{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Allumage et combustion d'une poudre propulsive à vulnérabilité réduite " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "Pour mettre en application les notions apprises au cours de ce module sur la construction d'un document computationnel, j'ai choisi de ré-analysé des données expérimentales issues de mes travaux de thèse. Ce dernier porte sur l'allumage et la combustion de poudres propulsives à vulnérabilité réduite. Les poudres propulsives sont des matériaux énergétiques qui présentent la particularité de générer de grandes quantités de gaz chaud en un temps très court. Elles sont ainsi employées dans le domaine de la défense pour la propulsion de projectiles. Au laboratoire PRISME, à l'IUT de Bourges, nous disposons d'un dispositif expérimental permettant de caractériser l'allumage et la combustion des poudres en mesurant un signal de pression. Ce dispositif est un réacteur fermé dans lequel est placé un grain de poudre. Avant chaque tir, le réacteur est pressurisé à l'aide d'un gaz de pressurisation à une pression initiale $P_{0}$. L'allumage est ensuite réalisé par une diode laser. Si l'allumage est réussi, le grain génère des gaz et un signal de pression est alors obtenu. À partir de ce signal de pression plusieurs grandeurs physiques peuvent être obtenues comme :\n", "\n", "- la surpression maximale $\\Delta P_{max}$. Celle-ci est généralement divisée par la masse du grain de poudre *m* afin de s'affranchir ce paramètre ;\n", "- la vitesse maximale de montée en pression $(\\frac{d\\Delta P}{dt})_{max}$, également divisée par la masse *m*.\n", " \n", "Pour chaque condition de tir, un minimum de trois essais est réalisé. Une moyenne est ensuite calculée pour chaque condition testée, ainsi qu'un écart-type pour estimer la dispersion des résultats. Ce sont ces analyses statistiques basiques que je vais réaliser ici. Les données traitées et les résultats présentés dans ce document sont disponibles dans mon article [Laser Ignition of Two Low-Vulnerability RDX-Based Gun Propellants: Influence of the Atmosphere on Ignition and Combustion Properties](https://www.tandfonline.com/doi/full/10.1080/00102202.2023.2182195) qui est en *open access*. Les résultats correspondent à ceux des Figures 3 et 5 sous atmosphère **Air** pour la poudre **P1**. De plus amples informations sur le dispositif et le contexte de l'étude peuvent également y être trouvés.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mise en forme des données" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "Les données utilisées ont été réécrites dans un fichier .txt. Elles contiennent, pour chaque tir réalisé, la référence du tir, la puissance du laser, l'atmosphère de pressurisation, la pression initiale, la surpression maximale et la vitesse de propagation maximale massiques. Je commence donc par lire le fichier et mettre les données en forme :\n", "
" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "f = open(\"Donnees.txt\",\"r\")\n", "lines = f.readlines()[1:]\n", "f.close()\n", "\n", "LaserPower = []\n", "Atmosphere = []\n", "InitialPressure = []\n", "Overpressure = []\n", "PropagationRate = []\n", "\n", "for x in lines:\n", " LaserPower.append(float(x.split()[1]))\n", " Atmosphere.append(x.split()[2])\n", " InitialPressure.append(float(x.split()[3]))\n", " Overpressure.append(float(x.split()[4]))\n", " PropagationRate.append(float(x.split()[5])) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Maintenant que les données ont été mises en forme, je vais réaliser les statistiques de base" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Statistiques de base" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Comme expliqué plus haut, je vais simplement calculer une moyenne et un écart-type sur chaque série de trois tirs effectués à une pression initiale $P_{0}$ :" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "NbTirs = len(LaserPower)\n", "\n", "OverpressureMean = []\n", "OverpressureStd = []\n", "PropagationRateMean = []\n", "PropagationRateStd = []\n", "\n", "for i in range(0,NbTirs//3):\n", " OverpressureMean.append(np.mean(Overpressure[3*i:3*i+3]))\n", " OverpressureStd.append(np.std(Overpressure[3*i:3*i+3]))\n", " PropagationRateMean.append(np.mean(PropagationRate[3*i:3*i+3]))\n", " PropagationRateStd.append(np.std(PropagationRate[3*i:3*i+3]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Représentation graphique" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On commence par tracer l'évolution de la surpression massique $\\frac{\\Delta P_{max}}{m}$ en fonction de la pression initiale $P_{0}$ :" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEKCAYAAADaa8itAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+cV2Wd9/HXG1QI0/wRIqExtgHd1kM0W9RsY9CtVbci29sNRcOiJvfOiq22tN07hm2910fr2g+zCIykdZS1LQuNJHMZ3UoKI1BQSTJJFKSsEZFEgc/9xzmDhy/z48xwDt/vGd7Px+M85pzrnOv6vr/gcHl+XZciAjMzsyIMqncAMzMbONypmJlZYdypmJlZYdypmJlZYdypmJlZYdypmJlZYUrtVCSdJWmNpLWSLuti/1RJ96XLTyWN762upCMk3SHp4fTn4WV+BzMzy6+0TkXSYOBa4GzgeOB8ScfXHPYbYGJEnAB8FpiTo+5lwJ0RMQa4M902M7MGUOaZygRgbUQ8EhHPAwuAydkDIuKnEfHHdHMpcEyOupOB+en6fOCdJX4HMzPrgwNKbHsU8Fhmez1wSg/HTwd+kKPuiIjYABARGyQd1VVjklqAFoChQ4ee/MpXvrLPX2Bf27lzJ4MGNf5tLucsThUygnMWrSo5f/WrX/0+Iob3pU6ZnYq6KOtyTBhJk0g6lTf1tW53ImIO6eW0cePGxZo1a/pSvS7a29tpbm6ud4xeOWdxqpARnLNoVckpaV1f65TZVa4Hjs1sHwM8UXuQpBOA64DJEfFUjrpPShqZ1h0JbCo4t5mZ9VOZncoyYIyk4yQdBEwBFmYPkPRK4DvARRHxq5x1FwLT0vVpwPdK/A5mZtYHpV3+iojtki4FFgODgXkRsVrSJen+2cBngCOBr0gC2B4Rb+iubtr0lcDNkqYDvwXOK+s7mJlZ35R5T4WIWAQsqimbnVl/P/D+vHXT8qeAM4tNamZmRWj8xw/MzKwy3KmYmVlh3KmYmVlh3KmYWV20trbudX1Juy2TJk3ao6yIz7H83KmYWV3MmjVrr+q3trYSEbuWiRMnMn78+N3KImKvO4W9zbm/cadiZtXX1saCpUtZvnIlNDVBW1u9E+23Sn2k2MysdG1t0NLC0du2Jdvr1kFLS7I+dWr9cu2n3KmYWd0UMf7VgqVLX+xQOm3dysbp05kyd+5et29948tfZlZpR9V2KL2UW7l8pmJmddPe3r73jTQ1JZe8agwaPbqQ9tMhpCwnn6mYWbVdcQUMG7Z72bBhSbntc+5UzKzapk6FOXPYOGQIOwFGj4Y5c3yTvk58+cvMqm/qVKbMnUtHRwcrVqyod5r9ms9UzKwuZs6cWe8IuVQlZ6Nwp2JmdVH0MC133XUXK1eu9DAtdeZOxcwqqXaYlohgyZIlhQ/TYn3jTsXMzArjTsXMzApTaqci6SxJayStlXRZF/tfI+keSdskfSJTPk7SisyyWdKMdF+rpMcz+84p8zuYmVl+pT1SLGkwcC3wFmA9sEzSwoh4IHPYH4CPAO/M1o2INcCJmXYeB27JHPL5iLiqrOxmZtY/ZZ6pTADWRsQjEfE8sACYnD0gIjZFxDLghR7aORP4dUTsOQ6DmZk1lDI7lVHAY5nt9WlZX00Bbqopu1TSfZLmSTq8vwHNzKxYiojud0pDgbcBfwG8AvgTsAr4fkSs7rFh6TzgryLi/en2RcCEiPhwF8e2AltqL2lJOgh4AnhtRDyZlo0Afg8E8FlgZES8r4s2W4AWgOHDh59888039xS3IWzZsoWXvvSl9Y7RK+csThUygnMWrSo5J02a9IuIeENf6nR7TyX9h/7tQDvwM2ATMBQYC1yZdjgfj4j7umliPXBsZvsYkg6iL84Glnd2KADZdUlzgdu6qhgRc4A5AOPGjYsi5m0oW3t7eyHzS5TNOYtThYzgnEWrSs7+6OlG/bKIaO1m39WSjgJe2VN9YIyk40hutE8BLuhjvvOpufQlaWREbEg3zyU5czIzswbQbacSEd/vqWJEbCI5e+lu/3ZJlwKLgcHAvIhYLemSdP9sSUcD9wKHAjvTx4aPj4jNkoaRPDn2wZqmPyfpRJLLX492sd/MzOqk10eKJd1K8g941tMkncHXIuK57upGxCJgUU3Z7Mz6RpLLYl3V3Qoc2UX5Rb1lNjOz+sjz9NcjwBZgbrpsBp4kubfiCaDNzGyXPC8/nhQRb85s3yrp7oh4s6QenwAzM7P9S54zleGSdt2QT9dfnm4+X0oqMzOrpDxnKh8Hfizp14CA44D/I+lgYH6Z4czMrFp67VQiYpGkMcBrSDqVhzI3579QZjgzM6uWXi9/pQM6/hUwETiD5CzlY2UHMxtoamcqlMSkSZMKn6nQrJ7yXP66FXgOuB/YWW4cs4GrtbV1tw6jubmZjo4OVqxYUb9QZgXL06kcExEnlJ7EzMwqL8/TXz+Q9NbSk5iZWeXlOVNZCtwiaRDJvCcCIiIOLTWZmZlVTp5O5d+B04D7o6dx8s3MbL+X5/LXw8AqdyhmZtabPGcqG4B2ST8AtnUWRsTVpaUyM7NKytOp/CZdDkoXMzOzLvU08+PlwO0RMWsf5jGzOmttbWXWrN5/7WfOnOkXNW0PPd1T+Q3wUUm/lHS9pHdLOnxfBTOz+mhtbSUidi0TJ05k/Pjxu5VFhDsU61JPMz8uABYASDoJOAv4Tjpsy49IzmJ+vk9SmplZJfT49JekQZLeGBG/jIh/jYhJwNuA1cD790lCM+uTqpxBVCWn9U2PnUpE7CR5TyVbtjkivh0RLaUmM7N+yXM/pBFUJaf1TZ73VH4o6W8kqa+NSzpL0hpJayVd1sX+10i6R9I2SZ+o2feopPslrZB0b6b8CEl3SHo4/en7PGZlaWtjwdKlLF+5EpqaoK2t3omsweXpVD4GfAvYJmmzpGckbe6tUnrv5VrgbOB44HxJx9cc9gfgI8BV3TQzKSJOjIg3ZMouA+6MiDHAnem2mRWtrQ1aWjh627bkH4p166ClxR2L9SjPJF2H9LPtCcDaiHgEQNICYDLwQKbtTcAmSX/dh3YnA83p+nygHfhUPzOaDUjNzc173caCpUs5etu23Qu3bmXj9OlMmTt3r9u3gSnPy4+kl5jGAEM7yyLi7l6qjQIey2yvB07pQ7YgufQWwNciYk5aPiIiNqQZNkg6qpvMLUALwPDhw2lvb+/DR9fHli1bnLNAjZ6zo6ODHTt2lJKxo6Njr9s4qrZDyZQX0T5Q+Hdv9L/zTlXJ2R+9diqS3g98FDgGWAGcCtxDMgtkj1W7KOvL+GGnR8QTaadxh6SHcnRkL35Q0gnNARg3blwU8X9uZWtvby/k/zDL5pzFOOyww+jo6CglYyETfzU1JZe8agwaPbqQ9iUV/t0b/e+8U1Vy9keeeyofBf4cWJc+UnwS8Lsc9dYDx2a2jwGeyBssIp5If24CbiG5nAbwpKSRAOnPTXnbNLM+uOIKGDZs97Jhw5Jys27k6VSei4jnACQNiYiHgHE56i0Dxkg6TtJBwBRgYZ5Qkg6WdEjnOvBWYFW6eyEwLV2fBnwvT5tm1kdTp8KcOWwcMiSZR3z0aJgzJyk360aeeyrrJR0GfJfkMtQfyXHGERHbJV0KLAYGA/MiYrWkS9L9syUdDdwLHArslDSD5Emxl5NMDNaZ8caIuD1t+krgZknTgd8C5+X/umbWJ1OnMmXuXDo6Ooq5pGYDXp6nv85NV1slLQFeBtzeQ5Vs3UXAopqy2Zn1jSSXxWptBsZ30+ZTwJl5Pt9sfzRz5sx6R8ilKjmtb/I+/fV64E0kN9p/EhHPl5rKzPqtKsOfVCWn9U2v91QkfYbkfZAjSS5LfUPSP5UdzMzMqifPmcr5wEmZm/VXAsuBfykzmJmZVU+ep78eJfPSIzAE+HUpacys7lpbW5G0a7nrrrtYuXLlbmWSfPnKutRtpyLpGklfIpmXfnU6Udc3SB7t3bKvAprZvlU7SVdEsGTJEk/SZbn0dPmrc2TgX5C8fNipvbQ0ZmZWaT3N/Dh/XwYxM7Pq6+ny162S3i7pwC72vUrSP0t6X7nxzMysSnq6/PUBkrlUviDpDyTjfQ0FjgPWAl+OCA+RYmZmu/R0+Wsj8Engk5KagJHAn4BfRcTWfZLOzMwqJdcb9RHxKMmjxWZmZt3K856KmZlZLu5UzMysMLk6FUkvkZRnDhUzM9uP5RlQ8u0k0wjfnm6fKCnXZFtmZrZ/yXOm0koylW8HQESsAJrKi2TWmKoyLElVctrAlKdT2R4RT5eexKzBzZo1q94RcqlKThuY8nQqqyRdAAyWNEbSNcBPS85lNrC1tbFg6VKWr1wJTU3Q1lbvRGaFyNOpfBh4LcloxTcCTwMz8jQu6SxJayStlXRZF/tfI+keSdskfSJTfqykJZIelLRa0kcz+1olPS5pRbqckyeLWcNoa4OWFo7eti35BVy3Dlpa3LHYgNDjy4+SBgOzIuIfgH/sS8Np3WuBtwDrgWWSFkbEA5nD/gB8BHhnTfXtwMcjYrmkQ4BfSLojU/fzEXFVX/KYFaG5uXmv21iwdClHb9u2e+HWrWycPp0pc+fudftm9dTjmUpE7ABO7mfbE4C1EfFIOqf9AmByTfubImIZ8EJN+YaIWJ6uPwM8CIzqZw6zhnJUbYfSS7lZleQZpuWX6SPE3wKe7SyMiO/0Um8U8Fhmez1wSl8DpuOOnQT8LFN8qaT3kMz58vGI+GMX9VqAFoDhw4fT3t7e14/e57Zs2eKcBSojZxFPVj0/ZQpDn3xyz/IRIwppf9KkSYV/7/3577wMVcnZL7WzudUuwDe6WOblqHcecF1m+yLgmm6ObQU+0UX5S0kmCXtXpmwEMJjkLOuKPFnGjh0bVbBkyZJ6R8hlf82Z/LoU4IYbIoYNi4AXl2HDkvICFJYzY3/9Oy9LVXIC90Yv/77WLr2eqUTEe/vZX60Hjs1sHwM8kbdyOo/Lt4G2yJwVRcSTmWPmArf1M59ZfUydCsDG6dM5ats2Bo0eDVdcsavcrMp67VTSeemjtjwiepugaxkwRtJxwOPAFOCCPKEkCfg68GBEXF2zb2REbEg3zwVW5WnTrKFMncqUuXPp6OhgxYoV9U5jVpg891SyZwJDSf4h7/WMIyK2S7oUWExyuWpeRKyWdEm6f7ako0nuixwK7JQ0AzgeOIHkctn9kjp/4z4dEYuAz0k6kaSjexT4YI7vYLbXZs6cWe8IuVQlpw1MeS5/fTu7Lekm4Ed5Gk87gUU1ZbMz6xtJLovV+jGgbtq8KM9nmxWtKsOfVCWnDUz9Gfp+DPDKooOYmVn15bmn8gy731PZCHyqtERmZlZZeS5/HbIvgpiZWfXlmU/ldEkHp+sXSrpa0ujyo5mZWdXkuafyVWCrpPHAJ4F1wDdLTWVmZpWUdz6VIBm364sR8UXAl8TMzGwPed5TeUbS5cCFwJvT0YcPLDeWmZlVUZ4zlXeTzKUyPX2vZBTwb6WmMjOzSsp1pkJy2WuHpLHAa4Cbyo1lZmZVlOdM5W5giKRRwJ3Ae4HrywxlZmbVlKdTUURsBd5FMnT9uSTTC5uZme0mV6ci6TRgKvD9tGxweZHMzKyq8nQqM4DLgVvSUYZfBSwpN5aZmVVRnmFa7gLu6nyrPiIeAT5SdjAzM6uePMO0nCbpAeDBdHu8pK+UnszMzConz+WvLwB/BTwFEBErgTeXGcrMzKop13wqEfFYTdGOErKYmVnF5Xn58TFJbwRC0kEk91MeLDeWmZlVUZ4zlUuAD5EMz7IeODHd7pWksyStkbRW0mVd7H+NpHskbZP0iTx1JR0h6Q5JD6c/D8+TxczMytdjp5IOHnlRREyNiBERcVREXBgRT/XWcFr3WuBs4HjgfEnH1xz2B5Izn6v6UPcy4M6IGEPyhv8enZWZmdVHj51KROwgGfK+PyYAayPikYh4HlhQ21ZEbIqIZcALfag7GZifrs8H3tnPfDaAtLa2Imm3ZdKkSXuUtba21juq2YCW557KTyR9GfhP4NnOwohY3ku9UUD2Bv964JScuXqqOyIiNqQZNkg6qqsGJLUALQDDhw+nvb0950fXz5YtW5yzn5qbm2lubt61PWPGDHbs2ME111yzx7GNkr2jo4MdO3Y0TJ6eNOLfeVecs/7ydCpvTH/+c6YsgDN6qacuyiJPqL2smxwcMQeYAzBu3LjI/oPTqNrb23HOYhx22GF0dHQ0dM4qZOxUhb9zcM5GkOeN+kn9bHs9cGxm+xjgiQLqPilpZHqWMhLY1M98ZmZWsDxv1B8p6UuSlkv6haQvSjoyR9vLgDGSjksfRZ4CLMyZq6e6C4Fp6fo04Hs52zQzs5Llufy1gGROlb9Jt6eS3F/5y54qRcR2SZcCi0lGNZ6XDkh5Sbp/tqSjgXuBQ4GdkmYAx0fE5q7qpk1fCdwsaTrwW+C8/F/XzMzKlKdTOSIiPpvZ/hdJuZ64iohFwKKastmZ9Y0kl7Zy1U3LnwLOzPP5Zma2b+V5+XGJpCmSBqXL3/LivCpmZma75OlUPgjcCGxLlwXAxyQ9I2lzmeHMzKxaenujXsBrI2JQRByYLoMi4pB0OXQf5bQBrgovJVYho1m99fZGfQC37KMsth+bNWtWvSP0qgoZzeotz+WvpZL+vPQkZkVpa2PB0qUsX7kSmpqgra3eicz2G3me/poEXCLpUZJhWkRyEnNCmcHM+qWtDVpaOHrbtmR73TpoaUnWp06tXy6z/USeTuXs0lOYQSHDVixYuvTFDqXT1q1snD6dKXPn7nX7ZtazXi9/RcQ6kiFTzkjXt+apZ1YPR9V2KL2Um1mxej1TkTQTeAMwDvgGcCBwA3B6udFsf1PIqK1NTcklrxqDRo/e6/aThyH7r7W1tcub/bXtzpw500+aWWXlOeM4F3gH6bD3EfEEcEiZocz67YorYNiw3cuGDUvK66y1tZWI2G1ZsmTJHmXuUKzK8nQqz6ePFgeApIPLjWS2F6ZOhTlz2DhkCDsBRo+GOXN8k95sH8lzo/5mSV8DDpP0AeB9gO94WuOaOpUpc+fS0dHBihUr6p3GbL+SZz6VqyS9BdhMcl/lMxFxR+nJbL8yc+bMekfoVRUymtVbnvlU/h54MCL+ISI+4Q5l/7Kv5n6vwn2EKmQ0q7c891QOBRZL+h9JH5I0ouxQ1jhqby5PnDiR8ePH++aymXUpz3sqsyLitcCHgFcAd0n6UenJzMyscvryEuMmYCPwFHBUOXHMzKzK8txT+TtJ7cCdwMuBD3jcLzMz60qeM5XRwEcj4rURMTMiHsjbuKSzJK2RtFbSZV3sl6Qvpfvvk/T6tHycpBWZZXM6fz2SWiU9ntl3Tt48ZmZWrjzvqfwQ+AtJbwIeiIgleRqWNBi4FngLsB5YJmlhTad0NjAmXU4BvgqcEhFrgBMz7TzO7vO6fD4irsqTw8zM9p1uz1QkjZL0M2Am8Crg1UCrpJ9LGpWj7QnA2oh4JCKeJ5mGeHLNMZOBb0ZiKckLliNrjjkT+HU6mKX1UVWeyqpKTjPrWU9nKl8GvhoR12cLJb0H+Ap7dhC1RgGPZbbXk5yN9HbMKGBDpmwKcFNNvUvTHPcCH4+IP9Z+uKQWoAVg+PDhxQxWWLItW7YUnnPWrFmFDCnfqaOjgx07djRczuuvv5758+fvUV47WOO0adO4+OKL+/05RSvj77wMzlmsquTsl9r3DToXYE1/9mWOOQ+4LrN9EXBNzTHfB96U2b4TODmzfRDwe2BEpmwEMJjkLOsKYF5vWcaOHRtVsGTJksLbTP6KC3LDDbFhyJDYARGjR0fccENhTReaM1XGn2fRqpAxwjmLVpWcwL3Ry7+vtUtPN+oHd1UoaVB3+2qsJ5mHpdMxwBN9POZsYHlEPNlZEBFPRsSOiNhJMgbZhBxZbG9lZlQcBC/OqOipes0so6fLX7dKmgvMiIhnYdcIxZ8HFuVoexkwRtJxJDfapwAX1ByzkORS1gKSS2NPR0T20tf51Fz6kjQyc8y5wKocWfZrnlHRzPaVnjqVTwL/CqyTtI5k6PvRwHzg0701HBHbJV0KLCY5s5kXEaslXZLun03SOZ0DrCWZUfK9nfUlDSN5cuyDNU1/TtKJaZ5Hu9hvJfCMimaWR7edSkS8AHxC0v8lefJLJE9zbc3beEQsouasJu1MOteDZPiXrupuBY7sovyivJ9viUafURH2flZFM2sMecb++lNE3B8R9/WlQ7EBpoFnVDSzxtGXsb9sf+YZFc0shzxv1JslPKOimfUiV6ci6QSgKXt8RHynpExWoKrMVliVnGbWs147FUnzgBOA1ZBc+SB58sqdSgVUZfiTquQ0s57lOVM5NSKOLz2JmZlVXp4b9fdIcqdiZma9ynOmMp+kY9kIbCN5XyXCE3WZmVmNPJ3KPJLBIO/nxXsqZmZme8jTqfw2IhaWnsTMzCovzz2VhyTdKOl8Se/qXEpPZg2htbUVSbuWu+66i5UrV+5WJslPb5kZkK9TeQnJvZS3Am9Pl7eVGcoaR2tr6x7zJSxZsmSPMncqZgY5Ln9FxHt7O8bMzAzyvfz4DZKXHXcTEe8rJZGZmVVWnhv1t2XWh5JMjFU7g6OZmVmuy1/fzm5Lugn4UWmJzMyssvoz9P0Y4JVFBzEzs+rLc0/lGZJ7Kkp/bgQ+VXIuMzOroDwzPx4SEYdmfo6tvSTWHUlnSVojaa2ky7rYL0lfSvffJ+n1mX2PSrpf0gpJ92bKj5B0h6SH05+H5/2yZmZWrtLmU5E0GLgWeAuwHlgmaWFEPJA57GySy2ljgFOAr6Y/O02KiN/XNH0ZcGdEXJl2VJfhMyczs4ZQ5nwqE4C1EfFI2s4CYDKQ7VQmA9+MiACWSjpM0siI2NBDu5OB5nR9PtCOOxUzs4ZQ5nwqo4DHMtvr2f0spLtjRgEbSDquH0oK4GsRMSc9ZkRnpxMRGyQd1dWHS2oBWgCGDx9Oe3t7P77CvrVlyxbnLFAVclYhIzhn0aqSsz/ydCr3SDq+5rJVHuqirPYlyp6OOT0inkg7jTskPRQRd+f98LQTmgMwbty4aG5uzlu1btrb23HO4lQhZxUygnMWrSo5+6PM+VTWA8dmto9hz5cmuz0mIjp/bpJ0C8nltLuBJzsvkUkaCWzK8R3MzGwfyPOeSud8Kmfx4mCSb89RbxkwRtJxkg4CpgC1Q+gvBN6TPgV2KvB02lkcLOkQAEkHkwxmuSpTZ1q6Pg34Xo4sZma2D5Q2n0pEbJd0KbAYGAzMi4jVki5J988GFgHnAGuBrUDn4JUjgFskdWa8MSJuT/ddCdwsaTrwW+C8vmYzM7Ny5OlUHpJ0I3AryeUvoPdHitNjFpF0HNmy2Zn1AD7URb1HgPHdtPkUcGaO3GZmto/l6VSy86l0yvNIsZmZ7Wc8n4qZmRWm205F0icj4nOSrqHr+VQ+UmoyMzOrnJ7OVB5Mf97bwzFmZma7dNupRMSt6ep/RsRz2X2SXl5qKjMzq6Q876n8PH2HBABJfwP8tLxIZmZWVXme/poKzJPUDrwCOBI4o8xQZmZWTXme/rpf0hXAfwDPAG+OiPWlJzMzs8rJM/T914E/Ixn+fixwq6QvR8S1ZYczM7NqyXNPZRXJZFm/iYjFwKnA63upY2Zm+6E8l78+X7P9NDC9tERmZlZZeS5/jQH+FTgeGNpZHhGvKjGXmZlVUJ7LX98gmTt+OzAJ+CbJTXszM7Pd5OlUXhIRdwKKiHUR0YofKTYzsy7keU/lOUmDgIfT+VEeB7qcF97MzPZvec5UZgDDgI8AJ5PMAjmtxxpmZrZfyvP017J0dQsvzsxoZma2h56Gvu9xCuGIeEfxcczMrMp6OlM5DXgMuAn4GaC+Ni7pLOCLJHPUXxcRV9bsV7r/HJI56i+OiOWSjiV5yuxoYCcwJyK+mNZpBT4A/C5t5tPptMVmZlZnPXUqRwNvAc4HLgC+D9wUEavzNCxpMHBt2sZ6YJmkhRHxQOaws4Ex6XIKyaPLp5A8vvzxtIM5BPiFpDsydT8fEVfl/ZJmZrZvdHujPiJ2RMTtETGNZGiWtUC7pA/nbHsCsDYiHomI54EFwOSaYyYD34zEUuAwSSMjYkNELE9zPEMyYdiovn01MzPb13p8+kvSEEnvAm4APgR8CfhOzrZHkVw+67SePTuGXo+R1AScRHIJrtOlku6TNE/S4TnzmJlZyXq6UT8feB3wA2BWRKzqY9td3YOpneu+x2MkvRT4NjAjIjanxV8FPpse91ng34H3dZG/BWgBGD58OO3t7X2Mv+9t2bLFOQtUhZxVyAjOWbSq5OyXiOhyIblB/ky6bM4szwCbu6uXqX8asDizfTlwec0xXwPOz2yvAUam6wcCi4GP9fAZTcCq3rKMHTs2qmDJkiX1jpCLcxanChkjnLNoVckJ3Bu9/Ptau/R0T2VQRBySLodmlkMi4tAc/dUyYIyk4yQdBEwBah9TXgi8R4lTgacjYkP6VNjXgQcj4upsBUkjM5vnkgzNb2ZmDSDPMC39EhHb02FdFpM8UjwvIlZLuiTdPxtYRPI48VqSR4o7X648neTN/fslrUjLOh8d/pykE0kufz0KfLCs72BmZn1TWqcCkHYCi2rKZmfWg+QBgNp6P6ab92Ii4qKCY5qZWUHyjP1lZmaWizsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDuVfmptba13hFyqktPMBgZ3Kv00a9asekfIpSo5zWxgcKfSCNraoKmJiWecAU1NybaZWQW5U6mT1tZWJHGBxLMXXgjr1qEIWLeOZy+8kAskJPnylZlVSqkzPw50zc3Ne1V/4sSJXL10KQdv27Zb+cHA1UOG8MSpp9Le3r7Xn2Nmtq/4TKXOjqrpUHorNzNrZKWeqUg6C/giMBi4LiKurNmvdP85wFbg4ohY3lNdSUcA/wk0AY8CfxsRfyzze3Snvb197xtpaoJ16/YoHjR6dCHtJ3/EZmb7RmlnKpIGA9cCZwPHA+dLOr7msLOBMenSAnw1R93LgDsjYgxwZ7pdObvuqaxbx7M1+54FLli3zvdsI771AAAJNklEQVRUzKxyyrz8NQFYGxGPRMTzwAJgcs0xk4FvRmIpcJikkb3UnQzMT9fnA+8s8TuUprW1lYjgxggOvuEGGD2akGD0aA6+4QZujCAi3KmYWaWUeflrFPBYZns9cEqOY0b1UndERGwAiIgNko7q6sMltZCc/QBsk7SqP1+iBydL+kXBbb6cdet+z4UXwoUXFtVmOTnh9wW3WYYq5KxCRnDOolUl57i+ViizU+nqYn7kPCZP3R5FxBxgDoCkeyPiDX2pXw/OWawq5KxCRnDOolUpZ1/rlHn5az1wbGb7GOCJnMf0VPfJ9BIZ6c9NBWY2M7O9UGansgwYI+k4SQcBU4CFNccsBN6jxKnA0+mlrZ7qLgSmpevTgO+V+B3MzKwPSrv8FRHbJV0KLCZ5LHheRKyWdEm6fzawiORx4rUkjxS/t6e6adNXAjdLmg78FjgvR5w5xX2zUjlnsaqQswoZwTmLNmBzKqJPtyrMzMy65TfqzcysMO5UzMysMAO6U5F0lqQ1ktZKaqg37yXNk7Qp+/6MpCMk3SHp4fTn4XXOeKykJZIelLRa0kcbNOdQST+XtDLNOasRc6aZBkv6paTbGjUjgKRHJd0vaUXnY6WNllXSYZL+S9JD6X+jpzVgxnHpn2HnslnSjEbLmWb9+/T3Z5Wkm9Lfqz7nHLCdSs5hYurpeuCsmrJGG4JmO/DxiPhfwKnAh9I/w0bLuQ04IyLGAycCZ6VPEzZaToCPAg9mthsxY6dJEXFi5n2KRsv6ReD2iHgNMJ7kz7WhMkbEmvTP8ETgZJIHkm6hwXJKGgV8BHhDRLyO5AGpKfQnZ6TDgQy0BTgNWJzZvhy4vN65ajI2Aasy22uAken6SGBNvTPW5P0e8JZGzgkMA5aTjMDQUDlJ3re6EzgDuK2R/85JBmt9eU1Zw2QFDgV+Q/qwUSNm7CLzW4GfNGJOXhzF5AiSp4JvS/P2OeeAPVOh+yFgGtluQ9AAXQ5BUw+SmoCTgJ/RgDnTy0orSF6GvSMiGjHnF4BPAjszZY2WsVMAP5T0i3TII2isrK8Cfgd8I72ceJ2kgxssY60pwE3pekPljIjHgatIXtPYQPLO4A/pR86B3Kns9VAvlpD0UuDbwIyI2FzvPF2JiB2RXGI4Bpgg6XX1zpQl6W3Apogoehy2spweEa8nuXz8IUlvrnegGgcArwe+GhEnkQzuXe/Lcd1KX+J+B/CtemfpSnqvZDJwHPAK4GBJ/RqAcCB3KnmGiWk0DTcEjaQDSTqUtoj4TlrccDk7RUQH0E5yv6qRcp4OvEPSoySjbp8h6QYaK+MuEfFE+nMTyT2ACTRW1vXA+vSMFOC/SDqZRsqYdTawPCKeTLcbLedfAr+JiN9FxAvAd4A30o+cA7lTyTNMTKNpqCFoJAn4OvBgRFyd2dVoOYdLOixdfwnJL8hDNFDOiLg8Io6JiCaS/xb/OyIupIEydpJ0sKRDOtdJrq2vooGyRsRG4DFJnaPongk8QANlrHE+L176gsbL+VvgVEnD0t/7M0kefOh7znrfvCr55tM5wK+AXwP/WO88NdluIrl2+QLJ/3VNB44kuZH7cPrziDpnfBPJJcP7gBXpck4D5jwB+GWacxXwmbS8oXJm8jbz4o36hstIcr9iZbqs7vzdabSsJE/63Zv+vX8XOLzRMqY5hwFPAS/LlDVizlkk/zO2CvgPYEh/cnqYFjMzK8xAvvxlZmb7mDsVMzMrjDsVMzMrjDsVMzMrjDsVMzMrjDsVqyRJW3Icc13nIKKSPl2z76f9/QxJO9IRZ1dJ+pakYXlz11s6Qu570vV2SW/orU4PbQ2XdHtx6WwgcKdiA1ZEvD8iHkg3P12z74170fSfIhl59nXA88Al2Z1K7LPfrXRE7jzHHQC8D7ixgM88ICJ+B2yQdPretmcDhzsVqzRJzen/cXfOq9GWvhG86//EJV0JvCQ9u2hL921Jf75U0p2SliuZP2RyHyP8D/BqSU3pnB5fIRkl+VhJb5V0T9r2t9Ix1JB0paQHJN0n6aq07Lz0zGelpLvTsoslfTnzXW+T1NyZX9I/S/oZcJqkkyXdlQ4AubhzaI0aZ5AMFbI9U3ahpJ+mnz0hbXtCWvbL9Oe4TJ5vSboV+GFa/7vA1D7+mdlAVu+3OL146c8CbEl/NgNPk4ztNgi4B3hTuq+dZH6IXcd3Uf8A4NB0/eXAWtj1UvCWXj77AJJhK/6OZBqDncCpmbbuBg5Otz8FfIZkaPE1mc84LP15PzCqpuxi4MuZz70NaE7XA/jbdP1A4KfA8HT73cC8LnLPAj6c2W4H5qbrbyadhoFkWPkD0vW/BL6dybOezFvVJCN/31/v/x68NM5yQI5+x6zR/Twi1gMoGf6+CfhxzroC/l86Cu9Okn8kRwAbe6jzkvRzIDlT+TrJyK7rImJpWn4qyeRwP0lPnA4i6fA2A88B10n6PklHAfAT4HpJN5MM5tebHSQDfQKMA14H3JF+1mCSIYBqjWT3CcIgHY8qIu6WdGg6htohwHxJY0g6rwMzx98REX/IbG9Kv7sZgDsVGxC2ZdZ30Lf/rqcCw4GTI+KFdBThob3U+VMkw+zvkv5j/my2iOQf4PNrK6eXmc4kGVjyUpJZKy+RdArw18AKSSeSzLyZvUSdzfVcROzIfNbqiDitt9xdfLfacZoC+CywJCLOVTKPTntm/7M1xw9N2zUDfE/F9h8vKBnGv9bLSOY5eUHSJGB0QZ+3FDhd0qsB0tFfx6b3VV4WEYuAGSSDIiLpzyLiZxHxGeD3JNM2PAqcKGmQpGNJhp/vyhpguKTT0rYOlPTaLo57EHh1Tdm70zpvIpmY6WmSP5PH0/0X9/I9x5IMQGgG+EzF9h9zgPskLY+I7I3lNuBWSfeSjML8UBEfFhG/k3QxcJOkIWnxPwHPAN+TNJTkDOPv033/ll5uEslosCvT8t+Q3G9ZRfIAQFef9byk/w18SdLLSH6vv0AywnDWD0hGn836Y/p49aEkT4YBfI7k8tfHgP/u5atOAr7fyzG2H/EoxWb7EUm3AJ+MiIcLau9uYHJE/LGI9qz63KmY7UfSx4NHRMTdBbQ1nGTa4e/ufTIbKNypmJlZYXyj3szMCuNOxczMCuNOxczMCuNOxczMCuNOxczMCvP/AbRUyueXG5yVAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.errorbar(list(dict.fromkeys(InitialPressure)),OverpressureMean,xerr = 5, yerr = OverpressureStd, fmt = 'ro', ecolor = 'black', capsize=5)\n", "plt.xlabel('Initial Pressure (bar)')\n", "plt.ylabel('Maximum Overpressure (bar/mg)')\n", "plt.grid(linestyle='-')\n", "plt.axis((0,80,0,0.200))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Je ne vais pas m'attarder sur l'analyse des résultats, on peut simplement observer ici que plus la pression initiale est élevée et plus la surpression maximale est *globalement* importante. *Globalement* puisque pour certaines conditions la dispersion est importante. Cela résulte de la méthode d'allumage employé ainsi que de la nature intrinsèque des matériaux. En effet, bien que de formes similaires nos grains ne sont pas parfaitement identiques géométriquement. L'énergie absorbée par iradiation laser peut ainsi fortement varier d'un essai à l'autre. Ceci peut ralentir la propagation de l'allumage et générer une proportion plus ou moins importante d'imbrûlés et donc une diminution de la surpression. \n", "\n", "À partir de 20 bars, la relation $\\frac{\\Delta P_{max}}{m} = f(P_{0})$ semble presque linéaire. Faisons une simple régression linéaire sur les valeurs moyennes de surpression, une partie du code est empruntée à un exemple de [la doc Scipy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html) :" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "R-squared: 0.987003\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEKCAYAAADaa8itAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8FfX1//HXG0QQiAsYFEUBLaBoWRRFRAXc6k7VWlG0gFSkbrW11q1+CVpbf63VqlUpWkQLitYNVJQqJqIilkVQFhFU0MgmaIQY1nB+f8wEL5ebZBLuzb03Oc/HYx6585n5zD03ITnMZ2bOR2aGc845lwz10h2Ac8652sOTinPOuaTxpOKccy5pPKk455xLGk8qzjnnksaTinPOuaRJaVKRdJqkhZIWS7opwfb+kj4Ml6mSOlfWV1IzSa9LWhR+3SuVn8E551x0KUsqkuoDDwKnAx2BiyR1jNvtc6CXmXUC7gBGRuh7EzDZzNoBk8N155xzGSCVZypHA4vN7DMz2wSMA/rG7mBmU83s23B1GtAqQt++wOPh68eBn6bwMzjnnKuCXVJ47P2BL2PWC4HuFew/GHg1Qt99zGw5gJktl9Qi0cEkDQGGADRq1OjIAw88sMofoKZt3bqVevUy/zKXx5k82RAjeJzJli1xfvLJJ6vNLLcqfVKZVJSgLWFNGEl9CJLKcVXtWx4zG0k4nNahQwdbuHBhVbqnRUFBAb179053GJXyOJMnG2IEjzPZsiVOSUur2ieVqbIQOCBmvRWwLH4nSZ2AR4G+ZrYmQt+VklqGfVsCq5Ict3POuWpKZVKZDrST1FbSrkA/YELsDpIOBJ4HLjWzTyL2nQAMCF8PAMan8DM455yrgpQNf5nZFklXA5OA+sAoM5snaWi4fQTwf0Bz4CFJAFvMrFt5fcND3wU8I2kw8AVwQao+g3POuapJ5TUVzGwiMDGubUTM618Cv4zaN2xfA5y0s7Ft3ryZwsJCNmzYsLOHSpo99tiDBQsWpDuMSqUizkaNGtGqVSsaNGiQ1OM652pWSpNKJissLCQnJ4c2bdoQniWl3bp168jJyUl3GJVKdpxmxpo1aygsLKRt27ZJO65zruZl/j1tKbJhwwaaN2+eMQmlLpNE8+bNM+qs0TlXPXU2qQCeUDKI/yycqx3qdFJxzqVPXl7eTveXtN3Sp0+fHdqS8T4uOk8qaXT//fdz6KGH0r9/fyZMmMA999wDwIsvvsj8+fO37Td69GiWLdvhEZ8KLVmyhMMPP7zC9hkzZnDttdfuxCdwrvqGDx++U/3z8vIws21Lr1696Ny583ZtZrbTSWFn46xr6uyF+kzw0EMP8eqrr267ON2nTx8gSCpnnXUWHTsGNTRHjx7N4Ycfzn777ZfU9+/WrRvdunVL6jGdS4uxYxk3bRotNm6ENm3gzjuhf/90R1Un+ZlKmgwdOpTPPvuMc845h3vvvZfRo0dz/fXXM3XqVCZMmMANN9xAly5d+H//7/8xY8YM+vfvT5cuXVi/fj0zZ86kV69eHHnkkfzkJz9h+fLlAMycOZPOnTvTo0cPHnzwwUpjKCgo4KyzzgKC//Vddtll9O7dm4MOOoj7779/235jxozh6KOPpkuXLlxxxRWUlpam5pviXHWMHQtDhrDvxo3BH7SlS2HIkKDd1Tg/UymTqA7Pz38OV14JJSVwxhk7bh84MFhWr4af/Wz7bQUFFb7diBEjeO2118jPz2fvvfdm9OjRABx77LGcc845nHXWWfwsPOarr77K3XffTbdu3di8eTPXXHMN48ePJzc3l6effppbb72VUaNGMWjQIB544AF69erFDTfcUNXvAB9//DH5+fmsW7eODh068Ktf/YrFixfz9NNP8+6779KgQQOuvPJKnn76aa644ooqH9+5eMmofzVu2jT23bhx+8aSElYMHky/Rx7Z6eO7qvGkkmUWLlzI3LlzOeWUUwAoLS2lZcuWfPfddxQVFdGrVy8ALr30Ul599dWKDrWDM888k4YNG9KwYUNatGjBypUrmTx5MjNnzuSoo44CYP369eyxxx7J/VDO7YQW8QmlknaXWp5UylR0ZtG4ccXb99670jOTZDEzDjvsMN57773t2ouKinb6ttyGDRtue12/fn22bNmCmTFgwAD+/Oc/b9u2bt26nXof58oUJOP3pk2bYMgrTr3WrZNyfL/dvWr8mkoGysnJ2e4Pd+x6hw4d+Prrr7cllc2bNzNv3jz23HNP9thjD9555x0AxiZpPPmkk07i2WefZdWqoBj0N998wxdffJGUYzuXFHfeGfzHL1bjxkG7q3GeVDJQv379+Otf/0rXrl359NNPGThwIEOHDqVLly6Ulpby7LPPcuONN9K5c2e6dOnC1KlTAXjssce46qqr6NGjB7vttltSYunYsSN//OMfOfXUU+nUqROnnHIKK1asSMqxnUuK/v1h5EhWNGzIVoDWrWHkSL/7K01kVqW5r7JSokm6FixYwKGHHpqmiBKrq7W/yiT7Z5INEyFlQ4yQmjglkbS/P199xSvdunFHbi7TPvwwOccMJTXOULb83CXNNLMqPXfgZyrOubQYNmxYcg70xhvQtSsnrlpFh/Xrk3PMGEmLs47wpOKcS4tklE9pK7HllFOY+/XXdN26lScWL/YyLWnmScU5l302biQvL4/Pzdjl+ec5vLiYj83Iz89PepkWVzWeVJxz2eXdd6F9e8jPD9bPPReaNElvTG4bTyrOuexgBn/7G/TqBQ0awF57pTsil0BKk4qk0yQtlLRY0k0Jth8i6T1JGyX9Lqa9g6TZMctaSdeF2/IkfRWzLUH9lOTo3bv3DuOziZZsuIvDuaz27bfBGcnvfgd9+8LMmdClS7qjcgmkLKlIqg88CJwOdAQuktQxbrdvgGuBu2MbzWyhmXUxsy7AkUAJ8ELMLveWbQ/nsk+Jt956a4fS2r169dphzPatt96q1vELCwvp27cv7dq14+CDD+b3v/89mzZtSrjvsmXLttUCq8gZZ5xBUVFRteLJy8vj7rvvrnS/li1bVri9qKiIhx56qFoxOJfQuHHwyitw773w7LPgpYIyVirPVI4GFpvZZ2a2CRgH9I3dwcxWmdl0YHMFxzkJ+NTMdqzDUJPC0tpvvvVWUBZiJ59YNzPOO+88fvrTn7Jo0SI++eQTvv/+e2699dYd9t2yZQv77bcfzz77bKXHnThxInvuuedOxbazPKm4pDD7ofzK0KEwezZcdx142ZSMlsqksj/wZcx6YdhWVf2Ap+Larpb0oaRRklI/sJqC0tpvvvkmjRo1YtCgQUBQa+vPf/4zo0aNoqSkhNGjR3PBBRdw9tlnc+qpp243uVZJSQk///nP6dSpExdeeCHdu3dnxowZALRp04bVq1ezZMkSDj30UC6//HIOO+wwTj31VNaH9/A/8sgjHHXUUXTu3Jnzzz+fkpKSCmP9/PPP6dGjB0cddRS33Xbbtvbi4mJOOukkjjjiCH784x8zfvx4AG666SY+/fRTunTpwg033FDufs6Vq7gYLrkEunaFr74KEslhh6U7KhdBhQUlJTUCzgKOB/YD1gNzgVfMbF4lx07034kqPZYqaVfgHODmmOaHgTvCY90B/A24LEHfIcAQgNzc3B0Ky+2xxx6RCiMef/zx/Gf69HJLa18wYgRQ9SKLM2fO5Mc//vF2/Zo0aUKrVq2YM2cOGzZsYOrUqUydOpVmzZqxdOlStm7dyrp167j//vtp2rQp7777LvPnz6dnz558//33rFu3DjOjuLiY4uJiFi1axKOPPso999zDgAEDGDNmDP369eOUU06hX79+ANx+++08+OCDDB06lI0bN9KgQYMdPstVV13FwIEDufjiixk5cuS2z7tlyxaeeOIJdt99d9asWcOJJ55Inz59+MMf/sCHH37I22+/DQT1yRLtF1+ob8OGDckpMBgqLi5O6vFSIRtihJqNs/GSJRyWl0fjL7/k80GD+GLhQli0KFJf/36mX7lJRVIecDZQALwPrAIaAe2Bu8KEc72ZlVcToRA4IGa9FVC1OXGD6zGzzGxlWUPsa0mPAC8n6mhmI4GREJRpib+YvmDBgkilRurXr19hae369esDVLlsSVmJ+dh+69atQxJNmzalUaNGnHrqqbRu3RqApk2bUq9ePXJycpg+fTq//vWvycnJoXv37nTq1IkmTZqQk5OzrT9A27Zt6dmzJwDdu3dn5cqV5OTkMGvWLC699FKKioooLi7mJz/5CTk5OQljAnj//fcZP348DRo04PLLL2fYsGHk5OSwefNmbrvtNqZMmUK9evVYvnw5JSUl28UKlLvfvvvuu937NGrUiK5du1bp+1iRbCiFkQ0xQg3G+e9/w1VXQdOm8PrrHHTiiRxUhe7+/Uy/is5UpptZXjnb7pHUAjiwov5AO0ltga8IhrEurmJ8FxE39CWppZktD1fPJThzSpmCgoJKS2tXpzT2YYcdxnPPPbdd29q1a/nyyy85+OCDmTlzJk3Kufc+ah2i+FL2ZcNfAwcO5MUXX6Rz586MHj060v+YEn3GsWPH8vXXXzNz5kwaNGhAmzZt2LBhQ7X3c45Jk6BbN3jqKUjy9NmuZpR7TcXMXqmoY3iRfUYF27cAVwOTgAXAM2Y2T9JQSUMBJO0rqRD4LfAHSYWSdg+3NQZOAZ6PO/RfJH0k6UOgD/CbSj/lzkpBae2TTjqJkpISnnjiCSCYbOvWW29l4MCBNI5/rzjHHXcczzzzDADz58/no48+qtJ7r1u3jpYtW7J58+ZIJfJ79uzJuHHjgO1L6n/33Xe0aNGCBg0akJ+fz9Iw8caX7i9vP+cA+PRT+OST4PUjj8DkyZ5Qslilk3RJeokdr4V8B8wA/mlm5f6XM7zdd2Jc24iY1ysIhsUS9S0Bmidov7SymJMuLKG9YvBgWmzcSL3WrYOEshOltSXxwgsvcOWVV3LHHXewdetWTj75ZP70pz9V2vfKK69kwIABdOrUia5du9KpU6cqzcZ4xx130L17d1q3br3DdZ1E7rvvPi6++GLuu+8+zj///G3t/fv35+yzz6Zbt2506dKFQw45BIDmzZvTs2dPDj/8cE4//XRuvPHGhPs5xwsvwKBB0KkTTJkCSZqywaVR/DMX8QtwH/AkwfWVs4ExBM+VPAj8u7L+mbC0b9/e4s2fP3+HtnjBt+cHvXr1sl69elW6X3WtXbs20n5btmyx9evXm5nZ4sWLrXXr1rZx48akxBBF1DirKsrPpCry8/OTerxUyIYYzVIQ56ZNZr/5jRmYHXWU2eefJ+Wwdfb7mSLADKvi39so0wl3NbMTYtZfkjTFzE6QVNkdYFmtV69eCa8lxLeVzQtfU0pKSujTpw+bN2/GzHj44YfZddddazQG56pt1Sr46U/hvffg6qvh7rsh5vqfy25RkkqupAPN7AsASQcCe4fbEj/+XUtk6i1/OTk5255LcS7r7LFHkETGjYMLL0x3NC7JoiSV64F3JH1K8OxJW+BKSU2Ax1MZXKqZWbXu3HLJZ3VgBtI6rbQU/v53GDwY9twT3nzTn4yvpSpNKmY2UVI74BCCpPKx/XBx/u+pDC6VGjVqxJo1a2jevLknljQzM9asWUOjRo3SHYpLhZUrg5taJk8OLsRfeaUnlFosyt1f9YGfAG3C/U8M52y+J8WxpVSrVq0oLCzk66+/Tnco22zYsCEr/rCmIs5GjRrRqlXCGwFrjby8PIYPH17pfsOGDas9E0u9/XYwxPXtt/Cvf8FlOxS/cLVMlOGvl4ANwEfA1tSGU3MaNGhA27Zt0x3GdgoKCpL6RHmqZEucmSYvL2+7ZNG7d2+KioqYPXt2+oJKpaefDs5QDjoIXn0VOndOd0SuBkRJKq3MrFPKI3HO1S7HHx9cQ/nrX2H33dMdjashUaoUvyrp1JRH4pzLftOnB4mktDR4Kv6f//SEUsdESSrTgBckrQ9nYFwnaW2qA3POZREzePBBOO44eOONoFy9q5OiJJW/AT2Axma2u5nlmJn/18M5F1i3Di6+OHiQ8eSTYdYsOLCiWrOuNouSVBYBc80fJHDOJXL++fDMM/CnP8FLL0HzHUr2uTokyoX65UCBpFeBbROLZPstxc65nbR1K9SrB3fcAbfcArV0fhBXNVGSyufhsmu4OOfqsvXr4ZprgnIrf/sbdO+e7ohcBqlo5sebgdfMrPKntZxztUZFD2n+CPgP0AWYcvzxnGDmT8e77VR0TeVz4NeSPpA0WtKFkvaqqcCcc+mRl5e3XSnzXr160blzZ+zZZ1mUk0OXZs3glVc4YcoUTyhuB+WeqZjZOGAcgKSuwGnA82HZljcIzmL+VyNROufSau/Nm+HSS4PJtJ55xu/ucuWq8O4vSfUkHWtmH5jZn82sD3AWMA/4ZY1E6JyrkqTWDfvmGwBWN2gQFIScMiVpCaXW1Ddz26kwqZjZVoLnVGLb1prZc2Y2JKWROeeqJUrRykhefRXateOUlSuD9R49IImTwSUtTpdRojyn8l9J56sa9eElnSZpoaTFkm5KsP0QSe9J2ijpd3Hblkj6SNJsSTNi2ptJel3SovCrX+dxLpm2bIFbb4UzzoAmTRjy2WfMmjMH2rSBsWPTHZ3LcFGSym8JbvjYWJUyLeG1lweB04GOwEWSOsbt9g1wLcGc94n0MbMuZtYtpu0mYLKZtQMmh+vOuWRYsQJOOSV4kLF3b1i9mtxNm4I/FEuXwpAhnlhchaJM0pVTzWMfDSw2s88AJI0D+gLzY469Clgl6cwqHLcv0Dt8/ThQANxYzRidq5V6V/NBxONWr+bWBQv4e4cODHrvPfbduHH7HUpKWDF4MP0eeWTng3S1UpSHHwmHmNoB22ZmMrMplXTbH/gyZr0QqMpTUkYw9GbAP81sZNi+j5ktD2NYLqlFOTEPAYYA5ObmZux887GKi4s9ziTK9DiLioooLS1NSYxFRUWR95UZh6xfz4LGjXl5l11475BDWNOgATfGJ5RQi40bq3T8iiT7s2f6z7xMtsRZLbH3oydaCO7y+gj4FsgH1gNvRuh3AfBozPqlwAPl7JsH/C6ubb/wawtgDnBCuF4Ut9+3lcXSvn17ywb5+fnpDiESjzM5evXqZZ07d076cYNf64hWrzY74wyzBg3MFi7cflvr1mZB/eHtl9ataz7OiDL9Z14mW+IEZlglf1/jlyjXVH4NHAUsteCW4q5AlDl4C4EDYtZbAcsi9IPgX9uy8Osq4AWC4TSAlZJaAoRfV0U9pnMuxv/+B0ccAa+/DvfeC+3abb/9zjuhcePt2xo3DtqdK0eUpLLBzDYASGpoZh8DHSL0mw60k9RW0q5AP2BClKAkNZGUU/YaOBWYG26eAAwIXw8Axkc5pnMuRtncJ/XqwbvvwlVX7fh0fP/+MHIkKxo2DOYRb90aRo4M2p0rR5RrKoWS9gReBF6X9C0RzjjMbIukq4FJQH1glJnNkzQ03D5C0r7ADGB3YKuk6wjuFNubYGKwshifNLPXwkPfBTwjaTDwBcEwm3OuKlasgNNOg8cfh70quCu/f3/6PfIIRUVFzJ49u+bic1kryt1f54Yv8yTlA3sAr1XQJbbvRGBiXNuImNcrCIbF4q0FOpdzzDXASVHe37m6aNiwYYk3fPhhMKFWz56QlxecmdSLMliRGuXG6bJa1Lu/jgCOI7gj610z25TSqJxz1Zaw/MmoUcEQV8eOMGMG1K9f43HF8zIttVOl/02R9H8Ez4M0JxiWekzSH1IdmHMuCUpKYNAgGDwYjj0WJk70ysIupaKcqVwEdI25WH8XMAv4YyoDc87tpNWr4cQTYe5cuO02GDYsI85QXO0WZUB1CTEPPQINgU9TEo1zLnmaNYNu3YLCkLffHjmh5OXlIWnb8tZbbzFnzpzt2iT58JVLqNykIukBSfcTzEs/L5yo6zGCW3uLaypA51wVbNoEN94IS5YEF+FHjYKf/KRKh4ifpMvMyM/P36HNk4pLpKLhr7LKwDMJHj4sU5CyaJxz1bd0Kfz858FDjQccAFdfne6IXB1U0cyPj9dkIM65nfDKK8HMjKWl8PzzcO65lfdxLgUqGv56SdLZkhok2HaQpNslXZba8JxzlfrPf+Css4L5TmbN8oTi0qqiC/WXA8cDH0uaLmmipDclfQ78E5hpZqNqJErnXPlOPz24s2vqVDj44HRH4+q4ioa/VgC/B34vqQ3QkqBC8SdmVlIj0TnnEsvPDwo7jh8PTZsGT8g7lwEi1WgwsyVm9p6ZzfaE4lwabd0Kf/wjnHwyLFsGX0cpGO5czYlUpsU5lwFWrw4uxr/2Glx8Mfzzn8FZinMZJH3V5JxzVfPLX8Kbb8LDD8OYMZ5QXEaKlFQk7SYpyhwqzrlkMoMNG4LX99wTXIwfOtTrd7mMFaWg5NnAbMJy95K6SIo02ZZzbid89x1ccEEw1GUGBx0ERx6Z7qicq1CUM5U8gql8iwDMbDbQJnUhOZeZarQsyezZQd2uF18M5j+pAi+f4tIpSlLZYmbfpTwS5zLc8OHDU/8mZvDoo3DMMbB+Pbz1Flx/fZWGu2okTufKESWpzJV0MVBfUjtJDwBTUxyXc7Xb2LGMmzaNWXPmBE/Cjx0btBcVwS23wAknwAcfVPksxbl0i5JUrgEOI6hW/CTwHXBdlINLOk3SQkmLJd2UYPshkt6TtFHS72LaD5CUL2mBpHmSfh2zLU/SV5Jmh8sZUWJxLmOMHQtDhrDvxo3BL+DSpXD55fDvfwfzxU+dGpSrz81Nd6TOVVmFz6lIqg8MN7MbgFurcuCw74PAKUAhMF3SBDObH7PbN8C1wE/jum8BrjezWZJygJmSXo/pe6+Z3V2VeJxLht69e+/0McZNm8a+Gzdu37h+PesGDeLsf/1rp4/vXDpVeKZiZqVAdW83ORpYbGafhXPajwP6xh1/lZlNBzbHtS83s1nh63XAAmD/asbhXEZpEZ9QQk1KS2s4EueSL8oT9R+EtxD/B/i+rNHMnq+k3/7AlzHrhUD3qgYY1h3rCrwf03y1pF8QzPlyvZl9m6DfEGAIQG5uLgUFBVV96xpXXFzscSZRKuJMxp1Vm/r1o9HKlTu277NPUo7fp0+fpH/uuvwzT4VsibNa4mdzi1+AxxIsoyL0uwB4NGb9UuCBcvbNA36XoL0pwSRh58W07QPUJzjLujNKLO3bt7dskJ+fn+4QIqmrcQa/LkkwZoxZw4Zmwb1ewdK4cdCeBEmLM0Zd/ZmnSrbECcywSv6+xi+VnqmY2aBq5qtC4ICY9VbAsqidw3lcngPGWsxZkZmtjNnnEeDlasbnXM3asgUmTYL+/QFYOXgwuRs3Uq9166DicNjuXDarNKmE89JbfLuZVTZB13SgnaS2wFdAP+DiKEFJEvAvYIGZ3RO3raWZLQ9XzwXmRjmmc2n11Vdw0UXw9tvBrcL9+3PhI49QVFTE7Nmz0x2dc0kT5ZpK7JlAI4I/5JWecZjZFklXA5MIhqtGmdk8SUPD7SMk7UtwXWR3YKuk64COQCeC4bKPJJX9xt1iZhOBv0jqQpDolgBXRPgMzu20YcOGVa/jG28EpVZKSoLbibt0SW5gcaodp3NJEGX467nYdUlPAW9EOXiYBCbGtY2Ieb2CYFgs3jtAwkeIzezSKO/tXLJV6yL6XXcFDzMeeig8+2zwNcW8TItLp+qUvm8HHJjsQJyrlXJz4ZJL4H//q5GE4ly6Rbmmso7tr6msAG5MWUTOZbupU4NZGX/2M7jssmDxUvWujogy/JVTE4E4l/XM4N574cYbg7OSc8+F+vXTHZVzNSrKfCo9JTUJX18i6R5JrVMfmnNZpKgIzjsvqCh89tnBXV6eUFwdFOWaysNAiaTOwO+BpcATKY3KuWyydm0wedbLLwezMz73HOyxR7qjci4totxSvMXMTFJf4D4z+5ekAakOzLmssfvuMHAgnHQSHHtsuqNxLq2inKmsk3QzcAnwSlh9uEFqw3IuwxUXw6BBMH16sH7bbZ5QnCNaUrmQYC6VweFzJfsDf01pVM5lsvnz4eij4fHHf0gqzjkg2vDXOoJhr1JJ7YFDgKdSG5ZzGWrMGLjiCmjaFF5/PRjycs5tE+VMZQrQUNL+wGRgEDA6lUE5l5HGj4dLLw0uyn/wgScU5xKIklRkZiXAeQSl688lmF7YubqhbPKsM8+EESPgzTdhv/3SG5NzGSpSUpHUA+gPvBK2+Q34rm544QU4/HBYsQJ22SUY+tolyqixc3VTlKRyHXAz8EJYZfggID+1YTmXZps3Bw8ynndecP1k06Z0R+RcVohSpuUt4K2yp+rN7DPg2lQH5lzaFBbChRcGNbyuugr+9jdo2DDdUTmXFaKUaekhaT6wIFzvLOmhlEfmXLrceit8+CGMGwf/+IcnFOeqIMrw19+BnwBrAMxsDnBCKoNyrsaVlsKaNcHre+8Nnj+58ML0xuRcFop0xdHMvtT2pbtLUxOOc2mwalUwP/zatfDuu9CsWbA456osSlL5UtKxgEnaleB6yoLUhuVcDXn7bejXD775Bh580CsLO7eTogx/DQWuIijPUgh0CdcrJek0SQslLZZ0U4Lth0h6T9JGSb+L0ldSM0mvS1oUft0rSizObccM/vIX6NMHGjeGadN8Mi3nkqDCpBIWj7zUzPqb2T5m1sLMLjGzNZUdOOz7IHA60BG4SFLHuN2+ITjzubsKfW8CJptZO4In/HdIVs5VqqQEHnssmEhr5kzo3DndETlXK1SYVMysFOhbzWMfDSw2s8/MbBMwLv5YZrbKzKYDm6vQty/wePj6ceCn1YzP1SJ5eXlI2m7p06fPDm0jhg4NEkqTJsHQ1zPPBKXrnXNJEeWayruS/gE8DXxf1mhmsyrptz/wZcx6IdA9YlwV9d3HzJaHMSyX1CLRASQNAYYA5ObmUlBQEPGt06e4uNjjrKbevXvTu3fvbevXXXcdpaWlPPDAA0GDGfuNH8+PHnqIL7/9lk9/9av0BBqjqKiI0tLSjPteJpKJP/NEPM70i5JUyiaJuD2mzYATK+mXaHDaogS1k32Dnc1GAiMBOnToYLF/cDJVQUEBHmdy7LnnnhQVFQVxrlsHQ4YEz52cfjoHPPQQBzRvnu51z3+QAAAaJ0lEQVQQt48xw2XDzxw8zkwQ5Yn6PtU8diFwQMx6K2BZEvqulNQyPEtpCayqZnyuLliwILhusmgR/OlPcOONUC/K/SnOueqI8kR9c0n3S5olaaak+yRF+W/edKCdpLbhrcj9gAkR46qo7wSgbDrjAcD4iMd0ddGuuwZfJ0+Gm2/2hOJcikUZ/hpHMKfK+eF6f4LrKydX1MnMtki6GphEUNV4VFiQcmi4fYSkfYEZwO7AVknXAR3NbG2ivuGh7wKekTQY+AK4IPrHdXXC+vWcs2wZT+y2Gxx8MMyb58+fOFdDoiSVZmZ2R8z6HyVFuuPKzCYCE+PaRsS8XkEwtBWpb9i+BvDZkVxiixbBBRfw20WL+PBHPwraPKE4V2OijAXkS+onqV64/Jwf5lVxLnM8/zx06wZffsmNhx/O7CZN0h2Rc3VOlKRyBfAksDFcxgG/lbRO0tpUBudcZLffDuefD4ceCh98wPsZcHeXc3VRZU/UCzjMzOqZWYNwqWdmOeHiT425pMjLy9u5Axx7LFx7LUyZAgcemJSY4u10jM7VAZU9UW/ACzUUi6vDhg8fXvVOr70WlKkHOPlkuO++H+72SoFqxehcHRNl+GuapKNSHolzUZWWwm23wRlnwL//veNUv2PHMm7aNGbNmQNt2sDYsWkJ07m6KMrdX32AoZKWEJRpEcFJTKdUBuZcQitWwMUXQ34+DB4MDzyw/dnJ2LEwZAj7btwYrC9dGjxND8GcKc65lIqSVE5PeRTOQaVlK3YtLeWJ6dPZc/Nm7u3QgUmLF8Pp2//zHDdt2g8JpUxJCSsGD6bfI48kOWLnXLwoZVqWSjoOaGdmj0nKBZqmPjTnQmYgsal+fR5r04ZPmjbl86aJ/wm2iE8olbQ755Kr0qQiaRjQDegAPAY0AMYAPVMbmqtrElZt/eYbGDAAfvlL6BthFoY2bYIhrzj1Wrfe6aqw2skJvPLy8hJe7I8/7rBhw/xOM5e1olyoPxc4h7DsvZktA3JSGZRzAEyfDkccAZMmwddfR+tz553BTI6xGjcO2tMsLy8PM9tuyc/P36HNE4rLZlGSyqbw1mIDkOSPKbvUMoN//AN6hifD77wTnKlE0b8/jBzJioYN2QrQujWMHOkX6Z2rIVEu1D8j6Z/AnpIuBy4D/IqnS53Jk+Gaa+DMM+GJJ6BZs6r179+ffo88QlFREbNnz05NjM65hKJcqL9b0inAWoLrKv9nZq+nPDJXpwwbNgy+/z6Y5vekk+Cll4LnUDKoVP2wYcPSHYJzGS/KfCq/ARaY2Q1m9jtPKHVL1Lnfd/Y6QF7r1sFF9nnzQIKzzsqohAJepsW5KKL81u4OTJL0tqSrJO2T6qBc5oi/uNyrVy86d+6cvIvLJSVw2WXB0qkT7L13UuN3ztWsSpOKmQ03s8OAq4D9gLckvZHyyFzt98kncMwxMHp0UHblv/+Fffz/LM5lsygX6susAlYAa4AWqQnH1SkjR8KyZTBxIpx2Wrqjcc4lQZRrKr+SVABMBvYGLve6X67aNm2Czz4LXt95J8ye7QnFuVokyjWV1sCvzewwMxtmZvOjHlzSaZIWSlos6aYE2yXp/nD7h5KOCNs7SJods6wN569HUp6kr2K2nRE1HpdmS5fC8ccHZeo3bICGDaFVwtmknXNZKsrw13+B48P6X/PNLD/KgSXVBx4ETgEKgemSJsQlpdOBduHSHXgY6G5mC4EuMcf5iu3ndbnXzO6OEofLEK+8ApdeGpStHzUKGjVKd0TOuRQo90xF0v6S3geGAQcBPwLyJP1P0v4Rjn00sNjMPjOzTQTTEMcXb+oLPGGBaQQPWLaM2+ck4FMz27Ggk6tU2m+D3bIFbrkluEX4wANh5sxg2t84aY/TOZcUFZ2p/AN42MxGxzZK+gXwEDsmiHj7A1/GrBcSnI1Uts/+wPKYtn7AU3H9rg7jmAFcb2bfxr+5pCHAEIDc3NydLiZYE4qLi5Me5/DhwystKV8VRUVFlJaWRo5TpaV0evVV1p95JouvuYathYVQWJj0OEePHs3jjz++4/vHFWscMGAAAwcOrPb7JFsqfuap4HEmV7bEWS3xzxuULcDC6myL2ecC4NGY9UuBB+L2eQU4LmZ9MnBkzPquwGpgn5i2fYD6BGdZdwKjKoulffv2lg3y8/OTfszgR5wkY8bY8oYNrRTMWrc2GzOm/H0LCsxWrAher19f6aGTGmcoFd/PZMuGGM08zmTLljiBGVbJ39f4paIL9fUTNUqqV962OIXAATHrrYBlVdzndGCWma0sazCzlWZWamZbCWqQHR0hFrezYmZUrAc/zKgYP1Xv1q3wpz/BiSfCH/4QtPn1E+fqjIqGv16S9AhwnZl9D9sqFN8LTIxw7OlAO0ltCS609wMujttnAsFQ1jiCobHvzCx26Osi4oa+JLWM2edcYG6EWOq0ZAx/RZlRcffNm7nl44855ptveKNFC/728cesT+LQm3Mu81WUVH4P/BlYKmkpQen71sDjwC2VHdjMtki6GphEcGYzyszmSRoabh9BkJzOABYDJcCgsv6SGhPcOXZF3KH/IqlLGM+SBNtdClQ2o2Lb77/nro8+Yq9Nm7inXTsmtGwZ1PByztUp5SYVM9sM/E7SbQR3fongbq6SqAc3s4nEndWEyaTstRGUf0nUtwRonqD90qjv7wJJuSBY2YyK33wDP/sZ/OUv/LZbN35bxcPv7KyKzrnMEKX213oz+8jMPqxKQnG1TKIZFXfbDbp2DZ6Sb9YM3nwTunVLT3zOuYyQWbXFXeaKn1GxZUvIyQnmPXnnnXRH55zLEJ5UXHT9+9Ove3dub9UKvv0WdtkF8vODO72cc46IVYoldQLaxO5vZs+nKCaXRMmerXDg0qUMLCwMZmd88klokZyC1T6ronO1Q6VJRdIooBMwD4KRD4I7rzypZIFklz95KzeXkg0buHLSJKgf5XGlaLxMi3O1Q5QzlWPMrGPKI3FZ4fMmTfhg3325MokJxTlXe0S5pvKeJE8qzjnnKhXlTOVxgsSyAthI8LyKmU/U5ZxzLk6UpDKKoBjkR/xwTcU555zbQZSk8oWZTUh5JM4557JelGsqH0t6UtJFks4rW1IemcsIeXl5SNq2vPXWW8yZM2e7Nkl+95ZzDoiWVHYjuJZyKnB2uJyVyqBc5sjLy9thvoT8/Pwd2jypOOcgwvCXmQ2qbB/nnHMOoj38+BjBw47bMbPLUhKRc865rBXlQv3LMa8bEUyMFT+Do3POORdp+Ou52HVJTwFvpCwi55xzWas6VYrbAQcmOxDnnHPZL8o1lXUE11QUfl0B3JjiuJxzzmWhKDM/5pjZ7jFf28cPiZVH0mmSFkpaLOmmBNsl6f5w+4eSjojZtkTSR5JmS5oR095M0uuSFoVf94r6YZ1zzqVWyuZTkVQfeBA4BSgEpkuaYGbzY3Y7nWA4rR3QHXg4/Fqmj5mtjjv0TcBkM7srTFQ34WdOzjmXEVI5n8rRwGIz+yw8zjigLxCbVPoCT5iZAdMk7SmppZktr+C4fYHe4evHgQI8qTjnXEZI5Xwq+wNfxqwXsv1ZSHn77A8sJ0hc/5VkwD/NbGS4zz5lScfMlktKOPWgpCHAEIDc3FwKCgqq8RFqVnFxsceZRNkQZzbECB5nsmVLnNURJam8J6lj3LBVFErQFv8QZUX79DSzZWHSeF3Sx2Y2Jeqbh0loJECHDh2sd+/eUbumTUFBAR5n8mRDnNkQI3icyZYtcVZHKudTKQQOiFlvxY4PTZa7j5mVfV0l6QWC4bQpwMqyITJJLYFVET6Dc865GhDlOZWy+VRO44dikmdH6DcdaCepraRdgX5AfAn9CcAvwrvAjgG+C5NFE0k5AJKaEBSznBvTZ0D4egAwPkIszjnnakDK5lMxsy2SrgYmAfWBUWY2T9LQcPsIYCJwBrAYKAHKilfuA7wgqSzGJ83stXDbXcAzkgYDXwAXVDU255xzqRElqXws6UngJYLhL6DyW4rDfSYSJI7YthExrw24KkG/z4DO5RxzDXBShLidc87VsChJJXY+lTJRbil2zjlXx/h8Ks4555Km3KQi6fdm9hdJD5B4PpVrUxqZc865rFPRmcqC8OuMCvZxzjnntik3qZjZS+HLp81sQ+w2SXunNCrnnHNZKcpzKv8LnyEBQNL5wNTUheSccy5bRbn7qz8wSlIBsB/QHDgxlUE555zLTlHu/vpI0p3Av4F1wAlmVpjyyJxzzmWdKKXv/wUcTFD+vj3wkqR/mNmDqQ7OOedcdolyTWUuwWRZn5vZJOAY4IhK+jjnnKuDogx/3Ru3/h0wOGUROeecy1pRhr/aAX8GOgKNytrN7KAUxuWccy4LRRn+eoxg7vgtQB/gCYKL9s4559x2oiSV3cxsMiAzW2pmefgtxc455xKI8pzKBkn1gEXh/ChfAQnnhXfOOVe3RTlTuQ5oDFwLHEkwC+SACns455yrk6Lc/TU9fFnMDzMzOuecczuoqPR9hVMIm9k5yQ/HOedcNqvoTKUH8CXwFPA+oKoeXNJpwH0Ec9Q/amZ3xW1XuP0MgjnqB5rZLEkHENxlti+wFRhpZveFffKAy4Gvw8PcEk5b7JxzLs0qSir7AqcAFwEXA68AT5nZvCgHllQfeDA8RiEwXdIEM5sfs9vpQLtw6U5w63J3gtuXrw8TTA4wU9LrMX3vNbO7o35I55xzNaPcC/VmVmpmr5nZAILSLIuBAknXRDz20cBiM/vMzDYB44C+cfv0BZ6wwDRgT0ktzWy5mc0K41hHMGHY/lX7aM4552pahXd/SWoo6TxgDHAVcD/wfMRj708wfFamkB0TQ6X7SGoDdCUYgitztaQPJY2StFfEeJxzzqVYRRfqHwcOB14FhpvZ3CoeO9E1mPi57ivcR1JT4DngOjNbGzY/DNwR7ncH8DfgsgTxDwGGAOTm5lJQUFDF8GtecXGxx5lE2RBnNsQIHmeyZUuc1WJmCReCC+TrwmVtzLIOWFtev5j+PYBJMes3AzfH7fNP4KKY9YVAy/B1A2AS8NsK3qMNMLeyWNq3b2/ZID8/P90hROJxJk82xGjmcSZbtsQJzLBK/r7GLxVdU6lnZjnhsnvMkmNmu0fIV9OBdpLaStoV6AfE36Y8AfiFAscA35nZ8vCusH8BC8zsntgOklrGrJ5LUJrfOedcBohSpqVazGxLWNZlEsEtxaPMbJ6koeH2EcBEgtuJFxPcUlz2cGVPgif3P5I0O2wru3X4L5K6EAx/LQGuSNVncM45VzUpSyoAYRKYGNc2Iua1EdwAEN/vHcp5LsbMLk1ymM4555IkSu0v55xzLhJPKs4555LGk4pzzrmk8aTinHMuaTypOOecSxpPKs4555LGk4pzzrmk8aTinHMuaTypOOecSxpPKs4555LGk4pzzrmk8aTinHMuaTypOOecSxpPKtWUl5eX7hAiyZY4nXO1gyeVaho+fHi6Q4gkW+J0ztUOnlQywdix0KYNvU48Edq0Cdadcy4LeVJJk7y8PCRxscT3l1wCS5ciM1i6lO8vuYSLJST58JVzLqukdObH2q5379471b9Xr17cM20aTTZu3K69CXBPw4YsO+YYCgoKdvp9nHOupviZSpq1iEsolbU751wmS+mZiqTTgPuA+sCjZnZX3HaF288ASoCBZjaror6SmgFPA22AJcDPzezbVH6O8hQUFOz8Qdq0gaVLd2iu17p1Uo4ffIudc65mpOxMRVJ94EHgdKAjcJGkjnG7nQ60C5chwMMR+t4ETDazdsDkcD3rbLumsnQp38dt+x64eOlSv6binMs6qRz+OhpYbGafmdkmYBzQN26fvsATFpgG7CmpZSV9+wKPh68fB36aws+QMnl5eZgZT5rRZMwYaN0ak6B1a5qMGcOTZpiZJxXnXFZJ5fDX/sCXMeuFQPcI++xfSd99zGw5gJktl9Qi0ZtLGkJw9gOwUdLc6nyIChwpaWaSj7k3S5eu5pJL4JJLknXM1MQJq5N8zFTIhjizIUbwOJMtW+LsUNUOqUwqiQbzLeI+UfpWyMxGAiMBJM0ws25V6Z8OHmdyZUOc2RAjeJzJlk1xVrVPKoe/CoEDYtZbAcsi7lNR35XhEBnh11VJjNk559xOSGVSmQ60k9RW0q5AP2BC3D4TgF8ocAzwXTi0VVHfCcCA8PUAYHwKP4NzzrkqSNnwl5ltkXQ1MIngtuBRZjZP0tBw+whgIsHtxIsJbikeVFHf8NB3Ac9IGgx8AVwQIZyRyftkKeVxJlc2xJkNMYLHmWy1Nk6ZVelShXPOOVcuf6LeOedc0nhScc45lzS1OqlIOk3SQkmLJWXUk/eSRklaFfv8jKRmkl6XtCj8uleaYzxAUr6kBZLmSfp1hsbZSNL/JM0J4xyeiXGGMdWX9IGklzM1RgBJSyR9JGl22W2lmRarpD0lPSvp4/DfaI8MjLFD+D0sW9ZKui7T4gxj/U34+zNX0lPh71WV46y1SSVimZh0Gg2cFteWaSVotgDXm9mhwDHAVeH3MNPi3AicaGadgS7AaeHdhJkWJ8CvgQUx65kYY5k+ZtYl5nmKTIv1PuA1MzsE6Ezwfc2oGM1sYfg97AIcSXBD0gtkWJyS9geuBbqZ2eEEN0j1ozpxWlgOpLYtQA9gUsz6zcDN6Y4rLsY2wNyY9YVAy/B1S2BhumOMi3c8cEomxwk0BmYRVGDIqDgJnreaDJwIvJzJP3OCYq17x7VlTKzA7sDnhDcbZWKMCWI+FXg3E+PkhyomzQjuCn45jLfKcdbaMxXKLwGTybYrQQMkLEGTDpLaAF2B98nAOMNhpdkED8O+bmaZGOffgd8DW2PaMi3GMgb8V9LMsOQRZFasBwFfA4+Fw4mPSmqSYTHG6wc8Fb7OqDjN7CvgboLHNJYTPDP4X6oRZ21OKjtd6sUFJDUFngOuM7O16Y4nETMrtWCIoRVwtKTD0x1TLElnAavMLNl12FKlp5kdQTB8fJWkE9IdUJxdgCOAh82sK0Fx73QPx5UrfIj7HOA/6Y4lkfBaSV+gLbAf0ERStQoQ1uakEqVMTKbJuBI0khoQJJSxZvZ82JxxcZYxsyKggOB6VSbF2RM4R9ISgqrbJ0oaQ2bFuI2ZLQu/riK4BnA0mRVrIVAYnpECPEuQZDIpxlinA7PMbGW4nmlxngx8bmZfm9lm4HngWKoRZ21OKlHKxGSajCpBI0nAv4AFZnZPzKZMizNX0p7h690IfkE+JoPiNLObzayVmbUh+Lf4ppldQgbFWEZSE0k5Za8JxtbnkkGxmtkK4EtJZVV0TwLmk0ExxrmIH4a+IPPi/AI4RlLj8Pf+JIIbH6oeZ7ovXqX44tMZwCfAp8Ct6Y4nLranCMYuNxP8r2sw0JzgQu6i8GuzNMd4HMGQ4YfA7HA5IwPj7AR8EMY5F/i/sD2j4oyJtzc/XKjPuBgJrlfMCZd5Zb87mRYrwZ1+M8Kf+4vAXpkWYxhnY2ANsEdMWybGOZzgP2NzgX8DDasTp5dpcc45lzS1efjLOedcDfOk4pxzLmk8qTjnnEsaTyrOOeeSxpOKc865pPGk4rKSpOII+zxaVkRU0i1x26ZW9z0klYYVZ+dK+o+kxlHjTrewQu4vwtcFkrpV1qeCY+VKei150bnawJOKq7XM7JdmNj9cvSVu27E7cej1FlSePRzYBAyN3ahAjf1uhRW5o+y3C3AZ8GQS3nMXM/saWC6p584ez9UenlRcVpPUO/wfd9m8GmPDJ4K3/U9c0l3AbuHZxdhwW3H4tamkyZJmKZg/pG8VQ3gb+JGkNuGcHg8RVEk+QNKpkt4Lj/2fsIYaku6SNF/Sh5LuDtsuCM985kiaErYNlPSPmM/6sqTeZfFLul3S+0APSUdKeissADmprLRGnBMJSoVsiWm7RNLU8L2PDo99dNj2Qfi1Q0w8/5H0EvDfsP+LQP8qfs9cbZbupzh98aU6C1Acfu0NfEdQ260e8B5wXLitgGB+iG37J+i/C7B7+HpvYDFseyi4uJL33oWgbMWvCKYx2AocE3OsKUCTcP1G4P8ISosvjHmPPcOvHwH7x7UNBP4R874vA73D1wb8PHzdAJgK5IbrFwKjEsQ9HLgmZr0AeCR8fQLhNAwEZeV3CV+fDDwXE08hMU9VE1T+/ijd/x58yZxllwh5x7lM9z8zKwRQUP6+DfBOxL4C/hRW4d1K8EdyH2BFBX12C98HgjOVfxFUdl1qZtPC9mMIJod7Nzxx2pUg4a0FNgCPSnqFIFEAvAuMlvQMQTG/ypQSFPoE6AAcDrwevld9ghJA8Vqy/QRhENajMrMpknYPa6jlAI9LakeQvBrE7P+6mX0Ts74q/OzOAXhScbXCxpjXpVTt33V/IBc40sw2h1WEG1XSZ70FZfa3Cf+Yfx/bRPAH+KL4zuEw00kEhSWvJpi1cqik7sCZwGxJXQhm3owdoo6Na4OZlca81zwz61FZ3Ak+W3ydJgPuAPLN7FwF8+gUxGz/Pm7/RuFxnQP8moqrOzYrKOMfbw+CeU42S+oDtE7S+00Dekr6EUBY/bV9eF1lDzObCFxHUBQRSQeb2ftm9n/AaoJpG5YAXSTVk3QAQfn5RBYCuZJ6hMdqIOmwBPstAH4U13Zh2Oc4gomZviP4nnwVbh9YyedsT1CA0DnAz1Rc3TES+FDSLDOLvbA8FnhJ0gyCKswfJ+PNzOxrSQOBpyQ1DJv/AKwDxktqRHCG8Ztw21/D4SYRVIOdE7Z/TnC9ZS7BDQCJ3muTpJ8B90vag+D3+u8EFYZjvUpQfTbWt+Ht1bsT3BkG8BeC4a/fAm9W8lH7AK9Uso+rQ7xKsXN1iKQXgN+b2aIkHW8K0NfMvk3G8Vz286TiXB0S3h68j5lNScKxcgmmHX5x5yNztYUnFeecc0njF+qdc84ljScV55xzSeNJxTnnXNJ4UnHOOZc0nlScc84lzf8Hi/0NkjC/5OcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from scipy import stats\n", "\n", "reg = stats.linregress(list(dict.fromkeys(InitialPressure))[1:],OverpressureMean[1:])\n", "print(f\"R-squared: {reg.rvalue**2:.6f}\")\n", "\n", "plt.errorbar(list(dict.fromkeys(InitialPressure)),OverpressureMean,xerr = 5, yerr = OverpressureStd, fmt = 'ro', ecolor = 'black', capsize=5, label = 'Original data')\n", "plt.plot(np.array(list(dict.fromkeys(InitialPressure))[1:]), reg.intercept + reg.slope*np.array(list(dict.fromkeys(InitialPressure))[1:]), 'r--', label='fitted line')\n", "plt.xlabel('Initial Pressure (bar)')\n", "plt.ylabel('Maximum Overpressure (bar/mg)')\n", "plt.grid(linestyle='-')\n", "plt.axis((0,80,0,0.200))\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "L'approximation linéaire sur l'intervalle $[20,60]$ bars est satisfaisante et pourrait permettre de prédire les valeurs de surpression pour les pressions initiales intermédiaires.\n", "\n", "Regardons désormais à quoi ressemble les vitesses maximales de montée en pression :" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuUHVWZ9/HvL9xCGyAiHYkBuhGSMA5DwmVxGXgnncj4AqK8KjphggaM028UBmF0zbzMuEzHWYyMjo5y0ZgAAtLC4KCCEGUQ00HEcItJIFwkA8kYIUTUJDSBhiTP+0dV68lJ9+nqc+lzqvv3WavWqdpVp/ZzTjr9dNXetbciAjMzs8EaVe8AzMwsn5xAzMysLE4gZmZWFicQMzMrixOImZmVxQnEzMzKUrcEImm0pIckrZS0WtL8Po5pk7RZ0op0+Ww9YjUzs13tXse6e4AZEdEtaQ/gfkk/jIhlRcf9NCLOrEN8ZmZWQt0SSCRPMHanm3uki59qNDPLiXpegSBpN+BR4HDg6oh4sI/DTpK0Enge+HRErO7nXO1AO8Do0aOPPeSQQ2oUdW3t2LGDUaPy2zTl+OvL8ddXnuP/5S9/+VJENA/qTRFR9wUYCywBjiwq3xcYk66fATyT5XyTJk2KvFqyZEm9Q6iI468vx19feY4feCQG+bu7IVJlRGwCuoDTisq3RER3ur4Y2EPSAUMfoZmZFatnL6xmSWPT9b2BU4Gnio45UJLS9eNJ4v3tUMdqZma7qmcbyHjghrQdZBRwa0TcKWkuQEQsAM4GPi5pG/AqMDO91DIzszqrZy+sVcDRfZQvKFi/CrhqKOMyM7NsGqINxMzM8scJxMzMyuIEYmZmZXECMTOzsjiBmJlZWZxAzMysLE4gZmZWFicQMzMrS+YEIulN6VPjZmYjXkdHB5J2WqZPn75LWUdHR71DrZl+E4ikUZL+WtJdkjaSjFP1Qjp74BclTRy6MM3MGktHR8dOI9NOmzaNKVOm7DJi7YhMICTDqx8GXAocGBEHR8Q44H8By4DLJZ07BDGamVkDKjUW1qkR8UZxYUT8DrgNuC2ditbMzEagfq9AepOHpMMk7ZWut0m6qHcY9r4SjJmZjQxZGtFvA7ZLOhy4FjgU+HZNozIzq4E8t0c0YuxZEsiOiNgGvA/4SkRcQjKXh5lZrsyfP7/eIZStEWPPkkDekHQOMBu4My1z24eZWa/OTm5ZtozlK1dCayt0dtY7oiGRJYGcD5wEXBYRz0k6FLiptmGZmeVEZye0t3NgT0/yC3XdOmhvHxFJpN9eWJIWAj8EfhwRF/WWR8RzwOVDEJuZWdW1tbVV9Xy3LFvGgT09Oxdu3cqGOXOYuWhRVetqNKWuQK4DpgCLJd0r6R8kTalWxZJGS3pI0sr04cRdbvApcYWkNZJWSTqmWvWbmVXDuOLkMUD5cNLvFUhELCN5YLBD0luAdwGfknQUsBz4UUTcWkHdPcCMiOhOnye5X9IP03p7nQ5MTJcTgK+nr2ZmZenq6qruCVtbk9tWRUa1tFS1LklVO1e1ZBoLKyJ+GxE3R8RHImIqcDXJL/WyRaI73dwjXaLosLOAG9NjlwFjJbkHmJk1jssug6amncuampLyYa7Uk+gASPq7Poo3A3dVWnk6OOOjwOHA1RHxYNEhE4BfFWyvT8teqLRuM7OqmDULgA1z5jCup4dRLS1J8kjLh7MBEwhwXLr8IN1+N/AwMFfSdyLiC+VWHhHbganpk+3fk3RkRDxecEhf12zFVynJgVI70A7Q3Nxc/cvUIdLd3Z3b2MHx15vjH1hNzj9hAhcfcQTbt2/nyiuv7K2o6tU03L9t8ciRxQtwNzCmYHsM8CNgb+CJgd6fdQHmAZ8uKvsGcE7B9tPA+IHONWnSpMirJUuW1DuEijj++nL8pc2bN69m5542bVpMmTKlZuevZewREcAjMcjf21naQA4BXi/YfgNoiYhXSRrCyyKpuXdMLUl7A6eSDBlf6A7gI2lvrBOBzRHh21dmVpZGHA4kq0aMPcstrG8DyyTdnm6/B7hZ0puAJyqoezxwQ9oOMgq4NSLulDQXICIWAIuBM4A1wFaShxrNzKwBDJhAIuKfJS0GTiFpk5gbEY+ku8tuJYqIVcDRfZQvKFgP4IJy6zAzs9rJcgUC8CzJravdASQdExHLaxaVmZk1vAHbQCT9M7AKuAL4Urr8W43jMjNraMVzoi9dupSVK1eOqDnRs1yBfAg4LCJeH/BIM7MRoqOjY5fk0NXVVfWxthpZll5YjwNjax2ImZnlS5YrkM8Dv5D0OAXddiPivTWLyszMGl6WBHID8K/AY8CO2oZjZmZ5kSWBvBQRV9Q8EjMzy5UsCeRRSZ8neSq88BaWu/GamY1gWRJI78N+JxaUBTCj+uGYmVlelJrS9iRgWURMH8J4zMwsJ0p1451NcvvqFknnSTpwqIIyM7PGV2pK27kAko4gmVr2ekn7AUtIhnP/WSTzeZiZ2Qg04IOEEfFURPx7RJxG0u5xP/BBoHj2QDMzG0FKNqJLGgWsiogjAdI5QBani5mZjWAlr0AiYgewUtIhQxSPmZnlRJZuvOOB1ZIeAl7pLfRQJmZmI1uWBDK/5lGYmVnuZJmRcOlQBGJmZvmSZUKpEyU9LKlb0uuStkvaMhTBmZlZ48oyH8hVwDnAM8DewMfSsopIOljSEklPSlot6ZN9HNMmabOkFeny2UrrNTOz6sg0J3pErJG0W/rg4DclPVCFurcBn4qI5ZL2IXnq/Z6IeKLouJ9GxJlVqM/MzKooSwLZKmlPYIWkLwAvAG+qtOKIeCE9FxHxsqQngQlAcQIxM7MGpIgofYDUArwI7AlcAuwHfC0i1lQtCKkVuA84MiK2FJS3AbcB64HngU9HxOp+ztEOtAM0Nzcfe+utt1YrvCHV3d3NmDFj6h1G2Rx/fTn++spz/NOnT380Io4b1JsiYsCFJHkcBfwZsGeW92RdgDHAo8D7+9i3LzAmXT8DeCbLOSdNmhR5tWTJknqHUBHHX1+Ov77yHD/wSAzy93eWXljvBv4buIKk8XyNpNMHlaX6P/ceJFcYnRHx3eL9EbElIrrT9cXAHpIOqEbdZmZWmSxtIF8Cpkd6y0rSYcBdwA8rqViSgGuBJyPiy/0ccyDwYkSEpONJeo39tpJ6zcysOrIkkI2xc3vHs8DGKtR9MvBh4DFJK9KyfwQOAYiIBcDZwMclbQNeBWaml1pmZlZnpWYkfH+6ulrSYuBWkqlsPwg8XGnFEXE/oAGOuYoqPHNiZmbVV+oK5D0F6y8C09L13wBvrllEZmaWC6VmJDx/KAMxM7N86bcXlqTPSOr3SkPSDEl+QtzMbIQqdQvrMeBOSa8By0luXY0GJgJTgR8D/1LzCM3MrCGVuoV1O3C7pIkkPabGA1uAm4D2SKa3NTOzESrLfCDPkIzEa2Zm9gdZhnM3MzPbhROImZmVxQnEzMzKkmUwxUmS7pX0eLp9lKTP1D40MzNrZFmuQBYBlwJvAETEKmBmLYMyM7PGlyWBNEXEQ0Vl22oRjJll19HRgaSdlunTp+9S1tHRUe9QbZjKkkBeSodwDwBJZ5NORWtm9dPR0bHT5D7Tpk1jypQpu0z64wRitZJlOPcLgIXAEZJ+DTwHzKppVGZm1vCyXIFERJwKNANHRMQpGd9nw5xvoZiNbFkSwW0AEfFKRLyclv1n7UKyvPAtFLORrdRovEdI+gCwn6T3FyznkQyqaGYjTN7/GMh7/I2m1BXIZOBMYCzJ5FK9yzHA39Q+NDNrNPPnz693CBXJe/yNpt8EEhG3p5NKnRkR5xcsF0XEA5VWLOlgSUskPSlptaRP9nGMJF0haY2kVZKOqbReM2tAnZ3Q2sq0GTOgtTXZtoaXpRfWLyRdAPwpBbeuIuKjFda9DfhURCyXtA/wqKR7IuKJgmNOJ5l/ZCJwAvD19NXMhovOTmhvh61bEcC6dck2wCx3+GxkWRLIt4CngP8NfI6kC++TlVYcES+QPk8SES9LehKYABQmkLOAGyMigGWSxkoan77XzOqgra2tKudZu3Yt69at4zmgtXjn1q2sPfdcDj33XFpaWmht3eUIawBZEsjhEfFBSWdFxA2Svg3cXc0gJLUCRwMPFu2aAPyqYHt9WrZLApHUDrQDNDc309XVVc0Qh0x3d3duY9+0aRPbt2/Pbfzg7z9rPdXw2muvAXBIP/sPKTiuWnUCNf1+8vzzU44sCeSN9HWTpCOBDfTxB0O5JI0h6Sp8cURsKd7dx1uir/NExEKSBx6ZPHlyVOuvpKHW1dVVtb/whtrYsWPZtGlTbuMHf/9ZrFixoronbG1NblsVGdXSQqxdW9WqJNX0+8nzz085sjwHslDSm4HPAHeQ3GL6QjUql7QHSfLojIjv9nHIeuDggu2DgOerUbeZNYjLLoOmpp3LmpqScmtoAyaQiLgmIn4fEfdFxNsjYlxELKi0YkkCrgWejIgv93PYHcBH0t5YJwKb3f5hNszMmgULF0JLCyFBS0uy7Qb0hlcygUjaTdIBBdt7SvqbtMG7UicDHwZmSFqRLmdImitpbnrMYuBZYA3JsPKfqEK9ZtZoZs2CtWtZ+pOfwNq1Th450W8biKSZwDeAVyQ9A3SQ9Mh6mCoMphgR99N3G0fhMUEymKOZNYB58+bVO4SK5D3+RlOqEf0zwLERsSZ9gO/nwMyI+N7QhGZmjSbvQ4HkPf5GU+oW1usRsQYgIpYDzzl5mJlZr1JXIOMk/V3B9pjC7RIN32ZmNgKUSiCLgH1KbJuZ2QjWbwKJCA9baWZm/fLMgmZmVhYnEDMzK4sTiJmZlWXAwRQl7QV8gGQAxT8cHxGfq11YZmbW6LKMxns7sBl4FOipbThmZpYXWRLIQRFxWs0jMTOzXMnSBvKApD+reSRmI0Deh9LIe/xWXVkSyCkk85U/LWmVpMckrap1YGbD0fz5+X68Ku/xW3VluYV1es2jMLPKdHZyy7JljOvpSWb4u+wyD4luNZdlQql1wFjgPekyNi0zs0bQ2Qnt7RzY05P8h163Dtrbk3KzGsrSjfeTwN8AvVPO3iRpYURcWdPIzIapas+ZfcuyZRzYU9RBcutWNsyZw8xFi6pal1mhLLew5gAnRMQrAJL+lWRuECcQswYwrjh5DFBuVi1ZEoiA7QXb2xlgJkFrXB0dHbnuSZP3+AG6urqqe8LW1uS2VZFRLS1Vr0vyf337oyy9sL4JPCipQ1IHsAy4thqVS7pO0kZJj/ezv03S5oI50z9bjXpHsrz3osl7/DVx2WXQ1LRzWVNTUm5WQ1ka0b8MnA/8Dvg9cH5EfKVK9V8PDPSQ4k8jYmq6ePiURpX2Alq+cmXyF7EbcIfOrFmwcCEb9tqLHQAtLbBwoXthWc31ewtL0r4RsUXS/sDadOndt39E/K7SyiPiPkmtlZ7H6qygFxDwx15A4F9iQ2XWLGYuWsSmTZtYsWJFvaOxEaJUG8i3gTNJxsCKgnKl22+vYVyFTpK0Enge+HRErO7rIEntQDtAc3Nz9e8zD5Hu7u6axz516tSqnm/xE0/wtjfe2Llw61aeP/98zvjiF6taF9SgDaFArb//2bNn1+z8mzZtYvv27bmNH4bm57+W8h7/YCkiBj6qlgEkVyB3RsSRfezbF9gREd2SzgC+GhETBzrn5MmT4+mnn656rEOhq6ur6t08C0li2rRpVT3nT5Yu7fNe6A5gRpXrWrp0KbX8ma31919LbW1tub8CyfP3D/mOX9KjEXHcYN6T5TmQeyPinQOV1UJEbClYXyzpa5IOiIiXal33cOZeQGZWDf02oksanbZ/HCDpzZL2T5dW4G1DEZykA5X+xpB0fBrvb4eibhsE9wIyG5FKXYH8X+BikmTxKH989mMLcHU1Kpd0M9BGkqTWA/OAPQAiYgFwNvBxSduAV4GZUe97brartKF8w5w5jOvpYVRLi8diMhsB+k0gEfFV4KuS/rZWw5ZExDkD7L8KuKoWdVuVuReQ2YgzYBtIRFwp6UjgHcDogvIbaxmY1ca8efPqHUJF8h6/2XCSpRF9HsltpncAi0mGd78fcALJobwPA5L3+M2GkyxDmZwNvBPYEBHnA1OAvWoalZmZNbwsCeTViNgBbEufy9jI0D1EaGZmDSrLaLyPSBoLLCLpjdUNPFTTqMzMrOFlaUT/RLq6QNKPgH0jwnOim5mNcFka0Y/po+wwYF1EbKtJVGZm1vCy3ML6GnAMsIrkYcIj0/W3SJobEf9Vw/jMzKxBZWlEXwscHRHHRcSxwNHA48CpwBdqGJuZmTWwLAnkiMIh1CPiCZKE8mztwjIzs0aX5RbW05K+DtySbv8V8EtJewFv9P82MzMbzrJcgZwHrCEZWPES4Nm07A1geq0CMzOzxpalG++rwJfSpVh31SMyM7NcyNKNdyLweXYdTNFPo5uZjWBZbmF9E/g6sI3kltWNwLdqGZSZmTW+LAlk74i4l2T+9HUR0QHMqG1YZmbW6LL0wnpN0ijgGUkXAr8GxtU2LDMza3RZrkAuBpqAi4BjgQ8Ds2sZlJmZNb4BE0hEPBwR3SRzoV8UEe+PiGXVqFzSdZI2Snq8n/2SdIWkNZJW9TUul5mZ1ceACUTScZIeIxn/6jFJKyUdW6X6rwdOK7H/dGBiurSTNOabmVkDyHIL6zrgExHRGhGtwAUkPbMqFhH3Ab8rcchZwI2RWAaMlTS+GnWbmVllsjSivxwRP+3diIj7Jb1cw5gKTQB+VbC9Pi17ofhASe0kVyk0NzfT1dU1FPFVXXd3d25j37RpE9u3b89t/JCv7//666/nhhtu2KVc0k7bs2fP5rzzzhuiqCqTp++/L3mPf7CyJJCHJH0DuBkIkrGwunrbIyJieQ3jUx9l0deBEbEQWAgwefLkaGtrq2FYtdPV1UVeYx87diybNm3KbfyQr++/ra2N66+/fqeyPMXfF8efL1luYU0FJgHzgA7gT4A/Jxna5N9qFlliPXBwwfZBwPM1rtNGiI6ODiTttEyfPn2Xso6OjnqHataQsoyFVc8BE+8ALpR0C3ACsDkidrl9ZVaOjo6OnZJDW1sbmzZtYsWKFfULyixHsvTC2k/SlyU9ki5fkrRfNSqXdDPwc2CypPWS5kiaK2lueshiktF/1wCLgE/0cyobIfJ+NZD3+M0KZe2F9TLwoXTZQvV6YZ0TEeMjYo+IOCgiro2IBRGxIN0fEXFBRBwWEX8WEY9Uo17Lr/nz59c7hIrkPX6zQlkSyGERMS8ink2X+YBH4rXhpbOTW5YtY/nKldDaCp2d9Y7IrOFlSSCvSjqld0PSycCrtQvJbIh1dkJ7Owf29CT/Idatg/Z2JxGzAWTpxjsXuLGg3eP3eCwsq6Nqd5O8ZdkyDuzp2blw61Y2zJnDzEWLqlqX2XBS8gokHYV3ckRMAY4CjoqIoyNi1ZBEZw2tuBvs0qVLWblyZe66wY4rTh4DlJtZouQVSETsSIdwvzUitgxRTJYTxd1gYWgepKr6k76trcltqyKjWlqqXlfxU+JmeZalDeQeSZ+WdLCk/XuXmkdmNlQuuwyamnYua2pKys2sX1naQD6avl5QUBa4J5YNF7NmAbBhzhzG9fQwqqUlSR5puZn1LcuT6IcORSBmdTVrFjMXLfKT6GaD0O8tLEkTJd0u6XFJN0uaMJSBmfVl3rx59Q6hInmP36xQqTaQ64A7gQ8Ay4ErhyQisxIavUfXQPIev1mhUrew9omI3k7wX5RUy2HbzcwsZ0pdgYyWdLSkY9K5P/Yu2jbLteHyHItZvZS6AnkB+HLB9oaC7QBm1Coos6FQr+dYzIaLfhNInecBMTOzBpflQUIzM7NdOIGYmVlZnEDMzKwsWYYyQdJRQGvh8RHx3RrFZGZmOTBgApF0HclQ7quBHWlxABUnEEmnAV8FdgOuiYjLi/a3AbcDz6VF342Iz1Var5mZVS7LFciJEfGOalcsaTfgauAvgfXAw5LuiIgnig79aUScWe36zcysMlnaQH4uqeoJBDgeWJPOs/46cAtwVg3qMTOzGlBElD5A+gvgByQPEvYAAiIijqqoYuls4LSI+Fi6/WHghIi4sOCYNuA2kiuU54FPR8Tqfs7XDrQDNDc3H3vrrbdWEl7ddHd3M2bMmHqHUTbHX1+Ov77yHP/06dMfjYjjBvOeLLewrgM+DDzGH9tAqqGvqdmKs9lyoCUiuiWdAXwfmNjXySJiIbAQYPLkyZHXp4nz/iS0468vx19feY9/sLIkkP+JiDtqUPd64OCC7YNIrjL+oHAa3YhYLOlrkg6IiJdqEI+ZmQ1ClgTylKRvk9zG6uktrEI33oeBiZIOBX4NzAT+uvAASQcCL0ZESDqepM3mtxXWa2ZmVZAlgexNkjjeVVBWcTfeiNgm6ULgbpJuvNdFxGpJc9P9C4CzgY9L2ga8CsyMgRptzMxsSGSZ0vb8WlUeEYuBxUVlCwrWrwKuqlX9ZmZWviwPEn6TXRu3iYiP1iQiMzPLhSy3sO4sWB8NvI+ixm4zMxt5stzCuq1wW9LNwI9rFpGZmeVCOaPxTgQOqXYgZmaWL1naQF4maQNR+roB+Icax2VmZg0uyy2sfYYiEDMzyxfPB2JmZmWp63wgZmaWX3WbD8TMzPKtnvOBmJlZjmW5ArmBJIlUdT4QMzPLt3rOB2JmZjlWz/lAzMwsx+o5H4iZmeVYlkb0wvlA3pMuZ9YyqEbW0dFR7xAqkvf4zaxxDJhAIuL8PpYRO5T7/Pnz6x1CRfIev5k1jn4TiKS/T1+vlHRF8TJ0IY4QnZ3Q2sq0GTOgtTXZNjNrYKXaQJ5MXx8ZikBGtM5OaG+HrVsRwLp1yTbArFn1jMzMrF/9JpCI+EG6+h8R8VrhPkkHVKNySacBXyWZE/2aiLi8aL/S/WcAW4HzImJ5NequRFtbW1XOs3btWtatW8dzJAON7WTrVtaeey6HnnsuLS0ttLbucoSZWV1laUR/SNKJvRuSPgA8UGnFknYDrgZOB94BnNPHE++nk8w/MhFoB75eab2NpLW1lWnTpvU7ucohwLRp05w8zKwhZenGOwu4TlIX8DbgLcCMKtR9PLAmIp4FkHQLcBbwRMExZwE3RkQAyySNlTQ+Il6oQv1l6+rqqsp5Ojo6mD9/Pv9DH1cgwP8AS5cuZd68eVXrPZVc1JmZVS5LL6zHgMuAucB04MKIWF+FuicAvyrYXp+WDfaY3Oro6CAiaL3pJmhq2nlnUxOtN91ERLjrrZk1pCzDuV8LHEYypPsk4AeSroqIqyusu68/haOMY5IDpXaS21w0NzdX7SqhL1U/94QJjLvkEt5+zTXstXEjPePG8ezHPsbGCROgBp+jlt9Nd3d3Tc9fa46/vhx/zkREyQW4BFDB9n7AtQO9L8N5TwLuLti+FLi06JhvAOcUbD8NjB/o3JMmTYpaSb6y2lmyZElNz5/3+GvN8deX468f4JEY5O/xLLew/j09ee/25oiYU4Xc9TAwUdKhkvYEZgLFY27dAXxEiROBzVHn9o958+bVs/qK5T1+M2scWW5hTQQ+T9JTanRveUS8vZKKI2KbpAuBu0m68V4XEaslzU33LwAWk3ThXUPSjff8Suqshry3R+Q9fjNrHFl6YX0TmAf8O0kj+vn03TYxaBGxmCRJFJYtKFgP4IJq1GVmZtWVaTDFiLiXpB1kXUR0UJ1uvGZmlmNZrkBekzQKeCa95fRrYFxtwzIzs0aX5QrkYqAJuAg4lmR2wtm1DMrMzBrfgFcgEfFwutpNAzRim5lZY+g3gUgqOY1tRLy3+uGYmVlelLoCOYlkGJGbgQepUs8rMzMbHkolkAOBvwTOAf4auAu4OSJWD0VgZmbW2PptRI+I7RHxo4iYDZxI8jBfl6S/HbLozMysYZVsRJe0F/BukquQVuAK4Lu1D8vMzBpdqUb0G4AjgR8C8yPi8SGLyszMGl6pK5APA6+QDOF+UcFERCIZZWTfGsdmZmYNrNSc6FkeMjQzsxHKScLMzMriBGJmZmVxAjEzs7I4gZiZWVmcQMzMrCxOIGZmVhYnEDMzK0uWGQmrTtL+wH+QDI+yFvhQRPy+j+PWAi8D24FtEXHc0EVpZmal1OsK5P8B90bERODedLs/0yNiqpOHmVljqVcCOQu4IV2/Afg/dYrDzMzKVJdbWMBbI+IFgIh4QdK4fo4L4L8kBfCNiFjY3wkltQPt6WaPpLwO/ngA8FK9g6iA468vx19feY5/8mDfULMEIunHJJNSFfunQZzm5Ih4Pk0w90h6KiLu6+vANLksTOt+JK+3vPIcOzj+enP89ZXn+CU9Mtj31CyBRMSp/e2T9KKk8enVx3hgYz/neD593Sjpe8DxQJ8JxMzMhla92kDuAGan67OB24sPkPQmSfv0rgPvAvJ6W8rMbNipVwK5HPhLSc+QzLt+OYCkt0lanB7zVuB+SSuBh4C7IuJHGc/fb1tJDuQ5dnD89eb46yvP8Q86dkVELQIxM7Nhzk+im5lZWZxAzMysLMMqgUg6TdLTktZIKvV0e0OQdJ2kjYXPrEjaX9I9kp5JX99czxhLkXSwpCWSnpS0WtIn0/KG/wySRkt6SNLKNPb5aXnDx15I0m6SfiHpznQ7N/FLWivpMUkreruQ5iz+sZL+U9JT6f+Bk/ISv6TJ6ffeu2yRdPFg4x82CUTSbsDVwOnAO4BzJL2jvlEN6HrgtKKywQzzUm/bgE9FxJ8AJwIXpN95Hj5DDzAjIqYAU4HTJJ1IPmIv9EngyYLtvMVfPFRRnuL/KvCjiDgCmELy75CL+CPi6fR7nwocC2wFvsdg44+IYbEAJwF3F2xfClxa77gyxN0KPF6w/TQwPl0fDzxd7xgH8VluJ+lVl6vPADQBy4ET8hQ7cFD6n3wGcGfefn5IBlI9oKgsF/ED+wLPkXZEylv8RTG/C/hZOfEPmysQYALwq4Lt9WlZ3uw0zAvQ3zAvDUVSK3A08CA5+Qzp7Z8VJA+y3hMRuYk99RXg74EdBWV5ir93qKJH06GIID/xvx34DfDN9BbiNenzanmJv9BM4OZ0fVDxD6cEoj7K3Ed5CEgaA9wGXBwRW+odT1YRsT2SS/iDgOMlHVnvmLKSdCawMSIHDOOuAAAFnUlEQVQerXcsFTg5Io4hue18gaS/qHdAg7A7cAzw9Yg4GniFBr1dVYqkPYH3At8p5/3DKYGsBw4u2D4IeL5OsVTixXR4F0oN89IoJO1Bkjw6I+K7aXGuPkNEbAK6SNqj8hL7ycB70zlzbgFmSLqJ/MRPFAxVRHL//XjyE/96YH161QrwnyQJJS/x9zodWB4RL6bbg4p/OCWQh4GJkg5Ns+pMkiFT8mbAYV4ahSQB1wJPRsSXC3Y1/GeQ1CxpbLq+N3Aq8BQ5iB0gIi6NiIMiopXkZ/0nEXEuOYm/xFBFuYg/IjYAv5LUO4LtO4EnyEn8Bc7hj7evYLDx17sBp8qNQWcAvwT+G/ineseTId6bgReAN0j+opkDvIWkYfSZ9HX/esdZIv5TSG4TrgJWpMsZefgMwFHAL9LYHwc+m5Y3fOx9fJY2/tiInov4SdoQVqbL6t7/r3mJP411KvBI+jP0feDNOYu/CfgtsF9B2aDi91AmZmZWluF0C8vMzIaQE4iZmZXFCcTMzMriBGJmZmVxAjEzs7I4gVguSOrOcMw1vQNoSvrHon0PlFuHpO3piKWPS/qOpKascddbOsLqR9L1LknHDfSeEudqlpR1VlAbAZxAbNiIiI9FxBPp5j8W7fvzCk79aiQjlx4JvA7MLdypxJD9X0pHns5y3O7AR4FvV6HO3SPiN8ALkk6u9Hw2PDiBWK5Iakv/ku6dh6EzfSL+D39hS7oc2Du9auhM93Wnr2Mk3StpeToXxVmDDOGnwOGSWtM5IL5GMpLvwZLeJenn6bm/k44RhqTLJT0haZWkf0vLPphe0ayUdF9adp6kqwo+652S2nrjl/Q5SQ8CJ0k6VtLSdCDCu3uHnygyg2SYim0FZedKeiCt+/j03MenZb9IXycXxPMdST8A/it9//eBWYP8zmy4qvfTkF68ZFmA7vS1DdhMMtbZKODnwCnpvi7guMLj+3j/7sC+6foBwBr4wwO13QPUvTvJ0A4fJxmGfwdwYsG57gPelG7/A/BZYH+SIbJ76xibvj4GTCgqOw+4qqDeO4G2dD2AD6XrewAPAM3p9l8B1/UR93zgbwu2u4BF6fpfkE4jQDI0+e7p+qnAbQXxrKfgaWSSEa4fq/fPg5fGWHbPkGPMGs1DEbEeIB2OvRW4P+N7BfxLOvLrDpJfiG8FNpR4z95pPZBcgVwLvA1YFxHL0vITSSYy+1l6QbQnSXLbArwGXCPpLpKkAPAz4HpJtwK9g1CWsp1k0EqAycCRwD1pXbuRDIlTbDw7TzYF6bhHEXGfpH3T8cD2AW6QNJEkUe1RcPw9EfG7gu2N6Wc3cwKxXOopWN/O4H6OZwHNwLER8UY6mu3oAd7zaiTDvv9B+ov7lcIikl+25xS/Ob1V9E6SQQ8vJJkJca6kE4B3AyskTSWZ4bHwtnJhXK9FxPaCulZHxEkDxd3HZyseuyiAfwaWRMT7lMzr0lWw/5Wi40en5zVzG4gNW2+kQ80X249kHo03JE0HWqpU3zLgZEmHA0hqkjQpbQfZLyIWAxeTDMCHpMMi4sGI+CzwEslUBGuBqZJGSTqYZHjzvjwNNEs6KT3XHpL+tI/jngQOLyr7q/Q9pwCbI2IzyXfy63T/eQN8zkkkg0+a+QrEhq2FwCpJyyOisNG3E/iBpEdIRg9+qhqVRcRvJJ0H3Cxpr7T4M8DLwO2SRpNcOVyS7vtiestIJKOerkzLnyNpH3mcpHG+r7pel3Q2cIWk/Uj+H3+FZFTbQj8EvlVU9vu0S/O+JD20AL5Acgvr74CfDPBRpwN3DXCMjRAejddsGJP0PeDvI+KZKp3vPuCsiPh9Nc5n+eYEYjaMpV1y3xoR91XhXM0k09B+v/LIbDhwAjEzs7K4Ed3MzMriBGJmZmVxAjEzs7I4gZiZWVmcQMzMrCz/H4T/ZpFli6wAAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.errorbar(list(dict.fromkeys(InitialPressure)),PropagationRateMean, xerr = 5, yerr = PropagationRateStd, fmt = 'ro', ecolor = 'black', capsize=5)\n", "plt.xlabel('Initial Pressure (bar)')\n", "plt.ylabel('Maximum Propagation Rate (bar/mg/s)')\n", "plt.grid(linestyle='-')\n", "plt.axis((0,70,-0.5,3.5))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Celles-ci présentent un profil similaire à celui des surpressions massiques, ce qui semble assez logique au vu de la relation mathématique entre ces deux grandeurs. Cette fois la variation avec la pression initiale n'est pas monotone, la valeur à 20 bars étant beaucoup plus importante que celles à 10 et 30 bars. Mais *globalement*, la vitesse de montée en pression est également croissante avec la pression initiale.\n", "\n", "Je m'arrête là. " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }