{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence de la varicelle" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", "| week | Semaine calendaire (ISO 8601) |\n", "| indicator | Code de l'indicateur de surveillance |\n", "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "\n", "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Vérification si le fichier existe en local, sinon le télécharge en ligne : " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Local File used\n" ] } ], "source": [ "data_local = \"./\" + data_url[32:]\n", "try : \n", " raw_data = pd.read_csv(data_local, skiprows=0)\n", " print(\"Local File used\")\n", "except :\n", " raw_data = pd.read_csv(data_url, skiprows=1)\n", " raw_data.to_csv(data_local, index=False)\n", " print(\"Online file downloaded\")\n", " " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020204374406250463087410FRFrance
12020427400219816023639FRFrance
22020417396120995823639FRFrance
3202040720786753481315FRFrance
4202039710492371861213FRFrance
5202038722537823724315FRFrance
6202037715844052763204FRFrance
720203679191001738102FRFrance
8202035782801694102FRFrance
9202034722723714173306FRFrance
10202033712841772391204FRFrance
11202032726506894611417FRFrance
12202031713031002506204FRFrance
1320203071385752695204FRFrance
142020297841101672102FRFrance
15202028772801515102FRFrance
1620202779861491823102FRFrance
17202026769401454102FRFrance
1820202572280597001FRFrance
1920202473880959102FRFrance
20202023755811115102FRFrance
2120202272770633001FRFrance
222020217602361168102FRFrance
232020207824201628102FRFrance
2420201973100753001FRFrance
252020187849981600102FRFrance
2620201772720658001FRFrance
272020167758781438102FRFrance
28202015719186753161315FRFrance
292020147387922275531639FRFrance
.................................
15301991267176081130423912312042FRFrance
15311991257161691070021638281838FRFrance
15321991247161711007122271281739FRFrance
1533199123711947767116223211329FRFrance
1534199122715452995320951271737FRFrance
1535199121714903897520831261636FRFrance
15361991207190531274225364342345FRFrance
15371991197167391124622232291939FRFrance
15381991187213851388228888382551FRFrance
1539199117713462887718047241632FRFrance
15401991167148571006819646261834FRFrance
1541199115713975978118169251832FRFrance
1542199114712265768416846221430FRFrance
154319911379567604113093171123FRFrance
1544199112710864733114397191325FRFrance
15451991117155741118419964271935FRFrance
15461991107166431137221914292038FRFrance
1547199109713741878018702241533FRFrance
1548199108713289881317765231531FRFrance
1549199107712337807716597221529FRFrance
1550199106710877701314741191226FRFrance
1551199105710442654414340181125FRFrance
15521991047791345631126314820FRFrance
15531991037153871048420290271836FRFrance
15541991027162771104621508292038FRFrance
15551991017155651027120859271836FRFrance
15561990527193751329525455342345FRFrance
15571990517190801380724353342543FRFrance
1558199050711079666015498201228FRFrance
15591990497114302610205FRFrance
\n", "

1560 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202043 7 4406 2504 6308 7 4 \n", "1 202042 7 4002 1981 6023 6 3 \n", "2 202041 7 3961 2099 5823 6 3 \n", "3 202040 7 2078 675 3481 3 1 \n", "4 202039 7 1049 237 1861 2 1 \n", "5 202038 7 2253 782 3724 3 1 \n", "6 202037 7 1584 405 2763 2 0 \n", "7 202036 7 919 100 1738 1 0 \n", "8 202035 7 828 0 1694 1 0 \n", "9 202034 7 2272 371 4173 3 0 \n", "10 202033 7 1284 177 2391 2 0 \n", "11 202032 7 2650 689 4611 4 1 \n", "12 202031 7 1303 100 2506 2 0 \n", "13 202030 7 1385 75 2695 2 0 \n", "14 202029 7 841 10 1672 1 0 \n", "15 202028 7 728 0 1515 1 0 \n", "16 202027 7 986 149 1823 1 0 \n", "17 202026 7 694 0 1454 1 0 \n", "18 202025 7 228 0 597 0 0 \n", "19 202024 7 388 0 959 1 0 \n", "20 202023 7 558 1 1115 1 0 \n", "21 202022 7 277 0 633 0 0 \n", "22 202021 7 602 36 1168 1 0 \n", "23 202020 7 824 20 1628 1 0 \n", "24 202019 7 310 0 753 0 0 \n", "25 202018 7 849 98 1600 1 0 \n", "26 202017 7 272 0 658 0 0 \n", "27 202016 7 758 78 1438 1 0 \n", "28 202015 7 1918 675 3161 3 1 \n", "29 202014 7 3879 2227 5531 6 3 \n", "... ... ... ... ... ... ... ... \n", "1530 199126 7 17608 11304 23912 31 20 \n", "1531 199125 7 16169 10700 21638 28 18 \n", "1532 199124 7 16171 10071 22271 28 17 \n", "1533 199123 7 11947 7671 16223 21 13 \n", "1534 199122 7 15452 9953 20951 27 17 \n", "1535 199121 7 14903 8975 20831 26 16 \n", "1536 199120 7 19053 12742 25364 34 23 \n", "1537 199119 7 16739 11246 22232 29 19 \n", "1538 199118 7 21385 13882 28888 38 25 \n", "1539 199117 7 13462 8877 18047 24 16 \n", "1540 199116 7 14857 10068 19646 26 18 \n", "1541 199115 7 13975 9781 18169 25 18 \n", "1542 199114 7 12265 7684 16846 22 14 \n", "1543 199113 7 9567 6041 13093 17 11 \n", "1544 199112 7 10864 7331 14397 19 13 \n", "1545 199111 7 15574 11184 19964 27 19 \n", "1546 199110 7 16643 11372 21914 29 20 \n", "1547 199109 7 13741 8780 18702 24 15 \n", "1548 199108 7 13289 8813 17765 23 15 \n", "1549 199107 7 12337 8077 16597 22 15 \n", "1550 199106 7 10877 7013 14741 19 12 \n", "1551 199105 7 10442 6544 14340 18 11 \n", "1552 199104 7 7913 4563 11263 14 8 \n", "1553 199103 7 15387 10484 20290 27 18 \n", "1554 199102 7 16277 11046 21508 29 20 \n", "1555 199101 7 15565 10271 20859 27 18 \n", "1556 199052 7 19375 13295 25455 34 23 \n", "1557 199051 7 19080 13807 24353 34 25 \n", "1558 199050 7 11079 6660 15498 20 12 \n", "1559 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 10 FR France \n", "1 9 FR France \n", "2 9 FR France \n", "3 5 FR France \n", "4 3 FR France \n", "5 5 FR France \n", "6 4 FR France \n", "7 2 FR France \n", "8 2 FR France \n", "9 6 FR France \n", "10 4 FR France \n", "11 7 FR France \n", "12 4 FR France \n", "13 4 FR France \n", "14 2 FR France \n", "15 2 FR France \n", "16 2 FR France \n", "17 2 FR France \n", "18 1 FR France \n", "19 2 FR France \n", "20 2 FR France \n", "21 1 FR France \n", "22 2 FR France \n", "23 2 FR France \n", "24 1 FR France \n", "25 2 FR France \n", "26 1 FR France \n", "27 2 FR France \n", "28 5 FR France \n", "29 9 FR France \n", "... ... ... ... \n", "1530 42 FR France \n", "1531 38 FR France \n", "1532 39 FR France \n", "1533 29 FR France \n", "1534 37 FR France \n", "1535 36 FR France \n", "1536 45 FR France \n", "1537 39 FR France \n", "1538 51 FR France \n", "1539 32 FR France \n", "1540 34 FR France \n", "1541 32 FR France \n", "1542 30 FR France \n", "1543 23 FR France \n", "1544 25 FR France \n", "1545 35 FR France \n", "1546 38 FR France \n", "1547 33 FR France \n", "1548 31 FR France \n", "1549 29 FR France \n", "1550 26 FR France \n", "1551 25 FR France \n", "1552 20 FR France \n", "1553 36 FR France \n", "1554 38 FR France \n", "1555 36 FR France \n", "1556 45 FR France \n", "1557 43 FR France \n", "1558 28 FR France \n", "1559 5 FR France \n", "\n", "[1560 rows x 10 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020204374406250463087410FRFrance
12020427400219816023639FRFrance
22020417396120995823639FRFrance
3202040720786753481315FRFrance
4202039710492371861213FRFrance
5202038722537823724315FRFrance
6202037715844052763204FRFrance
720203679191001738102FRFrance
8202035782801694102FRFrance
9202034722723714173306FRFrance
10202033712841772391204FRFrance
11202032726506894611417FRFrance
12202031713031002506204FRFrance
1320203071385752695204FRFrance
142020297841101672102FRFrance
15202028772801515102FRFrance
1620202779861491823102FRFrance
17202026769401454102FRFrance
1820202572280597001FRFrance
1920202473880959102FRFrance
20202023755811115102FRFrance
2120202272770633001FRFrance
222020217602361168102FRFrance
232020207824201628102FRFrance
2420201973100753001FRFrance
252020187849981600102FRFrance
2620201772720658001FRFrance
272020167758781438102FRFrance
28202015719186753161315FRFrance
292020147387922275531639FRFrance
.................................
15301991267176081130423912312042FRFrance
15311991257161691070021638281838FRFrance
15321991247161711007122271281739FRFrance
1533199123711947767116223211329FRFrance
1534199122715452995320951271737FRFrance
1535199121714903897520831261636FRFrance
15361991207190531274225364342345FRFrance
15371991197167391124622232291939FRFrance
15381991187213851388228888382551FRFrance
1539199117713462887718047241632FRFrance
15401991167148571006819646261834FRFrance
1541199115713975978118169251832FRFrance
1542199114712265768416846221430FRFrance
154319911379567604113093171123FRFrance
1544199112710864733114397191325FRFrance
15451991117155741118419964271935FRFrance
15461991107166431137221914292038FRFrance
1547199109713741878018702241533FRFrance
1548199108713289881317765231531FRFrance
1549199107712337807716597221529FRFrance
1550199106710877701314741191226FRFrance
1551199105710442654414340181125FRFrance
15521991047791345631126314820FRFrance
15531991037153871048420290271836FRFrance
15541991027162771104621508292038FRFrance
15551991017155651027120859271836FRFrance
15561990527193751329525455342345FRFrance
15571990517190801380724353342543FRFrance
1558199050711079666015498201228FRFrance
15591990497114302610205FRFrance
\n", "

1560 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202043 7 4406 2504 6308 7 4 \n", "1 202042 7 4002 1981 6023 6 3 \n", "2 202041 7 3961 2099 5823 6 3 \n", "3 202040 7 2078 675 3481 3 1 \n", "4 202039 7 1049 237 1861 2 1 \n", "5 202038 7 2253 782 3724 3 1 \n", "6 202037 7 1584 405 2763 2 0 \n", "7 202036 7 919 100 1738 1 0 \n", "8 202035 7 828 0 1694 1 0 \n", "9 202034 7 2272 371 4173 3 0 \n", "10 202033 7 1284 177 2391 2 0 \n", "11 202032 7 2650 689 4611 4 1 \n", "12 202031 7 1303 100 2506 2 0 \n", "13 202030 7 1385 75 2695 2 0 \n", "14 202029 7 841 10 1672 1 0 \n", "15 202028 7 728 0 1515 1 0 \n", "16 202027 7 986 149 1823 1 0 \n", "17 202026 7 694 0 1454 1 0 \n", "18 202025 7 228 0 597 0 0 \n", "19 202024 7 388 0 959 1 0 \n", "20 202023 7 558 1 1115 1 0 \n", "21 202022 7 277 0 633 0 0 \n", "22 202021 7 602 36 1168 1 0 \n", "23 202020 7 824 20 1628 1 0 \n", "24 202019 7 310 0 753 0 0 \n", "25 202018 7 849 98 1600 1 0 \n", "26 202017 7 272 0 658 0 0 \n", "27 202016 7 758 78 1438 1 0 \n", "28 202015 7 1918 675 3161 3 1 \n", "29 202014 7 3879 2227 5531 6 3 \n", "... ... ... ... ... ... ... ... \n", "1530 199126 7 17608 11304 23912 31 20 \n", "1531 199125 7 16169 10700 21638 28 18 \n", "1532 199124 7 16171 10071 22271 28 17 \n", "1533 199123 7 11947 7671 16223 21 13 \n", "1534 199122 7 15452 9953 20951 27 17 \n", "1535 199121 7 14903 8975 20831 26 16 \n", "1536 199120 7 19053 12742 25364 34 23 \n", "1537 199119 7 16739 11246 22232 29 19 \n", "1538 199118 7 21385 13882 28888 38 25 \n", "1539 199117 7 13462 8877 18047 24 16 \n", "1540 199116 7 14857 10068 19646 26 18 \n", "1541 199115 7 13975 9781 18169 25 18 \n", "1542 199114 7 12265 7684 16846 22 14 \n", "1543 199113 7 9567 6041 13093 17 11 \n", "1544 199112 7 10864 7331 14397 19 13 \n", "1545 199111 7 15574 11184 19964 27 19 \n", "1546 199110 7 16643 11372 21914 29 20 \n", "1547 199109 7 13741 8780 18702 24 15 \n", "1548 199108 7 13289 8813 17765 23 15 \n", "1549 199107 7 12337 8077 16597 22 15 \n", "1550 199106 7 10877 7013 14741 19 12 \n", "1551 199105 7 10442 6544 14340 18 11 \n", "1552 199104 7 7913 4563 11263 14 8 \n", "1553 199103 7 15387 10484 20290 27 18 \n", "1554 199102 7 16277 11046 21508 29 20 \n", "1555 199101 7 15565 10271 20859 27 18 \n", "1556 199052 7 19375 13295 25455 34 23 \n", "1557 199051 7 19080 13807 24353 34 25 \n", "1558 199050 7 11079 6660 15498 20 12 \n", "1559 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 10 FR France \n", "1 9 FR France \n", "2 9 FR France \n", "3 5 FR France \n", "4 3 FR France \n", "5 5 FR France \n", "6 4 FR France \n", "7 2 FR France \n", "8 2 FR France \n", "9 6 FR France \n", "10 4 FR France \n", "11 7 FR France \n", "12 4 FR France \n", "13 4 FR France \n", "14 2 FR France \n", "15 2 FR France \n", "16 2 FR France \n", "17 2 FR France \n", "18 1 FR France \n", "19 2 FR France \n", "20 2 FR France \n", "21 1 FR France \n", "22 2 FR France \n", "23 2 FR France \n", "24 1 FR France \n", "25 2 FR France \n", "26 1 FR France \n", "27 2 FR France \n", "28 5 FR France \n", "29 9 FR France \n", "... ... ... ... \n", "1530 42 FR France \n", "1531 38 FR France \n", "1532 39 FR France \n", "1533 29 FR France \n", "1534 37 FR France \n", "1535 36 FR France \n", "1536 45 FR France \n", "1537 39 FR France \n", "1538 51 FR France \n", "1539 32 FR France \n", "1540 34 FR France \n", "1541 32 FR France \n", "1542 30 FR France \n", "1543 23 FR France \n", "1544 25 FR France \n", "1545 35 FR France \n", "1546 38 FR France \n", "1547 33 FR France \n", "1548 31 FR France \n", "1549 29 FR France \n", "1550 26 FR France \n", "1551 25 FR France \n", "1552 20 FR France \n", "1553 36 FR France \n", "1554 38 FR France \n", "1555 36 FR France \n", "1556 45 FR France \n", "1557 43 FR France \n", "1558 28 FR France \n", "1559 5 FR France \n", "\n", "[1560 rows x 10 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nos données utilisent une convention inhabituelle: le numéro de\n", "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", "de nombre entier. C'est comme ça que Pandas les interprète.