{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Etude des donnees du confinement\n", "\n", "\n", "## lecture de fichier csv" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/home/jovyan/work/module2/exo4\n" ] } ], "source": [ "import os\n", "mypath=os.getcwd()\n", "print(mypath)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "C'est là qu'on est" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "hideOutput": true }, "outputs": [ { "data": { "text/plain": [ "['exercice_python_en.org',\n", " 'exercice_fr.ipynb',\n", " 'exercice.ipynb',\n", " 'exercice_fr.Rmd',\n", " 'exercice_python_fr.org',\n", " 'exercice_R_en.org',\n", " 'exercice_R_fr.org',\n", " 'exercice_en.Rmd',\n", " 'exercice_en.ipynb',\n", " '.ipynb_checkpoints',\n", " 'donnees.csv']" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "os.listdir(mypath)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/home/jovyan/work/module2/exo4/*.csv\n" ] } ], "source": [ "print(mypath + \"/*.csv\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['donnees.csv']\n" ] } ], "source": [ "import glob\n", "csvlist = [f for f in glob.glob(\"*.csv\")]\n", "print(csvlist)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "donnees.csv\n" ] } ], "source": [ "filename=csvlist[0]\n", "print(filename)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0datesportduréeFC moyFC maxintensité ressentieUnnamed: 7
0NaN------------------------------------------------NaN
1NaN18/03/2020vélo1:09:16128176facileNaN
2NaN19/03/2020vélo2:29:58151188mod+NaN
3NaN20/03/2020vélo0:44:05144176facileNaN
4NaN25/03/2020crossfit0:51:25128182mod+NaN
\n", "
" ], "text/plain": [ " Unnamed: 0 date sport durée FC moy FC max \\\n", "0 NaN ----- ----- ------ ------ ------- \n", "1 NaN 18/03/2020 vélo 1:09:16 128 176 \n", "2 NaN 19/03/2020 vélo 2:29:58 151 188 \n", "3 NaN 20/03/2020 vélo 0:44:05 144 176 \n", "4 NaN 25/03/2020 crossfit 0:51:25 128 182 \n", "\n", " intensité ressentie Unnamed: 7 \n", "0 ------------------- NaN \n", "1 facile NaN \n", "2 mod+ NaN \n", "3 facile NaN \n", "4 mod+ NaN " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "variable = pd.read_csv(r\"/home/jovyan/work/module2/exo4/donnees.csv\",sep=';')\n", "variable.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datesportduréeFC moyFC maxintensité ressentie
018/03/2020vélo1:09:16128176facile
119/03/2020vélo2:29:58151188mod+
220/03/2020vélo0:44:05144176facile
325/03/2020crossfit0:51:25128182mod+
426/03/2020vélo0:45:29162193mod++
\n", "
" ], "text/plain": [ " date sport durée FC moy FC max intensité ressentie \n", "0 18/03/2020 vélo 1:09:16 128 176 facile \n", "1 19/03/2020 vélo 2:29:58 151 188 mod+ \n", "2 20/03/2020 vélo 0:44:05 144 176 facile \n", "3 25/03/2020 crossfit 0:51:25 128 182 mod+ \n", "4 26/03/2020 vélo 0:45:29 162 193 mod++ " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "variable = pd.read_csv(r\"/home/jovyan/work/module2/exo4/donnees.csv\",sep=';',header=0,usecols=[1,2,3,4,5,6],skiprows=[1],skipinitialspace=1)\n", "variable.head()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "hideOutput": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[['18/03/2020 ' 'vélo ' '1:09:16 ' 128 176 'facile ']\n", " ['19/03/2020 ' 'vélo ' '2:29:58 ' 151 188 'mod+ ']\n", " ['20/03/2020 ' 'vélo ' '0:44:05 ' 144 176 'facile ']\n", " ['25/03/2020 ' 'crossfit ' '0:51:25 ' 128 182 'mod+ ']\n", " ['26/03/2020 ' 'vélo ' '0:45:29 ' 162 193 'mod++ ']\n", " ['30/03/2020 ' 'cap ' '0:39:04 ' 158 189 'mod++ ']\n", " ['30/03/2020 ' 'crossfit ' '0:29:14 ' 130 169 'mod+ ']\n", " ['31/03/2020 ' 'vélo ' '0:41:52 ' 156 181 'mod+ ']\n", " ['01/04/2020 ' 'vélo ' '0:39:06 ' 168 190 'mod++ ']]\n" ] } ], "source": [ "mat=variable.values\n", "print(mat)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9\n" ] } ], "source": [ "[nrows,ncols]=mat.shape\n", "print(nrows)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['18/03/2020 ', '19/03/2020 ', '20/03/2020 ', '25/03/2020 ',\n", " '26/03/2020 ', '30/03/2020 ', '30/03/2020 ', '31/03/2020 ',\n", " '01/04/2020 '], dtype=object)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat[:,0]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'18/03/2020 '" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat[0,0]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "datetime.datetime(2020, 3, 18, 0, 0)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from datetime import datetime, date, time, timezone\n", "datetime.strptime(mat[0,0],\"%d/%m/%Y \")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }