From 754739b05009f73d8ba40464314ff20c050a981c Mon Sep 17 00:00:00 2001 From: a65ea5cd35284c1793db992e30f7a391 Date: Thu, 23 Sep 2021 07:19:21 +0000 Subject: [PATCH] no commit message --- module3/exo1/analyse-syndrome-grippal.ipynb | 2238 ++++++++++++++++++- 1 file changed, 2201 insertions(+), 37 deletions(-) diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5..b859457 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,15 +28,34 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pour nous protéger contre une éventuelle disparition ou modification du serveur du Réseau Sentinelles, nous faisons une copie locale de ce jeux de données que nous préservons avec notre analyse. Il est inutile et même risquée de télécharger les données à chaque exécution, car dans le cas d'une panne nous pourrions remplacer nos données par un fichier défectueux. Pour cette raison, nous téléchargeons les données seulement si la copie locale n'existe pas." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_file = \"syndrome-grippal.csv\"\n", + "\n", + "import os\n", + "import urllib.request\n", + "if not os.path.exists(data_file):\n", + " urllib.request.urlretrieve(data_url, data_file)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -61,9 +80,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020213731702712666.021388.02619.033.0FRFrance
12021363102247428.013020.01511.019.0FRFrance
22021353125189208.015828.01914.024.0FRFrance
32021343130159485.016545.02015.025.0FRFrance
42021333103927042.013742.01611.021.0FRFrance
520213231558611009.020163.02417.031.0FRFrance
620213131885513664.024046.02921.037.0FRFrance
72021303139919695.018287.02114.028.0FRFrance
82021293136269618.017634.02115.027.0FRFrance
9202128386365430.011842.0138.018.0FRFrance
102021273106936838.014548.01610.022.0FRFrance
11202126370864109.010063.0116.016.0FRFrance
12202125379425540.010344.0128.016.0FRFrance
13202124348553011.06699.074.010.0FRFrance
14202123367104455.08965.0107.013.0FRFrance
15202122378795495.010263.0128.016.0FRFrance
16202121378275403.010251.0128.016.0FRFrance
172021203102787540.013016.01612.020.0FRFrance
18202119395396860.012218.01410.018.0FRFrance
192021183121359165.015105.01814.022.0FRFrance
202021173120588891.015225.01813.023.0FRFrance
2120211631650512735.020275.02519.031.0FRFrance
2220211531930615398.023214.02923.035.0FRFrance
2320211432107317099.025047.03226.038.0FRFrance
2420211332641322094.030732.04033.047.0FRFrance
2520211233065825919.035397.04639.053.0FRFrance
2620211132498820718.029258.03832.044.0FRFrance
2720211031953915951.023127.03025.035.0FRFrance
2820210931757213926.021218.02721.033.0FRFrance
2920210832088216907.024857.03226.038.0FRFrance
.................................
189519852132609619621.032571.04735.059.0FRFrance
189619852032789620885.034907.05138.064.0FRFrance
189719851934315432821.053487.07859.097.0FRFrance
189819851834055529935.051175.07455.093.0FRFrance
189919851733405324366.043740.06244.080.0FRFrance
190019851635036236451.064273.09166.0116.0FRFrance
190119851536388145538.082224.011683.0149.0FRFrance
19021985143134545114400.0154690.0244207.0281.0FRFrance
19031985133197206176080.0218332.0357319.0395.0FRFrance
19041985123245240223304.0267176.0445405.0485.0FRFrance
19051985113276205252399.0300011.0501458.0544.0FRFrance
19061985103353231326279.0380183.0640591.0689.0FRFrance
19071985093369895341109.0398681.0670618.0722.0FRFrance
19081985083389886359529.0420243.0707652.0762.0FRFrance
19091985073471852432599.0511105.0855784.0926.0FRFrance
19101985063565825518011.0613639.01026939.01113.0FRFrance
19111985053637302592795.0681809.011551074.01236.0FRFrance
19121985043424937390794.0459080.0770708.0832.0FRFrance
19131985033213901174689.0253113.0388317.0459.0FRFrance
191419850239758680949.0114223.0177147.0207.0FRFrance
191519850138548965918.0105060.0155120.0190.0FRFrance
191619845238483060602.0109058.0154110.0198.0FRFrance
1917198451310172680242.0123210.0185146.0224.0FRFrance
19181984503123680101401.0145959.0225184.0266.0FRFrance
1919198449310107381684.0120462.0184149.0219.0FRFrance
192019844837862060634.096606.0143110.0176.0FRFrance
192119844737202954274.089784.013199.0163.0FRFrance
192219844638733067686.0106974.0159123.0195.0FRFrance
19231984453135223101414.0169032.0246184.0308.0FRFrance
192419844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1925 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202137 3 17027 12666.0 21388.0 26 19.0 \n", + "1 202136 3 10224 7428.0 13020.0 15 11.0 \n", + "2 202135 3 12518 9208.0 15828.0 19 14.0 \n", + "3 202134 3 13015 9485.0 16545.0 20 15.0 \n", + "4 202133 3 10392 7042.0 13742.0 16 11.0 \n", + "5 202132 3 15586 11009.0 20163.0 24 17.0 \n", + "6 202131 3 18855 13664.0 24046.0 29 21.0 \n", + "7 202130 3 13991 9695.0 18287.0 21 14.0 \n", + "8 202129 3 13626 9618.0 17634.0 21 15.0 \n", + "9 202128 3 8636 5430.0 11842.0 13 8.0 \n", + "10 202127 3 10693 6838.0 14548.0 16 10.0 \n", + "11 202126 3 7086 4109.0 10063.0 11 6.0 \n", + "12 202125 3 7942 5540.0 10344.0 12 8.0 \n", + "13 202124 3 4855 3011.0 6699.0 7 4.0 \n", + "14 202123 3 6710 4455.0 8965.0 10 7.0 \n", + "15 202122 3 7879 5495.0 10263.0 12 8.0 \n", + "16 202121 3 7827 5403.0 10251.0 12 8.0 \n", + "17 202120 3 10278 7540.0 13016.0 16 12.0 \n", + "18 202119 3 9539 6860.0 12218.0 14 10.0 \n", + "19 202118 3 12135 9165.0 15105.0 18 14.0 \n", + "20 202117 3 12058 8891.0 15225.0 18 13.0 \n", + "21 202116 3 16505 12735.0 20275.0 25 19.0 \n", + "22 202115 3 19306 15398.0 23214.0 29 23.0 \n", + "23 202114 3 21073 17099.0 25047.0 32 26.0 \n", + "24 202113 3 26413 22094.0 30732.0 40 33.0 \n", + "25 202112 3 30658 25919.0 35397.0 46 39.0 \n", + "26 202111 3 24988 20718.0 29258.0 38 32.0 \n", + "27 202110 3 19539 15951.0 23127.0 30 25.0 \n", + "28 202109 3 17572 13926.0 21218.0 27 21.0 \n", + "29 202108 3 20882 16907.0 24857.0 32 26.0 \n", + "... ... ... ... ... ... ... ... \n", + "1895 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1896 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1897 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1898 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1899 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1900 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1901 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1902 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1903 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1904 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1905 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1906 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1907 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1908 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1909 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1910 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1911 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1912 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1913 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1914 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1915 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1916 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1917 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1918 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1919 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1920 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1921 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1922 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1923 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1924 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 33.0 FR France \n", + "1 19.0 FR France \n", + "2 24.0 FR France \n", + "3 25.0 FR France \n", + "4 21.0 FR France \n", + "5 31.0 FR France \n", + "6 37.0 FR France \n", + "7 28.0 FR France \n", + "8 27.0 FR France \n", + "9 18.0 FR France \n", + "10 22.0 FR France \n", + "11 16.0 FR France \n", + "12 16.0 FR France \n", + "13 10.0 FR France \n", + "14 13.0 FR France \n", + "15 16.0 FR France \n", + "16 16.0 FR France \n", + "17 20.0 FR France \n", + "18 18.0 FR France \n", + "19 22.0 FR France \n", + "20 23.0 FR France \n", + "21 31.0 FR France \n", + "22 35.0 FR France \n", + "23 38.0 FR France \n", + "24 47.0 FR France \n", + "25 53.0 FR France \n", + "26 44.0 FR France \n", + "27 35.0 FR France \n", + "28 33.0 FR France \n", + "29 38.0 FR France \n", + "... ... ... ... \n", + "1895 59.0 FR France \n", + "1896 64.0 FR France \n", + "1897 97.0 FR France \n", + "1898 93.0 FR France \n", + "1899 80.0 FR France \n", + "1900 116.0 FR France \n", + "1901 149.0 FR France \n", + "1902 281.0 FR France \n", + "1903 395.0 FR France \n", + "1904 485.0 FR France \n", + "1905 544.0 FR France \n", + "1906 689.0 FR France \n", + "1907 722.0 FR France \n", + "1908 762.0 FR France \n", + "1909 926.0 FR France \n", + "1910 1113.0 FR France \n", + "1911 1236.0 FR France \n", + "1912 832.0 FR France \n", + "1913 459.0 FR France \n", + "1914 207.0 FR France \n", + "1915 190.0 FR France \n", + "1916 198.0 FR France \n", + "1917 224.0 FR France \n", + "1918 266.0 FR France \n", + "1919 219.0 FR France \n", + "1920 176.0 FR France \n", + "1921 163.0 FR France \n", + "1922 195.0 FR France \n", + "1923 308.0 FR France \n", + "1924 213.0 FR France \n", + "\n", + "[1925 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" @@ -78,9 +1064,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
168819891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1688 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1688 FR France " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +1144,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020213731702712666.021388.02619.033.0FRFrance
12021363102247428.013020.01511.019.0FRFrance
22021353125189208.015828.01914.024.0FRFrance
32021343130159485.016545.02015.025.0FRFrance
42021333103927042.013742.01611.021.0FRFrance
520213231558611009.020163.02417.031.0FRFrance
620213131885513664.024046.02921.037.0FRFrance
72021303139919695.018287.02114.028.0FRFrance
82021293136269618.017634.02115.027.0FRFrance
9202128386365430.011842.0138.018.0FRFrance
102021273106936838.014548.01610.022.0FRFrance
11202126370864109.010063.0116.016.0FRFrance
12202125379425540.010344.0128.016.0FRFrance
13202124348553011.06699.074.010.0FRFrance
14202123367104455.08965.0107.013.0FRFrance
15202122378795495.010263.0128.016.0FRFrance
16202121378275403.010251.0128.016.0FRFrance
172021203102787540.013016.01612.020.0FRFrance
18202119395396860.012218.01410.018.0FRFrance
192021183121359165.015105.01814.022.0FRFrance
202021173120588891.015225.01813.023.0FRFrance
2120211631650512735.020275.02519.031.0FRFrance