\n", " \n", "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", "semaine. Il faut lui fournir les dates de début et de fin de\n", "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", "\n", "Comme la conversion des semaines est devenu assez complexe, nous\n", "écrivons une petite fonction Python pour cela. Ensuite, nous\n", "l'appliquons à tous les points de nos donnés. Les résultats vont\n", "dans une nouvelle colonne 'period'." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il restent deux petites modifications à faire.\n", "\n", "Premièrement, nous définissons les périodes d'observation\n", "comme nouvel index de notre jeux de données. Ceci en fait\n", "une suite chronologique, ce qui sera pratique par la suite.\n", "\n", "Deuxièmement, nous trions les points par période, dans\n", "le sens chronologique." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", "le début de la période qui suit, la différence temporelle doit être\n", "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", "d'une seconde.\n", "\n", "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n", "entre lesquelles il manque une semaine.\n", "\n", "Nous reconnaissons ces dates: c'est la semaine sans observations\n", "que nous avions supprimées !" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un premier regard sur les données !" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXmcHkWd/lPvO1fuc3IHEpIwIQkkIRACCLyASJRdAZVdcEU8cRFX/emugrq7KLLKKuLiCoiigIqAiMISEq7whpyTA3JMrskkM5lM5so5mft43/r90V1vV1dXVdf7zjtHMvV8Psm8XV1dR3dVfet7FqGUwsLCwsLCgkekrxtgYWFhYdH/YImDhYWFhUUAljhYWFhYWARgiYOFhYWFRQCWOFhYWFhYBGCJg4WFhYVFAJY4WFhYWFgEYImDhYWFhUUAljhYWFhYWASQ09cNyBQjR46kM2fODKQ3NzdjyJAhfdCi7MP2pX/C9qV/4kzpS0/3Y8uWLUcppYVh+U5b4jB+/Hhs3rw5kB6PxxGLxXq/QT0A25f+CduX/okzpS893Q9CyEGTfFasZGFhYWERgCUOFhYWFhYBWOJgYWFhYRGAJQ4WFhYWFgFY4mBhYWFhEYAlDhYWFhYWAVjiYGFhYWERgCUOFmc8XtlWjYbWzr5uhoXFaQVLHCzOaOw/0oSv/ul9fPOFrX3dFAuL0wqWOFic0WjtSAAAqk+29XFLLCxOL1jiYDEgQPu6ARYWpxkscbA4o0FIX7fAwuL0RChxIIQUEEI2EkK2EUJ2EkK+76bfRwg5TAjZ6v77CPfMvYSQMkLIXkLI9Vz6IkLIDvfeI4Q4U5cQkk8Ied5NLyaETMt+Vy0sLCwsTGHCObQDuIZSOh/AAgBLCSFL3HsPU0oXuP9eAwBCyBwAtwKYC2ApgEcJIVE3/2MA7gQwy/231E3/PIATlNKZAB4G8GD3u2ZhYWFhkSlCiQN10ORe5rr/dCLcGwE8Ryltp5SWAygDsJgQMhHAcErpekopBfAMgJu4Z552f78I4FrGVVhYWFhY9D6MznNwd/5bAMwE8EtKaTEh5MMAvkII+TSAzQC+SSk9AWAygA3c41VuWqf7W0yH+/cQAFBKuwghDQDGADgqtONOOJwHCgsLEY/HA21tamqSpp+OsH3pPg6eSmS9fvtd+ifOlL70l34YEQdKaQLAAkLISAB/JYTMgyMiuh8OF3E/gIcAfA6AbMdPNekIuce34wkATwBAUVERlR2IcaYc+AHYvmQDO6sbgHVrMHToUMRiV6T17NZDJzFyUC6mjfWfymW/S//EmdKX/tKPtKyVKKUnAcQBLKWU1lFKE5TSJIBfA1jsZqsCMJV7bAqAajd9iiTd9wwhJAfACADH0+qJhYUGjiQzPdz0y7WI/TSe/cZYWJwGMLFWKnQ5BhBCBgH4IIA9rg6B4WYAJe7vVwDc6logTYejeN5IKa0B0EgIWeLqEz4N4GXumTvc358AsJJmMpstLAQQKVNqYWERBhOx0kQAT7t6hwiAFyilrxJCfk8IWQBH/FMB4EsAQCndSQh5AcAuAF0A7nbFUgBwF4CnAAwCsNz9BwBPAvg9IaQMDsdwaxb6ZmFhYWGRIUKJA6V0O4CFkvTbNc88AOABSfpmAPMk6W0Abglri4WFhYVF78B6SFsMKNz+ZDFe3V4dntHCYoDDEgeLAYXV+47iK8++39fNsLDo97DEwcLCwsIiAEscLCwsLCwCsMTBwqIf4MUtVfjd2vK+boaFRQpGHtIWFqcrTpcIXf/6520AgM9ePr2PW2Jh4cByDhYWFhYWAVjiYGFhYWERgCUOFhYWFhYBWOJgcUbDRuiysMgMljhYnNGg2nOpLCwsVLDE4TTC/iNNqDrR0tfNOK1gOQcLi8xgTVlPI1z70CoAQMWPb+jjlpx+sETCwiI9WM7B4oyGJQoWFpnBEgeLMxpW52BhkRkscbA4o8FzDvZwQQuGxrZO/GHDQbR2JMIzD1BY4mBxRsOSAwsZnt90CN/7Wwle3HKor5vSb2GJg8UZDZ5bsIyDBcPRpg4AQGN7Vx+3pP8ilDgQQgoIIRsJIdsIITsJId9300cTQt4khOxz/47inrmXEFJGCNlLCLmeS19ECNnh3nuEECcsGiEknxDyvJteTAiZlv2uWgxEWHqgx/+814ai7y0Pz3iGwm4Y1DDhHNoBXEMpnQ9gAYClhJAlAO4B8DaldBaAt91rEELmALgVwFwASwE8SgiJumU9BuBOALPcf0vd9M8DOEEpnQngYQAPZqFvWUUySfH0ugq0dVoZ5ekEO/n1eL8+gfauZF83o9dxukTr7UuEEgfqoMm9zHX/UQA3AnjaTX8awE3u7xsBPEcpbaeUlgMoA7CYEDIRwHBK6Xrq8PrPCM+wsl4EcC3jKvoLXtlWjf98ZSceeXtfXzfFIi1Q939rt2ThgS0u1khBDSOdAyEkSgjZCqAewJuU0mIA4ymlNQDg/h3nZp8MgNfyVLlpk93fYrrvGUppF4AGAGMy6VBPgckmG1o7+7glFunAzn0LGdjW044PNYw8pCmlCQALCCEjAfyVEDJPk12246eadN0z/oIJuROOWAqFhYWIx+OBh5qamqTp3cW+SocoVFdXIx4/lvXyZVD1pSf619Poqe8ShtITjhiwubnZV386bRHz9mRf+urbno5jSkQ636XyoKOQPlBejnj8cA+2Kn301VwRkVb4DErpSUJIHI6uoI4QMpFSWuOKjOrdbFUApnKPTQFQ7aZPkaTzz1QRQnIAjABwXFL/EwCeAICioiIai8UCbYzH45CldxeHNhwEdpVg0qRJiMXOz3r5MgT6smIZAPRI/3oaJt+loaUTIMCIQblZq3dw+XGgeD2GDBmCq666AnjDUb4avUPF++6RMdZD33bLwRMYOTgXMwqH9mq9fYF0vsuWjr3AgTJMmzYdsdisnm1YmuipNSxdmFgrFbocAwghgwB8EMAeAK8AuMPNdgeAl93frwC41bVAmg5H8bzRFT01EkKWuPqETwvPsLI+AWAl7afCwP1HmvDfK/ZYWWUPYP4P3sD8779hnL+moRU3/u8aHG1qV+bxmbJ2q3WnJz7+2LpUTC4LDymdw4AcFWYw0TlMBPAOIWQ7gE1wdA6vAvgxgOsIIfsAXOdeg1K6E8ALAHYBWAHgblcsBQB3AfgNHCX1fgDMhu5JAGMIIWUAvgHX8qk/YsOB43g0vh/1jeoFKR2cauvEvrrGrJQ10PC7tRXYVtWAv2ypUuYZiFO/vSuB4gO9I/o8bdG/7F36JULFSpTS7QAWStKPAbhW8cwDAB6QpG8GENBXUErbANxi0N5+g2wxDrf+agN21ZyykVZ7COw7ldY1DRjl4/2v7sIfNlTijf93ZV83pd9joIyJTGA9pDNEVzI7tuG7ak5lpZyBDN38Hohig9Jax/L8eHNHH7ek/8ITK1moYIlDhugYgI5DpyX4wHsDZClgEpOk3RYrEbG2rKGwxMEUwiAaiF6lpyMG4tQn3dgW/2VLFV7YdOYHo0vRhr5tRr+GPQkuQ2Sbc6CUop85hfd7mLwtf8juHmtKvwLbFYd1t6y+KZD2zT9vAwD8w8VTA/fORAyUMZEJLOdgCmHhzjbnYAdpz2CgiJJ4mIiV1u0/ig/+bOCauFpT1nBY4pAhEsnsDqow+XCzDS2cEQYi0SXu0qfr+34J1zCQYFUO4bDEIUNke8cRRmuW7ajJan1nEnQTfCDOfauQDocV4YbDEgdTiBMty/POTuSewUD0ZE/pHHRdt4sjgIG5eTCFJQ4ZItuDagCuYb0C/rUOlHccSVni6FiqAfIyFLDcVTgscTCFsNPK9phK2EHaM+hhP4em9i5Mu2cZXnrPC+FBKcWr26vRlegbc2cmMsmSn+YZCaaXsayDGpY4ZIjs6xzsKM0UOgkJ/53+uKEy63VXn2wFADwa359KW15Si688+74vLZuob2zDI2/vk4rMVpTUYOUeJ0Byc4fGiGGAi5UGePeNYIlDhsj2Wk7tLi9j6L4Fv3l/4LXdWa9btsYcc8NW1J1qy3p9APCN57fhZ2+WYuuhk4F7z3EObF97bqu6ELsZAWAZBx0sccgQ2RpUVvapx7qyo1hRkrmlVjqinf1HmnDgiGPiWX60OeM6GXrqiza5Zs0yCze7ITaDPSY0HJY4mEIYRNkaVGyQWuIgxyd/U4x//sN7GT/flYY/yrUPrcI17tkHV/80nlY9/HjozgLd3pXAt1/cjnoN15E6PlFSUcRUXiLka9GJoM5AWD+HcFjikCGyNabYZB5ICum/vX8Yq0qPdL8gg3UwW9Fzewuv76zD85sP4fuv7lJncseKrPvG9vvCeJvzH69jc0Xg8MUzHgNn1qUPSxxMIU66LI0qI5v0Mwxff34r7vjtxl6pqzPROy82205VutJYj2RcQnea8YnH12f+8GkKSoGn1pbj4LHuixHPNFjikCGyZq1kdQ49imyHOelpMPGUjtgkU3mC96zOwQxsurV1JXDf/+0akIQxDJY4ZIhsreWRFHHITnkDETpC3Vu+BtnSQVUeawEQwjm4VRFJLmOdwwCH+LUaWjr7pB39GaHEgRAylRDyDiFkNyFkJyHka276fYSQw4SQre6/j3DP3EsIKSOE7CWEXM+lLyKE7HDvPULc7REhJJ8Q8rybXkwImZb9rnYTAYV0doplEzxpqUOPoKfFStleix96szQ0T2tHQll3f6MNpXWN/VLZzeYv+zuQdH6mMOEcugB8k1J6HoAlAO4mhMxx7z1MKV3g/nsNANx7twKYC2ApgEcJIVE3/2MA7gQwy/231E3/PIATlNKZAB4G8GD3u9azyLYpqx2bPYNMFNLZ4gK6U4xukT/gmtn2d+LQ0ZXEhx5+F1/+Y+bWZj0Fxm2yTZkV6wYRShwopTWU0vfc340AdgOYrHnkRgDPUUrbKaXlAMoALCaETAQwnFK6njqz7xkAN3HPPO3+fhHAtSTbGr4sI1sLyEC0VsoWZGIVEemYsjJ0ZCCK4mvJxsg1KULW//40bZi+Z/3+Y8o8a8uO4oZHVvf6sbtsujGiYKdfEGnpHFxxz0IAxW7SVwgh2wkhvyWEjHLTJgPgzxmsctMmu7/FdN8zlNIuAA0AxqTTth6HGFspy8XanUvPIGEgVmrrTOD36yu86450FqqeWYxNFvlu+Tn0AkyO4vzWi9uxs/pUj3mTh8FKc9UwPiaUEDIUwF8AfJ1SeooQ8hiA++F8+/sBPATgc5DPFqpJR8g9vg13whFLobCwEPF4PPBQU1OTNL272FfpV1iVlJQg/8iebpebTDjy2A0bNuLQMD+t5vuyt8qrvyf6ly46EhRvHOzE0mm5yImEL0iy76LqhyxdllZZ6YSpOHDgAOK+fYeHA+UdoXU8t6cdKyo8ufjKd1dr6+b7Ut3kEJKWlpZUWqk7VqqrqxGPq3fNOtTV1YV+5y2bN6NOGDNH6uWL7Fd//QZunpmbIjqllXoFbDbGWLtLmJOJpLK8planvZs3bsD+gu7Zx6Qz9w8ccMZFda3nfd8f5hXQc2tYujAiDoSQXDiE4Y+U0pcAgFJax93/NYBX3csqAPwBtFMAVLvpUyTp/DNVhJAcACMABDxyKKVPAHgCAIqKimgsFgu0NR6PQ5beXRxaXwHs2pm6njt3LmLzJna73MFr30JzZzvmX7gI8yaP8N3j+1K/+RBQsh0AeqR/6eLnb5XixdJ9mD+nCLcvOTs0v++7rFgGQNIPWboqL4ANrXuA8v2YPv0cxGIzpfVu7SoFyvYF0vnyXj2yDajwiEvn2FkAtkvzin0pq28C1qzC4EGDU2mHiw8Cu0owadJExGIXSNsVgNtPhgkTxiMWW6DNu3jxxTh3/DDfrb/Vvg/UVAceeWV/Jx64/WoMK8gFEBzPIrIxxlo6uoA3XweJEGV5kXffANCJjjEzUTh5BOZOGiHNZ4J05n5Jch+wrxTjxo0Hqp331R/mFdBza1i6MLFWIgCeBLCbUvozLp1fGW8GUOL+fgXAra4F0nQ4iueNlNIaAI2EkCVumZ8G8DL3zB3u708AWEkHSNCTvKjzCTKRc/cWfrumHP/mHjzPcMINLtdXYalNkcko+taL28MzudBLcXpfxNOfdA6iRZAMXS538e2/7MANj6zphVYBtz2xAc+sPwjAipV0MOEcLgdwO4AdhBAW5vE7AG4jhCyAI/6pAPAlAKCU7iSEvABgFxxLp7sppQn3ubsAPAVgEIDl7j/AIT6/J4SUweEYbu1et9JHU3sXNpYfwzWzxxvlzxbpyo06k7m3FXLp4AduKIef3DI/lcaIWV5O37vK6EN29yUyr91E2S4bg7qnenshZNXp9Gl9sSlaf8AT9VldnxqhxIFSugbyMfea5pkHADwgSd8MYJ4kvQ3ALWFt6Un8x99K8NL7h/HWN67EzHHDghl6SCHNFtf+TBxk6Ohy3kButO+Jg3Z+G0z+bOy1fdZKWSjRhAGQOf9pPat7mTqYMP/pWpPtqT2FGYVDszbuBoiAIiP0/czuJ6h1rSVqG9qN8mePczhNiYO748vnOIfm9i4s2555eO2eQE9P/b4U4sjGoM42IBOz3u6AVaerNZ3wJpXHWrD056vxwLLsnctxuoVX6U1Y4uBiWIHDRJ1qU1hxiB7SWVp2UpxDGHvdz8Zwe6cjKeSJw70v7cDdz76HXdWn+qpZAZyuG0MToiMVK2ke5BfCXnktBjqHdHCixdFzbTl4IjsFwn8YlIUflji4yMtxnLg7udFy3ys7Me2eZdL8vc059MT5x+mCF0uw98Sz94fdIzN7K1xCpqKX3kJPeUjroPNz6G1Hy2y/e9a3bOoJrFhJDWM/hzMdXqRLb3I9ta5CmT9bQyrfUOfQH7jfJKWIuHtaXdho5fNJil+vPtADLVOjt+Z+thcZI4W0VOegzs87BPaGOCzb7z7i7kOyKQqyCmk1LOfggk1uA38uX/5M0ZVI4tXt1SkHsvYQ/ravBvFdf9iS+t3dnefyklr8aHn3HQfTQV9O/e5YlRpxRdLOmXEO3X0vlFK8sOkQ2rsS6jzdrENENs4+EedtLx33cVrCcg4u2JiR7YQbWjpxqi27opLH4vt9ETj7K+ewvKQ29Vs1Kds6E2hoDQ953NqpXkh6CiYLSVZiIUkK6RuxkvpeIoun4r22oxbf+st2HDzejH+7frY0T7Y3NNFI9+OQifMom+/kTIMlDi6SGs5h/g/eCKR1d9zXCLFkQnUO/YD99Sk0ueZ84enNWFN2FIvOdsJr9X1LPfSWzsF3hnQvmTClq5DOprUSM9w41iQPTwJkV6xEKUW5G41WR3T21TXiS7/fghfvugyjh+QF7ovPNrX3/obldIEVK7nw5o3ZzO7OohPfW49niyt9aaGcQ5LpRDKuttuQTkoCrCk7mlF5OpFENnC8uQMrd9f3aB09R3oy1DnoxEo9wH7qCIBqjrR1JnCsycxknOHV7TX40u+3hNb5+KoDOHC0GW/trpPeF9/BtkMn02rHQIIlDi68AWc2gbqzK7rrD8H49h0J/ULJZKN9aVdvurao2iimP7Gqe8rpsHdx4f1vYl99k0E5XklzJg5Pqw3axbEHxEr76hozLr/XbfoV1X32d5uw6IdvhT7+wuZDmHbPMpxs6XBiWLnQcQ75uc6S1q7YbFkFtDkscUjBGTSmY6c7Y0wmezcVK/Vl7Byphy2XlK7oq6m9/50QFjW1SBDg95DuPlRlsFAmYp0myIZYqf5Um28cZBK6hA9foXv+mfUVAIBDx1tTfkiAnsgx679//1sJnlpbHrjfH6z+ThdY4uDCxJuTR7bHWNigTZnaZrnedJAMkaufCZYfkbSJQ7DT2XgNZtZK6ZmydtcL/9DxFiz+r7fx2Kr9RvlPGRgpmGJovkccdHuQgtxo6vd9/7crcN96RJvDEgcX6Z4IlW0FcRi7y8Z0X+ocwqxE2DtR5epHAUOViKbZRt0r6ZYpq5HOIT20ddNarNp1cly194jXBk0jvv78VvVNF6aviCfaugU+N4S427PazWGJgwuPczAbPP+WRlhnE4TRGo9z6LsVlm+jrL1dabIO/XGapitW0vWhJ8Tb/MLY3N6V1oLfXeKQLg4eawnNoxOT8u+Pz9WdKLzp6hyqT7bi4TdL+4W1YG/DEgcXNE3OoafqV993f/Ql5xCy6wqbeKY76b6ciJkes6layDKFqhmVx70F9/YnN+Kqn7zjf05TZltndmz6N1Ycx8kWR2SkXaiz9B0J8RMRXR/DqkzXR+Irz76H/3l7H/bUNoZnNsSJ5g4cTdNaqy8w4InDxvLjmP3vy1ODva+sGUJ1DsyUtRfaomyD5N3wnFa25LnpFtPdRYhf4NLmHHpouMhasf9IE6pOtPrS6k6ZLzLZ5BweXOF4uvP9X1d2FAePNaeuTb5jJuNZy22E8A7p+ry1ugQ1m+vCwvvfxEUG1lp9jQFPHH75ThnaOpPYcbihT9sRNqjZjqcv5fay+cGnMeLQZOhNrlrU+5JzSF+spG5rth3wahvk50OborsH64RZyn3yN8W46ifx1LXJgmo6nk2/SrY5B4bnNx3CqtIj4RnPIAx44iAOzr5al8KtlXqnHTz+b5v/LGIZZ+AjDu7FZ5/a1K16+1JnmLkpa+Ye0ntqgyHOZQvxD7t5jkFPKGP1YqXeqcdXZ8j9dN8Bq/aZ9Qdxx283pvXs6Q5LHITr3gi3IFt/wnUOZjqRjq4kHlyxB9PuWYbfhERALatv0po3/suf3vddy+In8c0xUUD6nlX0xZSFzxYX5RMrpVloNhbAWx5fH5pn/5Em7K7p3jkZpk2dMmqQeZk6J8CQGtPhEPnP0h2CZJ3gzGGJg3j8Zy+MnZxI8LWbDuqw5j23qRKPxR079N+trVDmq29swwd/tgr/+crOkBI9bKo4nvpdWpc9BV1/Qrp+Dt0dL+v2H5U6A4oLYDZ2rb3NkfH1reACODJQam59Z5pPJEgip2D9HMwRShwIIVMJIe8QQnYTQnYSQr7mpo8mhLxJCNnn/h3FPXMvIaSMELKXEHI9l76IELLDvfcIcVdmQkg+IeR5N72YEDIt+11V9E+47pWNhWScm/o5hFGHdkOLFOagtLH8WEhODz9ctht1bsDAGlf+ndbuz3CC9+XuLidN4lDsvr9MmtzakcAnf10sD6CXoemB3jQ0e4p7E/DfscTV6fFWOpm2RtsOodB4qT+2Vrq04XTwzekpmHAOXQC+SSk9D8ASAHcTQuYAuAfA25TSWQDedq/h3rsVwFwASwE8SghhbouPAbgTwCz331I3/fMATlBKZwJ4GMCDWeibEcSP31cLkznnoM/I73x7YmCLHEN33pbq2fStlbrRCAH8sacm+L7EC9cUnRrTGfHbDeI8fzNFT4SGMRXxRIhzUiBvpZN0WAcj8MEddYRTbLp4ZG2689sSBw0opTWU0vfc340AdgOYDOBGAE+72Z4GcJP7+0YAz1FK2yml5QDKACwmhEwEMJxSup46W5hnhGdYWS8CuJbotkA9iN4gDbLNadiCyMZ02NiOGspmM4U4MbO1kPjL7DvOIT+n+4sww7ul+mi16QTtMwkgGIae2PgYF0kIak76zXDDaANf9otbqviilBAdMcX2pStW6kun075GWuc5uOKehQCKAYynlNYADgEhhIxzs00GsIF7rMpN63R/i+nsmUNuWV2EkAYAYwD4Zhch5E44nAcKCwsRj8cDbWxqapKmq3DsmN88cM+ePYg3mcWOSaceHknJjrGmthbxuP/gdL4vBysddjxJqbbeA5We0rittU2Zt7rJaUNLS0ta/di2bRu6DnsLaElJiTSfWGZTUxN2VfutbaoOHUI8Hgyp/e7qNRiS65+UsjYePOicJVBeUY54/LBJ86XlVVd7oo4DVdXavIB8jLW1ee96T5XzDWpPqd8/ADR3qheqQ1XydyMDX8fhw2q/h7L9+xGnhwAApQfVcY/4vvAoPRH0k6iprUE8ftyXJv1WFRV4v+mQP9+qVYG5wD/b1OQQkwf+4lfYt7a2Kuf+5lL/fD5Q7h8bB0+pfT1kZTY2tobmyRSqstJdw3oKxsSBEDIUwF8AfJ1SekqzsZfdoJp03TP+BEqfAPAEABQVFdFYLBZ4KB6PQ5auwh8rNwP1Xuz3oqIixC4+y7lYsUz7bDr18Ii+vQIQQnSPHz8esdgCXxrfl1WNO4GKCtCQequLK4FdOwAAgwYNUuYtq28E1ryLwYMHq8uT9H/Bgvm4fObY1L158+YCW4MhyMUy4/E45kyZBWz34u1MmToVsdicQH0fuPwDGDE415d21VVXBeTpm9v3AgfKMH3adMRis4zaL2vf68d3AFXO+RolEhWMrC+pNLeOgoKCVFr9pkNAyXbpszxOtnQAb78pvTd58hTEYnPT7kv81E7gYIU03/RzzkEsNhMAULm+AtgtN0bIz8+XtntoxXGg2L9QT5wwEbHYBb42iu8GAM6ZPh0Xzhrje/7KK69ENP6GT7zG1ztk22qg8RTWV/vnimpcx+NxDBtRABzxPuLUs6chFjs3db2jqgFYt0bab1mZw0vWAKcatHnShvieBKS7hvUUjASshJBcOIThj5TSl9zkOldUBPcv2+ZUAZjKPT4FQLWbPkWS7nuGEJIDYAQA/3akh9BTCumfvVmKafcsk9pVy8zywlh+Y7ES90V7QzDXnfeVjilrb0ma5HX3TOV6sVL2Pc/DYmMBwC2LpshvdBOysZikNCOxjc4XRSwvYK1kTVmNYWKtRAA8CWA3pfRn3K1XANzh/r4DwMtc+q2uBdJ0OIrnja4IqpEQssQt89PCM6ysTwBYSXtQ8HzL4+vwi7f3AZA4wWWpjkfc8mUx9PkqWS9NQ3aHgY8NlAltoJSmtRh2TyEtf1rW194yFAjzAs9qXZp7/HhI5+xt3YbA1AFMlas7r0Hu25PZueK5ElNwFURiwBPa6WOH4LIZY7TP9+T+quRwQ782rTV5y5cDuB3ANYSQre6/jwD4MYDrCCH7AFznXoNSuhPACwB2AVgB4G5KKRsBdwH4DRwl9X4Ay930JwGMIYSUAfgGXMunngClFJsqTuChN0ul97O9CHUahiwIW5D95zebOonJh/bO6gY8W3ym7V5XAAAgAElEQVTILct/78k15Zh+72upM4IDZQrXPbFwyorUVaP6lpngs5dPS6vuVB5FpuIDxzDtnmUpU07/M+qSecLZ0mF+KJLuexjFOiIajq4bC5lsLGZCGAAgRxNXXZy/Ypv5d56u2XK28Xe/WJPaRPZHhOocKKVroCag1yqeeQDAA5L0zQDmSdLbANwS1pZs4FRI3J+wxe53n7k4NDzEIS5ypiyMtSzyZ1i9fDmUqneIJtFBb3jEk7k2CwvPb9eUAzA/qKUnPMp7Qqz0sQsn46X3wpXWH10wCb961+9Z7iwomS0kz2w4CAB4d98RzJs8wl+u5jkf59CRnYB5Jt9KJ+bpzibX9WjypWXar5yoek8bGluJ60RONNJn4XIYdlZ3z+u9JzHgPKTFnUTANDPk+Vnjh0rTeQ7hiv9+J/VbGuwsAyc4XjylX1QMqAMHkVA1ut66SpNOocyfvL43vJJ0Ielg2PuZds8yvLItaGnEcP+NgT1JCvwryJUsPN1ZP5ZtrwEAdHalR/D4HW5LGouoTqz0XuVJozJURKQ7kl4Z0Wnvyow46A70EceJ2GJezJQbJeEE01Bx9/buOlzzUNxYUsDw1u668Ex9hAFHHMShEPj2IRNgSF4OLp85BhednXIIR2ldI2Z9dzmW76gJ5DcXK+nvJziLDr04woPJsBbzNLvEQTVpxEmeTjwl01Alme5QvyrEgvLXbVaGTNQgLjiPbm3DfbqwI5K6uiTmy9qIrtytdIiDDu+WHgld4LVipW5QSdl6nmm/dGKlADEIiJW4ciIkayFF7n1pBw4cacbx5o7sFNgPMPCIgyiTDNlpiIgQggghvufeO+j4J6zcE7RLl4mVZEM7W5wDPxky8SNMnYjXh+z2G7tq8efNh9CV4Ali98o0tYqRcg5C3RtrE3hqXUVa9XfKTsnT6ge8m9kSKwHh71Gr0O4O50AAscOZ9kv2jRjE+S0SB1GsFDbh2wzbyDjw7oZV709IywnuTEBwZyHcDxkskYiz6PJjrt2NbFogCXFgGkM/bNrxg1o3Sf/9ZblTmgqqnZPKiiKb5rEbDsjjOv3Hy86unN+FdddQwLTduoVHh8OC96+IrkQSP3tjLzoSFPd8eDYAc51DRyINsVIIETRSrivbpON0QjgSSbsyVUjrTFnFYSu2WRQr8bHIkkkaCLx46IQZZ8zadOMv16LixzcYPdPfMQA5B/91wLohZJA7nIN/MrATtgblBYmDTJwg29HLJtdPNrXi165ytFNQSMvQ0NKZ9nGVKtFGT5jYie0JO3rxeItHHGStCVvwczXiBxVkIotscFGdiSQeWVmGx1d53vem4TPSPb1Mh3C9AVG2y9QS6qqfvIM/Fh/0lypRSGd6Mp0+5Ia/kaIpOX//SGO7b77LfCB6w56pv55PPfCIg7DM6GSSMkQjTKzkpbEdUIEkaJtMESl3CAqm7TyWxAOv7XbbGb5CfOjnq8LrMexvd3bqw/LlDOmPl+9JqxxeWZ7JBMrLgAuQ2dCzMdOZSOIHGQba65CIlfQ6B7UY8cPzJmTUBllZIjIVK/HtPXisBd/9q5+DlVno/fMfgp71JtDtWwKcQ0Cs5P0+cKTZ9z5kGyLTM8XTcL0IoL+6Ogw44iDOjgBxCHmcEEe5xk8UpnSWiSRMdyMr99Rr7ch9OgdFNvE8YRkrL4q5VDXKnPecMsORp4hsGiZ6EcFz+JlMoKhhhFr+lmySs7p/+vpe/HZtefoNAXz6Ewb9Tpz/3v6MSzXEge/nlu99UFmn7AwJLpeiTbKcVHmPRyYuBcpjZHXPCNc6ncPQgpxQr3FTcaQpEZFBJl3oDxhwxCHcmkE/yqOEBHQO7BHZQTGy3ZZKUby1Sm1q6HOC64Zx5THBmkLV3+6IlbK1EfKdypZBoZm0Q/ZtEu6uX/R/0J2iJ0JGbE0XOTGfaVjxkYPzcK5ges3GjsoEmSAzbjKM08xmkGWttZ5GxwAArZ0eUSzIifrDlEjKNT38Kd0TBHn0Vy/pgUccRM4hTXGFI1byD0ItmxsSPoPHkDy1fYAJ5xCohzj1/+yNvalDVo42+rkLVVlqhXT4JMiWl7l/gewedTA/cSwI1c5OxUXIypCZNOsWOV4ZL2YzVZpHIwR/uesyoU51/t999mLlTvnwyVb87f2gE6Hpe42Q7BgzzJ4wLK1Q5+L8O9XqEQcK6pu73RErdadvKi69rzHwiEPIMYLhpn6OzkE2kEx1CSqoxDGAXyyRzlDaWHEcj6wsw7de3I743no8uMIv91eVpbNWCuOuTMMsTB6pP6v4wNFmr8xuzp+emLzNWtGMH3LioM6/et9RvLyVLcb+jDLDBxV0lj08po8dgquLxklqc/APj6/HctlRnymxUnYWuLBQIYToHdeC1kn++7znf5L61wPZuDXWORjka+1IYNo9wei6CZmZcz/AwCMOIZyDySDPiUYEvwPn9zPrDga8dOViJVXb5HU3tHRmFFspLyeS8rNo60zgM7/bhHX7/eajqv6qiAOlBgcTGbUOGDUkV3s/2k2FNP+EbuqGHV6vcmQ8fMJchyL1cwjBevdbie97WL7+vfEQF63QzQ+I9F2z42FVCCu3zfD42uc2HtLej0b01lthnEMb55XtBJn07knFSlnSObR2JFDObXZ4WM6hn0D8DOLgeWxV+EE/+TkRtPNmeG4RtafaAl668l20fCCphsj8H7zhG0CmYyka8XZZJrGYeKhEKZRSvFd5QnovrMx0wXsry4oMD3OefkN4Mcko90wJmSMjALwkEbMActGbTD8hNu/OK8/xXTN5t5hvSH7mnENYaAzlOOF+/+QTF6R+s/el+haDXS5n/IgCk+ZqObyriwoxOC8nPc5BIxnoTPjFSrK5asp58e2WcT/n/ccKfOSR1dJnrUK6n4BfMC764VvYVuWPlnmyJTzgXEFuBG1dZmIe2UKe7kINCIPccM0ziTrZ0NopXUQ7JCa4gBML5pbH10vvAQjoY3QoOawPOsYvsvIw3vryfZxDBrJjtjCku7Mz5RbFRe47HznPd80+n5hvqMJUGAhuO0RFqcmnCcty5bmFXF4mVpLnnVHoKcQzCefCY+m8CSCauoBwyQB/dU7hkFDdYSZipfnff0MZ1VgG1eajrzEAiYP3mylpVZg9YZg0vSAn6uMcdItheo416nI6fMTIbDCZDmyZV7VqN1MREkspJxpJSz+wr07tCOfTu0rK1Ok2Sg43+GL3ZKJy8IhDejs7meVKu0SsEupTQ+ScQ0EaOgfR2kZVJUvXWSsxSDcdimcYoexumHnAC12jG/783JgzcbiUc8jLieClL1+GJ26/CFNHD07dk1sr+a9VXDOfrzNB8a0/b1c3UkBvnVWSLgYccUgHU0bJFab5Auegg+zDZxJHng81sOWgXqzDEI143q46q5I/bKgMpGW6m8mJGES65KDzfXhhs3fkeLpiJVmcq3SR4874bOzs2iQRSMNKTYmV3OtBbniWTJz7UnVmaHLqOwdBUr/qW6Rr/6/LHo0QxwJPa1Lr/c6N+g1HTrV14vFV+9HRlcSFZ41C4bB8PPQP8/HB88Y7z8rESkKD/rxZrhMR89U0mOuj+iltGHjEIZ0PocpbkBNFIklTikq9aV3wZq7CKklXTg0X0Ou1HUGrEdkO3NE5OEjXWsc0JpSIbEa65JGJWImH3glO7iw3c5wjEklXrCTLLdc56MuNpDgHJ9/zX1qCt75xldbPIew7m/QkrF18WJIwnUNKNJaFMcE4B11RfNuJECDzc78LnsMyvCAXHznfcSo08TdQiVu748dhOYd+gnR2taqcbEfHBpNuTMnWWBXnYNqy/NzgZ7vu4XcDaWOH5huWGETGnINBpEsZwhYk2W3ZZD7SKBcVGuscOELxuQ9MByD3btbBVIQSyjkIC+vQ/BzMHDcUhBBMGzM4kL+2oQ3vlh5No6VcW0JUWvz7y+FkKGw+KfvCCJzhoNB9pYgB58DfEqfZ1kNyJ1MmPpSJlcSUvJxwzgpIb+PST42VBiBxCPkQvK9BNlhl6almirx81nX71ZO8QHUQj4DuuPTf/WxmcW8czsF8tH/9+a0AMjOPlS3C74dYUoXBd/BPhgppGTI53c4TK1G3bV7jFp09OpD/5kfXYq9Gh8PqrG9Um6WaDJncKAksvCacgxGB9pkv+2+x761VSPvq9o9F5WbPrVMmVjJ1QBQNW9Jz2uyf1CGUOBBCfksIqSeElHBp9xFCDgtnSrN79xJCygghewkh13PpiwghO9x7jxB3pBBC8gkhz7vpxYSQadntoh+6z1A4LB9jhuR5eRWZ2fhNKdt0pnXygDSKtnk3VkgcjhgGGyokHTtup8zV+zLbUQbL1N/PjUbSGurMOiwTx7phBeb2/ukg/q8xPPuFS1KLWbpcv5j9ujnjceCIzMZdX7CokOaXVtmYqzE5S4ACix94W5KsZx1EcU1goVfNldTz4U3j88uQSFJn8yEZC3vdCL9JSvF3F0zErh9c7xAHA6ZPzzn400YMCo452UYuHRuG05lzeArAUkn6w5TSBe6/1wCAEDIHwK0A5rrPPEoIYSvZYwDuBDDL/cfK/DyAE5TSmQAeBvBghn0xgm4RyuEUuP+7ch9WlR6R5hPZfdnh8Qwl1f57bZ0Jn+evv23eb538c/ZEuRVVoDyjXGa44fyJAMJ3ljnR9DgHhkwmyGiOkDOwRYtv5qbvBgPQqUAATBs7BJfNHMt95+5Rh/yciDy2UkixbNFi+XycYIYfV+3n4Pwl0Mv0GYKcgzxfisAatk83vrqSFDnRSMAp8bUdNbj+5+9iY20XKHU2KIPzcgBBBKX6jqwvsgVdfOQXK8sCnvGf/HVx4LldNeZnQ5+2OgdK6bsAjhuWdyOA5yil7ZTScgBlABYTQiYCGE4pXU+dL/QMgJu4Z552f78I4FoS2JZkD7pFKMK55v/0jVIA8vDTohJuU4ValPHLd/xOdTs0hIQfI7IBM9F1JDIdS9kcdKbOQLyFVDoId2hLv0yGwmHmuhd+6DGxTrqEq1bwJlaJ92TF/s+tCwLPsXeTBdpgEB5Gf59ZSolTNFysJL8vmovrrOoSSYrcKAkQWnYuyOHGJJKUpkpwfG74NsrLFd8zD1mzX96qPqs8E/RTH7hu6Ry+QgjZ7oqd2IHKkwHwtl5Vbtpk97eY7nuGUtoFoAHAmG60KwTq2SFb2K4qKgyEPmbzgiL9iIps18N7mXot88qSDZhoRD2IZUhSYGO5KV3Xw9T6lp2HkO5uOyy7qe4mk12FL3wGl57aUabZl5+9Weq7Vr07WbE3Lpic+h3R7Lpl79fkG5n0RFY2SylwjSHEulTl8pyDrHnfdk/F8/Kr29WVpMiVcA7giCev2+A3ezpEBQOTMKTjoW6C7kRZ7klkekzoYwDuh/PN7wfwEIDPQf79VeOCvRHdPR8IIXfCEU2hsLAQ8Xg8kKepqUmaznC4SU2m29ta0Z6A7/nmE0ewdeO61HU8Hsf+CkdOvnr1GqMJyZe365hj7368stQ9F8LLt3nzZhwZ7gy86pqg1U1Hu7Mj3blrN0ac3Bdab11dHf5vm9lpW7p3BgBH6h2/gaNH9bqL1hZHZPZOPO7bMTc1NWHqsCgONQbffzweR7vCRJBhQ3ExKob49zJlFUEv1JKSHcip343yCi+qqaxvfNrhw967XrUqnlpcyk46727rtm1IVodPFdU7rK+vl+YT34X4/MGD5YjHD2NPldPP4uIN2D/IeQd1dW2B58TxJGvPmrVrpW1sbW1DPB5HVVU7EolE8Fkm2qLOvaS7e6mpqUU8fgJHWuTz6lSDYyG0Z88eNB0O7kV37vA7i5Xu3Yt4ixMavbnZ73C5Z28pjjYk0dTsb1/5Qedbd3Z0oLWtC/V1TpsaTgbnMwOftvOIIybatGULTuz3Fv62Lir1w6nYtxtxyfw7b3QEu4977yFsTjFs2rQZR0Z49YatYb2FjIgDpbSO/SaE/BrAq+5lFYCpXNYpAKrd9CmSdP6ZKkJIDoARUIixKKVPAHgCAIqKimgsFgvkicfjkKUzlNY1AmuCZp8AMHTIYCRau5znVzjRE8+eOgXXXD0HeOM1AEAsFkP52nJgzy5cfvnljj/AW0EFHw++PdF9R4BNG7HowoXAJn8YikWLLsK8ySMAAK/UbwUO+2P3DB08GPUtzSgqmo3Yoim+e6y9PAoLxwG1Ndq2BdooKQcAJk+aAFRXYezYsUB9nTQPAIwaMQyVjQ248sqrfM5S8Xgcw4dFgcagLDYWizmHz7z1urLcxYsX45xC/9kEZasPAHt2+9IuuOB8xGaPx47EPmBfqbJv/DdZ2VACVB5MpTPiMPLQSWDDWpx//gWIzR6H3Ddf0wbQU73DiROcdyfm211zCli7OpDOni+aOQOxq2agblMlULIDl156aSqS7V9r3wdqqn3P5a1cgS7OK1zWnssuuwxY+Vag7QUFBYjFYljTtAuR6srgHHp9GUCBQQX5iMViyF25Ah2JBCZOnIBYbD4qj7UA774TKHfUyFHA8WMoKipC0YThwHo/cVq4YAGw2ZPZz55dhNjFZwEAhrz/LtDkWV9NP2cGEvVN2NdY72vf5va9wP4yLKskGFYQTbXpyf3FaGrvQix2eeA98M9HSo8AWzZiwYKFuGiaZwX29efeBxCMCLD4woW4dIYj3KCUAiucteHioqnYvf6gtA7VvAKACxctwgVTRqauw9aw3kJGYiVXh8BwMwBmyfQKgFtdC6TpcBTPGymlNQAaCSFLXH3CpwG8zD1zh/v7EwBW0h48VFVXssNeUp9de15OJLVYTB3tTEy2H05SJ9piOmA7OxLqzKNqn/kZFNnUOZiaxTKCIOPQdWx7WFt70qKD75lP5yBapWXYhnTESjzYu/QU0vpnVXqh1d+62rhOJprh8dqOmoBSPBDtVTGaUyJYqhKFmQsCE0mKxvYu1De24/WdnjUfX3djW1eqTPFQLhVUYqUqRdRd/jXzz5jq5UT0U310OOdACPkTgBiAsYSQKgD/CSBGCFkAh9msAPAlAKCU7iSEvABgF4AuAHdTStnqeRccy6dBAJa7/wDgSQC/J4SUweEYbs1Gx1TQyfeikQgoBe59aUcqjXmDPvO5xSkrIS9aJlWGc1aBLTSisswpz/stW0ijXL3p1JUNmNbNHPxk71lHHOpDQkKnq4LNhkmDp6jMpAXBckSwd/S9G87DFbMKA/fZ2EttKDgyJov3pLLB5+MHhcm3ZXL6L//R83lhXRG7FKbsVdWaEzX/UF1Jiqrjzk7+8VX7cf3cCdK6WducvV74V/NM0/3pEW5T+MKXLsWlP1oZeJZ/JpOwOE4Z/ZM6hBIHSultkuQnNfkfAPCAJH0zgHmS9DYAt4S1I1vQcw7OIF62wxPFsAnHR6LkOYd0d7Q0RRyCA4mflDLugE0kU3qUzTHHiEPYTi9X2O3y0HE833kpGPyPh+xRWZrpyWQmCPizGLxQ6e5YwZ+zrFNHD0aRJMgj80SWhV2XcawmO9e2jpDBQ/Rjmt+V81C9Gx/nILmfzoJaOCwfw10/g5Z2PvBloNZUW03mJ7PAEjd6rO05kQgmjvDirPFF8nM2UyPL09nP4YyCbn5HiHPQCf+JZbsxzwKDhlL9K2aN9V2z8SclDpT/LeEcNCZ3MmRz0KnECSJE23yGziRVOIKx+/pFqy8mkBjbSNcE5pgo+zRHmzqCiRxUb5RfWMV8ssNzTNbZH7y6U5ru27RoOurblXMI93Og0ncjnn5YflQe9fdXty/CLYumpN4z7wkucjos9lSEmM0VRnDEMNvi92fw+06A+53pIO2f1GHgEYeQD0Hh3wHIImDykzbMRlkcnCmxkuTN8zllwfUiaYqVdPliRUExhg5hZxuwSe6JQvz5Vlfpj398v1Ie94Zht+BU1N6VkE/8LHrIBMRKBq9d1qY3d8kV+KlFXxkJ1f3LErhssiivJvL76pN68R2BfkH1fAjMOAe/w6iEGxYmwuPcYVu86Oz6uRPUO3Oh2IJcZvljxjkwr2fxLBfl6/QRBPnvdCBr446qhm6HgukuBh5x0O2KJPdzJTJRb0cRvjMRA9hpxUqG8nxTe2xdrlGDg97FOsh8LM6bOFyZT6z7mV363XMYvvc3T+zU0ZVE0fdW4EfL92ie6D7S8XPwQqmYIyUuCikTkjFTND4ohupOLC2+DJ/YROi7KFYKEDABMVccq7qv43ZMIwOLZbPQ5qYHT7HDk0TPZ5W+RCVWEqelrm7eSEAWDuTv/3cNbn50XSC9NzHgiEMYAmIlSXhkT+cgZ5V5iDttdslP5I9f6Jilhg1jcScbBt2ili5xYJ7ifH9uXDDJy+Ame9ZK2WWVC7hItLJds4h0qlftSHlFpW6i37JoSqq+dPrtcQ7+9Mf+6ULnPrz6AT8Rue+jc3EVW3glHtTp4przxqXK4Psgmu6qFdLBfn9oznjccIE7RhRzRdfmTonvi0ynJEbi9Rz1zLz1eadWaXpg0fd+83NxT62fu9UFbOTF1Vbn0E+gHSxs18SNv5s4j1UGfkcRdvC6GO6Zt1ZiYIM5bCBn4iGdLTCLF/4EPN1BRpnSBpVS1RMVhHN/QHakuISTOYeZQAubfCOwrOICmbK1FxThPBEryI1i0dlOYALZhiOsTh4b7r0W9/393FQdfB/aBULs6Z78bZeJV4cW5PgWXlndOiWuKefwV+Es70GuXiISMZsrjOCIWZXiPq4n/KZB5KR1Ye9zowQ/vGleoLz+hIFHHDQfgomV2JAYNywfQ2Tn9aYmBMUXntmsra9ZsCrh/RwYxINgVGKjdIlDNt1F2OJczIXj8Mlb3feasrDJsG7VUjE8zQis2eg6Lz7UFRflTr9LiziwRV/odUTYyaaISKB9zl/ZhiMdTBhRkOL4UsTVLbNdGJv76pvcukSxUrDjEUK48lTWZWrIDkgy4Y5YSHsCsyCQHgETRWjy/P5x7+ALH5iOby/1hwLREbfcnAjOdUWD/dSSdQASB92u05VRpiJ7KgZHOrLdsvomx/s3Vb83kf/3kwsBgDNjZBNSLjaZM8nZmZhyBGF9TQcy3QsvK2V1sXymA37xNP+5BKp2fezCIAfX0+AXXx2xi3Kn32V0mJTQZzb+2PtViZ9S+VJGDtnROfB1yhZoPp9OWU/g575k0L2t5g69EYMKjHMIMbwKtkXkHFT5+N/u65k4clDA8krnA5UXjQRMpfsbMo2tdNpCK1UCs1bSl8HrHEzw0Bt78Z8u2+7t8gj+7oJJ+OB541PB8WQTcu0912DEoFzsrT2F8yYOx69WHTBWSGdz0MnPDZblC3I3u6rl4YsvOntUoI3OYiKRNRuGJM3mPOMXQF2xzAQ63fqb2pzFTxxuomjMEz/5c+pMXWXGAibgF6wIiBNuRgMdx+TjHCAnELoFNNNv6Smk09M5iPDEx/5C/AcIqbk2JlYSLe0AR+eQzSNUewIDkHPQfwlerKQCs74L+6jXzh4XyJcU/BwKcqMBhRivyJo8chCG5udg0dmjOQczfcVMeZxN4iDlHKQ6B+a45aHyuNx2fVBeNFCGmpUPTkhpPrZYZUGOyy+UrPqxQ4OK/LycCJIUONHcgYeFiKw6fPW59wEAx5v9llziov/8pkpfOoO4y+eJx/NfWiKtU7ZQ+ct063avPyM5dxngTLHdjLKxUFrvJyyyLyLjTBpaOgPKXQYTjpf5Qoh+DiwuVaDMlM5B3KjATRce4OezhDAzMMK3tswfrPJLV52DaIQEOL/+hoFHHDT3iBA6QPXNZIeqf3T+pMDZD//vunMBAOdxh/PIYvOLCjEVZ6CyVhIH9bc/PBuXTB+d9o5ErHcId+KczBnQv2A7yJHoRVRiMkIIRJ2dysNZ5XgUyOeuNQ2twYit6YJ3gmLj4vYl0wL5GOG8/9Vd+M2acuPymV29aELJh7luaOlEaZ0j5w/TOfDfI10djVh32IIlnoEgy9/RlRRiK0nqk3zvmx9bi6U/X40ZhUPSaXoKBXke58C3a/pYeXkqIiCK9xhkCmmZ8prpHERx04yxTgBJXh/THzHwiINODu/eD3ODl5m+/ePFU/Hopy705ZN5C7PfvHzYG5zOTZUJHHtEXMTF665EUstS/9MlZwWmZDJJ8fJWv9UHH+5CFuaAr5a1gZn+8nW3dcqJg8wOXcU58HXpFi5273drK5R5nPaFz0ifWMnNLgtfxAhnp4G4L19iGq0yF6WU+hzBxHEpLtDpni0ig3K3LOZz/+riTg3Nz/E2PpBzc/Mm+8Vf18wel/KkF5XhTr3hrAMTK4H4rahU70dl4cbSxbAvMoW0bNwyzkF09ONFy/x1f8OAIw6yYTxznEPJJ40c5OgclDkdyJRslAYV1d4u2kv78xbnLCR+MIn1JRQmcM7ZvcGFrU6w825o7UrZq48f7p2CttQNVAYAV5zr95DuSCQDk5Fvt4xzkCmJ86XEQS5XjpKgNYlK2c/nk83xWy+eqryXKWROcDKlb0pEKFn4RciaJwbR43eUfH8CugmBk9TZ1ZtCFFWJeP3rV/rzpdoafIAQpBqtjr3k9apo/DBfRIKOriQWTxuNP37hkjR6wIuV/G9MFdtLdVY4e15xthAAbmxIxi37rOLGSjQ97qe0YeARB9mH+HJsBt779+swaeQggIbLNWWKJAoalAlLIpSyI0V9A1coTxZx06s7GBLgnr/4D0wpyI2kPF35NvKHo18lEIe2zkRg93PFTC8ulCx6poxNz3fNCPkFVbZj+8PnL3FCKgtdXTRtVCAvwJlMUop39tYH7jNTW/PQIs7fts4EnlpXIc1DJJyDbOfKUnhfDAZRNCJXyoqcgzdu+PziYuedfexynBq7ehUWjfe3OczYglnWEaFuGV2i4lwK40YEHUF7VxLnTRyGy2eO1TwV1IfxHtImZ0h7mzM1BwcAP71lfrAbqXERBKtbnDtiIEXLOfQTyD5DTjSC0UPyXNM3jxePFTMAACAASURBVHcI1zlw5Wo4B6msVaJzYNCJByIkuAMSxTaf+8D01EQL2/V6ZSR97bht8Vn43096YjKRNXb6ECwvxTm413tqT6G+MXiq3QdmjZUGRvvnq2ZI28cWobd31+NbL26X5gHU4ZtFsGwVx9TBAPnzj2WRUVP53IwykdE1rlFCql7JpxUXdX7z4eMchLrZ+GIcQyacw78sLBDq9nMEKogiEfVcQep+cciRteIZJx1dyYC83iR2lkrnoBQrKURpKc7BvcHOu+bLXH/gmC8vD5ZvcJ6fAIvMhvWQ7ieQDWI2yTydQyq3tAzPooPblUC2swuKnxiiksHEymOT/KLxwZ0oP+ArjjbjRHNHihthcMzkHA6DXzBE2rDunmtw39/PAeAojfkmRSOONRF7RmatJAObzMkkxcFjzVj689W+YGpiXygF/rSxkmu7Sqzk/K1rlHuks3d970t+wqFqNfsmsu8glplMUo5zUENW1OLpY/Dgx89PXfMLCzs8atJI/wLNbz50u0pmXsw4zVGDM1NC++rmdrPbDqmDIYoLqqqdPBf0P2/rj7YVdVAdiWSKE00HjHNwNkheuoqxIgqCyPrIxLxin7sSSXztua2+ezwYMRI5ymB8tf5JHQYgcZAs1Iw4EPh1DsrB5PzlRSKU0tRCOmXUIPzq9kUpZxxZMTwhEccIG1SXTQq6oUQISe2iYz+N49qfrVK2kVKqPalq0shBKBzmLExtnUkfJ+CFB3euZX4OMvA7vX/41XpNTi+8AX+4UofiLOlw6xnn76m29ByndNyUzM9ByjkQNn6CN6+bMx4zx3nWanwvbl7oxNT6hHDkq2fw4Of8lJyDu3hl6tvgr9vjdm/8pfy8acCcc/D0NiZ1B40cRM7BZIvC9GNiKBBZgDsfFPovxjkQQTv48Fue2bJsfKocBNkl2wjJFO/9AQOPOEjSPM7BPc+BqPMC/t0QXy5bfEcNzsP1cycEQwwo5Mfi/oHt9mXrlniIvGgjz5dPqZ+VlrG+/BGJPiW5kNeUc+DPnDjRrDcnJRKFtCrkQJguQRYgkdUhLc/9q+MciFsk7yEt1TmEvBr+vq8b7ljThezm84t1M1l2V5KiobUT26v0Yc9N4G2M9O9bVIbL8vPctGzxvGDKCN8170zIIIrq0jmKU+REdOJakTCxNP45kXPYctDj2BslmxKVmS8jUsNcc+Om9sw8wXsaA484SMZHkHPQD0ApZ0GBaWMc5SNTQrJ8bHDwO4SCPO/Vi9YSCZclka3HkYhZvBgmzw8jDrxFDn8/P1eYlIoFbKQgyuAdBI2OpBSyXDlrLH5x20I8+0W/hUrYpu9iTpHNO1B9/gPTpfk909RwzoGGcg6sTDPxAE0tGqpv4qXx3y/IObhipUQSn/pNMSqOOc6Gy792hVE7ZDD12hX7HHpMqOT+pBF+pzTZmc8i5/C9G+boGybUzeZKR1dS640tOx5VFJmJm0begk8MsAmolfXscliBIxmQEZb+gFDiQAj5LSGknhBSwqWNJoS8SQjZ5/4dxd27lxBSRgjZSwi5nktfRAjZ4d57hLgrIiEknxDyvJteTAiZlt0u+iFbsKIKnUOY+Z24SI8akodX/+UDeODm8918rBznb7tr0vm9G87zyVJ5MQLgmc7JFi5erCRi7NA8rPg6WxicieYXKwWf4ScvH8vmq9fMAgA8+8VLcNviqcrd7bvfuhrv//t1+M2nL3LycQ6CJguMLHzG38+fhKmjBvvSwwjixVyMpq/+6f3U7y9cIScOJvDHVlLnM91MMCS5RUdGm3hLIL7fojkx4+Y6ExQ7Djek0rsjXjJ1ghMtbaQbASr3zeHNq31lSuoViUPhsHzcFZthxMk65Tm/z/3e8lTQQFVesctMnJTiHARDFX5+snr+8aKpgefFPrHLQblRRCMkFUalv8GEc3gKwFIh7R4Ab1NKZwF4270GIWQOgFsBzHWfeZQQwlbBxwDcCWCW+4+V+XkAJyilMwE8DODBTDtjBMkYTo1b4hEJHdiYaObPsXULnjd5RCqSq6joanWtigbn+XUJIifCFIyyhYMP8iZiwdSRmD1heOpZx4mK4xwkBfKT/Lt/9Q7UYX24bMZY/OhjFyid04YX5GLUkDx8cM54/OhjF4SK5HjozvgVo+GGcQ680o/feausgtn30i2CPo90N5tIJC+eNirVZ/W5EP50frcte4YXM7J+P3LbwkC+qMs5ZMP5jUEMn6ECWyi7FLtjBlkk4ZsWOv4xE11F/MbvXot3/jUmHWMyhbQztkMaCKZzMHs3TGrAQ9z5i4YovAWfrBo29lTHjBJCkBeNGIcm722EEgdK6bsARBu0GwE87f5+GsBNXPpzlNJ2Smk5gDIAiwkhEwEMp5Sup86bekZ4hpX1IoBriWqWZQGyoZJM7QzC8wLegsqfOaszV2WD42Srox8oEEQ24oLKJrtUrCTZbXv3vAd2Vp/Cnlp/bBuZaMjUdNHEMxXgRWTh0Y2Ipi+8TwYrTwd+V80PH36HuebbV3Pl+f/qkORNWQF86jwvvlLRhGGhHvWzJwzDRWePwnVzxrvlsbpVnAMnzkpZtgTzMZ3D/ct2hfbhS1edE5rHrdxtoxnnwJThfP7RQ/K4fG55HPW4ZPpo/PKTF+KeDzshrscNK8D0sUMCpqdAkHMAgiaqKpgG3gOYvtGfxubhYC7KK8AZafg4h2BFSW4ToEJulCgj3wLqqLi9gUx1DuMppTUA4P5lxtyTARzi8lW5aZPd32K67xlKaReABgBjMmxXKGSDRVQ46fI6+ZyMrdxZDbJBLHIES3++GgDn3i/kFMNnqBYOE+Jw+GSr9r5XnvM3dDEwHCm8zDpsQddNXlGkxtpXLenXxu9cK20DAIwZ6okwpgiiKr5cVfsYWDZCgA+enZsyAY4QkqqPb/Fti8/Cvgc+DMDhal686zIsmDrSKYvjWnR6oBMtHQFvWh6M2G8M8R8AgAVTRobm4esOo+zjXCs3RqA+6wbou/PKc/BfrliVvRCR26UUuOGCiQGuwBGZ+uvJk+yQeHERK0/VF2MHM+IXjR1v7kjt6F+++3KuZm9c885tsrGuEiv90yVnp37n5US0upC4xOGzt5DtkN2yLRTVpOueCRZOyJ1wRFMoLCxEPB4P5GlqapKmM5QcDcb52bZjB3Lqd+NghbOzb2t3nLY6OzulZZUccWSE23d6O7auqhLED/u70uaaZZbt34940rPlL92zE4OO7U1dl5102rR9+3agJgdb653y29taA/V3dXTgcHUN4vHggnD06JFU/htn5OLl/X5roUOVBwEA1dXViMcd552So05dW7a858sr1tsqMTGVvZvdtU55xRs3SSft2cMjWDQ+ing8jrradrS0+r8HX2ZBFGhzb1dWHkI8Xo9fvhN0Wtv13gbwe+fmJk+2rBoL7777LvKiBNVN/onJ52ebhv0HDuCX1eUAgLKyMhSOace+o2UAgOrDh5E46VDOykPevqimphprVx/zlV1R7oyvVaucuisr25FMJJRtfGpdBWaQOqePO3diMDdmAGB1ldwaTFbezlq5XFucL/sOOWWuXSc/v5jlvXkSxVu7gUEdJ33PLxlUiz17qwEADSfde5SivOJgKs/2HTsQrdsdKLuhIUj4d+3ciYKj/n4fPOi8x3feeQcJySaEtaeqqh2dkvc7Mp8E0mgy6Y6xOtQ2J3HPaqctM0dGcHj3FhzeDdS4Y2XXrt0YcXIfjtR7PjflFQcRj9egptZz+Ny2bTtITQ5Karx3PzKfoHjd6tR1sqsTlVXefGzsoPhDSTPYsrhrZwnyjvTsWekqZEoc6gghEymlNa7IiJG3KgBTuXxTAFS76VMk6fwzVYSQHAAjEBRjAQAopU8AeAIAioqKaCwWC+SJx+OQpTNESo8Amzf60ubOnYvYvInYntgHlJViUEEB0NaKaDRHWlZu2VFgSzGmzzwXKHHk9FdffXUgX0tHF/DW64iOnIC/1nYBcBa2qy+9CBdwO7nhlSeADetw/gUXIFY0Dm0ltcB7WzB08KBA/YPWv43x48ciFpsPrFjmu3fdhbMQcz2MSyP78fJ+/6CaNWM6sL8UU6dMRizmHFGYs+8osLkYCxYuBIo9vwSx3qZ2py88ZO+mdUcNsPU9LLroItC1qwP3f/SPF+OyGU44hBXHtmPvqXrAJcYPfvx8xC4+K5U3unIFkHCow6QpUxCLzQ302dcO996IEcOBUyflbXTzXHHFlRiUF0VZfSOw5l1pn5JJCrzxGs4+e3rKpv3cWbMwtKMC54w8G9izC1OnTnHCiOzeiUmTpwDlDhGZOHEiYrELfFXvIfuB0j34wBVXYHBeDlY17kRuXZV8vK5YhlnjhuLCRQuAtWtw/vnzEONiYwHAwpZOPFnyBvJzIj5LOFl5bSW1wNYtgfShQ4f68tdurAR27sCSSy8F4it9eb927SzEYuemru9d+zomTfZ/l2uuvhoFZUeBTcUYNWokYrFLkfPWckw5aypQfgAAMGdusC8A8HjpeocjOOFN//kXnI/YeeN9+bZ2lQL796Hw3Avxd79YEyiH9Wd9y26Qqgrn2m3fLYum4CduGAwe0beXY+rUqYjFzsMbO2uB1c67Khw9CrGYE/78wJEmYM0qnHfeeYgtnIyXat4Hap1lbOpZZyEWm43lR7cDVc4mYe688xGbMx4NWw8D2xxnufz8PN/7HrrxHYwdNwqx2AIAwHf+ugPF9V6I+/nznTWhL5CpWOkVAHe4v+8A8DKXfqtrgTQdjuJ5oyt6aiSELHH1CZ8WnmFlfQLASprN8y0FyAo+e4zf9JSJNFThCNj9dkW0UQYmp3+2uBIvb61OpY8fLnrE+hvn6RxkYiCiDCD2xSs8ubJMDHHLRVPx6UvPxjevK+LyOX95mfAXJOafpublqiBmDHx6RBA3yGIT8c+pQn+LMGmrJ9pR55GJ3EQ9UoQQHD7h7DKf5MJ1y/ovmolSqg40uGDqSEwcOSiVV5ZvxOBcfPzCKRg7VG79I+uLaT7Ze2Eh6BmiESJVhouiMNHCTmVtJ/Nz0AU6fK/yROAeDzEcB2uzNC9IQKwL+E26Rf8mn/+K+3fsME/fogtnzpAbJT6FtNh/nR9OT8PElPVPANYDKCKEVBFCPg/gxwCuI4TsA3Cdew1K6U4ALwDYBWAFgLsppWxG3wXgN3CU1PsBLHfTnwQwhhBSBuAbcC2fegr8yx8/PB8bv3ttyvSPfQemaAo7yznMs1H1XfOiokLaG3Tryo7i9xsqAKitlZQyVu4B2WJSkBvFD26chxG8b4JkMfjYhX6PXSebqUKalSdvpN/vwv89dIrdJKVYUVIbSF9yzuhA2lDZud+aclWQRcFlLUxweqETLUFHRFm54jkgouMhjwjxm7Lq8lFKlQfZiO0Og+pYz6uLCgN5oxH5RkUMSd3amUDVCU9kpI6OGiRKWt8cyfx84vZFvnwmxIbVTSmwruwolnPjjJ+rog6RL4n1+avXzsJnLpsGAPjB/+1y2ymtEoBjSNHJrSNi3nSc/rKN0FlEKb1NcetaWSKl9AEAD0jSNwOYJ0lvA3BLWDuyBX6oRAlJKdYAb2JEUpyDItR0N4mDOED5QffJ3xRz9UieJdzZCVGSiuh5jhD9U0VYguX5d0OqdptuYMLO1/YFAhSU6zqGUeVr8LnLg1zOWaODimcRptZKAXNbt3/sXeZGI9LQIlrrNfdapZBm5SeSVKuQ5tu3eNooqRECX54JWC5x6N9/U2DqKn1uUspErkp+wdU5zJnsnEXvbB6XzvBsWWSm0qqdOHHbzc8/AHhjV52vPIA3TgiyDvk5UXzykrPw1LqK1PfwcZ4CmRYV0oHIsNLW9g4GnIc0/+5VO9WweDA5KeJgJlZSle+1w21aYNckeZbzkObbf3dspi+fbDHQmrL63kuwXmOxhPtXtSNfco5+8qoQ5oHrzxte6EvvVRnlFS1eWG2fWnI2PnPZNHz56pmhByGlnmXvOunlUe1kI674UHZyoC+fG59KtRtnMCUO7H2KtveyuZKjECvpTkfj74uQeUhLggFruVO+TpmptFKsZGD2KtYr4xxk7dKVmxuN+EK2i/0P+649iQFHHHjKLA48Xkaqg6dz0HMOqvkoDlD+tCxfPhlxUAxiMWa81LlKWp7zN+wYTlOxkup87V9cMxh7f7jUp1cQJ69qMXFEaXoRHw/xfAQZ3tl7RNpOEeKCta/O8R0pyI3ivo/OxdD8HGkbZO0VnahUfg6A1+dgBM9ACx1P+JA+GxMH9/uZ2NdHBOLAxCkysQsP3YlswZMBJeMYerFvKp87V/yiS0VeyL28b1s8NZDGcr30vndyIt8Ufl043tyBh970rK3E+kWdg0hYMjmjI1sYeMSBe9fiTppdhk0k5hkZLlZS7wpl9ZpMDF6spDsIRso5SD2k1Sy6WK8JZOdrA8CwPCK1azfZGOVEHPt3U47GJMolOwMjXKzkf8/sPGexfSJkxXpcFfurFitFiKlYyalNd0AUYK7YZN9PZ3ufKtPVOTDREouzxRZZ1ZhRc4HB96aPBxYswz8nnL/8eFC+ByIfCz/6mGdxlnpUWq/3m6/vX/+8DXWnPPNWdiYEg8M58Appf7nZON0vU2Tbz6HfQ7SW4cGuwoiDp3MIEyvJoZrowYkhfzZJKUoON/h2yGKbpToH7UQL4RxMFxdBrq6DqZNSbjSizCf7Vi0GUS5ZKJNwsZKZN64I0egA8MZbWOA9ljdBPaWrWiHtcA6nWvV91oUml+UTD5CSPR11CRhbwFLH4rprnWrMnDt+qLxuybuWc2DyDQjgH3cs3/2vel4wamulcIjWSrMnDEtFIeDbMss9dnjs0HycavV8UX5x20JcLRz+lBcgDiLncPp5SJ+2kA0eBlPOobsK6YBYSTnxZWnOYvCJx9cF0nXXqnqk52FLlnZDxkFp7SJDhBC0cF7mYh2sLF08KVk/TUIgM+92E+IQNj/Ftp0/eQS+c8N5gXwyzkE5RohDGJbtqHGe1XAOSUpxrDl42h4PGXcjAwuRzX8XIBjrCvD0X4yTZYp59jpkVd7z4dk+Hx8ehOgte/h8gH+M5UYJFhRGMYxrJ6v+lW2eGbnaWik8DlOKcQjhWEYNycOUUYNw5ayxvsgJF08bHbCkc6yVvGdFKZLlHHoRMraTgbHUYSw4m2hhctkwhXewbUI9MuLgKiADVhgBzkEtQpK1xX9wUbBec2sldRlh7VE9kq7OQVzYZGCTLqyZhOjP9AaCfX3uziXSxVTceVKq30CcbO3AM+sPAlCPGeJaDLGwz5eeI488Y8o5MJ2QSGDFWFcAzzk47yfFOaReSLDOQo1PBvNLmDZmcCr8uCqfU4+X9sUrzsHiglrfmIpI5qnSWkki0pLlAeT5AvpCV+TGn0chiySbK1griZsVE/FeT2FAcw5XzvLbbrOPHzaRogrWWwZVfCTfdeC4Hwf5EuoQdVnvgMmfqFw3joXEFiw9jMVKkvO11XX7r4cX+BfUhWc5O8zcqFq0I3Oca9ZwDh9yg9+x92cS/ylMwa06mF6EaJXWlaTSs7mdvP44QzqrJkodPdSnlpyFP925RJrPVOfAFjPdO+TblEh6SlM2LzxTT9kzmvJc/Q5vXq7KBwDPbzrEpak5ZX6BVXIOCN/QiOIsfkzeynn2Ax7h5DmHMRLCKCqkxYlostHpKQxAzsH5+8TtiwKHvzOYcg4mik9CFJouXx5/2wBg7qThAIIDg7iDTrTUEBfvMIsrse4wnYMpPM7BTKzE46pz/cT6sU8twv76Jnz9+a1KYiOT7evESqwY1jwTRXwiTc5BbcLsXzy7EkmluIctLqlrJXHwTFm1p9oZcn6MOJiI5qIuFyvqHHSRZHVWbwTEyCyXlcD7dahEsID/G6s5h+BhP6p6WfMSSYobzp+IX/7ThcG6XZGbGJ5fBK9zSCSpL9Iz4Ibg6SMMOM6BLQ9TRg0OOC/xMm4dTHUOgKmii2+ZP01ExKU1Yc49psTBW7D0OgceedEIvv/RudJ7Mpb/YxdOlublX/P0sUMCBG5ofg7mTx2pDe0tnlgH6HdbHlGgvmsVIoSEmhOKhFBnLsnX3ZmgyrO5oxHiE2flKjkMpExZo5ptuSnBZ5wYf1aJCtFIBF3JoM5BZ2GlG5aOyNRAD+QOnMXTOe94qcmrrM3yMmWcw7KvfkBaIMum81NhxH3iCD0XlBP1xtf9r+7C6n1Hfff7knMYcMRBx/KypLB1NWXKaiRWCl+kxROm+DQR0YhcxCISNP76+x+di/+5dYG2ffxiHhar58pzx+IO16ZdBOtu1QlPZqySM/scljT16UxexTOGgRDOwS2o4lgLGlo7QxeiY80dPnt2aZnCtZqw+0V4Xcmk8kQzQqC1RuPLpHA5B81sNmUG81IKae8dqrkbR2nOiBhr45JzRmNQbhRfvNKJ9fVDzrtaNx+YUtgXjluWj7WV67COcxDrkNftr+us0YMxd5L/jGtGoJkOI5GkUl8kwBO5DS3Qcw68hdbftvrHWX5OxHcsQG9j4BEH969sjKQObA/ZKabjKGTCOrBJxbPT/LGPvuKI3Cs1aK3k/Z41bihuXKDfvbMjK29eOBmTQuL0mJy7/G8vbk+licdbytqs3VESdfgMlcxeBZ4Y/PT1vWkr/GRHcJqKlY40ORZFK/c4QYy7ElT5bqIR4jNjFJ0cU3UR7zhYna5MJuZbPC0Yl4pxoDxX/NvPXKxsYyJJU/OFEZExQ/Ox+/6luPCsUb50QE8c2CYg1GrILSPsfHRZVcwzXlKq7zuKB3IBjh/H0PwcHDrekqpfyTlE1GOWBx8lQOT++/qUuIFHHBjnIJnAqQPbQ2TMpk5wTj3hYIvtg8vD47ZHFbvooHksUd7z53P+Jl1RlS4uETvJTFeejHCpF0B5e0Ww3dXXn98auMcfnPRFg/Oi+db9fsNB3P7kRmVeGe79yGxJmWZipRKX4D+zrgKAoyjV6Rw6uXepyseUuIkk1Zqrytaon0pCV0dSxMHbsY4anBfIx/ImOJ2DalxEfcRB2cTUGdIm5sWAf57KipURjPpTcpNfJ6tXr8zQgRCCYQU5aG7vQsnhBhw+2arUYTCxEvNTEfVpfBtTgQpFi8OI+rz43sCAIw66KJdsdxbGEYg6hy/HZijzmoiV2KTWBU5LlReRy2TF9TdqTByce+yQc93B7UzkoOuTzMpFdkoeAAznzCO1iwaR+zm8/c2rfBFmp6YRcC9TyAhdkHOQQ7R26UqqOQcxNIWKQ2I7zzCFtKzf0iM43SR+46Mzt00mKZ7f5BxkpeoLz/WEcYgUCPUrYWV0cBy+7nx0HsqIsPC/o6mSUwOdNjoEkZ0joRT3ueJf9gl/p+C+IkTt6JgTUYfn7w0MOOKgEyuxhbEjRKyUslZydQ53aYiDiV44nbC8bHDK0n3X3Jc1EQN95687AKgnOODJeHXlyeT9KoLDn2uhs2IRQ1gwzCj0e9qamNtm4u3MoOJMgjoHtVybz9+VSCrFRY6VFKdzCMlHKbQK6SH5wZ2wLsSKiciU2fL/enW5sjwnXX6+twi2i+a/9XyJwxyrpi1EHi/bxHxX4pzotMs/NiYoFMlRYTevjAfGOAe3TKUeinPwFJXP4gahtzHwiIPGQUdUNDM3eBGRiBPnn+2udHLvdMRKJlBFMtU5wemJg/9aZT0DcMRBM8Fli+8nLzlLkhOBIHzqNppFbzV/i3KcPUbPeYjEiCFgrRRSD8vemVD7OYjfLFfj2es9o65z9oSgrkQmhpLpHHQK9qSB6MtU5wDiOGPyY2hQnly8AwB73SCIqrplzVkqOYHOqdrvz6IU90WIz2tZZebMFnbqesHr4qwlKUV7VyLlyJiqS6Ff7C0MOOLAoOMcKo+3YO6k4Xj5K5cHM7nIiXjOK6rdH2AmVpIt3ndfLedGVLtoXfgME86BQXagO0Ou65SnU3x+dP4kAI6XKwD8183nK229+VL0O0qzHb/Ju9aV88pXPhBIu3jaqNDyA2IlRTMKhzlWW2wXr7NWMgmkKNYV5rwpBn2TcSOsDB9xUJA7UeyhaqOfOKjbJ7Ock0FmMKILKsnwraVFUkc0J68/TLlOf8KPIRWHxZxVE1QdXBHwxvZ3/1oirasP9dEDjzh4CukgPIU0RdGEYVoHFt/iG7Ib4vHfH78gkEUa1VMxQSKK3YSoHOcHt4lCOtUWzfYz14BzyIlGUp7NgFrfAPjfYSY6h2C+8Dw6GjNMEvKCN2dULb7fEI7PVBG6by91lNmXTHdCXLR3JaWmuEDwm+l0Dl4e/QsQ26XlHAzMtAkhKDl8KnV9qk1uQsxvnkwWyjAlbFN7ZyBNHr3VS5tROARfFs484UEA34lsps6JKu95/rAm3XxhXPH6/ccUZVhrpV6Dd/6rRKwUNZ9o7H6E6Hds4qD9h4uD8eFN496wvDLb52GCPTVfra4v4nvQ6hyYQjqkvRFC0ObGtNcRB77qUEWlEecQmkXLOUjNm31EVv7cuOEF+NcPnSu/yaEgN4qh+TkpAtXemVSemx3gHDQ6B9UzIsS70gXVLbC4/Lj3nKLYt3bX+a4bJMelAoIuRLuPIkbWSg2tQeIgP+XQ+607nxxw5kGHz3RYZyjgXatMTVNRden/b+/Mo6wqzgT++153A9JAs4osCmi0I5sbKoLGxxjjHjOjjmYc1+QYjSZmTk6i2SYn24zxzORMErN5JhqdScaYSZzguGSMSWuMqLiACMgqQgMRQRpolqabrvnj3tuv3nv3VtVr7luart85ffr17Xr31nfr3vrq++qrr5KTK0Z1jCvz1UumhnM6xmqXlf6nHAyWg94xmib3gv+7mcCm6J+IuM472c+b/3JcOetInv3cPI4bO7SgnPtozbW+0ZyDTXFmBPaFoZBx6S0ixLFjc02b7TIhXep8dJ3rqNdRwYvkBij7ug4kWg6F1xqc0LnpMlvbpeBSsZZDCQOV09k/EgAAG/pJREFUQvQtOpOuY76H8av/C3knJhw17v7rHXzSfdbRB13JbqWgM4/ek6R1MtECQaXsz41S+YEc4xqFG+ZO6duWg4isE5ElIrJIRF4Oj40UkadEZFX4e4RW/gsislpEVojIedrxU8LzrBaR74lrlrdeYFoh7TJK7ClrK9Bzzij8E7592YzYMvE7icWfry4jPXsRQNDRHBUzkaqf0zRhXvjgmsqaOnodEelJSmh6KXVftqnBg4nP/GMnHlkcxeLy0JiUQ9xjp6etsCkwF0SrQ0dnNwMTOn39Vt/zdycZE+/lvmO36PKvkexWyquzg2g3zp3C+w4fGvs/53UOoYvFNhC4YHrxpHJcvXWr1W455EcL2dxK0bOSJE7kVjrQnbzbH+TaRB/wXX38wLxrVYs0LId5SqkTlVKzwr/vBJ5WSh0LPB3+jYhMBa4CpgHnAz8UkajFfgTcBBwb/pyfQr1iycUqmUdNtpW3riOsyFV1xjGjuPLU+Kgd14yZkN/xgmluQju/wRoovPTgmJDHiIbwZbPuV+zoVtLruLU93iUR1VHvMK6ZPYlHPjmnqJx+rW9cOo0/fX5eUZlSQ1ld525c2zCKf39q2Tvs7TyQ6C7LOI62V+oROxblXZQNONatFPM9B7VrCspwtRwE2NreQet283qfc44fy+FD8yeW4zpzPbjCZjmIwG4tZYht/UK0et20k1/kIjO7nYPf+mMwfXRdTx0OtQnpS4EHws8PAB/Rjj+klOpQSr0FrAZOE5FxwDCl1AIVvCkPat9Jndzm58X/c11VDO6bp0SuKtNLER9pEV924/a9eWa3yyY4tgkxnbhJ2YjIcrDtV6x3MIVzITr6/TYtACzMrXTxzHGxHdtULbXF1PFNsYviSh2HOXdsjvo9kuWfHl8OwLu74lfsuroFs825lbfWCWmH+vXWcjAqTu1/NgvRlaLQ7Zjr625iq+WAsKfD3XLo7vFAJLmfpGf9iS2fVBLVdisdbMpuBfyfiCjgJ0qpe4GxSqnNAEqpzSIS5cWeALygfbc1PNYZfi48XoSI3ERgYTBmzBhaWlqKyrS3t8cej3izNTDfXnjhBdYMzteNa9pyD8fG1lZaWrYknmd/R+6lNl2vY1+Qh2XH9u3GcoU07dlIe+feou8s2rA77++jM1tjz7t2R06WF19YQNPA+Idw1/787nL5kkW0r4sfM6xbH9y7jZs309LyXmwZgDZt5Ne6/DXeWy2x7bJqe/7EetL92bFjL3rwzNLXF7F3ffHLvqk99yItXvQqu94qLrNzR7ISirt+6/qcub906RsM2vpmrCxvrcuVM7VzZ+d+WjduZGd7INC2d7ckXDdnSS0LrxvHjp25G7Nq5Qpa2tckXrt9V77sLS0tRbLEWTILFy5k0xDzOLJ1/XpaWv4S+7912rO4ePFi9rfGd9SbNuUryjtOHZR4L/X3D2DlijcZNGxfXvnlW3PX3b8z/j2J2LdvL+3au7B2zWpaOt8uKrdr5968SeK29+LPu23rPnbt7mZD6z4OdHUlXvvtt4ot5qhNdrfvRXVISf1GmhyscpirlNoUKoCnRMSUHCiud1KG48UHA+VzL0Bzc7PKZrNFZVpaWog7HrFl4QZ443XOOGM2EwuWyI/Y0AYv/BmAKZOPIpstzqMT0fD807BvH4Dxek2L/8Sm9p2MGT2KbDZ+CT0ATz7W83HZ189j8ID6eFm0cj+74VSyzfF7Uoxq3QELgiX+Z505l5GN8flx2vbshz881fP3hfPmJsaCv7NwPSxbwpjDx5LNxmd5Bbhv7Uuw7V0APjjvbAbUZ2JlGfr2dngxt91p0n386ZoXg7QcbW2MHjKQGz9yTmy5te+2w3PPAHDarFlMn9BUVOaYmXs46+4/Fh3/+qXTyJ4xuej4hkFv88sVQQz6tGnTyE4fFyvL28+vgzeXGuUAGPjc7xk3fixL296BfR0cOXE82WzxXNSrnSth7SoAZs6YQTbMa1XIW1t3w/MtAJwwfRrZmeMSr33P8uehbXvP39lsNv4Z+91jeX+e+4E5HD4sZsWw9iwePWUy2Wx8xNayTTthwZ8AOPmkEzk9Ybe6lp1LYf26nr9vuSy+nQEGv/QHtu3LKbtpU49nSNuqPFkGrd0GLwfj0RObjyabPTb5fAv/SHtXB9EeKs3Nx5E9fVJRuXtXvcDzWtjpDz+Wjb03v9n8Gls62zhi3GgGbvtL4jOxMrMGVr7JlNGNQVsCQ4YMIZvN8v3lz3NYQx3Z7OmJ9S4nB+VWUkptCn9vAR4BTgPeCV1FhL+j4XcroMdxTgQ2hccnxhwvC6ZQVue1C7j7rqOoBtscu57W2LS+QncjmFw2rukzdH/ypFGDExUD5Hz6tkky/XKm6CdXL4JIENKXEbjy1ImJ5VzmB5LyL10boxggP0rIJHZJ0UpK9US5JK18zgtRNbylg2NWECfWsRdxHk/cfla8YijA5NLKW+dQwpobE4XvZ1x7624l23xMJiN5C9pMASE6SfcmSi1in3MI/jcjZiBTJ1KUBFQpxfbd+yuSkK/XykFEGkVkaPQZ+BDwBjAfuC4sdh3w2/DzfOAqERkoIlMIJp5fCl1Qu0RkdhildK32ndQxhbLqz9teyyIgV+UQvTTW6CfHzuXC6bmR4ajG5I7cNYpFtHpFKZaTiCbpbRPS0bXrMmLNpeNCnQRpCrqVe+SV6/20oXe+pjZ3npCWIEXE9j2BG8q0WUyE6R4Oqs/Vz5ZNOHror58zmXV3XeRU36QUMlAwH2NSDiWukHah8Hpx7a1PQtvevwF1mby0GKaJZqf6hRF2nQdU4gAAcm0bt9I6k6EoSu+93fs56RtP8eCCdU71OBgOxq00FngkFK4e+IVS6kkRWQg8LCIfA9YDVwAopZaKyMPAMqALuFUpFfXAtwA/Aw4Dngh/yoIp8Z7e8Lb9odv2FC/EiaPeIVldUn3i0F+KkUPiXUWF1zN1lLrMNoUX/d/WEUaXK2WC9EsXxidEi+oYvTyulkgpCwtNDNKUg+n2uF4u2JO6O+/v2HKOE+H6qNy213VvbonpuW2oy9DVfcBaLl+h2yN3XCi8J3s7D1A4htctB1unXhjNlFQX1yjFugzhXhfdRqslar4nlxbP19RnMuzpyl91vm13MEcxeqh5Q6406LVyUEqtBYoSwiultgGxzkKl1LeAb8UcfxmYXvyN9DHt56A/wza7oMvRrIs6s96Y9HHoHa4psigvlNUhlA7si4+ie2d7P6LRkGm1dXCe3IlOiFm3oJ8vUg6mF60clsNA7Xom5ensVgI6NOXQfMTBrQ3Qy9k2LoruTynPoslqaagTovB80xqY/IWEydfSldsNcycb61U4QHlr6x5GNOSX0QcStk69MOQ66R65rvWJ3EqdB5RxQGN0OcWskF4XzkuYvAZp0f9WSPfMORT/L60OXMcllLUU9IfJ1WXjGsrqajnYZImqWIq1lLcfcMz5epSDoxV0MCt9dXRlZLYcXOcc8n3bV5wSP4eSp9xNlkMvlINp7QnAnISVzoW4horqdTQNGPSUHV+9JH6P8ojCTtW2j4jNTVykHBKen7gRfhwb2/bx7q4OHluymTXv7k4sZ9q3vj5TvNnP8s3BupYZE4vnKNKm/ykHw5yD3j5p7bERmdTWjtIx4bTriDgvTt5xEtCWvyiaiLaNkiNZ4nLgxF3bZAFBcO+iHDamzsXVWioFfdRnnHNwfJNE8v3LplTOEQNjtqzMXTdX7oLpyZFKOjblcPPZyfuT6NQ7LjLLk8VQTt+32kZh814fs6e5Psrfvjt5kWVh2XnNY7jYEPXlwrMr33UqF8mRtPVvoYei80A3GYEhlncmDfqfcog+xLyTrrnxSyFtt5Jrp+eezkHr/Czzma5upfcSErCZrm0iI5LbO8PRRC9FOYw2RGg1pGw5ZAoshyT0aw2oSx6V68/sGIsfOlJuttXCrrK4Wg66gjUp945O9wVfhe07cUTxvuelLILTFeZdl820lk+LoYMaEv9Xl6HIcujsNs9hpEm/Uw7RWxfXMelHTOGkOkn5kiI6e5bZW6rluHY3cjGk5QHT6/XOrn3GsudNP4JZk0Zw27zkeHHAeRmyJUNJD/pou8E5Wsn90f7VzWck/u99WrSOyXJ4vXWH07VEkjN56qze0t7z2WQ5lEJUf5vf3FWv6ucxKZzh2h7UJqslcv386OqTrdcuVGCxebEcku1FNGrve1pWpwtjDQq9PpMpigw8cMC8V3ia9Dvl4BqtVJi7JfF8lo7w98uDZR66P/VgiCb30lqHocv82vo2Y9mmwxr471vmxCb603FVdNG1baXrMo6Wg6OfvpApoxsT/zeooa5nXsB0S12sAXC3HK6dk1uA5ToJaiOyDG1uJde8l5dp8yWuI20X5XC2tpYnCZcOfIBjMAHA+OE5y8P07BzlsE85wO3nWAZQIfo+6oXEbRPa1e2VQ9kwzznkjl4X48OMPZ/jdbtSyqAVPbg20991Y/IyzMFbQyp7rh3+tj3reRaBMQW45lZySJUOcHnChLDOdXMmM7A+Y+y0TPuI6xTOOSSRt8lQSo3UYzlY3Uo4lfukJnPcHtVxmNxKF80I/Pz62o0kXBb/6e4s2+swfHCukzY9Oz//uNtq5Y+eFp9ksxCTxVUfoxw6D3RbowDToh8qh+QV0voh1waYe8xop3K2F82VaNRg6y9cNscJzpM70T9ePLXX9dJxTTMcXds6wa23i2NYbpqjq+kTmljxzQsYa1gp3OjohhRyrsaLHCc901LgBxzdStGo3GZ96c+O6wSpqTO8+/KZvPqVc53Cgo9wWLUtInw23KXP9kTm7eVikNs2rxOhezU/f35zYjnbTonRu9TdrXhiyWb2d3Ubrec0Kf+Ud42RS9ldTCkLp5Z+7Ty6uhVNBrNQx1U5mFwckHtxbaPJkWEc9OmGENFCbjxzinNZE+7KIfhtk0XfAtV1nYPraNvVHWTD9YXNiLAndJ9cdnJsfskixjXZO0IXIqVkG3X3KO0S+iDX59ukmBrqMok5wHp7veidtrmV8jf6ShbcddCoz3kdbXinBxqspGghHcCvXtnAHb9eAsCE4cWT7+Wg/ykHw2Y/pbwMjSWGkrl2VrMmmVNYjApXRds6o5GNA1j0j+cyzBANUS5Kne+w3ZtX384lizNZBK6rwnU6uux7Jbvg2mnoE9Kuk+ZpRadEivAwi3KIbl0pg6Xxlg7rrr+Zweot7amtXI/48kXHc8Pc5EFNz7xWCTs2mtpSf8ZME+e69THZpBy0YINf3zKHk44czrPPPhNeKzchHbf7Xbnpf8oh/B27QroMDvg7L3g/dz3xpvOKalsVJo9qZMaEJieXhB4lUklc14i4zjnolohJKfYmfUZaloPLdrCQPyGdlntg9tEjOcmSFwtyc0G2gU1vVlLblONVjj74UmmoyzhlALC5WSNL5NTJI5yjlc6bVrwjXc91tdsxbliy4tQtqQF1mYJw7Nyzr1fftPdJmvQ/5WCYkS7H5OzsMD2xLbY8erlMZiYEo8hHP3VmOpUrE1G0ks19oSfoM6FbIqVseZrEhOGH9bxgLmGlLrhG+OgrpNOKQnropuRQXJ0ey8ESWeTaLtUkeiJc56tsA5ZIZtc5Bdu19Xtnyp6cnxww/3yHwjahfZJKpc9o3xes+rS5dy45YTy3ZI/hc4bJq75C9Dyb1g+A+5yD/oIY89Q4tt/jnz6r53MpC6/SQNDcShWKOomIVqyPMiRsBL1dyl2j3uNqnbqGS0e4Lsw85/3x+6gUXhdsGQp0d1Z+ufq6TGpRjr2hH1oOwW9bKGtazJjYxLimQdZOv6Euwx3nJ28u1JdwXYkbYbvt+W4lt/QZJpq0sMW0LIcI22RhRnMVVCpePWLGhCYWrN3G4UPNE9zRCNbVGqplZk4MEjqeOtkcmGFNd66x8psXpLaNsE7hOQfWZ1J/Pkuh/ykH42Y/6V+v6bAGFnwheUerQ5Fcmg03d1EploPppetNZ5am5fDE7WdZQyz1kakt4uaiGeOYPNpt0ZULP7n2FDa17bV2bJHbyZbIrxawtfhpU0by6lfOtUZBRUrEZX2CS6RUb1xyhS7TgfV1dB5QHOhWLN+8s+TzHSz9TzmYNvtxNCk9Zkrt9K0T0kp3K6XriklzZHb8uGEllbeNLn/gkEaiFIYNamDYEfbotWjV7p6OdCK5ykG034qLdeoSHnvMmCG89c8XpmYt9eY8hQEKkRLa39XtnA02TfrdnIMpfUbEMMME0qHI585r5qGbZqd2vvFNgWvFlhMoMghsk4q6xZ/WYsJo3iGtaCVXlmzM5WCq4lyjkWgC1UVxNg6oK2ktTVq0hckd04zIq7YbLc6tBJV/RiP6Vy8IXDD9CI4bOyQ2KqhnxFvLM3Fl4NZ570v1fD+4+mSeW72VcU1m/7tytDD0TsrmtnHd/nJCmMXzxKOSNxkqNyMGV34NigsNdRlu+sDRnDt1rLXs0q+fX4EaFfOZDx7H2+/tYfbRlVdM5aIwei0aXF3/s5fyjn/rryuyL1r/Uw6TRjUyaVT8opRocdCVpx5ZySodcoxsHMCHTxhvLRdNLo8d5h4+aFvA5UrTYQ08cftZTE54FsrNpFGDGWVIFV5tvmjYtrUWOOHI4fzhs9lqVyMVHv7EGezu6GJEgfsrcqHqCTEnjjiMq0+fRCWoGeUgIucD3wXqgH9XSt1V6ToMaqjjzW+cn1r8ucfMlNGN3H35TD54vHmE+tVLpvK1R5elfv1S5wjS5OMppSrx9H2SdkEstKgf+eQcp8WOaVETykFE6oAfAOcCrcBCEZmvlEq/R7BQqU0+PAF/O8tupd0wdwpfe3SZcVOevsbfz67M6M9TPebfNvegwuMLAxaiiKpKURPKATgNWK2UWgsgIg8BlwIVVw6e2mT+bXOtcxh9iWpPfnrKz8F25icXWAmVXrFeK8phArBB+7sVcEuc7ukXVHrUVC7+59a5LN5g3lTJ4wE4atRg1t11ETv2drLTsh97ORDXvP9lrYTIFcB5SqmPh39fA5ymlPpUQbmbgJsAxowZc8rDDz9cdK729naGDBlSdLwv4mWpTbwstcmhIku55Zg3b94rSqlZtnK1Yjm0ArrzeSKwqbCQUupe4F6A5uZmlc1mi07U0tJC3PG+iJelNvGy1CaHiiy1IkethOUsBI4VkSkiMgC4Cphf5Tp5PB5Pv6UmLAelVJeI3Ab8jiCU9T6l1NIqV8vj8Xj6LTWhHACUUo8Dj1e7Hh6Px+OpHbeSx+PxeGoIrxw8Ho/HU4RXDh6Px+MpwisHj8fj8RRRE4vgeoOI7AJWxPzrKGC9wymagB3WUumXK6VsrctSisxeltorB16WWiznKkdvr92slBpq/YZSqk/+AC8nHH/X8fv3VqNcieesaVlKlNnLUmPlvCw1W85Jjt5eO6nvLPw5FN1KrolrHq1SuVLK1rospcjsZam9cuBlqcVypSTfKsd9BPq2W+llFZMfJOl4X8TLUpt4WWqTQ0WWcsvhev6+bDncW+LxvoiXpTbxstQmh4os5ZbD6fx91nLweDweT/noy5aDx+PxeMpEzSsHEblPRLaIyBvasRNEZIGILBGRR0VkWHh8gIjcHx5fLCJZ7TunhMdXi8j3pApbcaUoS4uIrBCRReHP4VWQ5UgR+aOILBeRpSJye3h8pIg8JSKrwt8jtO98Ibz/K0TkPO14VdsmZVmq2jalyiIio8Ly7SJyT8G5+lS7WGSpWrv0Qo5zReSV8N6/IiJ/pZ2rcm3iGjJVrR/gA8DJwBvasYXA2eHnG4FvhJ9vBe4PPx8OvAJkwr9fAs4ABHgCuKAPy9ICzKpyu4wDTg4/DwVWAlOBu4E7w+N3At8OP08FFgMDgSnAGqCuFtomZVmq2ja9kKUROBO4Gbin4Fx9rV1MslStXXohx0nA+PDzdGBjNdqk5i0HpdSzwHsFh5uBZ8PPTwGXhZ+nAk+H39tCEBI2S0TGAcOUUgtUcIcfBD5S7roXkoYsFaimE0qpzUqpV8PPu4DlBNu9Xgo8EBZ7gNx9vhR4SCnVoZR6C1gNnFYLbZOWLJWscxKlyqKU2q2Ueg7Yp5+nL7ZLkizVphdyvKaUijY7WwoMEpGBlW6TmlcOCbwBfDj8fAW5XeQWA5eKSL2ITAFOCf83gWC3uYjW8FgtUKosEfeH5vFXKm3uFyIikwlGOy8CY5VSmyF4KQisHojfJ3wCNdY2BylLRE20jaMsSfTFdrFR9XbphRyXAa8ppTqocJv0VeVwI3CriLxCYKbtD4/fR3DDXgb+DXge6CIwwQqplTCtUmUBuFopNQM4K/y5pqI11hCRIcCvgc8opXaaisYcU4bjFScFWaBG2qYEWRJPEXOs1tvFRNXbpVQ5RGQa8G3gE9GhmGJla5M+qRyUUm8qpT6klDoF+C8Cny9KqS6l1D8opU5USl0KDAdWEXSyE7VTxO5RXQ16IQtKqY3h713AL6iSS0NEGgge9p8rpX4THn4nNH8j18SW8HjSPuE10TYpyVITbVOiLEn0xXZJpNrtUqocIjIReAS4Vim1Jjxc0Tbpk8ohijQQkQzwZeDH4d+DRaQx/Hwu0KWUWhaabLtEZHZoTl4L/LY6tc+nVFlCN9Po8HgDcDGBa6rS9Rbgp8BypdR3tH/NB64LP19H7j7PB64KfadTgGOBl2qhbdKSpRbapheyxNJH2yXpPFVtl1LlEJHhwGPAF5RSf44KV7xNyjXTndYPwWh6M9BJoDk/BtxOMOO/EriL3GK+yQSZWpcDvwcmaeeZRfBArAHuib7T12QhiMh4BXidYLLqu4SRMhWW5UwCk/Z1YFH4cyEwimAifVX4e6T2nS+F938FWpRFtdsmLVlqoW16Kcs6gkCJ9vC5nNqH26VIlmq3S6lyEAwSd2tlFwGHV7pN/Appj8fj8RTRJ91KHo/H4ykvXjl4PB6PpwivHDwej8dThFcOHo/H4ynCKwePx+PxFOGVg8dTBkTkZhG5toTyk0XL1uvxVJv6alfA4znUEJF6pdSPq10Pj+dg8MrB44khTJD2JEGCtJMIFileCxwPfAcYAmwFrldKbRaRFoL8V3OB+SIyFGhXSv2LiJxIsPJ9MMHipRuVUttF5BSCHFp7gOcqJ53HY8e7lTyeZJqBe5VSM4GdBHtsfB+4XAW5sO4DvqWVH66UOlsp9a8F53kQuCM8zxLgq+Hx+4FPK6XOKKcQHk9v8JaDx5PMBpXLbfOfwBcJNl95Ksz4XEeQDiXil4UnEJEmAqXxTHjoAeBXMcf/A7ggfRE8nt7hlYPHk0xhbpldwFLDSH93CeeWmPN7PDWDdyt5PMkcJSKRIvgo8AIwJjomIg1hzv1ElFI7gO0iclZ46BrgGaVUG7BDRM4Mj1+dfvU9nt7jLQePJ5nlwHUi8hOCzJnfB34HfC90C9UTbMS01HKe64Afi8hgYC1wQ3j8BuA+EdkTntfjqRl8VlaPJ4YwWul/lVLTq1wVj6cqeLeSx+PxeIrwloPH4/F4ivCWg8fj8XiK8MrB4/F4PEV45eDxeDyeIrxy8Hg8Hk8RXjl4PB6PpwivHDwej8dTxP8DY/pCDS9WQJoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Année plus grande & plus petite :" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Period('2003-02-17/2003-02-23', 'W-SUN')" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted_data['inc'].idxmax()\n", "\n" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Period('2006-08-14/2006-08-20', 'W-SUN')" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted_data['inc'].idxmin()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été." ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4XOV96P/5zq5ZtC+25UWyLWxjBxswhrCFhBBoQgNJk1toG2hDLi2labb+mqRNe5vecm/S3jRN2ia9aVZuEwhZSEgIhCUQAiEGA943ecOWLWvfRpp93t8f55zRjDTSjJbRjDTv53n0aPTOeee8Mzpzvu93F6UUGo1Go9GkYyv2AjQajUZTemjhoNFoNJpJaOGg0Wg0mklo4aDRaDSaSWjhoNFoNJpJaOGg0Wg0mklo4aDRaDSaSWjhoNFoNJpJaOGg0Wg0mkk4ir2A2VJfX69aWlqKvQyNRqNZVLzyyiu9SqmGXMctWuHQ0tLCrl27ir0MjUajWVSIyOv5HKfNShqNRqOZhBYOGo1Go5mEFg4ajUajmYQWDhqNRqOZhBYOGo1Go5mEFg4ajUajmYQWDhqNRjNDkknFUu+iqYWDRqPRzJA7v/ES9z16qNjLKCiLNglOo9FoisWJnlFc9qW9t17a706j0WgKQCiWIBRLFHsZBUULB41Go5khY9G4Fg4ajUajGSeZVIRjSUJRLRw0Go1GYxKOG0JBaw4ajUajSTFmagxac9BoNBpNCksoaM1Bo9FoNCksoaA1B41Go9GksMxK8aQilkgWeTWFQwsHjUajmQHpGsNSNi1p4aDRaDQzIBSLpx6Hl7BpSQsHjUajmQFjaQJhTAsHjUaj0YA2K2k0Go0mC+kCQQsHjUaj0QCZpqSy9jmIiEdEXhKRPSJyQEQ+bY7XisiTItJu/q5Jm/NJETkmIkdE5Ma08UtFZJ/53BdFRMxxt4h81xzfKSIt8/9WNRqNZu6EtM8hRQR4i1JqK7ANuElErgA+ATytlGoDnjb/RkQuBG4DNgM3AV8SEbv5Wl8G7gbazJ+bzPG7gAGl1Hrg88Bn5+G9aTQazbyjzUomyiBo/uk0fxRwC/Atc/xbwK3m41uAB5VSEaXUSeAYsENElgOVSqkXldFf7/4Jc6zX+j5wvaVVaDQaTSkxFh0PZS1r4QAgInYR2Q10A08qpXYCTUqpTgDzd6N5eDNwJm16hznWbD6eOJ4xRykVB4aAuizruFtEdonIrp6envzeoUaj0cwjoWgSj9O4dYbLXTgopRJKqW3ASgwtYMs0h2fb8atpxqebM3EdX1FKbVdKbW9oaMi1bI1Go5l3QrE4dT43oH0OKZRSg8CzGL6CLtNUhPm72zysA1iVNm0lcM4cX5llPGOOiDiAKqB/JmvTaDSahWAsmqDG5wSWdvG9fKKVGkSk2nxcAbwVOAw8AtxpHnYn8GPz8SPAbWYEUiuG4/kl0/Q0IiJXmP6EOybMsV7rPcAvTL+ERqPRlBShaAKvy4HbYVvSZiVHHscsB75lRhzZgIeUUj8VkReBh0TkLuA08F4ApdQBEXkIOAjEgXuVUtYneA/wTaACeMz8Afga8P9E5BiGxnDbfLw5jUajmW9CsQS1Phdel31JO6RzCgel1F7g4izjfcD1U8y5D7gvy/guYJK/QikVxhQuGo1GU8qMRROsrLFT4bRrn4NGo9FoDELRBB6nHc8S1xy0cNBoNJoZEIol8LoMzaGsy2doNBqNZhzLIb3UfQ5aOGg0Gk2eJJOKUMw0K2mfg0aj0WgAwnFDGKTMSlpz0Gg0Go2V9OZ12bVZSaPRaDQGlhnJ47RT4bKXd4a0RqPRaAwsTcHrMnwOWjhoNBqNJsOsVOHUZqUlRc9IhFdPD6BLN2k0mpmSblbyuuzEk4pYIlnkVRWGshMO33+lg3d/6ddLWuLPN/vPDvGj184WexkaTdEJxYxGP16XA4/TaHC5VMNZy044+D1GOalgJJ7jSI3F/S+e4tM/OVDsZWg0RScUNbQEr8twSMPSbfhTfsLBbfxDg2EtHPJlLJpgdInujjSamWC1CK1wGj4HWLo9HcpQOBhNOkYjS/MfWgjCsQTReHLJ2lY1mnyxzNEVZp5D+thSo+yEg8/UHEYisSKvZPFgXfxjWqBqypz0aCXtc1hiBLTmMGOsi380qk1xmvImFa3kGDcraZ/DEsHSHIJac8gba7c0qp34mjLHKLpnw2YTvC4juEX7HJYI49FKS/MfWgisnZF2SmvKHatcN0CFy7h9ap/DEsHvNoWDjlbKm3Gfg/7MNOXNWDSRMid5dLTS0qLCaccm2kQyE6yLX+eGaMqdUCyeym9IhbLmoTk8ceA8f/7Aa4uqMkPZCQcRwed26BvdDEhpDkt0h6TR5IthVjKEQsrnkIdw+FV7L4/sOUfnULig65tPcgoHEVklIs+IyCEROSAiHzLH/05EzorIbvPn7WlzPikix0TkiIjcmDZ+qYjsM5/7ooiIOe4Wke+a4ztFpGX+3+o4AS0c8iaWSBJLGLsd/Zlpyp2xaCJlTnI7TJ9DHpumkbARAPPq6YHCLW6eyUdziAMfU0ptAq4A7hWRC83nPq+U2mb+/AzAfO42YDNwE/AlEbGbx38ZuBtoM39uMsfvAgaUUuuBzwOfnftbmxqf26F9DnmSHqY3pkNZNWVOKDauOdhsgsdpy0tzGDHvN6++PljQ9c0nOYWDUqpTKfWq+XgEOAQ0TzPlFuBBpVREKXUSOAbsEJHlQKVS6kVlGN7uB25Nm/Mt8/H3gestraIQ+D0OHbOfJ+kXvo7w0pQ7oTSHNBh+h/w0B1M4LDHNIYVp7rkY2GkO/ZmI7BWRr4tIjTnWDJxJm9ZhjjWbjyeOZ8xRSsWBIaAuy/nvFpFdIrKrp6dnJkvPwO92pP5ZmukJR8dLZuhoJU25MxZNpBzSYPgd8tEchk2z0oFzQ4smaS5v4SAifuAHwIeVUsMYJqJ1wDagE/icdWiW6Wqa8enmZA4o9RWl1Hal1PaGhoZ8lz4Jv9uho5XyZCw2/jnpPAdNuZNuVgImmZVO9ATZf3Zo0ryRcJxKj4NYQnHg3PCCrHWu5CUcRMSJIRi+rZT6IYBSqksplVBKJYH/BHaYh3cAq9KmrwTOmeMrs4xnzBERB1AF9M/mDeWDjlbKn3SVWQtUTbkzyaw0oY/0//zpQf7y+3snzRsJx7i6rR6A1xaJaSmfaCUBvgYcUkr9c9r48rTD3gXsNx8/AtxmRiC1YjieX1JKdQIjInKF+Zp3AD9Om3On+fg9wC9UAQOC/Vo45E1IO6Q1GgCSSUUolqDCDGEF8DodGcLhdP8Y/aPRjHlKKYKROGvr/aysqVg0fgdH7kO4CngfsE9EdptjfwXcLiLbMMw/p4A/BlBKHRCRh4CDGJFO9yqlrE/vHuCbQAXwmPkDhvD5fyJyDENjuG1ub2t6LLOSUooC+r2XBJZ91OWwaYGqKWvC8fGKrBYel53hkOFPUEpxbnByHsNoNEFSQcDj4JLVNbx0smBGkXklp3BQSj1Pdp/Az6aZcx9wX5bxXcCWLONh4L251jJf+D0OksqyH+YjH8sXK/Gtwe/WSXCassbSEDKjlWx0Dxvjg2OxlKYdiSdwO8z2AKYzOuBxcvHqajMZLsTyqoqFXP6MKbsMaTB8DqCTuvLB+kLU+13a56Apa6zNUXq0UoXTnho/OxhKjQ+Fxqs+W5GRluYA4/kOiaSiZyRS2IXPkrIUDgFdfC9vLLNSnd+te2BoyhpLK0g3K1WkhbKmC4fhDOFgaQ4ONi2vxO2w8erpAToGxvjd//siV332F3SPlF5ZjbK0qViag77Z5ca68Ot8Lp04qClrspuV7ITN8XNTaA7DKc3Bicth46KVVfxsXycP7TrDWDRBIqk43DlCY8CzEG8jb8pSc7DKdutWobkJmUlw9QF3yomv0ZQjWc1KrvE8h6mEg2VWqjR7yVyyuobOoTDrG/384J4rAWjvDhZ28bOgLDUHv9Yc8mYsFsflsBEwnfiReDJVeEyjKSdCZkJoehBLhdNOPKmIxpOcHQzhstuIJpIThMO4Qxrgj9+0jo3LA9x80Qqcdhu1PhfHukcW8J3kR3lqDqlucFpzyEXYTPoZF6jatKQpTywtOjMJbrxs99nBMG1NfgCGxrI7pAFqfS7edfFKnHbj9ru+0U97V+lpDmUpHMb7SGvNIRehmCEcrN2S1rY05YqVBOqdEK0ERuDGucEQG5dVAjAUGt9EjYRj2G2SMS+dtkY/7d3BkjPZlqVwCLgN9U5HK+UmFEtS4bLjMy9s7ZTWlCuWb2GizwGMHIeekQira7343Y5JPge/2zFlwm1bo5+hUIye4HhIa/dImD/8xktFjWIqS+Hgcdp0q9A8CUXjVDjtaRFe+jPTlCfZo5WM78WJHsMstKLaQ1WFk8HQeAmNkXA8ZVLKRltTAIBjaaalnx/o4tkjPUXt/1CWwkFEdH2lPDFqydhTpjhdmVVTroxlEw6mFnHcFA7NNRVUVTgn5TlYzuhstDUafor0iKWdJ/oAtOZQDLRwyA+rCqWlOeieDppyJRRLGFYH27h5yBIUx8wbe3O1IRwm5jlMpzk0BNxUehy0mxFLSil+c8Kov9Q9XLzs6fIVDh7dKjQfQjEjdNXn0iVHNOXNxHLdkCYceoKIwLIqzyThYPVymAoRoa0pkIpYOtE7Sq/pf9CaQxHwuXWr0HwIm2YlK9JCF9/TlCtj0cmFOi2z0omeURr8btwOexbhML1ZCQzTkqV9/MY0KdV4nXQXse5S2QoH3So0P8aicbxpZiWtOWjKlVAsnhGpBOPCYSyaYEW1UWW1yjtZc5jOrARGrkPfaJS+YISdJ/ppqnRzyeoaurRZaeHRrULzI2T2zHU7bNhtohv+aMqW6cxKYDijAaoqnIRjSSLxBEopU3PILRzAcEr/5kQfl7fW0VjppkeblRYe7ZDOj7DpcxAxknh0EpymXBkzN0rpZAgHU3OorDBMSEOhWFqjnxxmJTOc9amDXXSPRLhibR0NAQ99o1HiieR8vo28KVvhoPtI5yaeSBJNJFNfAK1tacoZozlYpnDwOMdvoSuqjKqqVaZwGA7FMsp1T8eKKg8+l53vvdIBwOVra2mqdKMU9Aaj084tFGUrHAIeh64ymoOJ9eu9Lrt2SGuWHEopvr3z9Qw/QTaymZVEJDXWXOMFxoXD4Fgsra7S9JqDiLDezJRuCLhZW+9LlfDuGi6OaalshYPPPd4qVJMd67PxuMY1B61taZYax3tG+euH9/P1509Oe1w2sxKMO6VXVGdqDkMz0BwA1jcapqXLW2sRERoDboCiRSyVrXDw625wOQlPqELpdTm0Q1qz5OgfNcw2j+7rnNKSkEgqBsaiVGbRAFKag+lzqE4TDsMTejlMh1XR9Yq1dQA0VlrCoTiaQ1n2c4A04RCJ01jktZQqqUJj5sXvc9s5N6jLnGsWlk//5AAPv3aW9Q1+2poC3Li5ies2zN+3tn/U2Jkf6w5ytCvIhmWBScccODfEWDTBJWtqJj1nFaa0NIZ0zcFhluXOZVYCQ2Pwux286YIGAOr9bkQoWjhrTs1BRFaJyDMickhEDojIh8zxWhF5UkTazd81aXM+KSLHROSIiNyYNn6piOwzn/uimGUKRcQtIt81x3eKSMv8v9VM/DpuPycTfQ46cVBTDPacGcRpt2ET4ZHdZ/nrh/fP6+v3j45veB7dey7rMS8eNxLTrmitnfRchdPOiuqKVNXVylmalS5eXcP+T9/IqlrDd+G026jzuYoWzpqPWSkOfEwptQm4ArhXRC4EPgE8rZRqA542/8Z87jZgM3AT8CURsQx1XwbuBtrMn5vM8buAAaXUeuDzwGfn4b1Ni07qyo1lQvKkmZV0KKtmoQlG4mxfU8NDf/JG7rq6lXNDIaLx+QvvHBgzzEqXrqnhp1OYll480ce6Bh+NlZP7PG9prkqZggDsNiFglu3O1yE9FQ0BT9HqK+UUDkqpTqXUq+bjEeAQ0AzcAnzLPOxbwK3m41uAB5VSEaXUSeAYsENElgOVSqkXlfHp3z9hjvVa3weut7SKQmFJcu1zmJrwhPr1frc9I5T1qYNd3Pj554gVKQ5bUx4EzX4IACtrvSgFnUOhHLPyp380is9l592XNHOiZ5RDnZktO+OJJC+f7OeN6+qyzv/f734D//PWLRljlWYJjZFwDJuQ6ocyU5oq3YvDIW2aey4GdgJNSqlOMAQIpEz3zcCZtGkd5liz+XjieMYcpVQcGAIm/SdE5G4R2SUiu3p6emay9Emk+hNoM8mUTGyL6HU5CMUSJJLGzur5Y70c6RphcEz7ITSFYyQcT7X2XWWGi57pnz/hMDAapcbn4qbNy7AJPLov07S07+wQo9FEhnaQC6tsd65GP7loDLhLP5RVRPzAD4APK6WGpzs0y5iaZny6OZkDSn1FKbVdKbW9oaEh15KnRUcr5SabQzp9/ETvKKBNc5rCkUwqgtF4yiyzqtaICDozMJbX/P7RKP/2i3aSyanzmfrHotT6XNT53Vy5rp5H92aall40C+HNVDhYeQ6zNSkBNAY89AYjqQ3ZQpKXcBARJ4Zg+LZS6ofmcJdpKsL83W2OdwCr0qavBM6Z4yuzjGfMEREHUAX0z/TNzIRxh7S2oU9FyNSqKtIc0jDeDe6UKRx01rSmUIzFEigFAfPaW15VgcMmnOnPTzj8dO85/s8TRznYOfV+dmA0So3XBcDNFy3nVN8YB86NH//i8T4uaPJT73fnve6qNLNSPs7oqWisdJNU0De68KalfKKVBPgacEgp9c9pTz0C3Gk+vhP4cdr4bWYEUiuG4/kl0/Q0IiJXmK95x4Q51mu9B/iFKnDqssdpFJILRrRJZCom9sy1ejqMRuJE4gk6zN2brm6rKRSWZm+Zlew2YUV1BWcG8jMrnegxNjDnBqc+3tIcAG7cvAy3w8Y//fwIyaQilkiy69TAjLQGGBcOw+F41tyIfLGypIvhlM5Hc7gKeB/wFhHZbf68HfgMcIOItAM3mH+jlDoAPAQcBB4H7lVKWdvze4CvYjipjwOPmeNfA+pE5BjwUczIp0IiIvh0IblpsXwOHodxmVghraORBGf6x7A03VLVHB7b18k7/+15nbi3iLFCQS1NH2BlTUXemsPJ3tzCYWA0ltIcanwuPvWOTfzyaA9ff+EkezsGCcUSvHGmwsHrTEUrzVVzgOIkwuVctVLqebL7BACun2LOfcB9WcZ3AVuyjIeB9+Zay3wT8Dj1rncaQrEELrstlcjjT3Pidw6Na1yz9TmEYwncDtusnXW5eGz/efZ2DPGdnaf5wDVrC3IOTWEZiWRqDmA4pZ8+3D3VlAxSwmEo+801Ek8QjMSp9Y3v7v/gijU8197LZx8/zNs2LwPg8lloDpF4kt5ghA1m5vNsSJXQKFHNYcnimxCaqcnE6gJn4bX6SEfjnOobTY3PRjgMhWJc9g9P8bN95+e+0CnY0zEIwP997kQqLFezuAhmKT+xqraC3mCEUI4ikOmmz7NTmKEGzAS4GtOsBIZV4bO/cxG1PheP7u1k47JAyuyUL1aWdM9IZE4O6YYi1lcqa+GgC8lNz1g0nlGF0m9GKwUjCU72jqaZmWb+GR48N8xIJM7xnuD8LHYC/aNRXu8b47oNDfSMRPjuy2dyT9KUHNb30+8ev8FaGcQdOSKW0k2fZ6cwK1l1leom3PxrfS4+/7vbEIEr19XPeN2WcID8sqOnwu2wm+1CF96sVNbCQfd0mJ5QLJmpOZgO6bFInBM9o2xaXonI7DSHI+eNaBArO3W+sbSGP752HZe11PDlZ48TiWvtYbGR8jl40n0OZq5DDuFgOaM3LgtM6XOwrj/L55DOlevqefhPr+JD17fNeN2ZwmH2mgMYTuli1Fcqa+EQ8IwLh2RSsf/sUJFXVFqEoolU6QwYj1YKRgyzUmu9D79rdgL2SJeRhTpUoAS6PWcGsQlctLKKD76ljfPDYb7/SkfuiQtINJ6kL1i8HsGLAcsnmO6QTuU65EiEs/wNV6+vp3skknVzYGkOU5mNtq2qpso785v7fGkOYDiltVlpgfG5xjub/ctTR7n5X5+nvWskx6zyITyh85XXNCv1BCN0DUdorfcZ2tcsnPpWiYKCaQ5nBmlrDOBzO7imrZ6tq6r50jPHS8rH9M1fn+SGzz83bYJWuTNuVhq/wTb43bgdtpwRSyd7R6n3u1NVVs9ncUqnNIcZ+hRyMZ/CoSHgpqcIWdJlLRz8HuPG9srr/fzbM8cA6Jgm5K3cmOhzcNptuBw2DpoJQmvrffg9M6/UmkwqjnZZwmH+NQelFLvPDLJ1VRVgOBg/ftMGOodC/Ml/vVIy5qUTPaP0j0YLJiCXAsFwHJ/Ljt02HtEmIkY4ay6zUu8oa+t9qT4L2fwOluZQXTE3089E0oVD5Rxfu6nSQ/dIZME3EeUtHNwOgtE4H/nunpRdsK9I/VpLkVAsmWFWAuMzs8xvrQ2G5jDTcOAzA2OMRRPYhJytGWfDmf4QA2Mxtq0ar71/5bp6/vE9W/lVey8femB30Zq2p9NrmpSKVVhtMZBeVymdVbVeOnIkwp3sHaWl3ssKUzicG8yiOYxGqapwpsK154t0gZBPo5/paAy4iZvNhhaSshcOShlRD1+8/WJg/AurmRzKCkYinLXbX1PrI+B2zNhUc/i8oTVsaa6alwt+JBzLKE6223RGW5qDxXsuXcnf3nwhjx84zyd/uK/o/cOtxvFaOExNMBLPMClZrKrxTmtWGgnH6BmJ0FrvZ7nZvjNbOGv/WGzGYar5YJXthvlxSMPCXyflLRxMiX7Pdet40wUNVDjt2kGYhtFQPfMSsZzSK6o8Rgcs98yzzI+YwmFHSy1Dodic1eW/+dF+bvqX51KCfffpQTxOGxuaJnf0ev/VrXzwLev53isdqQYuxSKlORSp6uZiYCSSvXDdqtoKhsPxKTXPU72G4Git9+F22GkIuLNGLBl1lebXpGRhObLn6nNoMrOkF7o6a1kLhxsubOLjN23kQ9dfAECd35XazWmMDGkrfNXCqsza2uAz/555tNLh88OsqTPUfaVgODx701I8keQXh7sZGIvx9z85CBhhrG9orprSVHDvm9cTcDv4watnZ33e+aBPaw45CU5RuG68dHd27eFEr5E/s9a8TldUV3AuSw+IvtFoQTQHGPc7zFVzWFNnvIf2rsLkBE1FWQuHxoCHe65bh8usHVTvd2uzUhoTQ1lhvDJri3nBBmYlHEbY0BSg2txZzcUpvadjkOFwnG2rqnlkzzmeOHCe/WeH2Lqyeso5Hqedd1y0nMf2dxat7tJoJJ4qbKg1h6kZCU9hVsqRCHeydxQRWG0et7K6IqtDOr0i63xTVeGcU6Mfi4aAm5Y6Ly+fKmih6kmUtXCYSL3WHFLEE0miiWRGtBKMF99rrc/UHPK134djCU71jrJxeWXqSzk4we+w+8xgyvSUi18e6cEm8J93bOeCJj8f+e5uIvEkW1dNLRwA3n3JSsaiCX5+oHDlO6YjPfBBaw5TM5XPYWXN9LkOJ3tHaa6uSG1uVlR7ODcYyrhOlVJGRVZ/4YTDXBr9pLO9pZZdrw8sqJ9MC4c06v1u7XMwCZs9eitcE3wO5hfVUtf9HgeJpCKSZ0/f9q4gSWVkrVqaw8ROcnd8bSc3/stzvO9rO/nl0R76R6Mc6x7hpZP99Ey4kf7yaA+XrK6hIeDmf7/7IsbM3fi2HMJh+5oaVtVW8MMimZZ6zOvMJlo4TEdwimY5VRVOAm7HtJqDtYEBw6wUjiVToasAY9EE0XiS2gJpDhetrGbb6prcB+bBZS019I9GUw22FoK5eUqWGHV+F32jUZJJhc1W0BbWJY9V1Kxios/B/Lu13qg0ae3qRsLxSSaobBw2y2ZsWBbAZu6oBkPjX9hgJM5wOM6OllqOnB/hzq+/lDF/47IAP/vza7DZhL5ghL1nh/joWw2f0aVrarj72rU8fag7tbOcCptNeNfFK/nXX7RzfijMsqrJjeMLiWW+XNvgL0rdnMWA1QUuWyiriLCy1pu1r4NSipM9o7z7kubUWHNaOGud2bTHEhTznQBncc9167jnunXz8lrbW2oB2HWqn3UNs6/yOhO05pBGvd9NIqkKEnu/2AhPaBFqUed3UeG0p26+/gnd4XJx+PwIboeNljpfKkrEqowJ4xEZt1++iuc//ha+cNs2/sdvX8gXbtvGX7ztAg6fH+Gn+zoB+FV7L0rBmzaMt4z9xE0befIj1+alyr/74maUgh/tXnjtwTIrbVpeSfdwpOhhtaXIaDSe0QVuIqum6OvQG4wyEolP0hwAzg6OH2+FURdKc5hP1tb7qPW5ePnUwIKdUwuHNKwdhXZKGyo3TBYO77+6lYfvvRKnGQnkc4/XW8qHI+dHuKApYMSBe5yIZPocLOHQFPDgcti4ZVszf3RVK7dsa+ZPr1vPxmUB/uXJo8QTSX55tIdan4stK8bzGUQkbxtvS72PS9fU8INXOhb85mxdYxuXBYjEkwzrviKTCGbp5ZDOluYqjvUEee105g3TqqnUmrbDHs+SHtfSCq05zCciwvY1NexaQKe0Fg5p1JuOKe2UTm8RmnmJVHqcbFxWmfrbP0PhcPj8CBvNWjd2mxiN2NM0NaupSWPlZDOPzSZ89IYLONE7yvdf6eC5oz1c21Y/JxPguy5upr07mCoEuFD0BSNUVThTGliPNi1NwqrZNVWewPuvbqUx4OZvf3yARFquzCuvG8KitW5cc6j2OvG67Bm5DinNYREIB4DLWmo51Te2YGZILRzSqNeaQ4qUz8E5vVtqJmal3mDE6Iy1bDw5rcbryghltS58K/FnIjdc2MTWlVX8w6OH6BuNZpiUZsPFqw3H9cmehXP0gbEBqfO7xpu5FKEkc6kzkqXoXjp+t4O/evsm9p0d4sGXTwPwfHsvn3viCFevr09VbwVj572iuiJDOPSb5szFYFYC2N5iOLdfWSDTkhYOaVjCQUcspfkccsRoz8SsdNq0D1uRTmBEnWSalSJUOO1T3hBEhI+9bUPqfNe0zU04LK8ybiCdU7SRLBQ9wQj1fjdNlcUpjbAYGMmhOQC8c+sKrlhbyz93O6FcAAAgAElEQVQ+foRfH+vlT/7rFdY3+vnSH1wyyby4YkKuQ/9oxDRvLo64nM0rqvA4bQvmd9DCIY3qCid2m9A3qs1KU/kcJmJ9sfIRDlbJZOuGDFDjdWaEsnYNh2mqdE/rN7imrZ6r19ezo6U2JdBnS43Xicth4/wCJ6L1BSM0+N2pHsELXRphMRAMT+4CNxER4e9v2cJoJM7vfXUnfreDb/zRZVRmCX9tzqI51HidiyYy0eWwsW1VNbteXxi/gxYOadhsQq3Ppc1KpPkccgiHlOaQ5lDdf3aIzX/7+KQY9M6UcBj3J1R7XRnF97pHIln9DemICF+9czv337Ujj3cyPSLCskpP1lr/UxGMxOdc1dUyK/ndDiqcdq05ZCEYMTYNuXb2FzQFuOe6ddR4nXzz/ZdlbD7Saa720BuMprTiQmZHF4rLWmo5cG54QfqS5BQOIvJ1EekWkf1pY38nImdFZLf58/a05z4pIsdE5IiI3Jg2fqmI7DOf+6KYW0MRcYvId83xnSLSMr9vcWbU+XSWNIwLB49r+kvE67QjkulzOHBuiNFoItXQx6JzMITHacuodV/tdWZ0g+seDqdMLdPhcdrzyqvIh2VV+QsHpRQ3/PMv+b/PnZj1+aLxJEOhGPV+Q0MqVqevUifVBS4Ps8/H3raBnX/11oxgiYmsmNDXoX+scHWVCsX2lloSSaNfSaHJR3P4JnBTlvHPK6W2mT8/AxCRC4HbgM3mnC+JiPUN/jJwN9Bm/liveRcwoJRaD3we+Ows38u80BDQ9ZUAwqZZaWLhvYnYbILP5SCYVpnVcq5O0hyGw6yoqsgwGdV4XYxE4sQSSZRSdA1HaArMzVQ0U5ZXeegczq/J00gkTudQmN+cmH1F11RTezM6rjHg1vWVsmAJB1+Oa9DCqpE2FVtXVWMT+K/fvA4YmsNiEw6XrK7G48zdBW8+yCkclFLPAfkauW4BHlRKRZRSJ4FjwA4RWQ5UKqVeVEZA+f3ArWlzvmU+/j5wvcg8FCOZJXU+V1k0/EkmFT/b18m7vvQC/252wUsnpTnk+MKB2TQpkh5xZAiHifXzs2UiWyU0hkIxRsxidI1TRCoVimWVHrqG8ktEs27iE7WimWBtPix/SWPAM6ksiMYw303sAjcX1jX4uX3Hau5/8XWOdo0wMBZdFDkO6QQ8Tvb+jxu5bcfqgp9rLj6HPxORvabZySog0gycSTumwxxrNh9PHM+Yo5SKA0NAXbYTisjdIrJLRHb19PTMYelTU1cGlVl/1d7Djf/yHH/67Vd57fQgPzMzjtMZiyZw2W15dcia2NPBCked2Kkru3AYL75naRz5mJXmk2VVHqKJzLo7U9FlrrE3GJk23nxwLMrAFK83UTg0BLRZKRtT1VWaCx972wb8bgd/98gBBsZiiyaMNZ1cGtJ8MduzfBlYB2wDOoHPmePZRLyaZny6OZMHlfqKUmq7Ump7Q8PcQhinot7vZiyaKFop54XgL763h1AswRdu28b7r2qlvTuYkUQERiirx5nf5eF3O1Ix6ZCmOaRFhiSSivOmWSkdq3fvwFgstSu3Ol8tFJaDPJ9w1vSooum0hw8+8Bo3/+vzWQWO5dOyki4bK90EI/Elfc3NhmAke12luVDrc/Gxt13Ar4/3kUiqRac5LCSzEg5KqS6lVEIplQT+E7DCRjqAVWmHrgTOmeMrs4xnzBERB1BF/maseceyAy9V01IyqegZiXDrtmZu2dbMpuUBovEkr/dlJoGFopMb/UyF35PZKtTSANKFQ28wQiKpJmkO42W7Y3TlSIArFJamkk84aVdastrBc8NZj4knkuw6NcDZwRAfevC1SYK3L4tZCXQi3ESGw7Ep813mwu/tWJ3K0q/1FaYL3FJgVsLB9CFYvAuwIpkeAW4zI5BaMRzPLymlOoEREbnC9CfcAfw4bc6d5uP3AL9QRaxC1rDEs6SHQjGSarxkgJWtfHRCl6lQlv7RU+FzOVKhrEoZwsdhE/pHo6ndcLYwViCt4U80dePNFco638wkEa5rOEzA7aC5uoJDndmFw7GeIKFYgmva6vlVey9feLo94/neYASP05bqjVGsNpClTjASL0iCmsNu49Pv3IzLbluwCqeLkXxCWR8AXgQ2iEiHiNwF/KMZlroXeDPwEQCl1AHgIeAg8Dhwr1LKMkbfA3wVw0l9HHjMHP8aUCcix4CPAp+Yrzc3G+qWeH2l/gn1ZNY3Gl+OoxNqC53uH0uVdsiF3zPeDW44FCeaSLJ5hRFSaDmlz5stGqd0SI/F6B6O4HNNnR1dKBoCbuw2ySuctWckQkOlm03LAxycQjjsMcMM/+6dm3nPpSv54tPtPHO4O/V8XzCaCmOF4jWQL3UMn0NhroXL19ax/9M3ctE0HQPLnZyfvFLq9izDX5vm+PuA+7KM7wK2ZBkPA+/NtY6FYqmX0LCcpJZw8LocrK71ZhSeC8cSHDg3xPuvbs3rNf1uB6OmhmA5aS9eXcOejiE6BkO0NQU4Z1bDnOhz8LsdOGxiaA4j+eU4zDd2m9Dgd+eVJd01HKYp4OHC5ZX84nC36ZvJ1LD2dAwR8DhorfPxD7duYf/ZIT71o/08//E3IyL0BCOpCsBAKktaC4dMpuoCN18slGN3saI/nQlYN82lalbqG51cifKCpgBH09pyHjg3RCyhuDTPLlZ+t2FWUkqlbnBWQTsrYun8cBi3w5bSFCxEhGqvM+WQXugwVouJiXCReIKPPbSHY92Z5jZDgLnZtLySpCJrO9M9ZwbZurIam03wOO28/6pWzg6GOGD6KPqCURrSWlNWe5247Dbd9GcCRv9o7RMoFlo4TMDjtBPwOJasWWmi5gBwQZOfk72jRM1Wn1bJ40vW5CccfG4HcbNVqHWD27yiEqddUmalzqEwy6s8WWsmVXtdDIUMn0MxNAcwfCHpmsPu04P84NWOjB7TqSS9Sg8XmmaziX6HcCzB4fMjbF013mPiLZsaEYEnDnYBxsYjvSaUiNAQcNOjHdIpkklVkGglTf5o4ZCF+iWc65BNc9iwLEA8qVJNUl59fZDVtd68i9ql93RIz1VYUV2RypLuHAxN2YqzxutkYDRG90g4ZWJZaJom1Fd6zfQbnEzr2TsUihGNJ2ms9LCqxovPZZ/kdzhwbohEUrE1zZZd73ezfU0NTx7sIplU9I1GU74tC53rkIllpqzUwqFoaOGQhXr/0s2SHhiN4nVl1iW6oMmIWDrSNYJSildPD3BpnloDZPZ06B4ZL7ndnFYiuXNoco6DRVWFi9P9Y4RjyaJqDsFInJGwkem9+7QhHE6lCYeulOBzY7MJm5ZXTtIc9pwZAmDbqkxH5w0XNnGoc5gD54ZJJNUkwdsYcGuzUhrBHL0cNIVHC4cs1PmWrubQn6US5doGH3ab0N41wtnBEN0jES5ZnX8Uh1WZdSQcN6uqGpE4zdUVnB0IkUwquoYnZ0db1HidKSGy0GGsFtbarHDS3Vk0h1QLU3ONhnAYIZmWx7CnY5BllZ5J7+OGC5cB8IDZlKZuonDQxfcymEnRPU1h0MIhC/UB15Lt6ZCtEqXbYaelzsuR8yMpf8PFeTqjYbyk8mgkbjiVTdPQyhov3SMRzg6GiCfVpBwHi3Qn9UIX3bNYVjmeJd05FDKzuT30jUYZNrWJ9P7WABeuqCQYiWeUCdlzZjDD32DRWu+jrdHPj187C4xnR1s0BjwMjsVS5aTLnZRw0JpD0dDCIQt1PjcDY9E51+wvRaaqRLlhWYCjXSO8dnoQr8ueyiDNB0tzGI3G6RmJpOL2m83+yK+aDeCnqrNfnabJFEtzSE+Es0xKt1xslP+yTEvWzt6KqNq03HBKH+w0TEmDY1FO9Y2xdVV2rettm5sYNavdNkzQHCwfRHpvi3LGMivNd20lTf5o4ZCF+oAbpcYTxpYSfVMIh7bGAK/3j/HCsV62rqzOq+CehX+CWakhpTkYN9xdZlvDqc1KacKhSJqDdcPvGgqz+8wgLruNd7zBKARgmZa6hsNUehwpf82GpgA2gd+c6Ecpxd4O098wRWKVZVqCyWYlqwDcwGgMzXjzqMXSwnMpoj/5LNRbuQ4j0QUvAldoptMclIL27iBv29w0o9e0hEPPSIRgJJ660TabzVVePmWUysplVgq4HSktZKHxOO3U+lx0Doc51h1k04pK1jf6ERkXDt0TQm0rXHbesrGRb/76FGcHQyyr9CACW1ZONisBXNRcRVOlm95gNFVw0CK9Om258o0XTtJS7+PNGxpTgQHarFQ8tOaQhXpz99o3WlwH4d6OQT7wrV0MheZnNxmOJRiNJrIKBytiCZhRpBKMOw1PmcX7LJPJsioPNjGioFwO25SNVSzhUKwEOItllR46BkLs6xji4lXVeJx2mqsrxjWHLBnc//EHl/LJ39rIc0d7+H+/eZ11Df6s/YvBaIx067Zm1jf4J/UtrvGNV6ctV/75yaN86uH9xBPJ8WglrTkUDS0csmDdxPKp719IXjzex1OHuvjMY4fm5fUGxibnOFi01Hlxmaaki1fNTDh4TTPLiR7jJmr5DZx2G8urKlCKKRPgAKorrI5oxdXSlld5ePlkP6FYIpXh3VrvG/c5DEcmCTCH3cYfv2kdj3/4Wt66qYnf3b5q0uum85c3beQnH7x60rhlWitXn8NIOMZIOM7ZwRBPHOwad0jnWRlYM/9o4ZAFy/5b7FwHS2N44KUz/PpY75xfz3o/2ZqqO+w21jb4WFvvm3GNe6NVqD21w073G1impWXTOJqtXfNCl+qeSFOVJ9UBz8pTaKnzcaJ3lGRS0T1N7afWeh9fvXM7//3atdOew26TrDV9UtVpl2iUXC7SK+J+9VcnUnWVJmpYmoVDi+UsVFU4sZslp4vJcDhGwOOgzufiEz/cx+MfvibvHgvZmE5zAPjUOy4kOctq6X6PI/UFzxAONRVwamp/A4wLq2JFKlksN89f63OxutYLGDf9kXCc4z1BYglVsFBbt8OOz2UvW7PSOTPP5R0XLefRvZ2MRRPa31BktOaQBZtNqPE6i57rMBSKU+dz8ZnfuYjT/WN87omjc3q9/iylM9K5uq2eay+YXYc9y5HssEmGZmJFLC2vzh7GCoYz+K/evpH3XrpyymMWAiuaatuq6pQJrLXeB8BvTvQBhW1hWu11la1D2tpYfOj6NgIeB4fPj2h/Q5HRwmEKan2uoqv4w6EYVRVOrlhbx+9fvpqvv3Ayo7vadCSTii881c7xnvGqormEw1wImMKhIeDOMAVYZqXpNAeAu69dR1tT/rkVhSBdOFikhMNJI+KqkNpNjc9Ztj6HzsEQIsbn/Xs7VgM6jLXYaOEwBbU+V9HNSkOhGJVmyOO7L1mJUnBoitaUE3nl9ACff+oo33+lIzU2MBrFJobZbL6xNIeJeQqrTPPMVAlwpcSFyytZ1+DjrZvGQ3lX1lTgsAk7T5jCoYB5GDVeV/malYaMzHqn3cadV7Zgt4k2KxUZLRymoM7nLnoo63B4XDhYHduO9QSnm5LiYbNMQ3ta+8++0SjVXhf2Ajj5/CnNIXNnfXlrLf/z1i28aZbmqoWkzu/m6Y9dlyrHDYajfnWtN1Vrq5DhtoZwKFPNYSjEClPLXFFdwSd/ayPvKbKZsdzRonkKanzOomsOw6FYKma+qsJJQ8A9qflMNiLxBI/u7QTgWPd4M5qBLHWV5gtLOGQL9XzfFWsKcs6FoqXeiFiq8TpxO/Lrqz0bjNLlZSocBsOpciQAH7hm+qgvTeHRmsMU1PrcDIZiJJKzi96ZK0ophkPxDBPQ+gZ/hg9hKp490sNQKMa2VdVmKWwjPLMvGE2F6c43lllpYs2gpUBLneF3KHQ58Wqvi+FwfEnW9JoOpRRnB0M5/VKahUULhymo87lQqnhJSeFYkmgiSWXFuHK3rtHHse4gKke46Y9eO0u938UfXdVCUo0npw2MRVM5BfONFVlS7CznQtDaYAiHQofa1pi5DvOVEb9YGBiLEYknp41o0yw8WjhMQbGzpK0y0RM1h5GwUfl0KoZCMZ4+3M3NF61g4zJDTW83TUv9ozFqfYW5eafMSkusFhVAq6U5FLgooJV8WG5OaSvHYYXWHEqKnMJBRL4uIt0isj9trFZEnhSRdvN3TdpznxSRYyJyRERuTBu/VET2mc99UcxAchFxi8h3zfGdItIyv29xdtT5ipslbe0eM4RDoxHqOZ1T+vH9nUTjSd51cTMt9V7sNuFYd5BkUpk+hwJpDlNEKy0FLM2h0Galci2hYeU4aM2htMhHc/gmcNOEsU8ATyul2oCnzb8RkQuB24DN5pwviYjlwfsycDfQZv5Yr3kXMKCUWg98HvjsbN/MfFJb5Pr6w6ZwSC/iZkUsHZ/GKf3wa2dprfdx0coq3A47a+q8tHcFGQnHSSRVwTSHC5oC1PlcKfv8UmJ5pYf3X9XKTVuW5T54DqSEQ5k5pTuHTM2hWmsOpURO4aCUeg7onzB8C/At8/G3gFvTxh9USkWUUieBY8AOEVkOVCqlXlSGwfz+CXOs1/o+cL1MVaFtAbHMSsXKks6mOTRVuvG7HVNGLB3qHGbnyX5u2bYileHb1uinvXskFZZbKM3hjevqeOVvbqDKu/Sas9hswt/+9oVsac5einu+sOorDZadWSmM0y7UF2jjopkds/U5NCmlOgHM343meDNwJu24DnOs2Xw8cTxjjlIqDgwBddlOKiJ3i8guEdnV09Mzy6Xnh7WL6y+SWcnyOVSmCQcRYV2DL6tZKZZI8hff20Odz8Udb2xJjbc1BjjVN0bXsCUc9BewVBn3OZSX5nBuMGSUd9dF9kqK+XZIZ/vvqmnGp5szeVCpryiltiultjc0FDapymm3Uelx0F+kRLihscmaA8C6Rj/Hu0cnHf8fzx7nwLlh/uHWN2TkMrQ1+UkkVapVZ6FCWTVzx+ey47RL2TmkO4dCiyKDvtyYrXDoMk1FmL+7zfEOIL2g/UrgnDm+Mst4xhwRcQBVTDZjFYU6vzvDrDQWjXPDP/+SXx4trNYCMDxFm8T1jX7OD4dTnbIADp8f5ou/aOe3t66YZBdf12D4KXaatYFq/Vo4lCoiRtHCcvM5nBsM60ilEmS2wuER4E7z8Z3Aj9PGbzMjkFoxHM8vmaanERG5wvQn3DFhjvVa7wF+oXIF8i8QE+srtXcFae8O8tDLZ6aZNT8MhWLmTjLzX7TevNkfN3MX4okk/9/39lLpcfLpd26e9DrrGoxWl6+YrTq15lDalFsJjURS0TUcTpXO0JQO+YSyPgC8CGwQkQ4RuQv4DHCDiLQDN5h/o5Q6ADwEHAQeB+5VSiXMl7oH+CqGk/o48Jg5/jWgTkSOAR/FjHwqBSYKB6uZzXNHe4jGC5vFml50L511Vo0l0yn94Mtn2Hd2iL+/ZUvW0hgVLjuraryMRhN4nDYqXIUr/6CZO9VeZ1k5pHuDEeJJpcNYS5CctZWUUrdP8dT1Uxx/H3BflvFdwJYs42HgvbnWUQzqfC52nxlM/X3CdASPROK8fKqfq9bXF+zcVrnuiayp9eK0C8d7goxG4vzLU+3saKnl7W+YOsyyrdHP6f4x6rQzuuSp8bryKpGyVNAJcKWLzpCeBqung2XlOt47SlOlG5fDxtOHunPMnhtDaUX30nHYbbTUGWU0vvqrk/QGI3zi7Run7M8MsL7J0DYKVTpDM3/U+MqrbPe5QTMBTjukSw4tHKah1ucinlQp5/DJnlE2La/kynV1PH24K6PG0XwXSxsOx7OalcBwSu/tGOQrzx3nt7Ys45LVNVmPs2gzM6t1GGvpU+N1MjgWzVk/a6mgE+BKFy0cpiG9vlIyqTjZO8raej/Xb2ri9b6xlPrfF4zwpn96ln99un3ezj0cimUU3UtnXYOfruEI4XiSv7hxQ87XajP9FLVLMEFtqVHjNTYkI5F4sZeyIJwbDFPhtBekAZVmbmjhMA3jwiFC10iYUCxBa4OP6zcaOX9PH+pGKcUnf7iPs4MhHtt/ft7OPZXPAcbLaNx22apUqOp0WMdrzaH0SWVJj5aHaclo8uOZ1iyqKQ662c80WA7cvmCUcMwwG62r97GiuoJNyyt5+lA3NV4XTxzsYl2Dj4Odw/QGI9TPsadBwtw5ZvM5ALzpggb+2/aVfOSGC/J6PZ/bwX3v2sJlLbVzWpem8KQX31td5y3yagrPuSEdxlqqaM1hGqyEsf7RKCfMMFarQudbNzWy6/V+/u4nB3jj2jr+6b1bAfj18b45n3ckS7nudGp8Lv7xPVtnJIR+//I1XNAUmPPaNIWl3EpodOomPyWLFg7TUJdWfO9ET5AKp51lZtnmt2xsJKnAYRM+99+2snVlNZUeBy+09875vNmK7mnKA6vhTzkIh7ODIbpHInrTUqJos9I0eJx2vC47A6NRTvaO0lrvS9lGt66s5re3ruDWbStSavGV6+p5/lgvSqk52VCHQ4YzcqpoJc3SZbxs99L3OTx7xAgHv25DYeukaWaH1hxyUOM1sqRP9IyytmG8V4HNJvzr7Rdz/aam1NhVbfWcHQxxqm9sTufUmkP5UlnhRAQGy0BzeOZwD83VFXkFVWgWHi0cclDnd3F+OEzHwBhr66dvZHONmTH9/LG5mZbGy3Vrxa7csNuEqgrnkk+Ei8QT/Pp4L9dtaNCRSiWKFg45qPW52NsxRFLB2hw7nDV1XpqrK3i+fW5VW7XmUN7UphXfSyQVr7zev+SS4nadGmAsmuC6DY25D9YUBS0cclDrcxE0E5Jac2gOIsLV6+v59fE+EsnZf5mztQjVlA/VXmdKOPzHL4/zO19+kQdeKnwl4IXk2SPduOw2rlyXta+XpgTQwiEHdWmVTtN9DlNxdVs9I+E4ezsGcx47FUOhGA6b4NUVVMsSo6dDjJ6RCF9+9jgAn3viSEqjXAo8c6SHHa21+NzadFqqaOGQAyuruCHgJpDHTt7aCT0/h5DW4XDMdExqW2w5Uu11MTgW5fNPHSUcS/DF2y+mfyw6r+VZiknHwBjHuoM6SqnE0cIhB5bmkMuklDre76at0c+ejqFZn3MoFNf+hjKm1uekeyTCgy+d5g+uWMM7t67gd7ev4pu/PrUkynk/e8TwyWl/Q2mjhUMOrIzVdXmYlCxa63283je5z3O+GOW6tbpdrlSbxff8bgcfur4NgI+9bQMVTjv/8NODRV7d3Hn2SA8raypm9J3SLDxaOOSgdoaag3Xs6/1jJGfplB6eogucpjywrrkPvqUttTlpCLj54PXreeZIT0YDqsVGKKpDWBcLWjjkYH2jn43LAjPq+tZS7yMaT3LOrFU/U7RwKG+u39TIR2+4gDuuXDNh3Ei4PNm7eE1Lj+7rZCya4OaLVhR7KZocaNtFDqoqnDz+4WtnNKelztAyTvWOsbJm5pU1h8NTl+vWLH0aAx7+3DQnpWMVWuwLLt7s6QdeOs3aBh+Xt+oKwaWO1hwKgGWCOjkLv4NSasoWoZryptLjwGW30ROMFHsps+Jo1wivvD7A7Zet1ialRYAWDgWgMeDG47RxqnfmwiEcSxJLKK05aCYhItT5XYtWc3jgpdO47DZ+59KVxV6KJg/mJBxE5JSI7BOR3SKyyxyrFZEnRaTd/F2TdvwnReSYiBwRkRvTxi81X+eYiHxRFvm2wmYTWup8sxIOunSGZjrq/W56S1RzUEqx+8xg1lIf4ViCH756lhu3LEs53DWlzXxoDm9WSm1TSm03//4E8LRSqg142vwbEbkQuA3YDNwEfElErBTgLwN3A23mz03zsK6i0lLnm5VZSRfd00xHnd9VssLh2SM93PrvL/CzfZPb5T62v5OhUIzbd6wqwso0s6EQZqVbgG+Zj78F3Jo2/qBSKqKUOgkcA3aIyHKgUin1ojK2HPenzVm0tNT7ONM/RjyRnNE8rTlopqPe7y5Zs9JTh7oAuP/FU5Oee+ClM7TUeXnjWl1LabEwV+GggCdE5BURudsca1JKdQKYv600yGYgvXpYhznWbD6eOD4JEblbRHaJyK6enrlVPi00rfVeYgnFucHwjObponua6bCEQ6lVaVVK8eyRHlx2GztP9nO0ayT13GunB3jpZD+37dCO6MXEXIXDVUqpS4DfAu4VkeliPrNdFWqa8cmDSn1FKbVdKbW9oaG067JY4awzNS1pzUEzHfV+F9FEMtUtsFQ41h3k7GCID721DZfDxn/95nUAkknFp39ykIaAmz+4Yk2OV9GUEnMSDkqpc+bvbuBhYAfQZZqKMH93m4d3AOkGx5XAOXN8ZZbxRY0VzjpTp3RKc9DCQZMFK9ehd7S0/A7PmC0/33VxMzdftJwfvnqWYCTOj/ecZfeZQT5+00b8ugLromLWwkFEfCISsB4DbwP2A48Ad5qH3Qn82Hz8CHCbiLhFpBXD8fySaXoaEZErzCilO9LmLFoaAm58LjunZqg59AQj2ARdW0mTlZRwGFlY4fDzA+d595deIBJPZH3+2SM9bGgKsKK6gvddsYZgJM53dr7OZx47zNaVVbz74qyWYk0JM5c7UBPwsGlDdADfUUo9LiIvAw+JyF3AaeC9AEqpAyLyEHAQiAP3KqWsK+0e4JtABfCY+bOoERHWzCKc9bXTg2xaXonDrlNQNJOp8xthoL0L7JT+3q4OXj09yPPtvRl90wGCkTgvn+rn/Ve1ArBtVTVbmiv5zGOHSSr40u9fgs2mfQ2LjVkLB6XUCWBrlvE+4Pop5twH3JdlfBewZbZrKVVa6r0c6hzJfaBJLJHktdOD/O5lOtxPk51UCY0FNCvFEkl+c6IPgEf3dk4SDi8c6yWWUKkS3CLC+65Yw8d/sI93bl3BpWt0qYzFiLZdFJCWOh9PHOginkjmpQkcPDdMKJZge0tNzmM15Umtz4XIwpqV9pwZJBiJ01Tp5smDXYRjCTzO8S6Fzx7pxu92ZFy3t2xrpmMgxB1vbFmwdWrmF227KCAt9T7iSUXHQJx4XEQAAA7ASURBVH7VWV8+1Q/AZS16p6XJjt0m1Hpd9CygWem59l5E4K/fcSEjkTjPHR0PI7dCWK9eX48zbQPkcdr52Ns20BBwL9g6NfOLFg4FZKYF+HadGmB1rZemSk8hl6VZ5Bi5DgunOTzf3sNFK6v5rS3LqPE6eXRfZ+q5g53DdA6FefPG0g4t18wcLRwKyHjp7lG6R8L8088P852dp7Meq5Ti5VP92qSkyUl9YOFKaAyHY+zpGOIaUzO4acsynjJNS+FYgo//YC9+t4O3bGzK/WKaRYX2ORSQer8Lv9vBN144xf9+7DDReJKAx8F7Ll2Jy5Epl0/2jtI3GtUmJU1O6nxudvcvTDe4F4/3kUgqrm4zml294w0reOClMzx7pJvH95/nwLlh/vN927X5aAmiNYcCIiJcuLySzqEQ7764mb+5+UJGwvGUbyGdXacGALhMaw6aHCykWen59l68LjuXrDauyyvW1lLrc/E3Pz7Aj3af46NvvYC3Xqi1hqWI1hwKzJf/4BKSykiKG4vG+ezjh3nqUNektqMvn+qnxutkXYO/SCvVLBbqAy5GowlC0QQVLnvuCXPg+WO9XN5am9J0HaZp6Ts7T/NbW5bxZ29ZX9Dza4qH1hwKTJ3fnVK5vS4HV6+v56lDXZMKp+16fYDtLbW6MJkmJ/U+M0u6wNrDmf4xTvaOck1bprP5njet4wNXt/J/3rtVX69LGC0cFpjrNzVypj9Ee/d4k/iekQgne0e1SUmTF/UBK0u6sMLh+WO9AFzTlqnlrqr18qmbL8SnayUtabRwWGCuN6M6njzYlRrbZfogtmtntCYPUvWVCpzr8NTBLlZUeVjfqE2d5YgWDgvMsioPb2iu4mmzMUoiqfjurjNUOO1sWVFV5NVpFgN1VgmNAmoOQ6EYz7X38PY3LNemozJFC4ci8NZNTbx2ZpDeYIT/9bNDPHukh4/ftGFSeKtGk406X+HNSk8e7CKWULzjouUFO4emtNF3oyJw/aZGlIIPPfgaX3v+JH94ZQt/aFa01Ghy4XHaCXgcBTUrPbr3HM3VFWxbVV2wc2hKGy0cisDmFZUsr/LwwrE+3rqpkb+5+cJiL0mzyKj3uwumOQyNxfhVey83X6RNSuWMDjcoAiLCH13VwgvH+vjCbRdj17XuNTOk3l+4Eho/P3ieeFKblModLRyKxN3XruPua9cVexmaRUqdz82xnmDuA3OglOLbO08TjMT5wNWtOOw2Ht3byaraCt7QrAMkyhktHDSaRUh9wMXOk9k1h70dg6yu9VLtdU37Gr3BCP/f9/bwzBGjBPeTB7v49Ds388KxXj5wzVptUipztHDQaBYh9X43A2MxYolkRh+F9q4Rbvn3F1jf4OfBu69Ihb2mE44leOpQF5/+yUGGQjE+/c7NVHudfOrh/bzz354nqeBmbVIqe7Rw0GgWIdZNv380mtH/45+fPEqF087p/jHu+PpLfOe/X0FVhZNEUvHc0R4e2XOOJw92EYzEaWv0c//7d7BpeSUAl6yu4SPf3U00kWTzisqivC9N6aCFg0azCGnwj+c6WMJh/9khHtt/ng9d38bFq6v57/fv4g+/8RJv3tDId18+w9nBEFUVTt7xhuW846LlvHFdXYbWsarWy/fvuZJkUmmTkkYLB41mMZKthMbnnjhCtdfJXde0Uulx8q+3X8K933mV104Pck1bPZ96xyau39SUM9nSpqPnNJSQcBCRm4AvAHbgq0qpzxR5SRpNybK61ovTLvz1w/v4+1s2U1Xh5JkjPXz8po1UepwA3LRlGT++9yoCHgdrzK6EGk2+yMTS0UVZhIgdOArcAHQALwO3K6UOTjVn+/btateuXQu0Qo2m9Nh5oo9P/Wg/7d1BKj0OXA47z/3ldXhdJbPn05QgIvKKUmp7ruNKJUN6B3BMKXVCKRUFHgRuKfKaNJqS5vK1dTz659fwlzdtIJ5U/MXbLtCCQTNvlMqV1AycSfu7A7h84kEicjdwN8Dq1asXZmUaTQnjctj40+vW8yfXrtO+As28UiqaQ7arepK9Syn1FaXUdqXU9oaGhixTNJryRAsGzXxTKsKhA1iV9vdK4FyR1qLRaDRlT6kIh5eBNhFpFREXcBvwSJHXpNFoNGVLSfgclFJxEfkz4OcYoaxfV0odKPKyNBqNpmwpCeEAoJT6GfCzYq9Do9FoNKVjVtJoNBpNCaGFg0aj0WgmoYWDRqPRaCZREuUzZoOIjABHzD+rgKEZTF8NnJ7D6Wd6Pr2+uZ1Pr29u51vI9c30XLOdYzHTtS7E+krx86sHes3Ha5RSuRPFlFKL8gfYlfb4KzOc2zPHc8/0fHp9en1lsb6Znmu2c2a71oVYXyl+fun3y3x/lopZ6SczPH5wgc+n1ze38+n1ze18C7m+mZ5rtnMsZrrWhVjfYvr8pmQxm5V2qTwqC8733IVAr29u6PXNjVJfXzqluNalsqbFrDl8pUhzFwK9vrmh1zc3Sn196ZTiWpfEmhat5qDRaDSawrGYNQeNRqPRFAgtHDQajUYzibIQDiISzPH8syKyoA4kEVkpIj8WkXYROS4iXzAr0k51/IdFxLvAa5z2cys2IvIuEVEisrHYa5kOff3NnVK8FhfL9TdbykI4lBoiIsAPgR8ppdqACwA/cN800z4MFO3LWaLcDjyPUeI9b8ye5WWLvv7mjSV9/ZWNcBCR60Tkp2l//5uI/GGRlvMWIKyU+gaAUioBfAR4v4j4ROT/iMg+EdkrIh8UkT8HVgDPiMgzC7lQEfGLyNMi8qq5plvM8RYROSQi/ykiB0TkCRGpWMh1AVcBd2F+Oc3/8XMi8rCIHBSR/xARm/lcUET+XkR2Am9cqHWmrVdff3OklK7FxXb9zYayEQ4lxmbglfQBpdQwRsr9B4BW4GKl1EXAt5VSX8TojPdmpdSbF3itYeBdSqlLgDcDnzN3ngBtwL8rpTZjJP78zgKu61bgcaXUUaBfRC4xx3cAHwPeAKwD3m2O+4D9SqnLlVLPL+A6S5HFdP2lU0rX4pK//rRwKA5Clh7Z5vi1wH8opeIASqn+hVxYFgT4XyKyF3gKaAaazOdOKqV2m49fAVoWcF23Aw+ajx80/wZ4SSl1wtwNPwBcbY4ngB8s4PpKmcV0/aVTStfikr/+SqbZzwIQJ1MYeoq1EOAAE3Y2IlKJ0Uf7BNm/uMXi94EG4FKlVExETjH+2UXSjksAC2JWEpE6DNPIFhFRGN0DFUazqImfnfV32PzCFgt9/c2dkrgWF+n1N2PKSXN4HbhQRNwiUgVcX8S1PA14ReQOSDmoPgd8E3gC+BMRcZjP1ZpzRoDAwi+VKqDb/DK+GVhThDVM5D3A/UqpNUqpFqXUKuAkxi5thxi9yG3A72I4DEsBff3NnVK5Fhfj9TdjlrxwMC/yiFLqDPAQsBf4NvBasdakjLT0dwHvFZF24CiGPfWvgK9i2H73isge4PfMaV8BHlsoh6D1uWF8VttFZBfGzu3wQpw/B7cDD08Y+wHGZ/Ui8BlgP8YXduJxC4q+/uZOCV6Li+b6mwtLvnyGiGwF/lMptaPYa1lMLMbPTUSuA/5CKXVzsddisRg/x1JjsXyGpXj9zYUlrTmIyJ9gOIU+Vey1LCb05zY/6M9x7ujPsHgsec1Bo9FoNDNnSWsOGo1Go5kdWjhokP+/vbsLsaoKwzj+f3DsQpJGoUQys4uKSioLgqgo6CLqpi4KlKhRr4Kgjyv7goiIujCRupmEjMmCbCjIggqDsrIvSAI1y8wghaGyzCwhKJ8u1jp1nD2jzXhmxhmeHwycec/ea9aCtec9a52z3yOdIendepfpdkl31/hsSRtV6u9slDSr7Zz7Je2S9LWk69riJ0laI2mnpK8kjeeNcTHJdWouSpop6Yu2n32SVk/UuCajbCsFkuYCc21vkTSTchPRTcBS4BfbT0i6D5hle4Wk8yn7wJdRyiq8A5xj+29JjwDTbD9UP8432/a+of5uxGCdnIuD2v0cuNf2++M4nEktK4fA9oDtLfXxQWAH5e7TG4G+elgf5SKlxl+y/aft74BdlIsTYDnweG3rcBJDjESH5yIAks4GTgM+GPsRTB1JDnEESQuARcCnwBzbA1AuWsoFBuVi3dN22l7gdEnd9fdHVYqj9UuaQ8QoHM9cHNTUEmC9s00yIkkO8a9aafIV4J5aiG3YQ4eImVKOZR6wuRZH+xhY2fGOxpTXgbnYbjFl6ylGIMkhAJA0nXIxvmj71Rr+oe4Bt/aCf6zxvZQ6PC3zKFU7fwYO8d9dof3AJUSMQIfmYquti4Au20dUoY1jS3KI1pe/PAvssL2q7akNQE993AO81hZfXOsEnUUpl/xZXba/DlxTj7sW+HKMux9TSKfmYtt5S8iqYVTyaaVA0pWUN+u2Aodr+AHKXu/LwHxKvZ1bWiWcJT1IefP5L8rS/80aPxNYB3QDPwHLbH8/fqOJyayTc7E+txu4wfaJUBNsUklyiIiIhmwrRUREQ5JDREQ0JDlERERDkkNERDQkOUREREOSQ8QYkHRH6zua/+fxCyRtG8s+RYxE10R3IGKqkdRlu3ei+xFxPJIcIoZQi769Rbn5ahGwE7gdOA9YBZwM7AOW2h6Q9B7wEXAFsKGWm/7d9kpJFwO9wAzgW2C57f2SLgXWUkqOfDh+o4s4tmwrRQzvXGCN7QuB34A7gaeBm223/rE/1nZ8t+2rbT85qJ3ngRW1na3AwzX+HHCX7cvHchARo5GVQ8Tw9tjeXB+/QCnjsBDYWEoAMQ0YaDt+/eAGJJ1CSRqbaqgP6B8ivg64vvNDiBidJIeI4Q2uLXMQ2H6UV/p/jKBtDdF+xAkj20oRw5svqZUIlgCfAKe2YpKmS7rgaA3YPgDsl3RVDd0GbLL9K3CgFpoDuLXz3Y8YvawcIoa3A+iR9AzwDeX9hreBp+q2UBewGth+jHZ6gF5JM4DdwLIaXwaslXSothtxwkhV1ogh1E8rvWF74QR3JWJCZFspIiIasnKIiIiGrBwiIqIhySEiIhqSHCIioiHJISIiGpIcIiKi4R8x9hy3dlBmGAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-800:-700].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence annuelle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n", "entre deux années civiles, nous définissons la période de référence\n", "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n", "1er août de l'année $N+1$.\n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er août de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er août.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", "Encore un petit détail: les données commencent an octobre 1984, ce qui\n", "rend la première année incomplète. Nous commençons donc l'analyse en 1985." ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", "\n", "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici les incidences annuelles." ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHgNJREFUeJzt3X+QVeWd5/H3B5uAOmLAgBEQYSLjBswOBqox4242LhPAZEuwRjM9OkplqMIxmElSW5Vo6RaW8sc4lawbytKVxETUiLJsKNmNRFvc1Li7TANGE0HC0BkJIkh3qolgtujY8N0/znPldNt03+57u++P/ryqTt3T33uew3k8Vn/7+XGeo4jAzMysFKMqfQFmZlb7nEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWckaKn0B5faxj30spk+fXunLMDOrKa+88spvI2LiYMvXXTKZPn06O3furPRlmJnVFEm/KaV8Ud1ckr4habekXZLWSxor6R5Jb0t6LW1fyB1/p6RWSXslLcrF50p6PX23RpJSfIykZ1K8RdL0XJllkvalbVkplTUzs6HRbzKRNAX4O2BeRFwOnAU0pa8fiIg5aXsuHT8rfT8bWAw8JOmsdPzDwApgZtoWp/hy4GhEXAo8ANyfzjUBWAXMBxqBVZLGl1ZlMzMrt2IH4BuAsyU1AOcAh/o4dgnwdER0RsSbQCvQKOkiYFxEbItsqeLHgaW5MuvS/kZgQWq1LAKaI6IjIo4CzZxOQGZmViX6TSYR8TbwbeAAcBh4NyJeSF/fLumXkn6QazFMAd7KneJgik1J+z3j3cpERBfwLnBBH+cyM7MqUkw313iylsMMYDJwrqS/Juuy+gQwhyzJfKdQpJfTRB/xwZbJX+MKSTsl7Wxvb++jNmZmNhSK6eb6c+DNiGiPiPeBHwN/FhFHIuJkRJwCvkc2pgFZ6+HiXPmpZN1iB9N+z3i3Mqkr7Xygo49zdRMRayNiXkTMmzhx0DPbzEastmMn+NIj22g7fqLSl2I1qphkcgC4UtI5aRxjAbAnjYEUXAfsSvubgaY0Q2sG2UD79og4DByXdGU6zy3As7kyhZla1wMvpXGV54GFksanFtLCFDOzMlqzdR879new5sV9lb4Uq1H9PmcSES2SNgI/B7qAV4G1wPclzSHrdtoP3JqO3y1pA/BGOn5lRJxMp7sNeAw4G9iSNoBHgScktZK1SJrSuTok3QfsSMfdGxEdpVTYzE677O4tdHad+uDnJ1sO8GTLAcY0jGLv6msqeGVWa1Rv74CfN29e+KFFs+K0HTvB6uf28MLudzjx/inGjh7Fotkf564vfpJJ542t9OXZMJL0SkTMG2x5r81lNoJNGjeW88Y00Nl1ijENo+jsOsV5YxqcSGzA6m45FTMbmN++18lN8y/hxsZpPLX9AO0ehLdBcDdXTtuxE9y+/lUevPEK/2VmZiOKu7nKyDNazMwGx91ceEaL2UC5FW89uWUCvPzNq7l2zmTGjs7+c4wdPYolcybz8reurvCVmVUnt+KtJ7dM8IwWs2K5FW9n4pZJUpjRsukrV3HT/Etof6+z0pdkVnXcirczccskeeTm05MYVi+9vIJXYla93Iq3M3EyMbMB8XMp1hs/Z2JmZn7OxMzMKs/JxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnEzMxKVlQykfQNSbsl7ZK0XtJYSRMkNUvalz7H546/U1KrpL2SFuXicyW9nr5bI0kpPkbSMyneIml6rsyy9G/sk7SsfFU3M7Ny6TeZSJoC/B0wLyIuB84CmoA7gK0RMRPYmn5G0qz0/WxgMfCQpLPS6R4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictMzOrDsV2czUAZ0tqAM4BDgFLgHXp+3XA0rS/BHg6Ijoj4k2gFWiUdBEwLiK2Rba65OM9yhTOtRFYkFoti4DmiOiIiKNAM6cTkJmZVYl+k0lEvA18GzgAHAbejYgXgAsj4nA65jAwKRWZAryVO8XBFJuS9nvGu5WJiC7gXeCCPs5lZmZVpJhurvFkLYcZwGTgXEl/3VeRXmLRR3ywZfLXuELSTkk729vb+7g0MzMbCsV0c/058GZEtEfE+8CPgT8DjqSuK9JnWzr+IHBxrvxUsm6xg2m/Z7xbmdSVdj7Q0ce5uomItRExLyLmTZw4sYgqmZlZORWTTA4AV0o6J41jLAD2AJuBwuyqZcCzaX8z0JRmaM0gG2jfnrrCjku6Mp3nlh5lCue6Hngpjas8DyyUND61kBammJmZVZF+X9sbES2SNgI/B7qAV4G1wB8BGyQtJ0s4N6Tjd0vaALyRjl8ZESfT6W4DHgPOBrakDeBR4AlJrWQtkqZ0rg5J9wE70nH3RkRHSTU2M7Oy82t7zczMr+01M7PKczIxM7OSOZmYmVnJnEzMzErQduwEX3pkG23HT1T6UirKycTMrARrtu5jx/4O1ry4r9KXUlH9Tg02M7MPu+zuLXR2nfrg5ydbDvBkywHGNIxi7+prKnhlleGWiVkR3JVhPb38zau5ds5kxo7Ofo2OHT2KJXMm8/K3rq7wlVWGk4lZEdyVYT1NGjeW88Y00Nl1ijENo+jsOsV5YxqYdN7YSl9aRbiby6wP7sqwvvz2vU5umn8JNzZO46ntB2gfwS1XPwFv1oe2YydY/dweXtj9DifeP8XY0aNYNPvj3PXFT47Yv0CtPvkJeLMh5K4Ms+K4m8usH+7KMOufu7nMzMzdXGZmVnlOJmZmVjInEzMzK5mTiZmZlczJxEYsL5FiVj5OJlYWtfiL2UukmJWPnzOxssj/Yl593acqfTl98hIpZuXn50ysJD1/MRdU8y9mL5Fi9mF+zsQqqhaX4fYSKWbl128ykXSZpNdy2zFJX5d0j6S3c/Ev5MrcKalV0l5Ji3LxuZJeT9+tkaQUHyPpmRRvkTQ9V2aZpH1pW1be6lupavUXc2GJlE1fuYqb5l9C+3udlb4ks5rW75hJROwF5gBIOgt4G9gEfBl4ICK+nT9e0iygCZgNTAZelPQnEXESeBhYAfwT8BywGNgCLAeORsSlkpqA+4G/lDQBWAXMAwJ4RdLmiDhacs2tbGpx7apHbj7dml+99PIKXsnQaTt2gtvXv8qDN15R9cndat9AB+AXAL+OiN+kRkVvlgBPR0Qn8KakVqBR0n5gXERsA5D0OLCULJksAe5J5TcCD6ZWyyKgOSI6UplmsgS0foDXbUNoJPxirkW1NCnCat9Ak0kT3X+R3y7pFmAn8B9Ti2EKWcuj4GCKvZ/2e8ZJn28BRESXpHeBC/LxXsp8QNIKshYP06ZNG2CVzOqLZ6tZJRQ9AC/pI8C1wH9LoYeBT5B1gR0GvlM4tJfi0Ud8sGVOByLWRsS8iJg3ceLEM9bBbCSoxUkRVvsGMpvrGuDnEXEEICKORMTJiDgFfA9oTMcdBC7OlZsKHErxqb3Eu5WR1ACcD3T0cS4zO4NanRRhtW0gyeSvyHVxSboo9911wK60vxloSjO0ZgAzge0RcRg4LunKNB5yC/Bsrkxhptb1wEuRPQDzPLBQ0nhJ44GFKWZmffBsNRtuRY2ZSDoH+Dxway78D5LmkHU77S98FxG7JW0A3gC6gJVpJhfAbcBjwNlkA+9bUvxR4Ik0WN9BNjZDRHRIug/YkY67tzAYb2Zn5kkRNtz8BLyZmfkJeDMzqzwnEzMzK5mTiZmZlczJxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnErIa0HTvBlx7ZRlsNvBrZRhYnE7Makn8Vr1k1Gehre82sAvwqXqt2bpmY1QC/iteqnZOJWQ3wq3it2rmby6xGFF7Fe2PjNJ7afoB2D8JbFfGbFs3MzG9aNDOzynMyMTOzkjmZmJlZyfpNJpIuk/Rabjsm6euSJkhqlrQvfY7PlblTUqukvZIW5eJzJb2evlsjSSk+RtIzKd4iaXquzLL0b+yTtKy81Tczs3LoN5lExN6ImBMRc4C5wP8DNgF3AFsjYiawNf2MpFlAEzAbWAw8JOmsdLqHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqsNAu7kWAL+OiN8AS4B1Kb4OWJr2lwBPR0RnRLwJtAKNki4CxkXEtsimkD3eo0zhXBuBBanVsghojoiOiDgKNHM6AZnZCOZ1yqrLQJNJE7A+7V8YEYcB0uekFJ8CvJUrczDFpqT9nvFuZSKiC3gXuKCPc5nZCOd1yqpL0Q8tSvoIcC1wZ3+H9hKLPuKDLZO/thVk3WdMmzatn8szs1rmdcqq00BaJtcAP4+II+nnI6nrivTZluIHgYtz5aYCh1J8ai/xbmUkNQDnAx19nKubiFgbEfMiYt7EiRMHUCUzqzVep6w6DSSZ/BWnu7gANgOF2VXLgGdz8aY0Q2sG2UD79tQVdlzSlWk85JYeZQrnuh54KY2rPA8slDQ+DbwvTDEzG6G8Tll1KqqbS9I5wOeBW3Phvwc2SFoOHABuAIiI3ZI2AG8AXcDKiDiZytwGPAacDWxJG8CjwBOSWslaJE3pXB2S7gN2pOPujYiOQdTTzOqI1ymrPl6by8zMvDaXmVkxPJV4aDmZmNmI4KnEQ8vvMxlB2o6d4Pb1r/LgjVd4sNJGDE8lHh5umYwg/svMRiJPJR4ebpmMAP7LzEYyTyUeHm6ZjACD+cvMg5VWTwpTiTd95Spumn8J7e91VvqS6o5bJiPAYP4yy3eJrb7uU8N4tWbl98jNp2e8rl56eQWvpH45mYwQxT7k5S4xMxsMP7Ro3bQdO8Hq5/bwwu53OPH+KcaOHsWi2R/nri9+0n3MZnXMDy1aWXmw0swGw91c9iFe98jMBsrdXGZm5m4uMzOrPCcTMzMrmZOJmZmVzMlkGPhpcjOrd04mw8ALLJpZvfPU4CHkp8nNbKRwy2QIeelrMxspnEyGkJ8mN7ORwslkiA106WsP1ptZLSoqmUj6qKSNkn4laY+kz0i6R9Lbkl5L2xdyx98pqVXSXkmLcvG5kl5P362RpBQfI+mZFG+RND1XZpmkfWlbVr6qD49Hbp7H6qWXM2vyOFYvvbzbUti98WC9mdWiopZTkbQOeDkivi/pI8A5wNeB9yLi2z2OnQWsBxqBycCLwJ9ExElJ24GvAf8EPAesiYgtkr4C/OuI+FtJTcB1EfGXkiYAO4F5QACvAHMj4uiZrrVWl1PpOVhf4MF6MxsOQ76ciqRxwGeBRwEi4g8R8bs+iiwBno6Izoh4E2gFGiVdBIyLiG2RZbDHgaW5MuvS/kZgQWq1LAKaI6IjJZBmYPGAa1kDPFhvZrWsmG6uPwbagR9KelXS9yWdm767XdIvJf1A0vgUmwK8lSt/MMWmpP2e8W5lIqILeBe4oI9z1R0P1ptZLSsmmTQAnwYejogrgN8DdwAPA58A5gCHge+k49XLOaKP+GDLfEDSCkk7Je1sb2/voyrVze+pNrNaVcxDiweBgxHRkn7eCNwREUcKB0j6HvA/c8dfnCs/FTiU4lN7iefLHJTUAJwPdKT453qU+VnPC4yItcBayMZMiqhTydqOneD29a/y4I1XlK314PdUm1mt6rdlEhHvAG9JuiyFFgBvpDGQguuAXWl/M9CUZmjNAGYC2yPiMHBc0pVpPOQW4NlcmcJMreuBl9K4yvPAQknjUzfawhSrOM+6MiuOp7uPDMUup/JV4EdpJte/AF8G1kiaQ9bttB+4FSAidkvaALwBdAErI+JkOs9twGPA2cCWtEE2uP+EpFayFklTOleHpPuAHem4eyOiY3BVLQ8vkWI2MPk/vFZf96lKX44NEb9pcYDajp1g9XN7eGH3O5x4/xRjR49i0eyPc9cXP+nBcrMcT3evLX7T4jDzrCuz4ni6+8jiVYMHoTDr6sbGaTy1/QDt7gs2+xD/4TWyOJkMgmddWbkMxazAauI/vEYOj5mYVdDdm17nR9sPcFPjNA9OW0WVOmbilolZBXhWoNUbD8CblVkxz1V4cNrqjZOJWZkV80CrB6et3riby6xMBtp15cHpD6v3CQn1zAPwZmXiB1pL5wkJleMBeLMq4a6rwfOEhNrnMROzMvJrBAbHExJqn1smVtVqrQ/dD7QOjlt1tc8tExt2A1mS3Ev9jxxu1dU2D8DbsCtmkNUrzpoNr1IH4J1MbNgMJEF4ZpTZ8PIS9FYzBjLI6j50s9riAXgbNgNNEH6oz6x2OJnYsBpIgvDMKLPa4TETMzPzmImZmVWek4mZWQ8DeRbKMk4mZmY9+GHZgSsqmUj6qKSNkn4laY+kz0iaIKlZ0r70OT53/J2SWiXtlbQoF58r6fX03RpJSvExkp5J8RZJ03NllqV/Y5+kZeWruplZd5fdvYXpd/yEJ1sOEJEtODn9jp9w2d1bKn1pVa/Ylsl3gZ9GxL8C/hTYA9wBbI2ImcDW9DOSZgFNwGxgMfCQpLPSeR4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictM7Ny8oKTg9dvMpE0Dvgs8ChARPwhIn4HLAHWpcPWAUvT/hLg6YjojIg3gVagUdJFwLiI2BbZFLLHe5QpnGsjsCC1WhYBzRHRERFHgWZOJyAzs7Lyw7KDV0zL5I+BduCHkl6V9H1J5wIXRsRhgPQ5KR0/BXgrV/5gik1J+z3j3cpERBfwLnBBH+fqRtIKSTsl7Wxvby+iSmZmvfOCk4NTzEOLDcCnga9GRIuk75K6tM5AvcSij/hgy5wORKwF1kL2nEkf12Zm1ic/LDs4xbRMDgIHI6Il/byRLLkcSV1XpM+23PEX58pPBQ6l+NRe4t3KSGoAzgc6+jiXmZlVkX6TSUS8A7wl6bIUWgC8AWwGCrOrlgHPpv3NQFOaoTWDbKB9e+oKOy7pyjQeckuPMoVzXQ+8lMZVngcWShqfBt4XppiZmVWRYtfm+irwI0kfAf4F+DJZItogaTlwALgBICJ2S9pAlnC6gJURcTKd5zbgMeBsYEvaIBvcf0JSK1mLpCmdq0PSfcCOdNy9EdExyLqamdkQ8dpcZmbmtbnMzKzynEzMzOpApdcTczIxM6sDlV5PzC/HMjOrYZfdvYXOrlMf/PxkywGebDnAmIZR7F19zbBdh1smZmY1rFrWE3MyMTOrYdWynpi7uczMalxhPbEbG6fx1PYDtFdgEN7PmZiZmZ8zMTOzynMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMieTGlfp9XjMzMDJpOZVej0eMzPwQ4s1q1rW4zEzA7dMala1rMdjZgZOJjWrWtbjMTMDd3PVtGpYj8fMDLw2l5mZ4bW5zMysChSVTCTtl/S6pNck7UyxeyS9nWKvSfpC7vg7JbVK2itpUS4+N52nVdIaSUrxMZKeSfEWSdNzZZZJ2pe2ZeWquJnZcKvn58IG0jK5OiLm9GgGPZBicyLiOQBJs4AmYDawGHhI0lnp+IeBFcDMtC1O8eXA0Yi4FHgAuD+dawKwCpgPNAKrJI0fRD3NzCqunp8LG4oB+CXA0xHRCbwpqRVolLQfGBcR2wAkPQ4sBbakMvek8huBB1OrZRHQHBEdqUwzWQJaPwTXbWY2JEbCc2HFtkwCeEHSK5JW5OK3S/qlpB/kWgxTgLdyxxxMsSlpv2e8W5mI6ALeBS7o41xmZjVjJDwXVmwyuSoiPg1cA6yU9FmyLqtPAHOAw8B30rHqpXz0ER9smQ9IWiFpp6Sd7e3tfVbEzGy4jYTnwopKJhFxKH22AZuAxog4EhEnI+IU8D2yMQ3IWg8X54pPBQ6l+NRe4t3KSGoAzgc6+jhXz+tbGxHzImLexIkTi6mSmdmwKjwXtukrV3HT/Etof6+z3zK1NGDfbzKRdK6k8wr7wEJgl6SLcoddB+xK+5uBpjRDawbZQPv2iDgMHJd0ZRoPuQV4NlemMFPreuClyB6AeR5YKGl86kZbmGJmZjXlkZvnsXrp5cyaPI7VSy/nkZv7f6SjlgbsixmAvxDYlGbxNgBPRcRPJT0haQ5Zt9N+4FaAiNgtaQPwBtAFrIyIk+lctwGPAWeTDbxvSfFHgSfSYH0H2WwwIqJD0n3AjnTcvYXBeDOzelWLA/Z+At7MrMq0HTvB6uf28MLudzjx/inGjh7Fotkf564vfnLIxln8BLyZWZ2pxQF7L/RoZlaFam0hV3dzmZmZu7nMzKzynEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWcmcTKxu1NK7H8zqjZOJ1Y1aeveDWb3xQo9W82rx3Q9m9cYtE6t5L3/zaq6dM5mxo7P/nceOHsWSOZN5+VtXV/jKzEYOJxOrebX47gezeuNuLqsLtfbuB7N64/eZmJmZ32diZmaV52RiZmYlKyqZSNov6XVJr0namWITJDVL2pc+x+eOv1NSq6S9khbl4nPTeVolrZGkFB8j6ZkUb5E0PVdmWfo39klaVq6Km5lZ+QykZXJ1RMzJ9andAWyNiJnA1vQzkmYBTcBsYDHwkKSzUpmHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqkMp3VxLgHVpfx2wNBd/OiI6I+JNoBVolHQRMC4itkU26v94jzKFc20EFqRWyyKgOSI6IuIo0MzpBGRmZlWi2GQSwAuSXpG0IsUujIjDAOlzUopPAd7KlT2YYlPSfs94tzIR0QW8C1zQx7nMzKyKFPucyVURcUjSJKBZ0q/6OFa9xKKP+GDLnP4HswRXSHLvSdrbx/XVgo8Bv630RQyxeq9jvdcP6r+OI61+l5RysqKSSUQcSp9tkjaRjV8ckXRRRBxOXVht6fCDwMW54lOBQyk+tZd4vsxBSQ3A+UBHin+uR5mf9XJ9a4G1xdSlFkjaWcp871pQ73Ws9/pB/dfR9RuYfru5JJ0r6bzCPrAQ2AVsBgqzq5YBz6b9zUBTmqE1g2ygfXvqCjsu6co0HnJLjzKFc10PvJTGVZ4HFkoanwbeF6aYmZlVkWJaJhcCm9Is3gbgqYj4qaQdwAZJy4EDwA0AEbFb0gbgDaALWBkRJ9O5bgMeA84GtqQN4FHgCUmtZC2SpnSuDkn3ATvScfdGREcJ9TUzsyFQd8up1ANJK1LXXd2q9zrWe/2g/uvo+g3wfE4mZmZWKi+nYmZmJXMyGSaSfiCpTdKuXOxPJW1LS8z8D0njUvwjkn6Y4r+Q9LlcmZ+lZWpeS9ukXv65YSfpYkn/S9IeSbslfS3Fy7bsTiWVuX51cQ8lXZCOf0/Sgz3OVfP3sJ/6Vd09HET9Pq/s2cHX0+e/z51r4PcvIrwNwwZ8Fvg0sCsX2wH8u7T/N8B9aX8l8MO0Pwl4BRiVfv4ZMK/S9emlfhcBn0775wH/DMwC/gG4I8XvAO5P+7OAXwBjgBnAr4Gz0nfbgc+QPWe0BbimzupXL/fwXODfAH8LPNjjXPVwD/uqX9Xdw0HU7wpgctq/HHi7lPvnlskwiYh/JJuplncZ8I9pvxn4i7Q/i2y9MyKiDfgdUNXz3SPicET8PO0fB/aQrVZQzmV3KqZc9Rveqx6YgdYxIn4fEf8b6PYmsnq5h2eqX7UaRP1ejfQMIbAbGKvskY5B3T8nk8raBVyb9m/g9MOevwCWSGpQ9qzOXLo/CPrD1LT+T9XQfdCTslWfrwBaKO+yO1WhxPoV1MM9PJN6uYf9qdp7OIj6/QXwakR0Msj752RSWX8DrJT0Clmz9A8p/gOyG7gT+C/A/yV7Zgfgpoj4FPBv03bzsF5xPyT9EfDfga9HxLG+Du0lVvQSOpVShvpB/dzDM56il1gt3sO+VO09HGj9JM0mW6n91kKol8P6vX9OJhUUEb+KiIURMRdYT9avTkR0RcQ3IlvyfwnwUWBf+u7t9HkceIoq6jqRNJrsf+IfRcSPU/hIajYXuj9KWXanospUv3q6h2dSL/fwjKr1Hg60fpKmApuAWyLi1yk8qPvnZFJBhRkgkkYBdwP/Nf18jrKla5D0eaArIt5I3V4fS/HRwH8g6yqruNTMfxTYExH/OfdVOZfdqZhy1a/O7mGv6ugenuk8VXkPB1o/SR8FfgLcGRH/p3DwoO9fpWYejLSNrOVxGHifLPMvB75GNuPin4G/5/RDpNOBvWQDaC8Cl6T4uWQzu35JNmD2XdIMoUpvZLNeIl3ba2n7AtmrBLaStay2AhNyZe4ia43tJTdbhGyywa703YOF/y71UL86vIf7ySaWvJf+v55VZ/fwQ/Wr1ns40PqR/QH7+9yxrwGTBnv//AS8mZmVzN1cZmZWMicTMzMrmZOJmZmVzMnEzMxK5mRiZmYlczIxM7OSOZmYmVnJnEzMzKxk/x+qftJYVEr3+gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2002 516689\n", "2018 542312\n", "2017 551041\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n", " française, sont assez rares: il y en eu trois au cours des 35 dernières années." ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFGtJREFUeJzt3XuQJWV9h/Hnxy4oMLggDKgLukbIRGFVZL2gVTqDxhKXaGm8IZpotNYqFTFlyqCoaLytF7zESyobJZB4nShUkDUaDI6oUZQV4oI4amBVlighKjCI4Oovf3QvGadmdmZO95lzOu/zqdraPrfu73mn53v69Ok+E5mJJOn/v70GHUCStDIsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhVq/kwg488MA88sgjV3KRrbn11lvZf//9Bx1j2bqaG8w+KF3N3tXcsHj2bdu23ZiZo02Xs6KFf9hhh3HZZZet5CJbMzU1xfj4+KBjLFtXc4PZB6Wr2buaGxbPHhE/bGM57tKRpEJY+JJUCAtfkgph4UtSISx8SSpEo8KPiLGIuGLWv5sj4uVthZMktafRYZmZOQ08GCAiVgE7gfNbyCVJalmbu3QeC/xnZrZyvKgkqV3R1t+0jYizgW9l5vvnXL8J2AQwOjp63OTkZCvLW2kzMzOMjIwMOsay9Zp7+86b+pBmcevXrrlzuqtjDmYfhK7mhsWzT0xMbMvMDU2X00rhR8Q+wPXA0Zn504XuNzY2ltPT042XNwhdPYuv19zrTt/afpgl2LF5453TXR1zMPsgdDU3LOlM21YKv61dOidSbd0vWPaSpMFqq/BPBj7e0rwkSX3QuPAjYj/gD4HzmseRJPVL42/LzMxfAge3kEWS1EeeaStJhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUiMaFHxEHRsSnIuK7EXF1RBzfRjBJUrtWtzCP9wKfy8ynRcQ+wH4tzFOS1LJGhR8RdwMeDTwPIDPvAO5oHkuS1LbIzN4fHPFgYAvwHeBBwDbgtMy8ddZ9NgGbAEZHR4+bnJxsFHhQZmZmGBkZGXSMZes19/adN/UhzeLWr11z53RXxxzMPghdzQ2LZ5+YmNiWmRuaLqdp4W8Avg48KjMvjYj3Ajdn5mvnu//Y2FhOT0/3vLxBmpqaYnx8fNAxlq3X3OtO39p+mCXYsXnjndNdHXMw+yB0NTcsnj0iWin8ph/aXgdcl5mX1pc/BTyk4TwlSX3QqPAz8yfAjyNirL7qsVS7dyRJQ6aNo3ROBT5aH6FzDfD8FuYpSWpZ48LPzCuAxvuWJEn95Zm2klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqROM/Yh4RO4BbgN8AuzLTP2guSUOoceHXJjLzxpbmJUnqA3fpSFIhIjObzSDiWuDnQAJ/m5lb5ty+CdgEMDo6etzk5GSj5Q3KzMwMIyMjg46xbL3m3r7zpj6kWdz6tWvunO7qmIPZB6GruWHx7BMTE9va2F3eRuHfKzOvj4hDgYuAUzPzkvnuOzY2ltPT042WNyhTU1OMj48POsay9Zp73elb2w+zBDs2b7xzuqtjDmYfhK7mhsWzR0Qrhd94l05mXl//fwNwPvCwpvOUJLWvUeFHxP4RccDuaeDxwJVtBJMktavpUTqHAedHxO55fSwzP9c4lSSpdY0KPzOvAR7UUhZJUh95WKYkFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSIRoXfkSsiojLI+LCNgJJkvqjjS3804CrW5iPJKmPGhV+RBwObAQ+1E4cSVK/RGb2/uCITwFvBQ4A/iIzT5rnPpuATQCjo6PHTU5O9ry8QZqZmWFkZGTQMZat19zbd97UhzSLW792zZ3TXR1zMPsgdDU3LJ59YmJiW2ZuaLqc1b0+MCJOAm7IzG0RMb7Q/TJzC7AFYGxsLMfHF7zrUJuamqKL2XvN/bzTt7YfZgl2nDJ+53RXxxzMPghdzQ0rl73JLp1HAU+KiB3AJ4ATIuIjraSSJLWu58LPzFdl5uGZuQ54FnBxZj6ntWSSpFZ5HL4kFaLnffizZeYUMNXGvCRJ/eEWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCtGo8CPirhHxjYj4j4i4KiLe0FYwSVK7Vjd8/O3ACZk5ExF7A1+JiH/JzK+3kE2S1KJGhZ+ZCczUF/eu/2XTUJKk9jXehx8RqyLiCuAG4KLMvLR5LElS26LaSG9hRhEHAucDp2bmlbOu3wRsAhgdHT1ucnKyleWttJmZGUZGRgYdY9l6zb195019SLM8h+0LP71t0Cl6s5zs69eu6W+YPZjv57wS496P57yUdX2Q6/WenvNi2ScmJrZl5oamGVorfICIOBO4NTPfOd/tY2NjOT093dryVtLU1BTj4+ODjrFsveZed/rW9sMs0yvW7+Ks7U0/ZhqM5WTfsXljn9MsbL6f80qMez+e81LW9UGu13t6zotlj4hWCr/pUTqj9ZY9EbEv8Djgu01DSZLa1/Rl/J7AuRGxiurFYzIzL2weS5LUtqZH6XwbOLalLJKkPvJMW0kqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCNCr8iDgiIr4YEVdHxFURcVpbwSRJ7Vrd8PG7gFdk5rci4gBgW0RclJnfaSGbJKlFjbbwM/O/MvNb9fQtwNXA2jaCSZLaFZnZzowi1gGXAMdk5s2zrt8EbAIYHR09bnJysqf5b995U/OQDRy2L/z0toFG6ElXc0M52devXdPfMHsw3+9VV8d92HPv6ec8MzPDyMjIgrdPTExsy8wNTTO0UvgRMQJ8CXhzZp630P3GxsZyenq6p2WsO31rj+na8Yr1uzhre9M9YCuvq7mhnOw7Nm/sc5qFzfd71dVxH/bce/o5T01NMT4+vuDtEdFK4Tc+Sici9gY+DXx0T2UvSRqspkfpBPBh4OrMfFc7kSRJ/dB0C/9RwHOBEyLiivrfE1vIJUlqWaMdXpn5FSBayiJJ6iPPtJWkQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqRKPCj4izI+KGiLiyrUCSpP5ouoV/DvCEFnJIkvqsUeFn5iXAz1rKIknqo8jMZjOIWAdcmJnHLHD7JmATwOjo6HGTk5M9LWf7zpt6TNiOw/aFn9420Ag96WpuMPugdDX7sOdev3bNgrfNzMwwMjKy4O0TExPbMnND0wx9L/zZxsbGcnp6uqflrDt9a0+Pa8sr1u/irO2rB5qhF13NDWYflK5mH/bcOzZvXPC2qakpxsfHF7w9IlopfI/SkaRCWPiSVIimh2V+HPgaMBYR10XEC9qJJUlqW6MdXpl5cltBJEn95S4dSSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVonHhR8QTImI6In4QEae3EUqS1L5GhR8Rq4APACcCDwBOjogHtBFMktSuplv4DwN+kJnXZOYdwCeAJzePJUlqW2Rm7w+OeBrwhMx8YX35ucDDM/Ols+6zCdhUXzwGuLL3uAN1CHDjoEP0oKu5weyD0tXsXc0Ni2e/T2aONl3I6oaPj3mu+51XkMzcAmwBiIjLMnNDw2UORFezdzU3mH1Qupq9q7lh5bI33aVzHXDErMuHA9c3nKckqQ+aFv43gaMi4r4RsQ/wLOCC5rEkSW1rtEsnM3dFxEuBzwOrgLMz86o9PGRLk+UNWFezdzU3mH1Qupq9q7lhhbI3+tBWktQdnmkrSYWw8CWpEBa+JBVi6As/Ik6IiPsOOsdydTU3mH1Qupq9q7mhvOxD+6Ft/Z08nwB+AfwWODMzvzTYVIvram4w+6B0NXtXc0O52YdmCz8iDo+Iu8266pnApzPz0VRP7uSIOH4w6RbW1dxg9kHpavau5gaz7zbwwo+I+0fEZ4GvAH8VEbu/fO1XwH719CTV90w8IiLm+zqHFdfV3GD2Qelq9q7mBrPPNZDCj4j9Z118MHBdZq4DLgbeWV//M+D2iDggM38GfA84DFi3glF/R1dzg9kHpavZu5obzL4nK1b4EXFQRJwTEd8ENkfEaP2K9EDgqxERmXkB8IuI2Ej1JA4A1tez+D7VN8rdsVKZu5zb7GYvJbfZl559JbfwHw3sAp5I9S2brwbuVme4R/7fp8fnAs8GvgHcQvXHVcjMrwEnADevYGbobm4wu9mXp6u5wexLy56Zrf6j+k6dFwFfovoe/EPq6yeBl9XT9wU217c/lGof1ar6thHgv+v5rAWuBl4K/D3wQWC/tjN3ObfZzV5KbrM3z96PLfyTgCcBbwCOB95eX38R8Mh6+sfAl4ETM/ObVK9qEwCZOQNcCjw0M3cCz6XaP/UT4DWZ+cs2w876oOOPupR7jk6NOTjug8jumLuu9/RtmfU+pYyIh1K9xfgysDUzbwd+H7gmMy+OiGuBd0TE44FtwFMi4pDMvDEivg/cGhH3Bt4HPCciDqX6Tv3/oXrbQmZeBlzWS8495N8AvJDqbdE7gBuA3xv23HX2To55nd1xd11fSuZO90v9HIZy3Je9hR8Rd6t/GOPA2VSHCD0OeGt9l98C34uIfTPzWqq3HQ+sn/j1VMeQAvyG6q3JXsCnqb4e9BTgOGBLZv52udkWyT0SEXeNiHPr5V0LvDczb4iIvaheSYcud5394Pr/RwLn0JExrzMfFNVxxFuA8+jWuB8aEQfXv7zn0pFxj4hDIuIhEfF+4Hy6Neb71P3yGKpdFZ0Y8zr73hGxb0Scw7B2zBL3Pe0H/Cnwb1QH/AP8OfCSevog4NvAsXXozcC6+raT6sCH1NPbgTVUHzJ8Fthn1nL2arKPbA+5LwY+WV/3NuBFs+6zuv7/pcCbhiT37jOgn061D28KGANe3oExn539q8AXqFbqoR/3ep77A8+jept9E7CxI+O+O/cXqLYCn9qhMd8beDHwGeBvgCOB04Z9zOdkv5Bqa/zoOt9QjvuiW/gRsTdwFfA04B2Z+cf1Tcfuvk9m/hz4Z+BlVL8ohwL3r2++BHgMcEdmXgh8GPgU8AGqraZfz5pPa6+6c3K/PTN3v3puBx4QEW+tX4n/LCLuDnwOuMegc9fzy4hYAzwDeE9mjmfmNNUr/O77DN2Yz5P93Zn5uMz8Nh0Y94g4kmr3wWOB1wA7gR9RfZC2ql7m0I37nNxnUO3T/WGdZ/0wj3ntJVQl9x6qv4n91Pryb+plDt2Yz5P93VTryFOo1pmxiNg8dOO+xFex84BT5lz3TODSWZfvBVxfT7+E6pTfg4B9qV657z3rvoe0/Uq7jNz3rrN9EjiZaiX73DDlrpf1YuCN9fTureanDvuYz81eX94XuGedb3JYx53qF/Yusy6fTbXB8ORhHvd5cn+Iamv/0I6s658B/qSefgFwat0v3xjWMV8g+/OBV9Ud88lhHPelPqmTqA72P4tq98LrgPtQnfF16Kz7XQQ8vJ5+E/CvVG8v/3KlfgB7yP1F4PVUH3ysnXWfvevndEJ9+c2Dzl3neEad6xTgW1Sv+E+m2s1wyKz7DdWYz5N9G/ARqiMUZq/YQznus/IdTLUP+XFU+1J/RnVM9NCO+5zcj68vd2FdfzHV7uJ/ojpK5UNUu0Z+DowO85jPyf4jqo2E+wNHDOO4L+eJfZ7qhIAjqF65TgO+RlX+Ady9/kHde9aTPAa466B+GPPk/ijV6clHzbr9HlQfhD5wyHIfVY/vX1NtDTwbeBfVcbivrEtoWMd8bvanU23Znzjs4z7neVwOPLWe/gjwtnp6KMd9Tu4n1dN7zbp+aMec6oiWs6n2Z78eOBOYrn93h3Zdnyf7GcDfAY8YxnFfzlE6T8nMt2Tmj4G3UB0e9T6qtyUXUL3KrcrMHwFk5q8z88rM/NUyltEPs3O/lWrwD4yIB0XEGVS7fX6Z1X7mYcr9I6pTpVdntQ/zwvq6C6k+jB7mMZ+bfSvwHeDYiPiDIR936iMqoPrA/Mh6+s3VTfEZhnTcF8i9V33EzqsZ4jEHHgBMZeaNVO9QVgEfZ/j7BX43+7nAbcD9IuLoYVvXl3wcfv7uQf2/oCr812bmxyLiOcBVmXl52wGbmpP7FqoTFa6meiXem+pIgGHMfXtEbKZ66wrVVs7xwObMvHzIx3xu9n2o3ua+keqoqX0Y0nGH6gOyiNj9bYQ/qK+7GnhlRJwCfGcYs8/JvaO+bldEPItq/RnKMY+IVcB1VF8x8A/ArVRnmb44M68d5nV9nuy/onqH+3aq3T13YYjGfcl/ACUi7gI8gersrqOpDp/6YGbu6l+85ubJvSUz3z3YVEsXEW+mOmHjWKr9fmfWW81Db072LwCvzP6ehdmqiJgGXpeZn9x9MtCgMy3F7NyDzrJUEXE/qkMU76BaZ84H3pTV2aVDbZ7sFwBnZOaKfxHbYpb1F68i4kVUJz7845C8lVqSrubeLSLGgB+afWXMOtPzwVSH9u7qQtl3Nfdu9ZmlRwH/npm3DTrPcnQl+9D+iUNJUrsG/hevJEkrw8KXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhfhfHCg3qEW8+c0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }