diff --git a/module2/exo4/exercice.ipynb b/module2/exo4/exercice.ipynb index a9d5a1ecd05db368e904803313ccf05fb9f58b1c..a79fc88673a6bc67ffc93a839c7f03aedbdeb40f 100644 --- a/module2/exo4/exercice.ipynb +++ b/module2/exo4/exercice.ipynb @@ -16,28 +16,457 @@ "metadata": { "scrolled": true }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/jovyan/work/module2/exo4\n" + ] + } + ], + "source": [ + "import os\n", + "mypath=os.getcwd()\n", + "print(mypath)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "C'est là qu'on est" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "hideOutput": true + }, "outputs": [ { "data": { "text/plain": [ - "'/home/jovyan/work/module2/exo4'" + "['exercice_python_en.org',\n", + " 'exercice_fr.ipynb',\n", + " 'exercice.ipynb',\n", + " 'exercice_fr.Rmd',\n", + " 'exercice_python_fr.org',\n", + " 'exercice_R_en.org',\n", + " 'exercice_R_fr.org',\n", + " 'exercice_en.Rmd',\n", + " 'exercice_en.ipynb',\n", + " '.ipynb_checkpoints',\n", + " 'donnees.csv']" ] }, - "execution_count": 1, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "pwd" + "os.listdir(mypath)" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 3, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/jovyan/work/module2/exo4/*.csv\n" + ] + } + ], "source": [ - "C'est là qu'on est" + "print(mypath + \"/*.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['donnees.csv']\n" + ] + } + ], + "source": [ + "import glob\n", + "csvlist = [f for f in glob.glob(\"*.csv\")]\n", + "print(csvlist)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "donnees.csv\n" + ] + } + ], + "source": [ + "filename=csvlist[0]\n", + "print(filename)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0datesportduréeFC moyFC maxintensité ressentieUnnamed: 7
0NaN------------------------------------------------NaN
1NaN18/03/2020vélo1:09:16128176facileNaN
2NaN19/03/2020vélo2:29:58151188mod+NaN
3NaN20/03/2020vélo0:44:05144176facileNaN
4NaN25/03/2020crossfit0:51:25128182mod+NaN
\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 date sport durée FC moy FC max \\\n", + "0 NaN ----- ----- ------ ------ ------- \n", + "1 NaN 18/03/2020 vélo 1:09:16 128 176 \n", + "2 NaN 19/03/2020 vélo 2:29:58 151 188 \n", + "3 NaN 20/03/2020 vélo 0:44:05 144 176 \n", + "4 NaN 25/03/2020 crossfit 0:51:25 128 182 \n", + "\n", + " intensité ressentie Unnamed: 7 \n", + "0 ------------------- NaN \n", + "1 facile NaN \n", + "2 mod+ NaN \n", + "3 facile NaN \n", + "4 mod+ NaN " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "variable = pd.read_csv(r\"/home/jovyan/work/module2/exo4/donnees.csv\",sep=';')\n", + "variable.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
datesportduréeFC moyFC maxintensité ressentie
018/03/2020vélo1:09:16128176facile
119/03/2020vélo2:29:58151188mod+
220/03/2020vélo0:44:05144176facile
325/03/2020crossfit0:51:25128182mod+
426/03/2020vélo0:45:29162193mod++
\n", + "
" + ], + "text/plain": [ + " date sport durée FC moy FC max intensité ressentie \n", + "0 18/03/2020 vélo 1:09:16 128 176 facile \n", + "1 19/03/2020 vélo 2:29:58 151 188 mod+ \n", + "2 20/03/2020 vélo 0:44:05 144 176 facile \n", + "3 25/03/2020 crossfit 0:51:25 128 182 mod+ \n", + "4 26/03/2020 vélo 0:45:29 162 193 mod++ " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "variable = pd.read_csv(r\"/home/jovyan/work/module2/exo4/donnees.csv\",sep=';',header=0,usecols=[1,2,3,4,5,6],skiprows=[1],skipinitialspace=1)\n", + "variable.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[['18/03/2020 ' 'vélo ' '1:09:16 ' 128 176 'facile ']\n", + " ['19/03/2020 ' 'vélo ' '2:29:58 ' 151 188 'mod+ ']\n", + " ['20/03/2020 ' 'vélo ' '0:44:05 ' 144 176 'facile ']\n", + " ['25/03/2020 ' 'crossfit ' '0:51:25 ' 128 182 'mod+ ']\n", + " ['26/03/2020 ' 'vélo ' '0:45:29 ' 162 193 'mod++ ']\n", + " ['30/03/2020 ' 'cap ' '0:39:04 ' 158 189 'mod++ ']\n", + " ['30/03/2020 ' 'crossfit ' '0:29:14 ' 130 169 'mod+ ']\n", + " ['31/03/2020 ' 'vélo ' '0:41:52 ' 156 181 'mod+ ']\n", + " ['01/04/2020 ' 'vélo ' '0:39:06 ' 168 190 'mod++ ']]\n" + ] + } + ], + "source": [ + "mat=variable.values\n", + "print(mat)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9\n" + ] + } + ], + "source": [ + "[nrows,ncols]=mat.shape\n", + "print(nrows)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['18/03/2020 ', '19/03/2020 ', '20/03/2020 ', '25/03/2020 ',\n", + " '26/03/2020 ', '30/03/2020 ', '30/03/2020 ', '31/03/2020 ',\n", + " '01/04/2020 '], dtype=object)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mat[:,0]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'18/03/2020 '" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mat[0,0]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "datetime.datetime(2020, 3, 18, 0, 0)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from datetime import datetime, date, time, timezone\n", + "datetime.strptime(mat[0,0],\"%d/%m/%Y \")" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {