diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..21a9825e47b9ed85aab2d572a468541541e22551 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -1,5 +1,1217 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " %matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 202251 | \n",
+ " 7 | \n",
+ " 6372 | \n",
+ " 3911 | \n",
+ " 8833 | \n",
+ " 10 | \n",
+ " 6 | \n",
+ " 14 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 202250 | \n",
+ " 7 | \n",
+ " 6590 | \n",
+ " 3100 | \n",
+ " 10080 | \n",
+ " 10 | \n",
+ " 5 | \n",
+ " 15 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 202249 | \n",
+ " 7 | \n",
+ " 5095 | \n",
+ " 3212 | \n",
+ " 6978 | \n",
+ " 8 | \n",
+ " 5 | \n",
+ " 11 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 202248 | \n",
+ " 7 | \n",
+ " 4985 | \n",
+ " 3043 | \n",
+ " 6927 | \n",
+ " 8 | \n",
+ " 5 | \n",
+ " 11 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 202247 | \n",
+ " 7 | \n",
+ " 6087 | \n",
+ " 3733 | \n",
+ " 8441 | \n",
+ " 9 | \n",
+ " 5 | \n",
+ " 13 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 202246 | \n",
+ " 7 | \n",
+ " 3033 | \n",
+ " 1392 | \n",
+ " 4674 | \n",
+ " 5 | \n",
+ " 3 | \n",
+ " 7 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 202245 | \n",
+ " 7 | \n",
+ " 3827 | \n",
+ " 1720 | \n",
+ " 5934 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 9 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 202244 | \n",
+ " 7 | \n",
+ " 4271 | \n",
+ " 2231 | \n",
+ " 6311 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 9 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 202243 | \n",
+ " 7 | \n",
+ " 5863 | \n",
+ " 3302 | \n",
+ " 8424 | \n",
+ " 9 | \n",
+ " 5 | \n",
+ " 13 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 202242 | \n",
+ " 7 | \n",
+ " 3770 | \n",
+ " 1950 | \n",
+ " 5590 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 9 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 202241 | \n",
+ " 7 | \n",
+ " 4177 | \n",
+ " 2219 | \n",
+ " 6135 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 9 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 202240 | \n",
+ " 7 | \n",
+ " 4883 | \n",
+ " 1472 | \n",
+ " 8294 | \n",
+ " 7 | \n",
+ " 2 | \n",
+ " 12 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 202239 | \n",
+ " 7 | \n",
+ " 2041 | \n",
+ " 331 | \n",
+ " 3751 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 6 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 202238 | \n",
+ " 7 | \n",
+ " 1771 | \n",
+ " 419 | \n",
+ " 3123 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 202237 | \n",
+ " 7 | \n",
+ " 1725 | \n",
+ " 499 | \n",
+ " 2951 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 202236 | \n",
+ " 7 | \n",
+ " 1069 | \n",
+ " 178 | \n",
+ " 1960 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 202235 | \n",
+ " 7 | \n",
+ " 1581 | \n",
+ " 400 | \n",
+ " 2762 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 4 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 202234 | \n",
+ " 7 | \n",
+ " 2266 | \n",
+ " 788 | \n",
+ " 3744 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 202233 | \n",
+ " 7 | \n",
+ " 7340 | \n",
+ " 0 | \n",
+ " 17399 | \n",
+ " 11 | \n",
+ " 0 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 202232 | \n",
+ " 7 | \n",
+ " 7801 | \n",
+ " 4086 | \n",
+ " 11516 | \n",
+ " 12 | \n",
+ " 6 | \n",
+ " 18 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 202231 | \n",
+ " 7 | \n",
+ " 6896 | \n",
+ " 4170 | \n",
+ " 9622 | \n",
+ " 10 | \n",
+ " 6 | \n",
+ " 14 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 202230 | \n",
+ " 7 | \n",
+ " 9039 | \n",
+ " 5770 | \n",
+ " 12308 | \n",
+ " 14 | \n",
+ " 9 | \n",
+ " 19 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 202229 | \n",
+ " 7 | \n",
+ " 14851 | \n",
+ " 10060 | \n",
+ " 19642 | \n",
+ " 22 | \n",
+ " 15 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 202228 | \n",
+ " 7 | \n",
+ " 15471 | \n",
+ " 11028 | \n",
+ " 19914 | \n",
+ " 23 | \n",
+ " 16 | \n",
+ " 30 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 202227 | \n",
+ " 7 | \n",
+ " 21191 | \n",
+ " 16198 | \n",
+ " 26184 | \n",
+ " 32 | \n",
+ " 24 | \n",
+ " 40 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 202226 | \n",
+ " 7 | \n",
+ " 16854 | \n",
+ " 12806 | \n",
+ " 20902 | \n",
+ " 25 | \n",
+ " 19 | \n",
+ " 31 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 202225 | \n",
+ " 7 | \n",
+ " 22246 | \n",
+ " 18011 | \n",
+ " 26481 | \n",
+ " 34 | \n",
+ " 28 | \n",
+ " 40 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 202224 | \n",
+ " 7 | \n",
+ " 22458 | \n",
+ " 18105 | \n",
+ " 26811 | \n",
+ " 34 | \n",
+ " 27 | \n",
+ " 41 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 202223 | \n",
+ " 7 | \n",
+ " 18772 | \n",
+ " 14875 | \n",
+ " 22669 | \n",
+ " 28 | \n",
+ " 22 | \n",
+ " 34 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 202222 | \n",
+ " 7 | \n",
+ " 18916 | \n",
+ " 14941 | \n",
+ " 22891 | \n",
+ " 29 | \n",
+ " 23 | \n",
+ " 35 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1643 | \n",
+ " 199126 | \n",
+ " 7 | \n",
+ " 17608 | \n",
+ " 11304 | \n",
+ " 23912 | \n",
+ " 31 | \n",
+ " 20 | \n",
+ " 42 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1644 | \n",
+ " 199125 | \n",
+ " 7 | \n",
+ " 16169 | \n",
+ " 10700 | \n",
+ " 21638 | \n",
+ " 28 | \n",
+ " 18 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1645 | \n",
+ " 199124 | \n",
+ " 7 | \n",
+ " 16171 | \n",
+ " 10071 | \n",
+ " 22271 | \n",
+ " 28 | \n",
+ " 17 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1646 | \n",
+ " 199123 | \n",
+ " 7 | \n",
+ " 11947 | \n",
+ " 7671 | \n",
+ " 16223 | \n",
+ " 21 | \n",
+ " 13 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1647 | \n",
+ " 199122 | \n",
+ " 7 | \n",
+ " 15452 | \n",
+ " 9953 | \n",
+ " 20951 | \n",
+ " 27 | \n",
+ " 17 | \n",
+ " 37 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1648 | \n",
+ " 199121 | \n",
+ " 7 | \n",
+ " 14903 | \n",
+ " 8975 | \n",
+ " 20831 | \n",
+ " 26 | \n",
+ " 16 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1649 | \n",
+ " 199120 | \n",
+ " 7 | \n",
+ " 19053 | \n",
+ " 12742 | \n",
+ " 25364 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1650 | \n",
+ " 199119 | \n",
+ " 7 | \n",
+ " 16739 | \n",
+ " 11246 | \n",
+ " 22232 | \n",
+ " 29 | \n",
+ " 19 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1651 | \n",
+ " 199118 | \n",
+ " 7 | \n",
+ " 21385 | \n",
+ " 13882 | \n",
+ " 28888 | \n",
+ " 38 | \n",
+ " 25 | \n",
+ " 51 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1652 | \n",
+ " 199117 | \n",
+ " 7 | \n",
+ " 13462 | \n",
+ " 8877 | \n",
+ " 18047 | \n",
+ " 24 | \n",
+ " 16 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1653 | \n",
+ " 199116 | \n",
+ " 7 | \n",
+ " 14857 | \n",
+ " 10068 | \n",
+ " 19646 | \n",
+ " 26 | \n",
+ " 18 | \n",
+ " 34 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1654 | \n",
+ " 199115 | \n",
+ " 7 | \n",
+ " 13975 | \n",
+ " 9781 | \n",
+ " 18169 | \n",
+ " 25 | \n",
+ " 18 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1655 | \n",
+ " 199114 | \n",
+ " 7 | \n",
+ " 12265 | \n",
+ " 7684 | \n",
+ " 16846 | \n",
+ " 22 | \n",
+ " 14 | \n",
+ " 30 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1656 | \n",
+ " 199113 | \n",
+ " 7 | \n",
+ " 9567 | \n",
+ " 6041 | \n",
+ " 13093 | \n",
+ " 17 | \n",
+ " 11 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1657 | \n",
+ " 199112 | \n",
+ " 7 | \n",
+ " 10864 | \n",
+ " 7331 | \n",
+ " 14397 | \n",
+ " 19 | \n",
+ " 13 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1658 | \n",
+ " 199111 | \n",
+ " 7 | \n",
+ " 15574 | \n",
+ " 11184 | \n",
+ " 19964 | \n",
+ " 27 | \n",
+ " 19 | \n",
+ " 35 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1659 | \n",
+ " 199110 | \n",
+ " 7 | \n",
+ " 16643 | \n",
+ " 11372 | \n",
+ " 21914 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1660 | \n",
+ " 199109 | \n",
+ " 7 | \n",
+ " 13741 | \n",
+ " 8780 | \n",
+ " 18702 | \n",
+ " 24 | \n",
+ " 15 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1661 | \n",
+ " 199108 | \n",
+ " 7 | \n",
+ " 13289 | \n",
+ " 8813 | \n",
+ " 17765 | \n",
+ " 23 | \n",
+ " 15 | \n",
+ " 31 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1662 | \n",
+ " 199107 | \n",
+ " 7 | \n",
+ " 12337 | \n",
+ " 8077 | \n",
+ " 16597 | \n",
+ " 22 | \n",
+ " 15 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1663 | \n",
+ " 199106 | \n",
+ " 7 | \n",
+ " 10877 | \n",
+ " 7013 | \n",
+ " 14741 | \n",
+ " 19 | \n",
+ " 12 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1664 | \n",
+ " 199105 | \n",
+ " 7 | \n",
+ " 10442 | \n",
+ " 6544 | \n",
+ " 14340 | \n",
+ " 18 | \n",
+ " 11 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1665 | \n",
+ " 199104 | \n",
+ " 7 | \n",
+ " 7913 | \n",
+ " 4563 | \n",
+ " 11263 | \n",
+ " 14 | \n",
+ " 8 | \n",
+ " 20 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1666 | \n",
+ " 199103 | \n",
+ " 7 | \n",
+ " 15387 | \n",
+ " 10484 | \n",
+ " 20290 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1667 | \n",
