Oh, yeah, `$` works too

parent 1e186e5a
...@@ -4,21 +4,15 @@ ...@@ -4,21 +4,15 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# On the computation of \\\\( \\pi \\\\)" "# On the computation of $\\pi$"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Asking the maths library" "## Asking the maths library\n",
] "My computer tells me that $\\pi$ is *approximatively*"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"My computer tells me that \\\\(\\pi\\\\) is *approximatively*"
] ]
}, },
{ {
...@@ -43,13 +37,7 @@ ...@@ -43,13 +37,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Buffon’s needle" "## Buffon’s needle\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**"
] ]
}, },
...@@ -82,20 +70,14 @@ ...@@ -82,20 +70,14 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Using a surface fraction argument" "## Using a surface fraction argument\n",
] "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0, 1)$ and $Y \\sim U(0, 1)$, then $[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\"\n",
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A method that is easier to understand and does not make use of the sin function is based on the fact that if \\\\( X \\sim U(0, 1) \\\\) and \\\\( Y \\sim U(0, 1) \\\\), then \\\\(P[X^2 + Y^2 \\le 1] = \\pi/4 \\\\) (see [\"Monte Carlo method\"\n",
"on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" "on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -114,12 +96,15 @@ ...@@ -114,12 +96,15 @@
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline\n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n", "np.random.seed(seed=42)\n",
"N = 1000\n", "N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n",
"\n",
"accept = (x*x+y*y) <= 1\n", "accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n", "reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n", "fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
...@@ -130,13 +115,13 @@ ...@@ -130,13 +115,13 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"It is then straightforward to obtain a (not really good) approximation to \\\\( \\pi \\\\) by counting how\n", "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how\n",
"many times, on average, \\\\( X^2 + Y^2 \\\\) is smaller than \\\\(1\\\\):" "many times, on average, $X^2 + Y^2$ is smaller than $1$:"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -145,7 +130,7 @@ ...@@ -145,7 +130,7 @@
"3.112" "3.112"
] ]
}, },
"execution_count": 5, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment