Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
a06d37270cecb396434d627b4332c8a3
mooc-rr
Commits
fe31cffc
Commit
fe31cffc
authored
Nov 19, 2021
by
a06d37270cecb396434d627b4332c8a3
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
toy_notebook_final_2
parent
9d3b8d4f
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
14 deletions
+14
-14
toy_notebook_fr.ipynb
module2/exo1/toy_notebook_fr.ipynb
+14
-14
No files found.
module2/exo1/toy_notebook_fr.ipynb
View file @
fe31cffc
...
...
@@ -59,7 +59,7 @@
},
{
"cell_type": "code",
"execution_count":
2
,
"execution_count":
6
,
"metadata": {},
"outputs": [
{
...
...
@@ -68,7 +68,7 @@
"3.128911138923655"
]
},
"execution_count":
2
,
"execution_count":
6
,
"metadata": {},
"output_type": "execute_result"
}
...
...
@@ -76,9 +76,9 @@
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N
=
10000\n",
"x
=
np.random.uniform(size=N, low=0, high=1)\n",
"theta
=
np.random.uniform(size=N, low=0, high=pi/2)\n",
"N
=
10000\n",
"x
=
np.random.uniform(size=N, low=0, high=1)\n",
"theta
=
np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
...
...
@@ -92,7 +92,7 @@
},
{
"cell_type": "code",
"execution_count":
3
,
"execution_count":
7
,
"metadata": {},
"outputs": [
{
...
...
@@ -113,15 +113,15 @@
"import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n",
"N
=
1000\n",
"x
=
np.random.uniform(size=N, low=0, high=1)\n",
"y
=
np.random.uniform(size=N, low=0, high=1)\n",
"accept
=
(x*x+y*y)<=1\n",
"reject
=
np.logical_not(accept)\n",
"N
=
1000\n",
"x
=
np.random.uniform(size=N, low=0, high=1)\n",
"y
=
np.random.uniform(size=N, low=0, high=1)\n",
"accept
=
(x*x+y*y)<=1\n",
"reject
=
np.logical_not(accept)\n",
"\n",
"fig,
ax=
plt.subplots(1)\n",
"ax.scatter(x[accept],
y[accept],c='b',alpha=0.2,
edgecolor=None)\n",
"ax.scatter(x[reject],
y[reject],c='r',alpha=0.2,
edgecolor=None)\n",
"fig,
ax =
plt.subplots(1)\n",
"ax.scatter(x[accept],
y[accept], c='b', alpha=0.2,
edgecolor=None)\n",
"ax.scatter(x[reject],
y[reject], c='r', alpha=0.2,
edgecolor=None)\n",
"ax.set_aspect('equal')"
]
},
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment