Go1mDSjlAIVxh1jKeNwbNIxD0mZEWgltHDQajWYNxG3Gwd6ZVXVrVcbBbkRaCW0cNBqNZg0UKAdbUDpiupj6Q14AkhmtHDRleO7MHBcWE40+DI1GU2US6RzdATewvFtJKwdNWe7/wj7+56MnGn0YGo2myiTSWUsdFCqHopiDDkhryrGYyLAQb8/eKxrNRsYwDoYBsNc6xJJZHAK6/IaqSKZzpLM5JhfiDTnOtaKNQw3J5SSpTI54uj17r2g0G5lEOsdAhw8odCtFkhmCXhc+t9N4XSbLPz83zu0fe7SlXEzaONQQFYhSDbo0Gk37kMhk6Qm4cToEkWTeOxBLZQh6XPjcxu01mc5xfiFJPJ1tqSZ92jjUEOVrjGnjoNG0HYl0Fp/bSYfPVaAcosksQa8TryuvHFTaaytlLmnjUENUBWW8haSkRqNZGSkliXQOn9tJyOsqGPgTTSm3knF7TaRzxM0MpmQL3Qu0caghyr+o3UoaTXuhFIDP7TCMQ9KuHEy3kqkckums5T3QykED5HuqaLeSRtNeqIWfz7WMW0kph0xOu5U0hSS1W0mjaUvUd1q5leyBZuVW8lrKIWd5D9rKrSSEGBNCPCKEeEUIcUAI8Tvm9l4hxPeFEEfNnz2293xQCHFMCHFYCHGXbfsNQoiXzec+IYQQ5navEOIr5vanhBDbqv+n1h/tVtJo2oe//8kJPvNTo6BVxRP9Hgchn7tgjnTUTGV1OgRupyCRaV+3Ugb4L1LKK4CbgPcJIXYDHwB+KKXcBfzQ/B3zufuAK4G7gU8JIZzmvh4A7gd2mf/uNre/G5iTUu4E/gb4SBX+toaTyOSVQy7Xmj3dNRoNZHOST/74GN94fgIodCv1hzxcDCetoT7RZJagx2k9n0hnibWjW0lKOSmlfM58HAZeAUaAe4HPmy/7PPAW8/G9wJellEkp5UngGHCjEGIT0CmlfEIaZ/ELRe9R+/o6cIdSFa2MXUK2ak93jUYD+ycWmI+lmY8ZCiFhcyuN9QSIpbLMRlNkc5J4OkvQ6wLA63aQzORIWMqhde4Dq4o5mO6e64CngCEp5SQYBgQYNF82Apy1vW3c3DZiPi7eXvAeKWUGWAD6VnNszUjCtkrQQWmNpnX5yZEpAOZjKaAw5jDWGwDg7FzcaroX9JjGwVIOKpW1jZSDQggRAv4J+F0p5eJyLy2zTS6zfbn3FB/D/UKIfUKIfVNTUysdcsOxl8rruING07r89Og0ANFU1hgLms6nso71+gE4MxuzJsIp5eAzlUO8TWMOCCHcGIbh/0gp/9ncfMF0FWH+vGhuHwfGbG8fBc6Z20fLbC94jxDCBXQBs8XHIaX8tJRyr5Ry78DAQCWH3lDsF4LOWNJoWpNwIs1zZ+boM7uszsdSJW4lgLOzMaJKOXiNmIPX5SSZzlrGoa16K5m+/88Cr0gp/9r21DeBd5mP3wU8aNt+n5mBtB0j8Py06XoKCyFuMvf5q0XvUft6G/AjqaI7LYw95qDdShpNa/LC2XkyOckbrxwGYC6WtmKIPreToNdFX9DD+FzMmgKn3Eo+t4NEOteeAWngFuCdwO1CiBfMf28C/gK4UwhxFLjT/B0p5QHgq8BB4CHgfVJKdWd8L/AZjCD1ceC75vbPAn1CiGPA72FmPrU62q2k0bQ+kwvGsK5rRrsAQznEU2Yqq9l5dbQ3wNnZuOVWCtiUw0I8jVrqtlJA2rXSC6SUj1E+JgBwxxLv+TDw4TLb9wFXldmeAN6+0rG0Gom03a3UOt0YNRpNnqlwEoBLh0KAqRwst5Kxvh7r8fPyxIKlHEK2mMPZuZS1r3ZTDpo1Yl8lVOpW+tSPj/Gn3zxQq0PSaDSrZCqcpMPnYrjLCDzPx1IFbiWALb0Bzs3HCZutu61UVpfTSn+F1spWWlE5aNZOgXKo0Dj85MgUs9HUyi/UaDR14WI4wWCHlx5zXvRcLG3VLXhdpnLoDZDOSk5MRYHCmIO9tUZbuZU0ayeRzuJxOkhlcxVnK83H0i0lPTWadufiYpLBDh9+txOP08F8PIWUxo1f1eqqjKVXJo0sf5WtpJSFopW+29qtVEOSmRw9QWO1UalbaTaaKpGeP3zlQktNkNJo2omL4SSDnV6EEHQH3MxH09agH8XWPsM47Ds9B0DAKoIrvMVq46ABDOXQ7TdyoysxDlJKUznkX/vi2Xne/fl9fPOFc8u8U6PR1AIppeVWAugJeJgz6xzUvAaA0R4/v/qarczH0vjdTpwOQ1GUKIcWqnPQbqUaksjk8HmcZq7zyhdFLJUllc3hyuSTw7798iRg+D01Gk19CSczJNI5Bjt8AIZyiKXxup34PfkbvxCCP7v3Kq4Z7ebUdNTablcOqlq6VdDGoYYk0lm8LgcBj8vqubIcKhCtLiApJd9+yTAOczpIrdHUnYuLRhrrgKkcugNuTk5H8bodVlzBzttuGC343WtTDt1+T0sFpLVbqYYkM8aMWb/bWZFbSaW8ZXOSTDbHi+MLTMzHAZjRxkGjqTtKsdvdSjORFC+cmeea0e4V329XDt0Bt1YOGoNkOouvw4vf46zIrTQXyxuAVDbHd/dP4nYKtvYFC57TaDT1QRXADXYq5eCxFmqv3t674vvtMYeegIeFeHqZVzcXWjnUkEQ6i9ftJOCpTDnYDUAynWN8Ls5YT4BtfUFmIto4aDT1Ju9WMmIOqtYB4MZVGofugLul5rpo41BDkpkcPpejYreSPa6QzOQM5eF20hf0aOWg0TSAqUgSr8tBp89wsvQEjOzDLb0BNpkV08uh3EoelwO/x9lSFdLaONQQlQsdqNitZCuzz2RJpHP43A56Qx5moynaoFGtRtNSXFxMWDUOAF2mcqjEpQR55eB3O4323S0Uc9DGoYaom7u/QrfSfKxQOcTTWfweJ70BD+msJKwL4TSaunIxnLTSWAFrpkMlLiXIK4eAx4nX5dDZShojDTWZyeJ1OfG7XRX1VpotatClCm16zQtSp7NqNPVDSqNX0mhP3n103ZYe/vwtV/HmazdXtA9LOXic1jzpVkFnK9WIdFaSM/uvGAHppVf9jxy6SE7KIuWQJW66pZRxmImm2NoXrPmxazQaOLeQ4Pxiguu39FjbnA7Br9y0teJ9KOWg3EqpTA4ppeWmama0cagR9pa+fo9z2cZ7H/veYRYTabr8bkJeF5FkxppTazcOWjloNPXjWbNP0g1be1Z45dIo5aDcSpCvf2p2tHGoESoA7TWL4BLpHLmcxOEoXTGcmY0RTmSYdqfY1O0jMpUhmTHdSm5HgXLQaDT14bnTc/jdTi4f7ljzPtQwIL/HZRmEVjEOOuawBqYjSU5MRco+J6XkzX/7GP/41FkAs32GcSGUUw8LsTThRMZ6flOXEfxSbiW/TTnoOQ8aTf3Yd3qWPWPduJxrv016XSpbyWFTDq0RlNbGYQ381feO8Otf2Ff2uWQmx8sTC3z/lfMAViorlO/MenYuVvD7UKdhHBIqIG2+3+tyaLeSRlMnoskMr0yG2btt7S4lyCuHgMeVNw4tUuugjcMaWIynl3TxLCaMjKPD58MA+FwO+kNG6f35hdLOqmdnDeOwvd8INA+bxiGSzFgBbSEEvUGPditpNHXixfF5sjnJ9euIN4BNOXicVhO+VslY2tDGYSqc5LOPnSSXW11xWTKTI5rMlC1Ki5guonTWeM7rdrLNvPGfmomWvP6MaRzevtfo5jhsupVUDxblm+wNerRy0GjqxEmz7fZ64g1QnK2k3Uotw0MHzvOhfz3Ic2fmVvW+dDZHOivLrgBU/EDhcznYZqaf2vu8K87Oxejyu3nrdaPsGevmVduM4ppyxkErB42mPpybj+N0iIICuLXgcAhu29XP9Vt6CrKVWoENna2khoQ/cvgie7dVVvEIkDI/3GgyU5J1UGIczFTW4U4fJ23K4dM/OU6X383Z2ThjvX6Gu3z8y/tusVYVC7FS46BUhkajqS3n5hMMd/qsiW7r4YvvfjUATxyfAXTMoSVQN+IfH55a1ftSWWUcSuVhOFHYklfd3Lf2BQqUw5efPst//+4hjk9F2NIbsLZ7zMwIpRz85vt7AtqtpNHUi3PzcUa6V26stxq8ZnC6VTqzbmjjkDAt+IFzi1xYrHwMZ9o0DuFkaW921f9IFUAqKbm9P8jpmfzKfzGRZj6WttpyK4QQeF0Om1vJeH+rld5rNK3MuYU4m7rX51IqRmcrtRD2TqmPrkI95N1K5ZSDYRwuHTQCWUo5bOsPMhNNsZhII6UsGPoxalMOQIFxUMpBdXTUnVk1mtqSy0nOLyTYXG3l4FLZSlo5ND2JTJaegJuRbj9feuo02Qqzluwxh2KUW+nasS4gv/K3B6UTaSOg3W22/x3rKbwIvW6nZRxU+pvaj1YPGk1tmY4kSWdlDYxDa32HN7RxUL2L3n/P5bw0vsDnf3aqovelLLdSOeOQIeBxcsvOfoY6vQS9Rsx/W7+hDk5OR61aiF+/bQfvuXU7r97eV7CPcm4ln1p1tIgk1WhaFTW3fXNXld1KLbbA29DGIWH2OHnzNZt4/WUD/OXDhws6oy7FcsohksjQ4XPxb6/dzJMfvAO3GWDe2msoh9MzMRbNG/+W3gB/+PO78XsKM568LgcRc9+WW6nFglkaTatybt6IP1ZbOVi9lSoY/NUMbGzjkM7idRkVyL/0qi3E01nG5+Irvi+dXcatlEzT4XMjhChoy6vSWU/PxCxV0Ol3l7wfwOPKGwt1QWnloNHUh8kFUzlot9LGJZnJWT79kOn+Wa61tkIph+KaBrWtw1e+fGSo08tUJGm5lbqWMA7qIoK8clBGQisHjaa2TMzHCXqc1tzoaqHS1LVxaAGMSWtmYyyvcfMtpwaKSS2jHBYTGcvQFNMX8jITSbIYN9631MVnNw4+K1vJYR2zRqOpHefm42zu9ld9II9KU9fZSi1A0ux6CizbOdWOlNLqmxQtM90tnEjT6SuvCPqCHmYiKUs5LOVW8tqqrpVR8LVY0y6NplWZrEEaq8LrclidGZqdFY2DEOJzQoiLQoj9tm1/KoSYEEK8YP57k+25DwohjgkhDgsh7rJtv0EI8bL53CeEaZaFEF4hxFfM7U8JIbZV909cmmQmZ918gx5jFb+SclCqAcq7lSLLuJX6O7zMRJPMm60xljIi6pi8Loc1HEhlLWnloNHUjlQmx5ELYatLcrW5ZDDEC+MLNdl3talEOfxv4O4y2/9GSrnH/PcdACHEbuA+4ErzPZ8SQqhl8APA/cAu85/a57uBOSnlTuBvgI+s8W9ZNYkyymGlmEPKtnIvX+ewtHHoC3pIZyXjczH8biceV/nTX6wWjG1mzEEHpDWamrH/3AKJdI5Xb6+819pqeP1lg7w0Ps90JFmT/VeTFY2DlPInwGyF+7sX+LKUMimlPAkcA24UQmwCOqWUT0ijxPcLwFts7/m8+fjrwB2i2s6+JUikc9aKXNUjlKt6tqNcSoCVbpp/Lkc8nSXkLa8IBjqMuQ4np6N0+pcOdilDoI7N/rhV/JUaTSvy9EnjVveqGhmH2y8fRMrVdWRoFOuJOfymEOIl0+2kJmKMAGdtrxk3t42Yj4u3F7xHSpkBFoDCqrAakchkCwK+QkCsTBzBjl05RIoMiZrlsLRyMIzDianoki4lwFIUfq0cNJq68vTJWS4ZCFoDuqrN7k2dDHR4+dHhizXZfzVZq3F4ALgE2ANMAn9lbi+34pfLbF/uPSUIIe4XQuwTQuybmlq/5U2m8zEHIQRBj6sC5bC0W0kpiSWNQ8iYBT0TTS2Zxgrl3Uo65qDR1JZsTvLMqVlu3F67tanDIXj9ZQP85MhUwb2kGVmTcZBSXpBSZqWUOeDvgRvNp8aBMdtLR4Fz5vbRMtsL3iOEcAFdLOHGklJ+Wkq5V0q5d2BgYC2Hbt9XgXIAI+4QTy+vHFS2UJffXeJWUllIHUuoAvtqZKlMJchXQxfEHHS2kkZTUw6dXyScyNQs3qC4fksP4USm7NjgZmJNxsGMISj+HaAymb4J3GdmIG3HCDw/LaWcBMJCiJvMeMKvAg/a3vMu8/HbgB/JOrQeTWVzSEmJcVhJOSi3Uk+g1DiEV3Ar9QTcVivv5QpsysUcdJ2DRlNb9k8YWUTXb1nf3OiVUO1yUk2uHFYsARRC/CPwOqBfCDEO/AnwOiHEHgz3zyngPwFIKQ8IIb4KHAQywPuklOpu9l6MzCc/8F3zH8BngS8KIY5hKIb7qvGHrYRagdsLzgIe14oxByUFe4IeTs3ESGVyVoxgJePgcjroDRjjPpdVDmWzlYyYSKv0ZdFoWg2VYq7cv7XC2yKtcFY0DlLKd5TZ/NllXv9h4MNltu8DriqzPQG8faXjqDZqBW4vOAt6K1AOpnHoCxoXUDSZweMyHkeSy7uVwLjwKo052APS+erK5r6gNJpWZTGRxukQVlp7rfC2SObhhq2QVlbbV6wcVliZp82bc3dAGYS80lhJOUA+Y2m5bCVvUT8la7vLqd1KGk2NUDVKtc6kb5UGfBvWOKibbHHMIbZChXTSVA69SjmkSo3DUr2VwKiSBpavc3Aqt1Lhx+NzO3Qqq0YDPHt6jkPnF6u6z8X40q1vqkl+Ilxzf5c3rHFQH0yhcXCt2FtJBaSVcXjgx8f5jS8+C8BMJIXf7SxZ8dtR7qjllUNpzEH93uxSVKOpNYl0lvd8/hn+8Bv7l3zNUrHDJ0/MWFmFxSzX3aCa5GdJN/d3ecMaByvmYHMrBb3OygPS5ojPB184x8MHz5PMZJmYjzHSs3zDLlUlvdo6B7VdKwfNRufhA+eZi6V5aWKhoChVMRVOsue/fZ8njs8UbI+nsvzyZ57iH546U3a/i8s0zawmrTLydwMbh1Ll4Pc4iVaoHHoC+YwGKWFiLs7EfJyRFbo5WsphWeNgHJO/jHLQ8xw0G51/fPoMQhjfxQPnjPTTeCrLXz58iHAizcVwglQ2x9m5WMH7IskM2Zxkcr78QK/FeGZZd2+10G6lJke5Z+x+/aDHRSqTW7ZyURkHpQAuH+4AYHwuzsRcfEXlcNulA9y7ZzM7B0NLviavHBwl25s9/a1SYqnmLwLSNB8np6M8eWKWd71mG2DEHgC+9dI5PvnIcZ4+OWvddONFCz31+9QSTe/CifSymYbVIh+Qbu6F3oY1DuWUw3IzHeKpLNFkxjIcoz0BPv3OG/jbd1wHwJELYeZiaUZXMA4j3X4+ft91y8Yllos5tIty+OQjx/iFB37W6MNoOb5/8AIP/Ph4ow+jYTxnGoN3vmYroz1+njtj/P7dlycB43utFlDFHZZjZveDi4vljcNiIlPfgHSTL/Rqr6GalPIxB3NUaCpbEhP4/a+/yFw0xe2XDwJGc7w3XjlMNidxOwVPnjD8myu5lSohXyFdmso6E0mte//NwOR8YskVnKY8n3vsJB/69kHcTge/8XM7ap5y2YzMRI1rZqjTxw1be3jyxAwL8TSPHZsGjO+1WkAVL/JiyyiHbE4SSdYpIK1jDs1NIlM+lRVKJ7xlsjkePTzFxHzcatmtjIrTIRjp9vOU2ep3JeVQCcow9QYKKzW9bkfbKIdwMkMqkyObq3mnlLbg/EKCP/vXg4S8hutzpay6dmUmksLjchD0OLl+Sw8XFpN85KFD1vcykclaK/LimiDLrRTOG4fJhThfevK01VF5uVhgtcjPkm7uz3DDGod8EVxhKitArKhK+uWJBSLJDJFExoo5uJ35UzfWG7BqHEZ7Aus+trHeAP/yvlt4valSFD6Xs+mlaKWEzXRCXdRXGUcuhAF44+5hAGaj7aEgV8t0JEV/0IMQgruuHGak288/PHXG6lWWTOesm25x5qEyqDHTRQzwjecn+MN/2c/x6QiwfAFrtXA4BB5n83c72LDGQa3AvQUB6fLK4WdmSlw4mSGVzeJ0CJyOvKRXasHjdDBQpT7we8a6C/4PMALUzb7aqBRVWb7S5D2NwYkp4+a1d5vRFG4utjGNw2w0SZ/5HRvu8vGj3/85Pvb2a/n4fUbsz64c4qnCm6/dWCj1sBA3FimHzxvGtx4xB2iN5JINHHMobbynuiUWZzmoeEIqkyOazFqyUKHUwuZunzXzuRYY7TOa+4KqFKW0is+1pjwnp6OEvC4uHTKy42Y2qHKYiaYKGuN5XU7edsMoqpFzIp2zFn7F7fft19pUJMm2/iCLJcahPrdEbwss9Dasckhmsman0/zN3BoValthJDNZnjk1a9UczEZTuJ2FBmCs1zAOK6WxrhejfUZzX1CVony87fL31JoT01F2DAStOpm5jWocIimrO4EdqzFl2q4cygekIa8cFuPGdWgZhzrEHMAwatqt1KQk07mSbCArldUWc9g/YQwcv21XP2AYB4+r8H1jplGoRqbScvjcTjI5SabJ+8BXQli7lVbFiakoO/qD9Jg3xo0Yc5BSMh1JLjnC0+c2GlOqBUdx0N5+rV1cNGpsVCuNw2ZMpx4xB6AlOixvOOPw1X1nufOvHyWazBS4lMAogoNC5bB/wmjudfMlxujA2Wiq5H1bTOUwVoVg9HK0SjfHlUhmslZgX7uVViaeyjIxH2fHQIhOnwuXQ2xI4xBLZUlmcpZ6KsaIyeWs70exKo2lMla8UKWzqpiDOp/1ijl4TJXTzGzImMPRixECXleJcvCXKYI7eG6R3qCHnYOGr3c2miqpXO4LeXngl6/nxhqPF1THm0hnLRdYK6JcSqCVQyWcnI4CsGMgiBCCnqBnQwakVY1P3xLKQbW0V0ahpAgulSXgdhLwOm1upcImfKG6xRy0W6npUAG9VyYXy7ancDpEQVbDwclFdm/qtOSm4VYqPW33XL1pyYu2WrSLcgjbjIOOOayMZRz6jZYrvQHPhlQO02YB3HLKIZHOK4cSt1Iqi9/jZKDDmzcOtmsx4HEWpKjXEq/TUbZpYDOx4YzDLrOnUSpTGnMQQhTMkU5ncxw+H2b35k5rRZHK5soah3pgVw6tjH1AklYOK6PSWLf1G27LnqCbuWj5ttPtTF45LGUcjPYyKguo1K2UJeBxMhDyMhVJIqVkIZ62zXWvj0sJdLZSUxL0uqzAcXHsAMyBP6ZyOD4VIZXNceXmTjpsbpx6rS6KUUqn1dNZ7f30i3PRNYVMR5J844UJtvYFrCLN3qDHaiOxkZhVymGpgLRZJKq+H+XaZ/g9Lks5xFJZsjnJ9r4gUL9gNOiAdNNy6ZChHso1vwvaBv4cMIPRuzd1Fvgii+sc6kW+1W9zrzhWQscc8jxy6CKffOQYPzs2beXqK5KZLL/ymaeYnE/w0V+4xtreG/QwF6utcvjZsWn+xw+O1PT/WC3TSjks4VZS7WWSmXzMwX5O4+mMoRw6vExHUpZr7vJNhqu5XmmsoFNZmxYVd/C6So1DwOu0SusPTi7idTnY3h/E73ZaFcuNcit520Q52N1Kre4iWy8f+teD/OXDh/n3n3mKF8cXCp47djHCofNh/uTNu3n1jj5re2/Aw3wsVdO+VN966VzTdX+diaQIlUkkUagiUfX9kLIwPqfcSsNdfrI5yXHTXXf5cCfQCOXQ3Nf+hjQOu0zjUByQBmP+s4o5HD4f5rLhDlxOo1hOzYZulHKwYg5NflGthD0gvZFTWXM5yfh8nNddNgDAKTPwrFDnSRVZKnqCHnIyn4ZZCxbjGZKZXFMZ75losmwBnMLnNovgbN8P+/UVT2Xxu51s7vIB+cK3y8yZLHWPOTT5Im9DGgflViqnHEJet1WgNRdLFfRKsoxDo5SDNXu2uS+qlVDKweN0bGi30nQkSSqT49adRoHleNHkMmUcile0vXUohFNxoVoaoNUyE0ktGYwGNWM9V6CsY7brSymHTV1GzFEZh81dfgY6vAx21Dbb0E4ruJVaN1l+HagpbOWVQ96tFElmCmIN6kvauIB0e8QcFhNpPC4HnT7XhjYOZ+eMcZWXDIboD3kZnyscX6k61xZPJ1PGoVytw8vjCwx3+axJhWtF5f8vxNMMdfrWta9qkMrkmJiPc8nA8hMUE+lswU3XrhxUQHpzt/H3vGK1zHDxlftvoi9YT+Og3UpNScDj4j/esp07rhgseS7kc1kr20giY6kFaLxysIxDqyuHRIYO03ec2MBuJaUUxnr8jPb4S4yDug6LlYOaX15u8NOv/a/e3UFlAAAgAElEQVSn+bsfHV33san8/2ZQDjORJG994HFOTkf5uUv7l3ydap+RTGetXmiFbiUjIN3ld+N3Ozl+0Yg5dPnd7BgI0RWoZ0DayFYqTkJoJjakcgD44zfvLrs95HVb2TThRKZg1aZURKPdSu0Qc+jwuXBvcLeSMgYj3QFGevwcPLdY8PxKbqVi5ZDMZJmJppiYLzQya0Eph/kaZ0VVwkMHzrN/YpG/fcd1vPnazUu+zud2kDDbZ/QE3MQXstb1JaUkljbcSkIINnX7ODFlxHhCDeg24HU7kRLSWYnH1ZwT/TakcliOkNdJKpsjnEiTyuYKvpiNDkirxoDN8IVdD8pdF/A4N7xx6A958HucjPb4mZiLk7NlICn3W3FsrC/kwed28OjhqYLtKgZxwZyR/L8eP8mvfOYpfvkzT1qu0kqQUlqGqRmUg+qc+oYrhpZ9ndfltMZ9dpnqSl1fxio93yJnsxl3CHlduBrwfc53O2je618bhyKUAbhgdm20ryo6GqwcAh4Xlw93WPNyWxXlrvO5nRs6W2l8LsaI2axxtCdAKpsrmG8cTmTKzhfwupz81u27eOjAeR45dNHartxMF8PGtfuJHx7lmVOzPH5shtMzsZL9LEUykyNldv5tBuMQTqRxOUTZGKEd9fxiIk2P6SKKmwWtqnYpYLqbNpkZS8Wz4utFK7TC0cahiJDpRppcML5gzaQcAO7cPcS+U7Mt3c9/MZGmw+fG73E2VapkvZmYi1tTBNVPe8ZSuCjmZefXb9vBzsEQf/qtA5bfWg0AmgonCSfSzMXSXDvaDWDd7CvB3oxuoQka/CmlaZ+9Ug4Vk5MyH5eJW+27DSOhqsyVcahnbYOdfEGrNg4tQ8hrfGjKOBQGpA3D0ahsJTCkdU7CI4cvrvziJiWSNALSfvfGdSupGodRs5XLmGUc8vGCsGlEy+FxOXj7DaOcnolZgesZU3XkJLxkFtRt7zdaQ6ymPbS9vUlzKIdMRTdx+zz4blM5hBMZ/us3XuaAGc9RbqVN5nmvZ1W0HVXQ2sxtu7VxKEIZgPPKONiVQ4PdSgBXj3Qx1OnlB69caNgxrJdwwlgJbmTjoGocRq1BUYZ7qdA4LH9THOw0Ui9Vh1F73cPzZ+YAo803rE45LMQztsfNYRzU93I57PPglXJ4eXyB//PUGb789BkgH7fTbqWV0cahCGUAlHKwV012NDiVFcDhENx++SA/OVLai6cVkNIIGHb4XPg8zg3beE/VOKj5436Pk/6Qp8A4RFYwDgMh4wanjMO0LbX1uTPzQF45rKY9tFIOQjSHcYgk0xUpB28Z5XDIrGVQrUmsgLRSDnWsiraj3UotiHIrnV+Im7+XUQ7Oxqae7RrsIJLMtGTWUiKdI5uThLxGrvlGjTlMmtfXpu58gdlIt78o5rC0WwmwCt2UUZiJJHGZ/b+ePzOH2ymsuearMg6mQRjq8DHfBMYhbNbFrIQ9YB3yunA7BUfM8Z9KVRXHHBquHJr4+tfGoQglXyfLuZWaQDkAVsXqBTMrpZVYtKp+826lVlRA60WlitpXrn0hb4FraCW3kjIOU+Z1MBtNWRXEc7E0m7v9VpB2VQFpq6eTv0mUQ6aiCW125eB1O6x2GnaUW6nD5+bfXTfCbcsU1dUSK+bQyspBCPE5IcRFIcR+27ZeIcT3hRBHzZ89tuc+KIQ4JoQ4LIS4y7b9BiHEy+ZznxBm6oEQwiuE+Iq5/SkhxLbq/omrQ12E5xfLZCs1QcwBYMj0Nat89lbinFmgtanLh99j5KXH01krmLpRUHUH9nGvXX63dTPO5SSRVGZZ5dDtd+OyzUOejqYY6vLRb/YfGun2W5l1q7kJqbYdY72BkjGajaDigLRNOfhcTssQ2PHbOrr+zS/t4fWXlXZJqAft4lb638DdRds+APxQSrkL+KH5O0KI3cB9wJXmez4lhFCfxgPA/cAu85/a57uBOSnlTuBvgI+s9Y+pBioPej6WxuMsLEAa7vThdAjL19soLOWw2HrKwaoK7smvav/2R8d4w18/WlAA1u6oDKPQEsYhksogJcu6UxwOQX8oP/JyJpKkL+hhoMO4Pka6/WtaoS7GM3icDoY6fSzE0w1XdpEKA9L2Vt5et8MyBJebXVeBsgajEbRFEZyU8ifAbNHme4HPm48/D7zFtv3LUsqklPIkcAy4UQixCeiUUj4hjSvtC0XvUfv6OnCHWCmhuYY4HPnW3MVSdnO3n8fffzu37Owr99a6odwJF1vZOHT7rS/v0ydnmYulm8KFUS+iyUzBjBAw0irDiQzZnFyydUYx9nnIs9EUfUGPpSxHevx4naZbaZUB6U6/iy6/m3RWlkxUqyeJdLakU8FSFBgHl9P6/XWXDeI244Qq5tBoLOXQxH3S1uofGZJSTgKYP5U2GwHO2l43bm4bMR8Xby94j5QyAywAZe++Qoj7hRD7hBD7pqamyr2kKijjUO6CHO7yrViMU2t8bifdAXdTuZVSmRyZCvzaE/MxugNuswjOuPxemTRy0DfS6MtIMlPgUoJ8cDScSC/ZkbWY/pCHqUiSWCpDLJWlL+RlyFQOoz0BywW62oB0p89tHU8jjfZSzQfLYR/763M7LJVwyUCQHf0hhCjfibkRKEW3mlhQvan2mSp315TLbF/uPaUbpfy0lHKvlHLvwMDAGg9xZYJmxlIjGnJVymCHt6ncSu/5wj7+6MEDK75ufC5uzfBWykGtTKfLdBltVyLJrJUZp7DfjFerHGZsIzRV/cNIt39txiGRocPvpruMcUhnc9YEtXpQ6XmAUuWg0la39Qe5dLgDv9vZ8IWdop2zlS6YriLMn6pcdxwYs71uFDhnbh8ts73gPUIIF9BFqRurrqgWGs1sHIY6fVwIN89K+9DkYskks3LYW0YUj3uc3kBB6egyymEhnrY6A1diHKYjKevc9YU81vnd2hfA6RA4HYJUdhUV0vE0nT5XWeXw2cdOcs/Hf2q1o6g16jxUFnMoVA5+t3HutvYF+A+3bOMP7rqsNge5BtolIF2ObwLvMh+/C3jQtv0+MwNpO0bg+WnT9RQWQtxkxhN+teg9al9vA34kGxwB67DcSo3Jga6EwQ5f08QcsjnJdCRZMBu6HFJKxufi+cKvIuNQbj5BuxJJlvZNUjfjxXjGlvK7/DU4EPKSzUmOmbMJ+kJe7t0zwlfuv8kq9PK6VjeScjFhuJVUawl7Pc2jh6dIZXLM1anGJmxLfV6JglRWUzkEPE4GQl6u39LDf7hle82Oc7V4WqBCesUzLoT4R+B1QL8QYhz4E+AvgK8KId4NnAHeDiClPCCE+CpwEMgA75NSqiXLezEyn/zAd81/AJ8FviiEOIahGO6ryl+2DpRbqVFNuSphqNPLxXCSXE7icDRWKs9GU+QkKxqH2WiKeDqbdyt5io3DxlIOw0UT1tbmVjL2oSqB+4IefG4nr96RD9t5XI5V+bbDiYwVkIZ8UVwineVZsy2HcdP2V7zP5cjlJP/lay/yKzdt4YatvYXHUiaraymcDoHbKUhnJV63gzddNcz2vkDTuJLsqGNt5mylFc+4lPIdSzx1xxKv/zDw4TLb9wFXldmewDQuzYKSsM1tHHxkc5KZaGrdIyHXi8qWUTe0crw8vkAmZ9yglNtDKYcOnwuP08HUBlIOK7mVVhNzAPjhKxdwO0XZa8HjdKwpIK1aUMzHjc/l+TPz1n4W49VzK0VSGb7x/AR9QU+pcShTLLgcPpeTdDaD1+Xknqs3cc/Vm6p2nNXG41ydoqs3zXv3ayDqC9ncMQdVCJdouHFQ8wMiyfKuhoPnFnnz3z3GVSOdQL6fkIo57BgIkUhtrEK45bKVDOOQxukQJa63YtRnf2omxn+8ZXtJHAdM5VChcVAzmDv9bkJew2irVuBPHM/PEalmcZy6QZ6eLZ05ETHdSpVUSIMxYS2czDRNVtJyeMtUcDcTzX8GG4CVrdTEymHQdElcbIIWGko5JNI50mXcF0+cmAFg/4SRsqr6/Si30iX9QfpCHusmtBEwYg6FN3Kf24HbKSzl0FHBDANlHDp8Ln7r9p1lX+NxOUhW6FayKxYhhPG5mIruiRMz1hAde1vv9aL6a52eKU1oCCcqdytBPguokTNXKsWYI928bqXmP4MNIO9Wat6AdL5KuvGrbfv0snLjKJ85OUt/yIvf7aTDlgWjVqaXb+qgP+TdMNlKmWyORDpXkoEjhLCqpI2meyvfEIMeJ6/a1sMH77mCHnO2dDGrcSsVD8XpD3mZiSTJ5iQvnJ3n9ZcbJU3LuRBXi1o9n5mNWVXyjx2d5j9/5QXm42m8LkfFLWt8bgdel6Mp4wzF+D1Ook08CbF5l8YNRCmGSjpBNoqBkLFiVHMnGsnFxcLRlt2B/E1KSskzp2b5uUsHuHVXP6ds4yp9bif/8r5b2DEQ5CMPHdow2UrqhhD0lrqAOv1uFuNpwskM3f7yN3s7Qgi+9hs3L/ua1bgvrHGapqrrC3mYjqSYiSZJZyW7N3Xyz0xU1a2klEMineNiOEkineW9/+dZwokM14x2rWqR5nM7y7rWmpHegIfZJr7mm/fu10BCLVAE53E52NTl42wZP229sSuH4oylE9NRZqIpXrW9l7deP1r8VnZvNuIQ/SEvkWSGRDrbMl/utRJdJgNHKYeT01Fu2NpT8vxa8DodpCp0X6jhS8rl1xf0cuR8mAsLxmc81hvA53ZU1a1kd62cmonyZ986aP3+0viCNZOiEnxuZ0GldDPTF/Jwarrx39+laI2zWGeU3G/mmAMYxT0ny/hp683UYhKl4ouNwzMnjXrGV23rLX5bAX2mS2QjuJYiZTqyKrr8biYX4kzMx9k1GKrK/7eagHRcKQfTQPd3eJiOpqwuxUOdPjp97uq6lWwZO995eZKDk4v8P2+6gi29RuLCahZpXpejZRYXvUFvU7eM0cahDDft6OXdt25nz1h3ow9lWbb3Bzk90/iVx1QkaaWnRopuGk+fnKUv6OGSgeVXf/2mm2wjuJbKdWRVdPndHJ8yDP7OahqHCgPSyq2klEN/0Esqk2+ZMdzpM1xf1QxI25TD1/aNIwS8cfcQN243FhSrSSlvJeXQH/IYNUJN2o24Nc5inenwufmjn9/d9CuQbX1BZqOphncznQon2d5v3MjCNuWQzGT5wSsXeO2lAysGCPvMGQTNvJKqFpZbqcxNzz6ZrGrGYU0B6bxyANg/sYBDGDe0Tp+rqnUOSjkIYbi1btjSQ1/IaxmH1SiHX371Fu5/7Y6qHVst6Q16yEmaYtpeObRxaGG29hmr8Up6GtWKWCpDJJlhh+kXtiuHRw9PsZjIcO+ezSvuRymH6XD7Kwdr0E+Z9tHKOLgcwvp814vH5ag4IJ2wYg7GsfUFjc/l4OQi/SEvLqeDDl9tlMNW04105+4hAG7cppRD5QHpO64Y4u17x1Z+YRPQZ17zs026INLGoYVRgbpTDYw7qBqHHabbyF4I9+CL5+gLerhl58qjGJVymNoQMQfjZriUWwmMeFK1Jg56VxFziBXFHNTncnI6yrA5d1nNnagWSjlcOmQM5XmDaRy29gXYvamTy4aro6CajXycrTkXRM0dcdUsy9Y+Y6XVyIwHZRy29gURIq8cIskMPzh4gV961RjuCgqSAh4X/SEPJ6YaH2CvNarqd6lUVoBdgx0lz62V1QSki2MOKmVaSqPZI2C6laqfyvqum7dx7Vi3NQdbCMG3f/vWlqhZWAuWK1UbB0218bmdbOryla0srRcXTeMw2OEl5HVZMYf9EwskMznuuGKo4n1dt6WH58zGbu1Mvs5haeVQrXgDrD5bSYh8pbG9sG64yzAUKiAtpazKjVu5vK7b0l2iMtvVMIARcwDtVtLUiG19wYams6p+SP0hLx1el6UclKLY1FX5vO0btvZwcjra9j2WIskMbqcom1XTXSPjUGn7jHg6S8A2FMftdFgtM4Ys5WCMD01UqWmc2o+95fZGoDeQdyv98YP7+djDhxt8RIVo49DibOsPNDSddTqSQgjoCbgJel1Wmua0zWhUiir6eu7MfPUPtIlQHVnLrYr3bOnmt2/fafndq4HXzFaqZExKLJW1gtEKFTgdMg29Si0NVykoncxkcTtFwTztjYDLNLzTkST//NwEn3nsRMMzD+1o49DijPUGmI2majqZ64EfH+fAuYWyz81GU3T73bicDkK+QuPgdAhrJVwJV4904XYKnj3d3q6lSDJTNlMJjNXz773xsqpW51ujQsuoh8VEukCpxVMZK41VoQKnqp+XiotUK2Mpkc7h22CqQdEb9PDs6TmzO0COb74w0ehDstDGocVRaX7RZG0aeOVyko88dIh/erb8RTsTTVory5DXZWWxzERS9AY9qxpE5HM7uXJzF8+1uXGIlpkCV0uUu6Zc3OH9X3+J93xhn/V7LJUtaRPeb3Z+VcOJOk3lsFClWodkJou3BVps14K+kNca1NQTcPPlZ842+IjybMxPpI1QKYe1Ug4qB32pthbTkZS1suwoUg6rcSkpbtjaw4vj82Vbf7cLxiyH+q2ULeVQZByklDx5YoYj58OWyymezpZM6Os3P9/hIuVQLbdSIp3bcPEGhfrueF0OfvP2XRw4t8jRC+EGH5WBNg4tjrrJ1Eo5qGDhUsZhxmYEQvaAdCRFf2jlrqLFbOkNkMzkqpoq2WxEkllCdWwHv5Rb6fRMjLlYmmgqy6w5SyOeypa4lW7a0cfNl/TR6TcUg5rKtu/UHL//tRfXbcg3tnIwviNXbOrkSrMJpUrmaDQb8xNpI1Tf/Xi6RsohvbxymImmrAs85HXnlUM4aeXIrwaV3rnSPOpWJlpm0E8tUYNvipXD82fz7ruzc3HAcCsVG4d7rt7EP/z6TVYAXbmV/r9Hj/P1Z8fX3Rl4Y8ccjO/I1SNdVrueRJMMANLGocVRX+RaKYe4ZRxKC3XS2RzzsbSVr60C0rmcNNxKaxhfqm6a7Wwc5mPpimciVwOlHIpbaLxgywpTN/hEujRbqRjlVsqYDePmYutTeRtZOSh1bRgH4xxUK0V4vWzMT6SNUMqhZjEH0zjMxVIl7oM50xWhAtJqONKFcIJkJmf5U1eDapdeK2PXaLI5yWx0bfGYteJdIubw/Nl5rhntAuDsnGEcjID08rcFr8tRMIZzPra+Ct/kBlYOW/uCOARcv7XHOgfxJpkOp41Di6NiDrEaXVDKOEiJ5ZdWqJnP/TblAEYfHlhdjYMiaCmH9oo5PHlihon5OPOxFDnJmuIxa6Wcckiksxw8t8gtO/vpC3o4O6vcShlrwbEUQgh2b+7kLWZDxeLrYrUkNrByeO2ufn76/tvZORjSbiVNdVGZJbWaRWuXuFPhJO/63NN89KFDSCmtnjD2VFbI93pai1tJFVhF2kg5SCn59c/v45OPHLPcc2s5N2ulXLbSkQthMjnJtaNdjPYGGDeVQ7lspXJ84/+6mT97y1WA4SZbDxtZOQghGOk2ZqE0m1tJ91ZqcVQxVbxGbiW7xD01E+XRI1M8emSKoNdlDfhRAelus83CwUmjYG4tq2MrIF3Frp+NJpzMEE5mmJiLr6lyfL14y2QrKdU30OFjrMfPyxMLpLM50llppUcvhxCCDq8Ll0Mwt0630kZWDnYs5ZBujoWR/kRaHFWwVLNUVpvEfeL4DGC05/7Lhw9blcz9ZsbF9Vt68LgcfPOFcwBrylZS6iPaRgHp8wsJ62feONTRreQsLYJTqcJdfjdjvQHOzcetc16JcgDDQHQHPOs2DhtZOdjxuhwIAUltHDTVwOEQ+N3OdQWkP/6Do7zzs0+Vfc6uHH5mGocP3Wu4E77x/AQuh7Dy34NeF6/d1c9iIoMQ+a6Tq0EpoXbKVlLGYXIhnncr1VE55GMO+c9S9fDp9LsY6wmQzkorVlSpcQCjqncuuj63klYOBkIYzRgTFXbQrTX6E2kDgl7nugLSL47P89TJ2bKzbO0X6snpKD63g9fs6OOyoQ7CiQy9QU9BA7m7rhwGoCfgwVXBHIdiHA5BwONsS+OwmMhwdjaGyyEKxoHWmnLZSguxvHLYYk5gO2JW5hbXOSxHT7BKyqHJR/LWC5/bqd1Kmurh96zPOMxEkqQyubKFbkriKhWwczCEwyG444pBIB+MVrzhiiGcDrGmNFZFyOtqL7fSYsJ6vH9igb6Qp65zCsoFpBcTaXxuB16X0zIOr0waxsHvrjwU2RNwr8s4SCkN5VClqXetjs+ljYOmigQ967uZquCkqpK1o9xKKvh8qTmhTA3xKfad9wQ93HnFEFds6lzz8diHBrUDkwt546BmMdeTcu0zFuJpS71s7vbhcggOnV8EVqkcAp51FcGlsxIp0crBxOd2ENfZSppq4fc4rUrmtaBSUsfnYmzrCzC5kOCqEaM4KpHJ4nQINnX5eGl8gV3mnN89Y90MdnjZ3OUv2d8nf/l61tOaP+RrL+VwYTFBh2nwYqls44xDprxxcDkdjPUGOHjOMA6rijkEPczHUmueCqcSHrRyMNBuJU1VWY9yiKUylmEZn4vzlw8f5h1//2S+S2cqh9/ttG5olw4ZE8qcDsE/vfdmPnDP5SX7dDrEutwm61VCzcbkQoKrzUpkqG8wGvK9lZJLGAcw5pEvmunDxS27l6MnYEyFW2uMKKmmwGnlABjnQRsHTdUIrCPmYB9uPj4X54Wz84QTGWs2dCKTxed22IxDfvD9WG+gYMZwtQj58nMh2oELiwm29QetcZv1TGOFpYxDpsA4bOsLWo9X41bqNkddrrUQTt0ItXIw8LsdlsFsNPoTaQPWYxzsrQ+OXQxz9GIEgBNTRlpjIpXF63Ly5ms38Zuv32nFHmpJyOsiWsPJdvUkkTbaYW/q9DFsuuDqrRwcDoHHHBWqWIynrQZ6ANv6Atbjldpn2OkxjcNag9LKYOmYg4HP7WyP9hlCiFNCiJeFEC8IIfaZ23qFEN8XQhw1f/bYXv9BIcQxIcRhIcRdtu03mPs5JoT4hKhnKkcbEPC61lznMBM1FMJIt59nT8+RNdNZT82YxiFjtFPYOdjB7991WV2ybIJeZ9tUSF9cNM7vUJePTeYM5v6O+ioHMOIOxcahwK3Un1cOq3Er9QaNfay1v5JSDj6tHID2y1Z6vZRyj5Ryr/n7B4AfSil3AT80f0cIsRu4D7gSuBv4lBBCXYUPAPcDu8x/d1fhuDYMAff63UrXjHahyhyEgFNmQVQ8lbV6vtSLkNfdNl1ZVRrrpi4fw8o41Fk5gGkcssY5zeYk4WSmoG34dptbaTUB6fW6lVRhno45GPjcjqbprVSLb/29wOfNx58H3mLb/mUpZVJKeRI4BtwohNgEdEopn5BGFPQLtvdoKsBQDtmyRWwrodJYrx3rBmCgw8slAyFOmMYhkc6taiVZDUJeJ6lsrqCit1WZXDDSg4c7fWwyx2z2BRtgHGxuJXvrDMVIjx+nQ+ByCCu7qRLW7VYyb4RaORi0U7aSBL4nhHhWCHG/uW1ISjkJYP4cNLePAPbp2ePmthHzcfF2TYUEzZXeWtJZZyJJfG4Hl5mB5qtHutjeH7SUgxGQrrdxUP2VmuNLsh5UjcNwl489W7rpC3oY66193KYYj8th+fcXyhgHt9PBaI9/VapB7UOI/GyP1ZLQyqEAn3t9aenVZL11DrdIKc8JIQaB7wshDi3z2nLOarnM9tIdGAbofoAtW7as9ljbFpVdEktlra6mlTITTdEX9Fo3rKtHuoinszx6eIpsThJvQF5+0NZ8by39mZqJ0zNReoMeOnxubts1wLN/dGdDjsPrymfBlDMOYGQsrXbV6jRbgay1EM5SDrq3EgDedslWklKeM39eBL4B3AhcMF1FmD8vmi8fB8Zsbx8FzpnbR8tsL/f/fVpKuVdKuXdgYGA9h95WrGca3EzEmAG9vT/Ef3rtDt52wyjb+4OksjnOzcdJZurf90bNdGiHdNaT09GCTKBGMdYb4OGD5/nPX3nBapPSFSg0Dm+9foS3Xj9a7u3LMtzpsxIYVku+CE4rBzAC0qlszkoMaSRrNg5CiKAQokM9Bt4I7Ae+CbzLfNm7gAfNx98E7hNCeIUQ2zECz0+brqewEOImM0vpV23v0VSAXTmsltloit6gB6dD8ME3XcFYb8DKeT81EzUC0nX2B1vKoQ3SWU9Nx9hmywRqFH/zi3v4tZu38Y3nJ/jG8xNAqXK4d88I77+7tKhxJW7a0cczp2bXFCPSyqEQ5dZrhnjbej6RIeAxIcSLwNPAt6WUDwF/AdwphDgK3Gn+jpTyAPBV4CDwEPA+KaU6A+8FPoMRpD4OfHcdx7XhCHjXoxySJQHS7ebN7OR01EplrSetOvBHSlnglomlMpxfTLCjCYxDV8DNB+65HK/LwaNHpoxtVeoMe8vOfhLpHM+dnl/V+x58YYILZqqvVg4GaiHWDBlLa445SClPANeW2T4D3LHEez4MfLjM9n3AVWs9lo2OCkivNoArpTRiDkUVu4MdXlwOweRCwkxlrbNbydt6Mx2+9ORpPvSvB0lmcnz0bdfwi3vHrHGpzaAcwLgBXzvazdOnZoHqGYdX7+jFIeBnx6d5zSV9S75OSsnXnx3n56/ZzFwsxe98+QUrE04rB4NmmganP5E2wL8Gt9ILZ+f54pOnSWZyJe21HQ5Bf8jLhcVEQ2IOwRabBhdOpPnoQ4e4fFMnQ51eHt5/HsgXEtpbUzSavduMmlSPy1G1z7XT5+basW4eOza97OuOXozwB19/ie/un2TKbM8ST+uYgx1tHDRVJbiGgPR//84r/PGDB4DyE9sGO72Mzxo5+nUvgvO1lnL44pOnWUxk+NC9V3LHFUM8dXKWTDZnTVZrFuUA8KptvQAFBXDV4JZL+nlpfMEaIlQOFQi/GE4WVFS7nQLnetr4thHqu9YMbiVtHNqAgNd0K1WoHKSUHLkQ5tad/fz6bdut2Qx2Bjt8nJk13CL1LoJrlVGhp4RFYaAAABOTSURBVKajfOShQ/zPR09w265+rhnt5uZL+ogkM7w0scCp6SgDHV6rbqMZuH5LD0JAl7+6x3TP1cPkpORj3zu85GvUONHpcNIyFCPdfj0/2oaq92iGWofmuWo1a0alssYrVA7TkRRzsTSvv3yQd9+6vexrBju9nH/FKOCqt1vJqUaFNnlA+n/84AjffPEcV49284f/ZjcAr9lh+NyfOD7DqZloQVuKZqAr4OayoQ4rXbhaXLm5i/9w83Y+9/hJ3nztZm7c3lvymlmzinommrKUw9/+++s4ay5CNFiGMqmNg6YaqJV9pQHpo+asYDWboRyDHfkMpkYEC7v8bubj6xtcX2smFxLcsLWHr/3Gzda2vpCXKzZ18q0Xz3FuPs7dVw038AjL85dvK8kjqQq/f9elfPvlc/z9T0+UNQ7zpkGYjiSZiXrxuhxcN9bN9Vt6Sl67UVHxw2bozKrdSm2A0yHwuR0VxxzUIPnLbLMZihns8FmP6+1WAqPHkwpaNitTkWTBeVK8dlc/h86HkRLu3N18xuHq0a6C4UPVIuBxcelQR9lZ5JBXDlPhJDORFP0hb11nabcCzRRz0MqhTdjRH+JHhy7ygXuuWDG4d+RihC6/m4GOpdti2JVDI/reDIS8BbOXm5GpxSSv3VV6Dn/rjl288cohrh7pXlUTu3agO+BZ0k2kOrdOR1LMRpMt3xqlFii3ks5W0lSN37p9J8enolb163IcvRDm0qHQsqu2wc78Ta8RyqE/5F1yBdoMxFNZwslMWQMb8rq4YWvvhjMMYIwNtfdZOjMTY++ff5/D58NWnGE2mmQqkiypr9HYU1kbrxw23tXbptx91TBXjXTyP35whEx26QvLyFSKsGsZlxIUupUaMaVroMPLTDS1pjbk9UC5vJZTXxuRnoCHxUTaugZ/dnya6UiKF87OWW29c9KYNKiVQyl5t5JWDpoqIYTg127ezvhc3JrFUI6XxhdYiKe5dHDpYDQYc46VsGiMcvCQzck1zwmoNVMRw+U1qI1DAT0BN1LmO7++OL4AwMRcnLlYylJTsQZ0+20FLOWgA9KaarLLvOGfWsI4/NG/7OfeTz6O0yG4YWtpNokdl9NhVU43IltpwFQuU03qWlLjP7VyKKQnqIb/GMbhpXGj39L4XJy5aJpLBvKLEq0cSvGq3kprnOxYTbRxaCNUm4bTM+UDgvtOz7FnrJvH3397Rdkq6gbdCLdSv+mPbtaMpYvmcZXLVtrI9FhjQ1Mk0lkOnzcy407ORIkkMwXp08VtWzSGB8DrcpDI6JiDpop0Bdx0B9xL9tafiSS5fLjDmmW8Espl0qiYA9C0QempcBKnQ+jVbxHKOMxGU7wyuUgmJ+nwuXhlchGAS22xLh2QLo/f0xyjQrVxaDO29gXLKodcTjJbpgPrcuSNQ/0vk37z/66Hckhnc+yfWFjVey6GE/SZczA0ebrNAULzsTQvm+f0zt1DVvbN1r4ALvOcNWKWdivgc2njoKkB2/oCZZXDYiJNJidX9YXc1h+k0+fC46z/ZdLhdeF1OZiO1D4g/c/PjfPmv3uMyYV4xe+ZCicL0n01BvmYQ4oXzy7QH/JYzf7AiDOoBYpWXeXxuR06lVVTfbb2Bc3xnoUrD3WTXY1yePet2/nu7762IVWsQoi6VUkfuxhBSqwuqpVwMZxkQGfblBD0OPE4HczF0rwyucjuzV2MdPut53sCHitLSbuVyuNza+WgqQHb+gLkpJEdYmfG9N2vRjn43M6CL3a96Q/Vxzio7rOqsjdeQabIVLh864yNjhCC7oCbmUiSE9MRdg2GGO3JX0O9QcM4+N1Oq2GkphCv26kD0prqs9XKWCpcBc9EV68cGs1AR32qpFWM5sxsjMePTXPtf/teiYtpfC7GHX/1Y45PRcjmJNMR7VZaip6AhwPnFkmkc+wcDLHZtsDoDrjZMRC0RtFqSgm4nYQTjW86qU13m7GtLwBgjahUWMqhhYxDf8jLc6fnavp/SCktxXBmNo5DzJDK5jh8PsymrvxN7eEDFzg+FeXpk7N0+FzkpK5xWIrugJtnzFGkOwdD+NxO+kNe4qkMXpeT9999OckmWBk3K1du7uQLT5wmnqr//HY7Wjm0Gb1BDx1eV0lQWsUcegOtYxwGOrzMxlLLtgNZL7PRlDUk6cxszEq5LHbL/fToFAAnpiJMmM8Nd2q3Ujl6gx5U15OdZtHbaI/fClb73M6qza9uR27Z1U8qm2Pf6dmGHoc2Dm2GEIIdA0GOXYwUbJ+JJukJuHE1IPNorQx0eJGSmmYsnTZVw1Cnl/HZGK9MGkVbduOQzGR56oTxRT0xFbUKuy4bXr4/1Ual21yA9AU9lkF43WUD3Lqzv5GH1TLcuK0Xl0Pw+LGZhh6Hdiu1IbuGOvjx4amCbTORFH0tll2jXGQnp6MVF+6tFuVSunXnAP/03Li1fXwu75Z79vQc8XSWTp+Lk9NRDp0PE/A4GesJ1OSYWp0es9bB3irjd99waaMOp+UIel1cv6WHx49NA5DNST7xw6N85+VJBju9fOndr65LBmHrLCM1FXPpUIjpSJI52xD3mUiq5doVqJvL8anICq9cO2fMYPTNl/RZ2zwuR4FyeOzoNE6H4K3Xj3JmNsaBcwvsGurAoQvgyqLqFy5ZobmjZmlu3tnH/nMLzMdSPHF8ho//8CiZnOTxYzM8c6q2cTiFNg5tiGrHrSa+AUxHky3XBXO400fA46ypcTg9G2Oo01vQ1uGWS/oKjcOxaa7f0s3VI11kcpJnT89x+Qotzzcyyq20UxuHNXPbrn6khEePTPHTo1O4nYKv/cZr6PC5+OKTp+tyDNo4tCHqRnfEFncw3EqtpRwcDiN+cnyq8uK0Sjk5HeUjDx1i/8QCW3uDbOk1XES9QQ/Xb+lhOpIkkc4yF03x8sQCt+4cYPuAkX6ZkzresBzqOtuljcOauW6sh+FOH9984Rw/OTrNDVt76A95efsNYzy0f5KL4dpPSdTGoQ3Z3OUj5HVx9EKYLz15mgdfmGAhnm7JXjaXDIQ4frH6yuGTjxzjgR8f59D5MGO9AboCbjp9Li4f7mDMNBTjc3EePz6NlHDbpf3ssOXmX66Nw5LcurOfj/7CNdyiA9BrxuEQ/Ns9m3n0yBSvTC5y264BAH7lpi2ks5J/fm7liY/rRQek2xAhBDsHQ/z48BRfevK0FbxqNeUAhnF48IVzVc35TmVyfO/Aee66cogbt/dx2y7jJvbbd+xiW1/Qah43Phfjp0em6fC5uGakC5fTQW/Qw2w0pZXDMridDn7xVWONPoyW5949m/n0T04A8FrTOOwYCPEP73k1e7ctP4+lGmjj0KZcOhTiq/vG8budSCTZnLRmJLQSKih9cjrK7s2da97P5EKcwQ4fTofg8ePTLCYy/OLeMe64Ysh6zXtu2wHA+QVDsp+di/PYsWluuaTfSgHe3h/EIUTLZX5pWo/dmzrZORhiJpLkStu1f3OdFJk2Dm2Kijv82i3bCLid/NX3jzDUgkVblwwarpzjUxF2b+4km5MIWFWm0P6JBd7yycd5y3UjfOzt1/Kdlybp8Lq4dVf5L9lghxe3U/CtF88xMR/nva+7xHruPbduZ7ZJR5dq2gshBB/5hWtYTKQbkhmnjUOb8oYrhnjm1Cz337aDDp+Lq0e72DPW3ejDWjXb+oIIkU9nfednn2K408df/9IePv6Do8zHU/zxz+9eMu87m5P812+8TE5Kvv7sOCGvi2+/PMndVw7jdZV3UzkcgpFuP0+fnGVLb4C7rhy2nrvn6k3V/yM1miW4YWtPw/5vbRzalG39Qf7nO/dav7/ussEGHs3a8bmdbO8L8tyZec7Nx/nZ8Rk8Lgfvv+dyPvXjYyQzOfqCHn7z9l1l3//VfWd5cXyBj739Wr74xCn+989Ocf2Wbn7vjcsXZf3xm3czHUnxlj0jeFw6b0Oz8dDGQdP03HP1MA/8+Dj/8NQZwAgo/99ff4lkJsd1W7r52PeOsHdbL9eOdvPAo8f5d9eNsL0/iJSSzz12kmtGu/iF60d47aX9PH9mnjuvGFpRpt9++dCyz2s07Y5eEmmanrdeP0pOwgOPHmdHf5DhTh+PHplitMfPP7znJka6/fz5tw/yV987zCd+eJRfeOBnvDQ+z/Nn5zl6McI7btyCEILBDh93XTmsK5s1mgpoGuMghLhbCHFYCHFMCPGBRh+Ppnm4ZCDEdVu6yeYkd101zD1XGzGAe/dsxu9x8gd3Xcb+iUU+89hJ7r5ymIDHyTs+/ST/77dfIeBx8uZrNzf4L9BoWo+mMA5CCCfwSeAeYDfwDiHE7sYelaaZ+MW9Rt78PVcN84t7xxjr9fO2G4xt//bazVw71s1wp4+Pvv0a/um9NzPWG2Df6Tn+zdWbCHm191SjWS1CStnoY0AI8RrgT6WUd5m/fxBASvnfl3rP3r175b59++p0hJpGk8tJDp0PL1nrEEtlSGVyVl+fhXiaTz1yjF+5aatV8azRaEAI8ayUcu9Kr2uWJdUIcNb2+zjw6gYdi6YJcTjEskVwAY8L+xyjLr+bD77pijocmUbTnjSFWwkoFyEskTRCiPuFEPuEEPumpqbKvEWj0Wg01aBZjMM4YG/GMgqcK36RlPLTUsq9Usq9AwMDdTs4jUaj2Wg0i3F4BtglhNguhPAA9wHfbPAxaTQazYalKWIOUsqMEOI3gYcBJ/A5KeWBBh+WRqPRbFiawjgASCm/A3yn0ceh0Wg0muZxK2k0Go2midDGQaPRaDQlaOOg0Wg0mhKaokJ6LQghwsBhoAtYqNJu+4HpKu0LqntsrbA/ff7Wjj5360Ofv5VR52irlHLlWgApZUv+A/aZPz9d7X1WcX9VO7YW2Z8+f/rcNWp/+vxV+Ry1g1vpW40+gGWo9rE1+/6qTbP/vc18/pr9b23mcwfN//fW/Py1sltpn6ygeVSj97mR0Odv7ehztz70+VuZ1Z6jVlYOn26RfW4k9PlbO/rcrQ99/lZmVeeoZZWDRqPRaGpHKysHjUaj0dSItjYOQogxIcQjQohXhBAHhBC/Y27vFUJ8Xwhx1PzZY27vM18fEUL8XdG+fkkI8ZK5n4824u+pN2s4f3cKIZ4VQrxs/rzdtq8bzO3HhBCfEEK09SDnKp+7DwshzgohIo36e+pNtc6fECIghPi2EOKQuZ+/aOTf1VJUM72q2f4Bm4DrzccdwBGMMaQfBT5gbv8A8BHzcRC4FfgN4O9s++kDzgAD5u+fB+5o9N/XhOfvOmCz+fgqYMK2r6eB12DM7vgucE+j/74WOnc3mfuLNPrvarXzBwSA15uPPcBP2/3aq9pn0OgDqOsfCw8Cd2IUz20yt20CDhe97teKjMOrgB/Yfn8n8KlG/z3Nev7M7QKY+f/bu5cQOaoojOP/DycIEjEKjgREBjc+EUVBRcWdoCAIujCIM0YUfIBkFxRBF7pQNMTExSRoxBchiApRQZEBAyq6MmjiCHGC4MCgiDGJCbjJcXFvYznVbduTqlR39feDoodb1Zdbh2ZO3dvVp4DT8zE/FPatA7Y1fT6jELtl7WOTHOqIX973EvBg0+czClurl5WKJE2Rri6+Bs6LiCWA/DrZ5+0/AhdLmpI0AdzBvx9O1HoriN+dwDcR8RfpMbCLhX2LuW0snGTsxl5V8ZO0BrgdmKtzvG0xNCW76yRpNfAusCEijgy63B0RhyQ9DOwCTgBfAhdWPtAhNWj8JF0GPAfc0mnqcthY3CZXQezGWlXxyxd1O4EtEXGwpuG2SutnDpJWkT5cb0fEe7n5F0lr8/61wK/9+omIDyLi2oi4njS1PVDXmIfJoPGTdD7wPjAdEQu5eZH06NeOro+BbZuKYje2Ko7fduBARGyuf+Tt0OrkkO+IeRWYj4hNhV27gZn89wxpPbNfX5P59WzgEeCVakc7fAaNX562fwQ8HhFfdA7O0/+jkq7LfU7zP2I+yqqK3biqMn6SniEVqttQ97hbpekvPercSHceBfAtsDdvt5HuPpojXf3PAecU3vMT8DvwJ+mK99LcvhP4Pm93N31uwxg/4EngWOHYvcBk3ncNsA9YAF4m/wCzrVvFsXs+fxZP5Nenmz6/UYkfaZYawHyh/YGmz28UNv9C2szMSlq9rGRmZivj5GBmZiVODmZmVuLkYGZmJU4OZmZW4uRgVgNJD0maHuD4KUn76hyT2SDGonyG2akkaSIiZpseh9nJcHIw6yIXe/uYVOztKlLJ6GngEmATsBr4DbgvIpYkfUaquXUDsFvSmaQqqi9IuhKYJZWPXgDuj1Sv62pgB3Ac+PzUnZ1Zf15WMuvtImB7RFwBHAEeBbYCd0VE5x/7s4Xj10TEzRHx4rJ+3gA25n6+A57K7a8Bj0Wq12U2VDxzMOvt5/inTs9bwBOkB8l8mquDngYsFY7ftbwDSWeRksae3PQ68E6X9jeBW6s/BbOVcXIw6215bZmjwP7/uNI/NkDf6tK/2dDwspJZbxdI6iSCdcBXwLmdNkmr8vMDeoqIw8AhSTflpnuBPRHxB3BY0o25/Z7qh2+2cp45mPU2D8xI2kaqAroV+ATYkpeFJoDNwP4+/cwAs5LOAA4C63P7emCHpOO5X7Oh4aqsZl3ku5U+jIjLGx6KWSO8rGRmZiWeOZiZWYlnDmZmVuLkYGZmJU4OZmZW4uRgZmYlTg5mZlbi5GBmZiV/A+H/Dg3vjuhGAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de l'incidence, du 1er août de l'année __𝑁__ au 1er août de l'année __𝑁+1__ .\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte pas un nombre entier de semaines. Nous modifions donc un peu nos périodes de référence: à la place du 1er août de chaque année, nous utilisons le premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de syndrome grippal est très faible en été, cette modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an octobre 1990, ce qui rend la première année incomplète. Nous commençons donc l'analyse en 1991."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1991,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG61JREFUeJzt3X+MXeV95/H3x4wzA9QmYxgT/wDsKg6KISnEV7a7yXZL3NpmU2GjQjIbGkaLJTfApqRaCezACi24ElSrTWtFYbFCwUD44bpFeLt4yWA2qrd1bI8DKRjiziQQ4+Aww44DJpKnjP3dP+5z6zuT8cy58+vec+fzkq7uud85z3Of4+OZ731+nHMVEZiZmWUxrdoNMDOz/HDSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJrqHYDxtsFF1wQCxYsqHYzzMxy5cCBA+9GRMtI+9Vd0liwYAEdHR3VboaZWa5I+lmW/Tw8ZWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmY1Znu90/wxQf30H38RLWbYnXIScOszmze1cn+N3vZ/EJntZtidajurtMwm6ouvWsnff2n/vX143sP8/jewzQ2TOPQpqur2DKrJ+5plHG33vJs9+1Xcc0Vc2maXvy1bpo+jTVXzGX3HVdVuWVWT5w0yrhbb3k2e2YTMxob6Os/RWPDNPr6TzGjsYHZM5rOWMYflKxSHp7C3XqrH+9+0McNyy7hy0sv5ol9h+kZIRmUf1DadO2nJqmVlmeKiGq3YVwVCoWo9N5T3e+fYNNzr/O9g7/gxIenaJo+jVWXfYw7v/DJYT+lmeXV4A9KJf6gNHVJOhARhZH28/AUo+vWm+WZ5z9stDw8lVTarTfLM39QstFy0kge/MrpXtmmtZdXsSVmk8MflGw0PKdhZmae0zAzs/HnpGFmZpllShqS/lTSQUmvSnpSUpOkWZLaJXWm5+ay/TdK6pJ0SNKqsvgSSa+kn22WpBRvlPR0iu+VtKCsTFt6j05JbeN36GZmVqkRk4akecCfAIWIuBw4C2gFNgC7ImIRsCu9RtLi9PPLgNXAtyWdlap7AFgPLEqP1Sm+DjgWER8Hvgncn+qaBdwNLAOWAneXJyczM5tcWYenGoCzJTUA5wBvA2uArennW4G1aXsN8FRE9EXEG0AXsFTSHGBmROyJ4uz7o4PKlOraDqxIvZBVQHtE9EbEMaCd04nGzMwm2YhJIyJ+Dvw34DBwFHgvIr4HXBgRR9M+R4HZqcg84K2yKo6k2Ly0PTg+oExE9APvAecPU5eZmVVBluGpZoo9gYXAXOBcSX80XJEhYjFMfLRlytu4XlKHpI6enp5hmmZmZmORZXjq94A3IqInIj4E/hb4N8A7aciJ9Nyd9j8CXFRWfj7F4awjaXtwfECZNAR2HtA7TF0DRMSWiChERKGlpSXDIZmZ2WhkSRqHgeWSzknzDCuA14EdQGk1UxvwbNreAbSmFVELKU5470tDWMclLU/13DioTKmu64AX07zH88BKSc2px7MyxczMxsS3hR+dEW8jEhF7JW0Hfgj0Ay8BW4DfALZJWkcxsVyf9j8oaRvwWtr/1og4maq7GXgEOBvYmR4ADwGPSeqi2MNoTXX1SroX2J/2uyciesd0xGZm+Lbwo+XbiNiU1/3+Cf7Tky/xrS9f6Rv2TQG+LfzQfBsRs4z8jY1Ti28LPza+y61NWf7GxqnJt4UfG/c0bMryJ86pq3Rb+Gdu+Sw3LLuEng/6qt2k3HBPw6Ysf+Kcuvz9OaPnpGFTmr+IyKwyXj1ldckroswq49VTNiHyckGUV0SZTQwPT1lFav2CKK+IMptYHp6yTPJyQVT3+yfY9NzrfO/gLzjx4Smapk9j1WUf484vfDL3w1QecrOJ5OEpG1d5WZ5azyuiPORmtcDDU5ZJnv4Y19uKKA+5WS1x0rDM8vLHuN7W4O++/aozDrmZTTYnDcus3v4Y50WeenlW/5w0zHIgL708q39ePWVmZl49ZWZm489Jw8zMMnPSMDOzzJw0zKooL/fyMitx0jCrIl/lbXnjJbdmVeCrvC2v3NMwq4K83MvLbDAnDbMq8FXellcjJg1Jl0p6uezxvqSvS5olqV1SZ3puLiuzUVKXpEOSVpXFl0h6Jf1ssySleKOkp1N8r6QFZWXa0nt0Smob38M3q57SVd7P3PJZblh2CT0f9FW7SWYjquiKcElnAT8HlgG3Ar0RcZ+kDUBzRNwhaTHwJLAUmAu8AHwiIk5K2gfcBvwAeA7YHBE7Jd0CfDoiviqpFbg2Ir4kaRbQARSAAA4ASyLi2Jna6CvCzfLB3w9SWybqivAVwE8i4mfAGmBrim8F1qbtNcBTEdEXEW8AXcBSSXOAmRGxJ4qZ6tFBZUp1bQdWpF7IKqA9InpTomgHVlfYZjOrQV45lk+Vrp5qpdiLALgwIo4CRMRRSbNTfB7FnkTJkRT7MG0PjpfKvJXq6pf0HnB+eXyIMmaWQ145lm+ZexqSPgJcA/z1SLsOEYth4qMtU9629ZI6JHX09PSM0DwzqyavHMu3SoanrgZ+GBHvpNfvpCEn0nN3ih8BLiorNx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlpYJDMrPJNpqVY75yvnZUkjT+A6eHpgB2AKXVTG3As2Xx1rQiaiGwCNiXhrKOS1qe5ituHFSmVNd1wItp3uN5YKWk5rQ6a2WKWQb+RbNaVenKMc9/1I5Mq6cknUNxbuE3I+K9FDsf2AZcDBwGro+I3vSzO4GbgH7g6xGxM8ULwCPA2cBO4GsREZKagMeAKyn2MFoj4qepzE3AN1JT/iwiHh6urV49ddpdz7zCd/cd5oalF7Pp2k9VuzlmFRs8/1Hi+Y/xl3X1lL+EqQ6N5hfNyx+tFnW/f+KM34/u/6fjy1/CNIWNZqLR3X+rRb5yvvb4hoV1qJJfNC9/tFrn70evLU4adSrrL9ru2686Y/ffrBY8+JXTIyab1l5exZYYOGnUray/aO7+m1klPKcxwfKw7NU3zjOzrLx6aoJ52auZ5UHW1VMenpognmA2s3rk4akJUumy1zwMY5mZOWlMkEonmH2dhJnlgYenJlCWZa8exjKzPPFE+CiM5y03fJsEywPfZqb++TYiE2g8h5J8nYTlgYdPrcTDUxWYqKEk3ybBapWHT20wD09VwENJllW9DOf4//zU4eGpCeChpKmtkmXR9TKc4//zNpiHpyrkoaSpqzwRnOnq/noczvH/eSvn4SmzEVTypVYezqmfobmpxsNTlhu1fjV8JVf3ezinfobmbGgenrIJk/UTZ5Zhn2qqNBFM1eGcehyas1/n4SmbMCPd4Xc032VeLX/8WActM5oGJILy7ywxD83lne9ya1WT9RNnnr410N8eNzIPzU0NntOwcZd1DsB/ZOqPv9Cr/rmnYeOukmQwVcf/61W1e2ReuTXxMvU0JH1U0nZJP5b0uqTfljRLUrukzvTcXLb/Rkldkg5JWlUWXyLplfSzzZKU4o2Snk7xvZIWlJVpS+/RKalt/A7dJlLWT5wPfqXAprWXs3juTDatvdzzBDYmXrk18TJNhEvaCuyOiO9I+ghwDvANoDci7pO0AWiOiDskLQaeBJYCc4EXgE9ExElJ+4DbgB8AzwGbI2KnpFuAT0fEVyW1AtdGxJckzQI6gAIQwAFgSUQcO1NbPRFuNvXkaVFFrRq36zQkzQR+B3gIICL+JSJ+CawBtqbdtgJr0/Ya4KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrR2qzmU0tlX5Tpo1eluGp3wR6gIclvSTpO5LOBS6MiKMA6Xl22n8e8FZZ+SMpNi9tD44PKBMR/cB7wPnD1DWApPWSOiR19PT0ZDgkM6snXlQxebIkjQbgM8ADEXEl8CtgwzD7a4hYDBMfbZnTgYgtEVGIiEJLS8swTTOzeuWVW5Mjy+qpI8CRiNibXm+nmDTekTQnIo6moafusv0vKis/H3g7xecPES8vc0RSA3Ae0JvivzuozPczHZmZTSnVXrlViTyv8hqxpxERvwDeknRpCq0AXgN2AKXVTG3As2l7B9CaVkQtBBYB+9IQ1nFJy9N8xY2DypTqug54Mc17PA+slNScVmetTDEzs9zK8yqvrNdpfA34blo59VPgP1JMONskrQMOA9cDRMRBSdsoJpZ+4NaIOJnquRl4BDgb2JkeUJxkf0xSF8UeRmuqq1fSvcD+tN89EdE7ymM1M6uqerg/l+89ZWY2SWr5/ly+NbqZWY2ph1Vevo2Imdkkyvutczw8ZWZmHp6qZ7X+TXdmVr+cNHIoz8v1zCzfPKeRI/WwXM/M8s09jRzxTdnMrNqcNHKkHpbrmeWN5xAHctLIGd+UzWxyeQ5xIC+5NTMbwlT7YicvuTUzG4PRzCFOhaEsJw0zsyGMZg5xKgxlecmtmdkZZL3lx1RaDu85DTOzMarlu9dm5TkNM7NJMpWWw3t4ysxsHOT97rVZeXjKzMw8PGVmZuPPScNyZSqsgzerZU4alitTYR28WS3zRLjlwlRaB29Wy9zTsFzwbeHNaoOThuXCVFoHb1bLMiUNSW9KekXSy5I6UmyWpHZJnem5uWz/jZK6JB2StKosviTV0yVpsySleKOkp1N8r6QFZWXa0nt0SmobrwO3/PFt4c2qL9N1GpLeBAoR8W5Z7M+B3oi4T9IGoDki7pC0GHgSWArMBV4APhERJyXtA24DfgA8B2yOiJ2SbgE+HRFfldQKXBsRX5I0C+gACkAAB4AlEXHsTG31dRpmZpWbjOs01gBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrx9BmMzMbg6xJI4DvSTogaX2KXRgRRwHS8+wUnwe8VVb2SIrNS9uD4wPKREQ/8B5w/jB1DSBpvaQOSR09PT0ZD8nMzCqVdcntZyPibUmzgXZJPx5mXw0Ri2Hioy1zOhCxBdgCxeGpYdpmZmZjkKmnERFvp+du4BmK8xXvpCEn0nN32v0IcFFZ8fnA2yk+f4j4gDKSGoDzgN5h6jIzsyoYMWlIOlfSjNI2sBJ4FdgBlFYztQHPpu0dQGtaEbUQWATsS0NYxyUtT/MVNw4qU6rrOuDFNO/xPLBSUnNanbUyxczMrAqyDE9dCDyTVsc2AE9ExP+WtB/YJmkdcBi4HiAiDkraBrwG9AO3RsTJVNfNwCPA2cDO9AB4CHhMUhfFHkZrqqtX0r3A/rTfPRHRO4bjNTOzMfCt0c3MzLdGNzOz8eekYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpllThqSzpL0kqS/S69nSWqX1Jmem8v23SipS9IhSavK4kskvZJ+tlmSUrxR0tMpvlfSgrIybek9OiW1jcdBm5nZ6FTS07gNeL3s9QZgV0QsAnal10haDLQClwGrgW9LOiuVeQBYDyxKj9Upvg44FhEfB74J3J/qmgXcDSwDlgJ3lycnMzObXJmShqT5wBeA75SF1wBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTEQE8OqhMqa7twIrUC1kFtEdEb0QcA9o5nWjMzGySZe1p/AVwO3CqLHZhRBwFSM+zU3we8FbZfkdSbF7aHhwfUCYi+oH3gPOHqcvMzKpgxKQh6Q+A7og4kLFODRGLYeKjLVPexvWSOiR19PT0ZGymmZlVKktP47PANZLeBJ4CPi/pceCdNOREeu5O+x8BLiorPx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlJcMhmZnZaIyYNCJiY0TMj4gFFCe4X4yIPwJ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruvSewTwPLBSUnOaAF+ZYmZmVgUNYyh7H7BN0jrgMHA9QEQclLQNeA3oB26NiJOpzM3AI8DZwM70AHgIeExSF8UeRmuqq1fSvcD+tN89EdE7hjabmdkYqPiBvn4UCoXo6OiodjPMzHJF0oGIKIy0n68INzOrA93vn+CLD+6h+/iJCX0fJw0zszqweVcn+9/sZfMLnRP6PmOZ0zAzsyq79K6d9PWfvoTu8b2HeXzvYRobpnFo09Xj/n7uaZiZ5dju26/imivm0jS9+Oe8afo01lwxl913XDUh7+ekYWaWY7NnNjGjsYG+/lM0Nkyjr/8UMxobmD2jaULez8NTZmY59+4Hfdyw7BK+vPRinth3mJ4JnAz3klszM/OSWzMzG39OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmY2YNCQ1Sdon6UeSDkr6ryk+S1K7pM703FxWZqOkLkmHJK0qiy+R9Er62WZJSvFGSU+n+F5JC8rKtKX36JTUNp4Hb2ZmlcnS0+gDPh8RvwVcAayWtBzYAOyKiEXArvQaSYuBVuAyYDXwbUlnpboeANYDi9JjdYqvA45FxMeBbwL3p7pmAXcDy4ClwN3lycnMzCbXiEkjij5IL6enRwBrgK0pvhVYm7bXAE9FRF9EvAF0AUslzQFmRsSeKH7H7KODypTq2g6sSL2QVUB7RPRGxDGgndOJxszMJlmmOQ1JZ0l6Geim+Ed8L3BhRBwFSM+z0+7zgLfKih9JsXlpe3B8QJmI6AfeA84fpi4zM6uCTEkjIk5GxBXAfIq9hsuH2V1DVTFMfLRlTr+htF5Sh6SOnp6eYZpmZmZjUdHqqYj4JfB9ikNE76QhJ9Jzd9rtCHBRWbH5wNspPn+I+IAykhqA84DeYeoa3K4tEVGIiEJLS0slh2RmZhXIsnqqRdJH0/bZwO8BPwZ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruuAF9O8x/PASknNaQJ8ZYqZmVkVNGTYZw6wNa2AmgZsi4i/k7QH2CZpHXAYuB4gIg5K2ga8BvQDt0bEyVTXzcAjwNnAzvQAeAh4TFIXxR5Ga6qrV9K9wP603z0R0TuWAzYzs9FT8QN9/SgUCtHR0VHtZpiZ5YqkAxFRGGk/XxFuZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZ1bDu90/wxQf30H38RLWbAjhpmJnVtM27Otn/Zi+bX+isdlMAaKh2A8zM7NddetdO+vpP/evrx/ce5vG9h2lsmMahTVdXrV3uaZiZ1aDdt1/FNVfMpWl68c900/RprLliLrvvuKqq7XLSMDOrQbNnNjGjsYG+/lM0Nkyjr/8UMxobmD2jqart8vCUmVmNeveDPm5YdglfXnoxT+w7TE8NTIYrIobfQboIeBT4GHAK2BIRfylpFvA0sAB4E/hiRBxLZTYC64CTwJ9ExPMpvgR4BDgbeA64LSJCUmN6jyXA/wO+FBFvpjJtwF2pOZsiYutw7S0UCtHR0ZH9X8DMzJB0ICIKI+2XZXiqH/jPEfFJYDlwq6TFwAZgV0QsAnal16SftQKXAauBb0s6K9X1ALAeWJQeq1N8HXAsIj4OfBO4P9U1C7gbWAYsBe6W1JyhzWZmNgFGTBoRcTQifpi2jwOvA/OANUDpU/9WYG3aXgM8FRF9EfEG0AUslTQHmBkRe6LYvXl0UJlSXduBFZIErALaI6I39WLaOZ1ozMxsklU0ES5pAXAlsBe4MCKOQjGxALPTbvOAt8qKHUmxeWl7cHxAmYjoB94Dzh+mLjMzq4LMSUPSbwB/A3w9It4fbtchYjFMfLRlytu2XlKHpI6enp5hmmZmZmORKWlImk4xYXw3Iv42hd9JQ06k5+4UPwJcVFZ8PvB2is8fIj6gjKQG4Dygd5i6BoiILRFRiIhCS0tLlkMyM7NRGDFppLmFh4DXI+K/l/1oB9CWttuAZ8virZIaJS2kOOG9Lw1hHZe0PNV546AypbquA15M8x7PAyslNacJ8JUpZmZmVZBlye3ngN3AKxSX3AJ8g+K8xjbgYuAwcH1E9KYydwI3UVx59fWI2JniBU4vud0JfC0tuW0CHqM4X9ILtEbET1OZm9L7AfxZRDw8Qnt7gJ9lPP5acwHwbrUbMc7q7Zjq7Xig/o6p3o4HJueYLomIEYdqRkwaNnkkdWRZJ50n9XZM9XY8UH/HVG/HA7V1TL6NiJmZZeakYWZmmTlp1JYt1W7ABKi3Y6q344H6O6Z6Ox6ooWPynIaZmWXmnoaZmWXmpDHBJP2VpG5Jr5bFfkvSHkmvSPqfkmam+EckPZziP5L0u2Vlvi/pkKSX02P2EG834SRdJOn/SHpd0kFJt6X4LEntkjrTc3NZmY2SulL7V5XFl6Rj7ZK0OV2/k+fjyeU5knR+2v8DSd8aVFfuztEIx5PXc/T7kg6kc3FA0ufL6prccxQRfkzgA/gd4DPAq2Wx/cC/S9s3Afem7VuBh9P2bOAAMC29/j5QqIHjmQN8Jm3PAP4ZWAz8ObAhxTcA96ftxcCPgEZgIfAT4Kz0s33Ab1O8XcxO4OqcH09ez9G5wOeArwLfGlRXHs/RcMeT13N0JTA3bV8O/Lxa58g9jQkWEX9P8YLFcpcCf5+224E/TNuLKd5mnojoBn4J1MTa7JKYnLseT5rxOp7JbfXwKj2miPhVRPxfYMA3/OT1HJ3peGrJKI7ppYgo3ULpINCk4l03Jv0cOWlUx6vANWn7ek7fX+tHwBpJDSregmUJA++99XDqUv+XagwTDKaJu+txVYzxeEryeI7OJK/naCR5P0d/CLwUEX1U4Rw5aVTHTRS/zOoAxa7pv6T4X1E86R3AXwD/SPFWLAA3RMSngH+bHl+Z1BYPoom96/GkG4fjgfyeozNWMUQsD+doOLk+R5Iuo/gldX9cCg2x24SeIyeNKoiIH0fEyohYAjxJcVyciOiPiD+NiCsiYg3wUaAz/ezn6fk48ARVHBLRxN/1eFKN0/Hk+RydSV7P0Rnl+RxJmg88A9wYET9J4Uk/R04aVVBasSFpGsXvP/8f6fU5ks5N278P9EfEa2m46oIUnw78AcUhrmq0fTLuejxpxut4cn6OhpTjc3SmenJ7jiR9FPhfwMaI+IfSzlU5RxM5y+5HQLEncRT4kOKngnXAbRRXS/wzcB+nL7JcAByiOCn2AsW7TkJxNcgB4J8oToL9JWnFThWO53MUu7//BLycHv+e4jct7qLYM9oFzCorcyfF3tQhylZ2UJzkfzX97Fulf4c8Hk8dnKM3KS7Y+CD9P12c83P0a8eT53NE8cPlr8r2fRmYXY1z5CvCzcwsMw9PmZlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpn9f/2Yi6a8X2tzAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2020 221186\n",
+ "2021 376290\n",
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1996 564901\n",
+ "2019 584066\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population française, sont assez rares: il y en eu trois au cours des 32 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEICAYAAACQzXX2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEaZJREFUeJzt3XuQZGV5x/Hvwy7owgCiC0MFMEPQGImrImPwUsFZsCwV1BJNvCCBlGZNeSNmUxZJqWgSlcRgaSxIakWUEuOoYEoB46Wio+IF2VXLFQlqBBGIRGJAl6Cw8uSP9wyZXXd2zlx6pp/N91M1Nae7T/d5nj7dv3P67dPdkZlIkmrZa6ULkCTNn+EtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJU0OpB3fDatWtzbGxsh/PuvPNO9ttvv0EtclnYw3Cwh+FgD0tvy5Ytt2XmwXPNN7DwHhsbY/PmzTucNzU1xcTExKAWuSzsYTjYw3Cwh6UXET/oM5/DJpJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUN7EM6kn7V2FlX3De9cd12zphxepBuOOekZVmOlo973pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUUO/wjohXR8Q1EfGtiPhARNx/kIVJkmbXK7wj4jDgVcB4Zj4CWAU8f5CFSZJmN59hk9XAmohYDewL3DKYkiRJc4nM7DdjxJnAm4C7gE9l5qm7mGcDsAFgdHT02MnJyR0u37ZtGyMjI4uteUXZw3Co2sPWm++4b3p0Ddx61/Isd91hBw7kdquuh5mGrYf169dvyczxuebrFd4RcRBwKfA84Hbgw8AlmXnxbNcZHx/PzZs373De1NQUExMTcy5vmNnDcKjaw9hZV9w3vXHdds7dunpZlnvDOScN5HarroeZhq2HiOgV3n2HTZ4MXJ+ZP87Me4CPAE9YTIGSpIXrG943Ao+LiH0jIoATgWsHV5YkaXd6hXdmXgVcAnwN2Npdb9MA65Ik7UbvAbfMPBs4e4C1SJJ68hOWklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklRQ7/COiAdExCUR8W8RcW1EPH6QhUmSZrd6HvO+A/hEZj43IvYB9h1QTZKkOfQK74g4ADgeOAMgM+8G7h5cWZKk3YnMnHumiEcDm4BvA48CtgBnZuadO823AdgAMDo6euzk5OQOt7Nt2zZGRkaWpvIVYg/DoWoPW2++477p0TVw610rWMwS6NPDusMOXJ5iFmjYHkvr16/fkpnjc83XN7zHga8AT8zMqyLiHcBPM/N1s11nfHw8N2/evMN5U1NTTExMzLm8YWYPw6FqD2NnXXHf9MZ12zl363xGLodPnx5uOOekZapmYYbtsRQRvcK77xuWNwE3ZeZV3elLgMcstDhJ0uL0Cu/M/BHww4h4WHfWibQhFEnSCpjPa7ZXAu/vjjT5PvCHgylJkjSX3uGdmd8A5hyHkSQNnp+wlKSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSC5hXeEbEqIr4eEZcPqiBJ0tzmu+d9JnDtIAqRJPXXO7wj4nDgJOCCwZUjSeojMrPfjBGXAG8B9gf+LDNP3sU8G4ANAKOjo8dOTk7ucPm2bdsYGRlZbM0ryh6Gw2J62HrzHUtczcKMroFb71rpKhbHHnZt3WEHLvi669ev35KZ43PNt7rPjUXEycB/ZuaWiJiYbb7M3ARsAhgfH8+JiR1nnZqaYufzqrGH4bCYHs4464qlLWaBNq7bzrlbez0Fh5Y97NoNp04s6e3tSt9hkycCz4yIG4BJ4ISIuHhgVUmSdqtXeGfmn2fm4Zk5Bjwf+ExmvmiglUmSZuVx3pJU0LwHejJzCpha8kokSb255y1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBfUK74g4IiI+GxHXRsQ1EXHmoAuTJM1udc/5tgMbM/NrEbE/sCUiPp2Z3x5gbZKkWfTa887M/8jMr3XTPwOuBQ4bZGGSpNlFZs7vChFjwOeBR2TmT3e6bAOwAWB0dPTYycnJHa67bds2RkZGFlHuyrOH4bCYHrbefMcSV7Mwo2vg1rtWuorFsYddW3fYgQu+7vr167dk5vhc880rvCNiBPgc8KbM/Mju5h0fH8/NmzfvcN7U1BQTExO9lzeM7GE4LKaHsbOuWNpiFmjjuu2cu7XvyOVwsoddu+GckxZ83YjoFd69jzaJiL2BS4H3zxXckqTB6nu0SQDvBq7NzLcNtiRJ0lz67nk/ETgNOCEivtH9PX2AdUmSdqPXQE9mXgnEgGuRJPXkJywlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqaCh/Nnnlfx178X86vNiLGfPG9dt54wZy6vY8849SP/fuOctSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQX1Du+IeGpEXBcR34uIswZZlCRp93qFd0SsAs4DngYcDbwgIo4eZGGSpNn13fP+HeB7mfn9zLwbmASeNbiyJEm7E5k590wRzwWempkv6U6fBhyXma/Yab4NwIbu5MOA63a6qbXAbYsteoXZw3Cwh+FgD0vv1zPz4LlmWt3zxmIX5/1K6mfmJmDTrDcSsTkzx3sucyjZw3Cwh+FgDyun77DJTcARM04fDtyy9OVIkvroG95XAw+NiCMjYh/g+cDHBleWJGl3eg2bZOb2iHgF8ElgFXBhZl6zgOXNOqRSiD0MB3sYDvawQnq9YSlJGi5+wlKSCjK8Jakgw1uSChr68I6IEyLiyJWuYzGq91C9/ml7Qh/2MByGoYehfcOy++6USeB24F7g7Mz83MpWNT/Ve6he/7Q9oQ97GA7D1MPQ7HlHxOERccCMs54HXJqZx9PurBdExONXprp+qvcwn/ojYlefuh0K1dcD2MOwGOYeVjy8I+LhEfFx4ErgLyNi+guvfg7s201/iPbdA48bxtCo3sNC6s8hfMlWfT2APQyLCj2sSHhHxH4zTj4auCkzx4DPAH/Xnf8T4BcRsX9m/gT4DjAKjC1jqbOq3sNu6v8sv1r/SFf/dxmS+qdVXw9gD9jDgixbeEfEQRHx3oi4GjgnIg7utlaPBL7Y7c19DLg9Ik6i3Sn7A+u6m/gu7du/7l6umndWvYfd1L9uRv0f3UX9j+xu4jsrWf+06usB7KG7CXtYhOXc8z4e2A48nfYthX8BHNDVcOiMl+EXAS8Evgr8jPYDEGTml4ETgJ8uY807q97DbPWvokb906qvB7AHe1iszFzSP1oQvBT4HO27vdd2538IeFU3fSRwTnf5Y2njSqu6y0aAH3e3cxhwLfAK4D3A+cC+S13zntZD9fr3pD7swR4G9TeIPe+TgWcCbwQeD/xtd/6ngSd00z8EvgA8LTOvpm3x1gNk5jbgKuCxmXkzcBptTOlHwGsz838GUPOe1kP1+vekPuzBHgai748x7GD6aIOIeCztpcQXgCsy8xfAbwLfz8zPRMT1wFsj4inAFuDZEbE2M2+LiO8Cd0bEg4F3Ai+KiENo3xX+X7SXJ2TmZmDzIvvc43qoXv+e1kfXiz34nF42897znnEHHQ9cSDt05snAW7pZ7gW+ExFrMvN62suLR9LGiW6hHScJ8EvaS5C9gEtpX8t4KnAssCkz711wV3P3sKrr4Um0lz2leujqyoiYoOg66Po4oHofEfGg7v8TgPcW7eGQiHhQRIzTxnYr9rBP5ef0gvQZW6Ed1/jHwD8BfwTsDfwJ8PLu8oOAbwLH0O6Ec4Cx7rKTaXfA2m56K3AgbZD/48A+M5az16DGh4D9gJfQVshG2psS1XrYH7iC9n3qAK+uVP+Mx9LpwL/SPuxQqg/+71PJv0cbE52i/V5rtcfSfsAZtGGDO4CTCvawN/Ay4DLgH4CHAGdW6mExf3PueUfEocDlwATwPtpg/im0caPtAJn538BHgVd1D4ZDgId3N/F54EnA3Zl5OfBu4BLgPNpW/p7pZeXg9lT3o4XFCcC7gKcAz6G9KXFvhR46a4D7AUdFxFrgKNpeQon6I2Jv4BrgucBbM/M53UXHzFj+UPeRmRkRBwK/D7w9Mycy8zranlmJHiLiIbQhhROB1wI3AzfS3rAr83gCXk57Tr+d9pu6p3Snf1moh4XrsXVbQ/ul+OnTZ9AG+08Hvjrj/F8DbummX0776OhB3fUvAx48Y961y72VAh4wY/o1tBV6arEeTgfeCrwOeDHwDODqKvV3y/0IcOpO5z0PuKpKH7S9vb/qpqf3xE+p0gMtoO834/SFtA3qs6r00C3zMuAPuukXA6/sHktlntOL+esz5v1z4KvdgevQXoYcl5kX0fYADwXIzFuAayLiuMw8D/ge8EHajxdfmZk3Tt9gZt7WY7lLKjNvj4gDIuK9tGGTtbSVd1REjA5zDzPu+72Af6ftvZ6QmZcBRw57/Tu5EDg7Is6NiKmIeD3wFdpvpB7S1TbsfdwG/G5EnApsiYiLaHt7v9W9IhrqHjLzl9nexJsesw/aFy1dRlsPJZ7TwL8Ap0fEh4E3AI8CvkXr4eCurmHvYeHmsZWb3sO4CDizm34f8Dfd9AOBC+i2ZLTxqEcA91/pLdROfbyM9vJwE20M/EvA62kP4KHuAfgwba/pQNrxqq+lPVhfV2wdfJL2YYgjaE+kM4EvF1oPD+3q/XvaXtwLgbfRjgN+DW0jO9Q97NTP14FTuumLKz2nu+fwhbSdsTcAZwPXdY+vUuthvn+9jzbJzIyIw4FDaVs8ujuLiLicNqa8KrstWWbek5nfysyf913GcsjM87O923w+bZzyH2kvoT7GEPcQESO0Pb53AZ+gvVN+HPAC4KCIuIwhrn8nz87MN2fmD4E30w7jeicF1kPnRtrHoVdnG1e9vDvvctobshV6ICKmn/9X0t7sA3hTu6jM4+loYCrbXvN7aDs3H6DOY2nh5rmVewbtC1r2pm3xnkq7s14IPGalt0Tz7OUI4FPAg7rTLwKOWem6dlPv/Wmvei6gvdE0AXxqxuVDXf9u+vp12ptJD6zUB+3j0Vu66QfQXkEcU6mHrtZ9aRvOU3Y6/9Rh76HLnj8FLuhOr6XtWB5ZbT0s5G9eP8YQEV8EfgO4gXZs5Bsz85u9b2CFdUcJnEjb2BxNGzo5LzPv2e0Vh1D3IYJTgMnM/NFK1zMfEXE/2ob/NOC3aYd5nZ+Z21e0sHmKiDfRng/H0HYEzs62J15KRFwHvD4zPzj9OY6VrqmviDiK9jy+m7Yu/hn462yfiNyj9Q7v7jCvs4HrgYuze8OjkohYTft+g1/Qeij30ikiVgH3VnqC7UpEvJR2mOb7Kq6HaRHxMOAHFXuY8YG7R9PeBN9e8XHV7cg8FPhSZt610vUsl6H9GTRJ0uxW/Jd0JEnzZ3hLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQV9L8Giii4LM1vYwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +2446,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-