From 98034911b86e5e68cba8656c8399c5a37d7731a3 Mon Sep 17 00:00:00 2001 From: Yseulys Date: Tue, 9 Jun 2020 15:20:09 +0000 Subject: [PATCH] Update toy_document_fr.Rmd --- module2/exo1/toy_document_fr.Rmd | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index ac50b5f..907cf97 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -30,7 +30,7 @@ theta = pi/2*runif(N) ## Avec un argument "fréquentiel" de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^2 + Y^2 \leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^2+Y^2 \leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : ```{r} -- 2.18.1