+ " 199102 | \n",
+ " 7 | \n",
+ " 16277 | \n",
+ " 11046 | \n",
+ " 21508 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1668 | \n",
+ " 199101 | \n",
+ " 7 | \n",
+ " 15565 | \n",
+ " 10271 | \n",
+ " 20859 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1669 | \n",
+ " 199052 | \n",
+ " 7 | \n",
+ " 19375 | \n",
+ " 13295 | \n",
+ " 25455 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1670 | \n",
+ " 199051 | \n",
+ " 7 | \n",
+ " 19080 | \n",
+ " 13807 | \n",
+ " 24353 | \n",
+ " 34 | \n",
+ " 25 | \n",
+ " 43 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1671 | \n",
+ " 199050 | \n",
+ " 7 | \n",
+ " 11079 | \n",
+ " 6660 | \n",
+ " 15498 | \n",
+ " 20 | \n",
+ " 12 | \n",
+ " 28 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1672 | \n",
+ " 199049 | \n",
+ " 7 | \n",
+ " 1143 | \n",
+ " 0 | \n",
+ " 2610 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1673 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202251 7 6372 3911 8833 10 6 \n",
+ "1 202250 7 6590 3100 10080 10 5 \n",
+ "2 202249 7 5095 3212 6978 8 5 \n",
+ "3 202248 7 4985 3043 6927 8 5 \n",
+ "4 202247 7 6087 3733 8441 9 5 \n",
+ "5 202246 7 3033 1392 4674 5 3 \n",
+ "6 202245 7 3827 1720 5934 6 3 \n",
+ "7 202244 7 4271 2231 6311 6 3 \n",
+ "8 202243 7 5863 3302 8424 9 5 \n",
+ "9 202242 7 3770 1950 5590 6 3 \n",
+ "10 202241 7 4177 2219 6135 6 3 \n",
+ "11 202240 7 4883 1472 8294 7 2 \n",
+ "12 202239 7 2041 331 3751 3 0 \n",
+ "13 202238 7 1771 419 3123 3 1 \n",
+ "14 202237 7 1725 499 2951 3 1 \n",
+ "15 202236 7 1069 178 1960 2 1 \n",
+ "16 202235 7 1581 400 2762 2 0 \n",
+ "17 202234 7 2266 788 3744 3 1 \n",
+ "18 202233 7 7340 0 17399 11 0 \n",
+ "19 202232 7 7801 4086 11516 12 6 \n",
+ "20 202231 7 6896 4170 9622 10 6 \n",
+ "21 202230 7 9039 5770 12308 14 9 \n",
+ "22 202229 7 14851 10060 19642 22 15 \n",
+ "23 202228 7 15471 11028 19914 23 16 \n",
+ "24 202227 7 21191 16198 26184 32 24 \n",
+ "25 202226 7 16854 12806 20902 25 19 \n",
+ "26 202225 7 22246 18011 26481 34 28 \n",
+ "27 202224 7 22458 18105 26811 34 27 \n",
+ "28 202223 7 18772 14875 22669 28 22 \n",
+ "29 202222 7 18916 14941 22891 29 23 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1643 199126 7 17608 11304 23912 31 20 \n",
+ "1644 199125 7 16169 10700 21638 28 18 \n",
+ "1645 199124 7 16171 10071 22271 28 17 \n",
+ "1646 199123 7 11947 7671 16223 21 13 \n",
+ "1647 199122 7 15452 9953 20951 27 17 \n",
+ "1648 199121 7 14903 8975 20831 26 16 \n",
+ "1649 199120 7 19053 12742 25364 34 23 \n",
+ "1650 199119 7 16739 11246 22232 29 19 \n",
+ "1651 199118 7 21385 13882 28888 38 25 \n",
+ "1652 199117 7 13462 8877 18047 24 16 \n",
+ "1653 199116 7 14857 10068 19646 26 18 \n",
+ "1654 199115 7 13975 9781 18169 25 18 \n",
+ "1655 199114 7 12265 7684 16846 22 14 \n",
+ "1656 199113 7 9567 6041 13093 17 11 \n",
+ "1657 199112 7 10864 7331 14397 19 13 \n",
+ "1658 199111 7 15574 11184 19964 27 19 \n",
+ "1659 199110 7 16643 11372 21914 29 20 \n",
+ "1660 199109 7 13741 8780 18702 24 15 \n",
+ "1661 199108 7 13289 8813 17765 23 15 \n",
+ "1662 199107 7 12337 8077 16597 22 15 \n",
+ "1663 199106 7 10877 7013 14741 19 12 \n",
+ "1664 199105 7 10442 6544 14340 18 11 \n",
+ "1665 199104 7 7913 4563 11263 14 8 \n",
+ "1666 199103 7 15387 10484 20290 27 18 \n",
+ "1667 199102 7 16277 11046 21508 29 20 \n",
+ "1668 199101 7 15565 10271 20859 27 18 \n",
+ "1669 199052 7 19375 13295 25455 34 23 \n",
+ "1670 199051 7 19080 13807 24353 34 25 \n",
+ "1671 199050 7 11079 6660 15498 20 12 \n",
+ "1672 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 14 FR France \n",
+ "1 15 FR France \n",
+ "2 11 FR France \n",
+ "3 11 FR France \n",
+ "4 13 FR France \n",
+ "5 7 FR France \n",
+ "6 9 FR France \n",
+ "7 9 FR France \n",
+ "8 13 FR France \n",
+ "9 9 FR France \n",
+ "10 9 FR France \n",
+ "11 12 FR France \n",
+ "12 6 FR France \n",
+ "13 5 FR France \n",
+ "14 5 FR France \n",
+ "15 3 FR France \n",
+ "16 4 FR France \n",
+ "17 5 FR France \n",
+ "18 26 FR France \n",
+ "19 18 FR France \n",
+ "20 14 FR France \n",
+ "21 19 FR France \n",
+ "22 29 FR France \n",
+ "23 30 FR France \n",
+ "24 40 FR France \n",
+ "25 31 FR France \n",
+ "26 40 FR France \n",
+ "27 41 FR France \n",
+ "28 34 FR France \n",
+ "29 35 FR France \n",
+ "... ... ... ... \n",
+ "1643 42 FR France \n",
+ "1644 38 FR France \n",
+ "1645 39 FR France \n",
+ "1646 29 FR France \n",
+ "1647 37 FR France \n",
+ "1648 36 FR France \n",
+ "1649 45 FR France \n",
+ "1650 39 FR France \n",
+ "1651 51 FR France \n",
+ "1652 32 FR France \n",
+ "1653 34 FR France \n",
+ "1654 32 FR France \n",
+ "1655 30 FR France \n",
+ "1656 23 FR France \n",
+ "1657 25 FR France \n",
+ "1658 35 FR France \n",
+ "1659 38 FR France \n",
+ "1660 33 FR France \n",
+ "1661 31 FR France \n",
+ "1662 29 FR France \n",
+ "1663 26 FR France \n",
+ "1664 25 FR France \n",
+ "1665 20 FR France \n",
+ "1666 36 FR France \n",
+ "1667 38 FR France \n",
+ "1668 36 FR France \n",
+ "1669 45 FR France \n",
+ "1670 43 FR France \n",
+ "1671 28 FR France \n",
+ "1672 5 FR France \n",
+ "\n",
+ "[1673 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "raw_data['period'] = [convert_week(yw) for yw in raw_data['week']]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = raw_data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " first_august_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1990,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHCxJREFUeJzt3X9wndV95/H3x8iRgNrEBpn4B2A6cZgYkkJ8x3Y32W6JW9tsOthMIdGGBs3iGSfApqSzM2AHdpgFdwY6O5vWkwmLJxQMhB9ebxncFi8RZjP17jq25UAKhrhSAjEODhIrB0xmrCL83T/uUX2lyFfPla703Hv1ec3cuc/96jnnPseP5O99zjnPuYoIzMzMspiW9wGYmVn9cNIwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMmvK+wCq7bzzzouFCxfmfRhmZnXlwIED70RE62j7NVzSWLhwIZ2dnXkfhplZXZH08yz7uXvKzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jBrcD3vneCLD+yh5/iJvA/FGoCThlmD27yri/1v9LH5+a68D8UaQMPdp2FmRZfcuZP+gZP/8vqxvYd5bO9hmpumcWjTVTkemdUzX2mMgS/3rR7svu1Krr58Hi3Ti3/mLdOnsebyeey+/cqcj8zqmZPGGPhy3+rBnJktzGhuon/gJM1N0+gfOMmM5ibmzGgZcX9/GLIs3D1VAV/uW7155/1+rl92EV9eeiGP7ztMb5mEUPphaNM1n5rEo7R6oojI+xiqqlAoxEStPdXz3gk2Pfsa3z/4S058cJKW6dNYdenHuOMLnzztpzezWjf8w9AgfxiaWiQdiIjCaPu5e6oClV7um9UDj31YJdw9VaFKLvfN6oE/DFklnDQq9MBXTl29bVp7WY5HYlY9/jBkWXlMw8zMPKZhZmbV56RhZmaZZUoakv5M0kFJr0h6QlKLpNmSOiR1pedZJftvlNQt6ZCkVSXxJZJeTj/bLEkp3izpqRTfK2lhSZn29B5dktqr13QzM6vUqElD0nzgT4FCRFwGnAG0ARuAXRGxCNiVXiNpcfr5pcBq4DuSzkjV3Q+sBxalx+oUXwcci4iPA98C7kt1zQbuApYBS4G7SpOTmZlNrqzdU03AmZKagLOAt4A1wNb0863A2rS9BngyIvoj4nWgG1gqaS4wMyL2RHH0/ZFhZQbr2g6sSFchq4COiOiLiGNAB6cSjZmZTbJRk0ZE/AL4L8Bh4CjwbkR8Hzg/Io6mfY4Cc1KR+cCbJVUcSbH5aXt4fEiZiBgA3gXOLVOXmZnlIEv31CyKVwIXA/OAsyX9SbkiI8SiTHysZUqPcb2kTkmdvb29ZQ7NzMzGI0v31B8Ar0dEb0R8APwN8K+At1OXE+m5J+1/BLigpPwCit1ZR9L28PiQMqkL7Bygr0xdQ0TElogoREShtbU1Q5PMzGwssiSNw8BySWelcYYVwGvADmBwNlM78Eza3gG0pRlRF1Mc8N6XurCOS1qe6rlhWJnBuq4FXkjjHs8BKyXNSlc8K1PMzGzcvBx85UZdRiQi9kraDvwIGABeBLYAvwVsk7SOYmK5Lu1/UNI24NW0/y0R8WGq7ibgYeBMYGd6ADwIPCqpm+IVRluqq0/SPcD+tN/dEdE3rhabmSVeDr5yXkbE7DR63jvBf3jiRb795Su8eF+D8XLwv8nLiJiNk7+hsXF5Ofix8yq3ZsP4Gxobn5eDHztfaZgN40+hU8PgcvBP3/xZrl92Eb3v9+d9SHXBVxpmw/hT6NTg78YZGycNsxH4S4nMRubZUzaleEaU2cg8e8pyUes3S3lGlNn4uHvKqqpWb5byjCiz6nD3lFVFrd8s1fPeCTY9+xrfP/hLTnxwkpbp01h16ce44wufrNtuKne1WTW5e8omVa1PU23EGVHuarM8uHvKqqIe/lNulBlR7mqzPDlpWNXU+n/KjTIvf/dtV562q81sojlpWNU0yn/Kta4eruqscTlpmNWhWr+qs8bl2VNmZubZU2ZmVn1OGmZmlpmThpmZZeakYVZjan39LpvanDTMaozv9LZa5im3ZjXCd3pbPfCVhlmNqPX1u8zAScOsZvhOb6sHoyYNSZdIeqnk8Z6kb0iaLalDUld6nlVSZqOkbkmHJK0qiS+R9HL62WZJSvFmSU+l+F5JC0vKtKf36JLUXt3mm9WWwTu9n775s1y/7CJ63+/P+5DMhqjojnBJZwC/AJYBtwB9EXGvpA3ArIi4XdJi4AlgKTAPeB74RER8KGkfcCvwQ+BZYHNE7JR0M/DpiPiapDbgmoj4kqTZQCdQAAI4ACyJiGOnO0bfEW5Wf/zdIPmbqDvCVwA/jYifA2uArSm+FVibttcAT0ZEf0S8DnQDSyXNBWZGxJ4oZqpHhpUZrGs7sCJdhawCOiKiLyWKDmB1hcdsZjXOM8bqR6Wzp9ooXkUAnB8RRwEi4qikOSk+n+KVxKAjKfZB2h4eHyzzZqprQNK7wLml8RHKmFmd84yx+pP5SkPSR4Crgf8+2q4jxKJMfKxlSo9tvaROSZ29vb2jHJ6Z1QrPGKs/lXRPXQX8KCLeTq/fTl1OpOeeFD8CXFBSbgHwVoovGCE+pIykJuAcoK9MXUNExJaIKEREobW1tYImmVmeKp0x5rvl81dJ0vh3nOqaAtgBDM5mageeKYm3pRlRFwOLgH2pK+u4pOVpvOKGYWUG67oWeCGNezwHrJQ0K83OWpliViX+I7S8VTJjzGMf+cs0e0rSWRTHFn47It5NsXOBbcCFwGHguojoSz+7A7gRGAC+ERE7U7wAPAycCewEvh4RIakFeBS4guIVRltE/CyVuRH4ZjqUP4+Ih8odq2dPVebOp1/me/sOc/3SC9l0zafyPhyzEQ0f+xjksY/qyTp7yl/CNEVV+kfoKZGWp573Tpz2e9H9+1gd/hImK6vSAUh3C1iefLd87fCChVNU1j9CT4m0WuHvRa8NThpTWJY/wt23XXnabgGzyfTAV071nGxae1mORzK1OWlMYVn+CN0tYGalPKZRA2p92qsX0TOzQZ49VQM87dXM8pZ19pS7p3LkQWYzqzfunspRpdNea70by8wan5NGjiodZPa9EmaWN3dP5SzLtFd3Y5lZrfBA+ASq1tIbXkLBao2XlWk8XkakBlSrO8n3SlitcVfp1OXuqQkwEd1JXkLBaoG7Ss3dUxPA3Uk2kkbo0vHvduNy91SO3J00tWSdCt0IXTr+3TZ3T00QdydNHaXJYKQ7+hutS8e/21Obu6fMxijrF1lN5S6dRuiSmyrcPWUNoZbvgs96R/9U7tJphC45G8rdU5aLrJ9AR+v6yVMlyWCqdek0WpecneLuKcvFaCv7Vvod5nn56qOdtM5oGZIMSr+nZKqayl1y9cqr3FpNyvoJtF6+MdDfJjeyqdwl1+g8pmGTyuMAU4e/vKsx+UrDJpXHAaaOPK/CPGtr4mS60pD0UUnbJf1E0muSflfSbEkdkrrS86yS/TdK6pZ0SNKqkvgSSS+nn22WpBRvlvRUiu+VtLCkTHt6jy5J7dVruuUl6yfQB75SYNPay1g8byab1l7msQLLzLO2Jk6mgXBJW4HdEfFdSR8BzgK+CfRFxL2SNgCzIuJ2SYuBJ4ClwDzgeeATEfGhpH3ArcAPgWeBzRGxU9LNwKcj4muS2oBrIuJLkmYDnUABCOAAsCQijp3uWD0QbjZ11csEilpUtfs0JM0Efg94ECAi/jkifgWsAbam3bYCa9P2GuDJiOiPiNeBbmCppLnAzIjYE8VM9ciwMoN1bQdWpKuQVUBHRPSlRNEBrB7tmM1saqr02zCtclm6p34b6AUekvSipO9KOhs4PyKOAqTnOWn/+cCbJeWPpNj8tD08PqRMRAwA7wLnlqlrCEnrJXVK6uzt7c3QJDNrRJ5AMfGyJI0m4DPA/RFxBfBrYEOZ/TVCLMrEx1rmVCBiS0QUIqLQ2tpa5tDMrNF51tbEyjJ76ghwJCL2ptfbKSaNtyXNjYijqeupp2T/C0rKLwDeSvEFI8RLyxyR1AScA/Sl+O8PK/ODTC0zsympXu6dqdcZXqNeaUTEL4E3JV2SQiuAV4EdwOBspnbgmbS9A2hLM6IuBhYB+1IX1nFJy9N4xQ3DygzWdS3wQhr3eA5YKWlWmp21MsXMzOpavc7wynqfxteB76WZUz8D/j3FhLNN0jrgMHAdQEQclLSNYmIZAG6JiA9TPTcBDwNnAjvTA4qD7I9K6qZ4hdGW6uqTdA+wP+13d0T0jbGtZma5q/d1ubz2lJnZJKrVdbm8NLqZWQ2q9xleXkbEzGyS1fMSOe6eMjMzd09NZbX8bXdmVt+cNBpQvU7lM7Pa5zGNBlLvU/nMrPb5SqNEvXfreLE2M5toThol6r1bp96n8pnVqnr/QFlN7p6isbp16nkqn1mtKv1AuemaT+V9OLnylFtq9w5NM8vXVPpSJ0+5rYC7dcxsJGMZJ2z0riwnjcRr8JvZcGP5QFnvY6OjcfeUmVkZX320k9YZLUPGCUu/s2NQvXdlZe2ectIwM6uCeh8b9ZiGmdkkmipjo55ya2ZWJVNhyru7p8zMzN1TZmZWfU4a1hAafW68Wa1w0rCG0Ohz481qhQfCra410rphZvXAVxpW17wcvNnkctKwujZV5sab1YpMSUPSG5JelvSSpM4Umy2pQ1JXep5Vsv9GSd2SDklaVRJfkurplrRZklK8WdJTKb5X0sKSMu3pPboktVer4dY4vG6Y2eTJdJ+GpDeAQkS8UxL7C6AvIu6VtAGYFRG3S1oMPAEsBeYBzwOfiIgPJe0DbgV+CDwLbI6InZJuBj4dEV+T1AZcExFfkjQb6AQKQAAHgCURcex0x+r7NMzMKjcZ92msAbam7a3A2pL4kxHRHxGvA93AUklzgZkRsSeKmeqRYWUG69oOrEhXIauAjojoS4miA1g9jmM2M7NxyJo0Avi+pAOS1qfY+RFxFCA9z0nx+cCbJWWPpNj8tD08PqRMRAwA7wLnlqlrCEnrJXVK6uzt7c3YJDMzq1TWKbefjYi3JM0BOiT9pMy+GiEWZeJjLXMqELEF2ALF7qkyx2ZmZuOQ6UojIt5Kzz3A0xTHK95OXU6k5560+xHggpLiC4C3UnzBCPEhZSQ1AecAfWXqMjOzHIyaNCSdLWnG4DawEngF2AEMzmZqB55J2zuAtjQj6mJgEbAvdWEdl7Q8jVfcMKzMYF3XAi+kcY/ngJWSZqXZWStTzMzMcpCle+p84Ok0O7YJeDwi/qek/cA2SeuAw8B1ABFxUNI24FVgALglIj5Mdd0EPAycCexMD4AHgUcldVO8wmhLdfVJugfYn/a7OyL6xtFeMzMbBy+NbmZmXhrdzMyqz0nDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMsucNCSdIelFSX+XXs+W1CGpKz3PKtl3o6RuSYckrSqJL5H0cvrZZklK8WZJT6X4XkkLS8q0p/foktRejUabmdnYVHKlcSvwWsnrDcCuiFgE7EqvkbQYaAMuBVYD35F0RipzP7AeWJQeq1N8HXAsIj4OfAu4L9U1G7gLWAYsBe4qTU5mZja5MiUNSQuALwDfLQmvAbam7a3A2pL4kxHRHxGvA93AUklzgZkRsSciAnhkWJnBurYDK9JVyCqgIyL6IuIY0MGpRGNmZpMs65XGXwK3ASdLYudHxFGA9DwnxecDb5bsdyTF5qft4fEhZSJiAHgXOLdMXWZmloNRk4akPwJ6IuJAxjo1QizKxMdapvQY10vqlNTZ29ub8TDNzKxSWa40PgtcLekN4Eng85IeA95OXU6k5560/xHggpLyC4C3UnzBCPEhZSQ1AecAfWXqGiIitkREISIKra2tGZpkZmZjMWrSiIiNEbEgIhZSHOB+ISL+BNgBDM5mageeSds7gLY0I+piigPe+1IX1nFJy9N4xQ3DygzWdW16jwCeA1ZKmpUGwFemmJmZ5aBpHGXvBbZJWgccBq4DiIiDkrYBrwIDwC0R8WEqcxPwMHAmsDM9AB4EHpXUTfEKoy3V1SfpHmB/2u/uiOgbxzGbmdk4qPiBvnEUCoXo7OzM+zDMzOqKpAMRURhtP98RbmbWAHreO8EXH9hDz/ETE/o+ThpmZg1g864u9r/Rx+bnuyb0fcYzpmFmZjm75M6d9A+cuoXusb2HeWzvYZqbpnFo01VVfz9faZiZ1bHdt13J1ZfPo2V68b/zlunTWHP5PHbffuWEvJ+ThplZHZszs4UZzU30D5ykuWka/QMnmdHcxJwZLRPyfu6eMjOrc++838/1yy7iy0sv5PF9h+mdwMFwT7k1MzNPuTUzs+pz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy2zUpCGpRdI+ST+WdFDSf07x2ZI6JHWl51klZTZK6pZ0SNKqkvgSSS+nn22WpBRvlvRUiu+VtLCkTHt6jy5J7dVsvJmZVSbLlUY/8PmI+B3gcmC1pOXABmBXRCwCdqXXSFoMtAGXAquB70g6I9V1P7AeWJQeq1N8HXAsIj4OfAu4L9U1G7gLWAYsBe4qTU5mZja5Rk0aUfR+ejk9PQJYA2xN8a3A2rS9BngyIvoj4nWgG1gqaS4wMyL2RPE7Zh8ZVmawru3AinQVsgroiIi+iDgGdHAq0ZiZ2STLNKYh6QxJLwE9FP8T3wucHxFHAdLznLT7fODNkuJHUmx+2h4eH1ImIgaAd4Fzy9RlZmY5yJQ0IuLDiLgcWEDxquGyMrtrpCrKxMda5tQbSusldUrq7O3tLXNoZmY2HhXNnoqIXwE/oNhF9HbqciI996TdjgAXlBRbALyV4gtGiA8pI6kJOAfoK1PX8OPaEhGFiCi0trZW0iQzM6tAltlTrZI+mrbPBP4A+AmwAxiczdQOPJO2dwBtaUbUxRQHvPelLqzjkpan8YobhpUZrOta4IU07vEcsFLSrDQAvjLFzMwsB00Z9pkLbE0zoKYB2yLi7yTtAbZJWgccBq4DiIiDkrYBrwIDwC0R8WGq6ybgYeBMYGd6ADwIPCqpm+IVRluqq0/SPcD+tN/dEdE3ngabmdnYqfiBvnEUCoXo7OzM+zDMzOqKpAMRURhtP98RbmZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmdWwnvdO8MUH9tBz/ETehwI4aZiZ1bTNu7rY/0Yfm5/vyvtQAGjK+wDMzOw3XXLnTvoHTv7L68f2HuaxvYdpbprGoU1X5XZcvtIwM6tBu2+7kqsvn0fL9OJ/0y3Tp7Hm8nnsvv3KXI/LScPMrAbNmdnCjOYm+gdO0tw0jf6Bk8xobmLOjJZcj8vdU2ZmNeqd9/u5ftlFfHnphTy+7zC9NTAYrogov4N0AfAI8DHgJLAlIv5K0mzgKWAh8AbwxYg4lspsBNYBHwJ/GhHPpfgS4GHgTOBZ4NaICEnN6T2WAP8P+FJEvJHKtAN3psPZFBFbyx1voVCIzs7O7P8CZmaGpAMRURhtvyzdUwPAf4yITwLLgVskLQY2ALsiYhGwK70m/awNuBRYDXxH0hmprvuB9cCi9Fid4uuAYxHxceBbwH2prtnAXcAyYClwl6RZGY7ZzMwmwKhJIyKORsSP0vZx4DVgPrAGGPzUvxVYm7bXAE9GRH9EvA50A0slzQVmRsSeKF7ePDKszGBd24EVkgSsAjoioi9dxXRwKtGYmdkkq2ggXNJC4ApgL3B+RByFYmIB5qTd5gNvlhQ7kmLz0/bw+JAyETEAvAucW6YuMzPLQeakIem3gP8BfCMi3iu36wixKBMfa5nSY1svqVNSZ29vb5lDMzOz8ciUNCRNp5gwvhcRf5PCb6cuJ9JzT4ofAS4oKb4AeCvFF4wQH1JGUhNwDtBXpq4hImJLRBQiotDa2pqlSWZmNgajJo00tvAg8FpE/NeSH+0A2tN2O/BMSbxNUrOkiykOeO9LXVjHJS1Pdd4wrMxgXdcCL6Rxj+eAlZJmpQHwlSlmZmY5yDLl9nPAbuBlilNuAb5JcVxjG3AhcBi4LiL6Upk7gBspzrz6RkTsTPECp6bc7gS+nqbctgCPUhwv6QPaIuJnqcyN6f0A/jwiHhrleHuBn4/wo/OAd8o2tj40SjvAbalFjdIOcFsqdVFEjNpVM2rSaBSSOrPMQa51jdIOcFtqUaO0A9yWieJlRMzMLDMnDTMzy2wqJY0teR9AlTRKO8BtqUWN0g5wWybElBnTMDOz8ZtKVxpmZjZOdZs0JP21pB5Jr5TEfkfSHkkvS/pbSTNT/COSHkrxH0v6/ZIyS1K8W9LmdA9JvbblB5IOSXopPeaM8HYT2Y4LJP0vSa9JOijp1hSfLalDUld6nlVSZmP6tz8kaVVJPNfzUuW25HZeKm2HpHPT/u9L+vawuurqnIzSlrr6W5H0h5IOpH//A5I+X1LX5J6XiKjLB/B7wGeAV0pi+4F/k7ZvBO5J27cAD6XtOcABYFp6vQ/4XYpLluwErqrjtvwAKOR4TuYCn0nbM4B/AhYDfwFsSPENwH1pezHwY6AZuBj4KXBGLZyXKrclt/MyhnacDXwO+Brw7WF11ds5KdeWevtbuQKYl7YvA36R13mp2yuNiPgHijcClroE+Ie03QH8cdpeTHH5diKiB/gVUFD5lXcnTTXaMgmHOaqYnBWRJ0W12jKZxzySStsREb+OiP8NDPm2n3o8J6drSy0YQ1tejIjBJZQOAi0qrrox6eelbpPGabwCXJ22r+PUulU/BtZIalJxaZMl6WflVt7NW6VtGfRQutz+T5PdfVBKE7ci8qQbZ1sG5X5eMrbjdOrxnIwm93MCY2rLHwMvRkQ/OZyXRksaN1L8kqgDFC/5/jnF/5riP2Yn8JfA/6W4xEmmVXRzUmlbAK6PiE8B/zo9vjKpR5xoYldEnlRVaAvUwHmpoB2nrWKEWK2fk3JyPydQeVskXUrxS+q+OhgaYbcJPS8NlTQi4icRsTIilgBPUOxXJiIGIuLPIuLyiFgDfBToovzKu7kaQ1uIiF+k5+PA4+TQPaKJXxF50lSpLbmflwrbcTr1eE5OK+9zApW3RdIC4Gnghoj4aQpP+nlpqKQxOANC0jSK3yv+39LrsySdnbb/EBiIiFej/Mq7uaq0Lam76rwUnw78EcUursk85slYEXlSVKsteZ+XMbRjRHV6Tk5XT939rUj6KPD3wMaI+D+DO+dyXiZylH0iHxQ/fR8FPqCYbdcBt1KchfBPwL2cunlxIXCI4mDT8xRXcxysp0DxF+anwLcHy9RbWyjOFDkA/CPFgbK/Is3emcR2fI7ipfE/Ai+lx7+l+C2MuyheEe0CZpeUuSP92x+iZNZH3uelWm3J+7yMsR1vUJyY8X76fVxcx+fkN9qS9zkZS1sofnD8dcm+LwFz8jgvviPczMwya6juKTMzm1hOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZ/X+iAsdYpH8kLgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2020 221186\n",
+ "2021 376290\n",
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1991 553090\n",
+ "1996 564901\n",
+ "2019 584066\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +1228,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-