2220211531930615398.023214.02923.035.0FRFrance
2320211432107317099.025047.03226.038.0FRFrance
2420211332641322094.030732.04033.047.0FRFrance
2520211233065825919.035397.04639.053.0FRFrance
2620211132498820718.029258.03832.044.0FRFrance
2720211031953915951.023127.03025.035.0FRFrance
2820210931757213926.021218.02721.033.0FRFrance
2920210832088216907.024857.03226.038.0FRFrance
.................................
189519852132609619621.032571.04735.059.0FRFrance
189619852032789620885.034907.05138.064.0FRFrance
189719851934315432821.053487.07859.097.0FRFrance
189819851834055529935.051175.07455.093.0FRFrance
189919851733405324366.043740.06244.080.0FRFrance
190019851635036236451.064273.09166.0116.0FRFrance
190119851536388145538.082224.011683.0149.0FRFrance
19021985143134545114400.0154690.0244207.0281.0FRFrance
19031985133197206176080.0218332.0357319.0395.0FRFrance
19041985123245240223304.0267176.0445405.0485.0FRFrance
19051985113276205252399.0300011.0501458.0544.0FRFrance
19061985103353231326279.0380183.0640591.0689.0FRFrance
19071985093369895341109.0398681.0670618.0722.0FRFrance
19081985083389886359529.0420243.0707652.0762.0FRFrance
19091985073471852432599.0511105.0855784.0926.0FRFrance
19101985063565825518011.0613639.01026939.01113.0FRFrance
19111985053637302592795.0681809.011551074.01236.0FRFrance
19121985043424937390794.0459080.0770708.0832.0FRFrance
19131985033213901174689.0253113.0388317.0459.0FRFrance
191419850239758680949.0114223.0177147.0207.0FRFrance
191519850138548965918.0105060.0155120.0190.0FRFrance
191619845238483060602.0109058.0154110.0198.0FRFrance
1917198451310172680242.0123210.0185146.0224.0FRFrance
19181984503123680101401.0145959.0225184.0266.0FRFrance
1919198449310107381684.0120462.0184149.0219.0FRFrance
192019844837862060634.096606.0143110.0176.0FRFrance
192119844737202954274.089784.013199.0163.0FRFrance
192219844638733067686.0106974.0159123.0195.0FRFrance
19231984453135223101414.0169032.0246184.0308.0FRFrance
192419844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1924 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202137 3 17027 12666.0 21388.0 26 19.0 \n", + "1 202136 3 10224 7428.0 13020.0 15 11.0 \n", + "2 202135 3 12518 9208.0 15828.0 19 14.0 \n", + "3 202134 3 13015 9485.0 16545.0 20 15.0 \n", + "4 202133 3 10392 7042.0 13742.0 16 11.0 \n", + "5 202132 3 15586 11009.0 20163.0 24 17.0 \n", + "6 202131 3 18855 13664.0 24046.0 29 21.0 \n", + "7 202130 3 13991 9695.0 18287.0 21 14.0 \n", + "8 202129 3 13626 9618.0 17634.0 21 15.0 \n", + "9 202128 3 8636 5430.0 11842.0 13 8.0 \n", + "10 202127 3 10693 6838.0 14548.0 16 10.0 \n", + "11 202126 3 7086 4109.0 10063.0 11 6.0 \n", + "12 202125 3 7942 5540.0 10344.0 12 8.0 \n", + "13 202124 3 4855 3011.0 6699.0 7 4.0 \n", + "14 202123 3 6710 4455.0 8965.0 10 7.0 \n", + "15 202122 3 7879 5495.0 10263.0 12 8.0 \n", + "16 202121 3 7827 5403.0 10251.0 12 8.0 \n", + "17 202120 3 10278 7540.0 13016.0 16 12.0 \n", + "18 202119 3 9539 6860.0 12218.0 14 10.0 \n", + "19 202118 3 12135 9165.0 15105.0 18 14.0 \n", + "20 202117 3 12058 8891.0 15225.0 18 13.0 \n", + "21 202116 3 16505 12735.0 20275.0 25 19.0 \n", + "22 202115 3 19306 15398.0 23214.0 29 23.0 \n", + "23 202114 3 21073 17099.0 25047.0 32 26.0 \n", + "24 202113 3 26413 22094.0 30732.0 40 33.0 \n", + "25 202112 3 30658 25919.0 35397.0 46 39.0 \n", + "26 202111 3 24988 20718.0 29258.0 38 32.0 \n", + "27 202110 3 19539 15951.0 23127.0 30 25.0 \n", + "28 202109 3 17572 13926.0 21218.0 27 21.0 \n", + "29 202108 3 20882 16907.0 24857.0 32 26.0 \n", + "... ... ... ... ... ... ... ... \n", + "1895 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1896 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1897 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1898 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1899 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1900 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1901 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1902 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1903 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1904 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1905 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1906 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1907 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1908 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1909 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1910 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1911 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1912 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1913 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1914 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1915 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1916 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1917 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1918 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1919 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1920 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1921 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1922 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1923 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1924 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 33.0 FR France \n", + "1 19.0 FR France \n", + "2 24.0 FR France \n", + "3 25.0 FR France \n", + "4 21.0 FR France \n", + "5 31.0 FR France \n", + "6 37.0 FR France \n", + "7 28.0 FR France \n", + "8 27.0 FR France \n", + "9 18.0 FR France \n", + "10 22.0 FR France \n", + "11 16.0 FR France \n", + "12 16.0 FR France \n", + "13 10.0 FR France \n", + "14 13.0 FR France \n", + "15 16.0 FR France \n", + "16 16.0 FR France \n", + "17 20.0 FR France \n", + "18 18.0 FR France \n", + "19 22.0 FR France \n", + "20 23.0 FR France \n", + "21 31.0 FR France \n", + "22 35.0 FR France \n", + "23 38.0 FR France \n", + "24 47.0 FR France \n", + "25 53.0 FR France \n", + "26 44.0 FR France \n", + "27 35.0 FR France \n", + "28 33.0 FR France \n", + "29 38.0 FR France \n", + "... ... ... ... \n", + "1895 59.0 FR France \n", + "1896 64.0 FR France \n", + "1897 97.0 FR France \n", + "1898 93.0 FR France \n", + "1899 80.0 FR France \n", + "1900 116.0 FR France \n", + "1901 149.0 FR France \n", + "1902 281.0 FR France \n", + "1903 395.0 FR France \n", + "1904 485.0 FR France \n", + "1905 544.0 FR France \n", + "1906 689.0 FR France \n", + "1907 722.0 FR France \n", + "1908 762.0 FR France \n", + "1909 926.0 FR France \n", + "1910 1113.0 FR France \n", + "1911 1236.0 FR France \n", + "1912 832.0 FR France \n", + "1913 459.0 FR France \n", + "1914 207.0 FR France \n", + "1915 190.0 FR France \n", + "1916 198.0 FR France \n", + "1917 224.0 FR France \n", + "1918 266.0 FR France \n", + "1919 219.0 FR France \n", + "1920 176.0 FR France \n", + "1921 163.0 FR France \n", + "1922 195.0 FR France \n", + "1923 308.0 FR France \n", + "1924 213.0 FR France \n", + "\n", + "[1924 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +2139,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +2169,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +2194,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +2222,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXncHEWd/z/fmXnu3CchCUmAcCNHshG8UFBOV1hFN7JKVnFZXTzWdVcBf4qLssquC4IiioIcKgjIrijXhgCCEBISjkAScpCb3HlyPvfM1O+Pruqp7qnq7unpufJ8369XMv10V1VXd1fXt75HVZMQAgzDMAxTLqlaV4BhGIY5OGCBwjAMwyQCCxSGYRgmEVigMAzDMInAAoVhGIZJBBYoDMMwTCKwQGEYhmESgQUKwzAMkwgsUBiGYZhEyNS6AtVkzJgxYurUqbWuBsMwTEOxePHinUKIsWHpBpVAmTp1KhYtWlTrajAMwzQURLQ+Sjo2eTEMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEoEFCsMwDJMIoQKFiO4gou1E9Ia2bxQRzSWiVfJ3pHbsKiJaTUQriOgcbf8MInpdHruZiEjubyGi38n9C4hoqpZnjjzHKiKao+2fJtOuknmby78VDMMwTDlE0VDuBHCub9+VAOYJIaYDmCf/BhEdB2A2gONlnp8SUVrmuRXA5QCmy3+qzMsA7BZCHAngRgDXy7JGAbgGwDsBzAJwjSa4rgdwozz/blkGwzAMU0NCBYoQ4lkAnb7dFwK4S27fBeAibf99Qog+IcRaAKsBzCKiCQCGCSHmC+ebw3f78qiyHgRwltRezgEwVwjRKYTYDWAugHPlsTNlWv/5D2qWb9mHxev9j4JhGKY+iDuxcbwQYgsACCG2ENE4uX8igBe1dJvkvgG57d+v8myUZWWJaC+A0fp+X57RAPYIIbKGsg5qzrvpOQDAuh9cUOOaMAzDFJO0U54M+0TA/jh5gsoqrhDR5US0iIgW7dixw5aMYRiGKZO4AmWbNGNB/m6X+zcBmKylmwRgs9w/ybDfk4eIMgCGwzGx2craCWCETOsvqwghxG1CiJlCiJljx4YuRcMwDMPEJK5AeRiAirqaA+AP2v7ZMnJrGhzn+0JpHttPRKdJH8ilvjyqrIsBPCX9LE8AOJuIRkpn/NkAnpDHnpZp/ednGIZhakSoD4WI7gXwfgBjiGgTnMirHwC4n4guA7ABwMcBQAixlIjuB7AMQBbAFUKInCzqC3AixtoAPCb/AcDtAO4hotVwNJPZsqxOIvougJdkumuFEMoj/Q0A9xHR9wC8IstgGIZhagg5A/7BwcyZM0UjrzY89cpHALBTnmGY6kJEi4UQM8PS8Ux5hmEYJhFYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyQCCxSGYRgmEVigMAzDMInAAoVhGIZJBBYoDMMwTCKwQGEYhmESgQUKwzAMkwgsUJhE+c7DS91l9hmGGVywQGES5c4X1tW6CgzD1AgWKAzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyQCCxSGYRgmEVigMAzDMInAAoVhGIZJBBYoDMMwTCKwQGEYhmESgQUKwzAMkwgsUBiGYZhEYIHCMAzDJAILlIOIJZv24MirH8W2fb21rgrDMIOQsgQKEX2ViJYS0RtEdC8RtRLRKCKaS0Sr5O9ILf1VRLSaiFYQ0Tna/hlE9Lo8djMRkdzfQkS/k/sXENFULc8ceY5VRDSnnOs4WLjzhXXI5gWeW7Wz1lVhGGYQElugENFEAF8GMFMIcQKANIDZAK4EME8IMR3APPk3iOg4efx4AOcC+CkRpWVxtwK4HMB0+e9cuf8yALuFEEcCuBHA9bKsUQCuAfBOALMAXKMLrsGOEKLWVWAYZhBSrskrA6CNiDIA2gFsBnAhgLvk8bsAXCS3LwRwnxCiTwixFsBqALOIaAKAYUKI+cLpCe/25VFlPQjgLKm9nANgrhCiUwixG8BcFITQoIVAta4CwzCDmNgCRQjxNoAfAtgAYAuAvUKI/wMwXgixRabZAmCczDIRwEatiE1y30S57d/vySOEyALYC2B0QFkMANZPGIapBeWYvEbC0SCmATgUQAcRfSooi2GfCNgfN4+/npcT0SIiWrRjx46A6jU+VEcKCpvdGGbwUY7J64MA1gohdgghBgA8BOBdALZJMxbk73aZfhOAyVr+SXBMZJvktn+/J480qw0H0BlQVhFCiNuEEDOFEDPHjh0b81KZUmF5wjCDj3IEygYApxFRu/RrnAVgOYCHAaioqzkA/iC3HwYwW0ZuTYPjfF8ozWL7ieg0Wc6lvjyqrIsBPCX9LE8AOJuIRkpN6Wy5b1DQCKP/+q8hwzBJk4mbUQixgIgeBPAygCyAVwDcBmAIgPuJ6DI4QufjMv1SIrofwDKZ/gohRE4W9wUAdwJoA/CY/AcAtwO4h4hWw9FMZsuyOonouwBekumuFUJ0xr2WRkOI+jJvmXCEXp1XkmGYRIktUABACHENnPBdnT442oop/XUArjPsXwTgBMP+XkiBZDh2B4A7Sqzy4KAO1IM6qALDMFWGZ8o3ILbOmtzjte/OG8AqxzBMwrBAOYioJzNYPQg1hmGqCwuUBqQhnPL1X0WGYRKGBUoDEtZXc2fOMEwtYIFyEFFPS6+UI9RunLsSdz6/NrnKMAxTFcqK8mJqQyNoIOX4UG6atwoA8PfvnpZUdRiGqQKsoTAVoRGEHsMwycICpQEJG/3XQ19eD3VgGKa6sEBpQGyjfxU2zNoBwzC1gAXKQURdzUNhqcYwgw4WKExFYHHCMIMPFihMRWAFhWEGHyxQGpCG6KwboY4MwyQKC5QGJDzKq/a9eT3UgWGY6sIC5aCifrzyDaFFMQyTKCxQGpCwzroeOvM6qALDMFWGBcpBBIcNMwxTS1igNCChqw1XpRbB1EMdGIapLixQGhDb6L+OFJS6MLsxDFNdWKAwFYGjvBhm8MECpQFpiK66ISrJMEySsEBhKgLLE4YZfLBAaUBC/RPswGAYpgawQGlEwpavr15NrLBMY5jBBwuUg4i6+qZ8XYg1hmGqCQuUBqQROutKaii9AznsOtBXuRMwDBMLFiglsGTTHsxbvq3W1WgIKinyLvnFi5jxvScreAaGYeKQqXUFGomP/OR5AMC6H1xQ03o0xFpeFazEyxv2VKxshmHiwxpKg6B30Lauur7W8qp1DRiGqTYsUBiGYZhEYIHSIOgj/kZYybcBqsgwTMKUJVCIaAQRPUhEbxLRciI6nYhGEdFcIlolf0dq6a8iotVEtIKIztH2zyCi1+Wxm4kc4w0RtRDR7+T+BUQ0VcszR55jFRHNKec6Gg2ryUsdr4PevBEi0RiGSZZyNZSbADwuhDgGwEkAlgO4EsA8IcR0APPk3yCi4wDMBnA8gHMB/JSI0rKcWwFcDmC6/Heu3H8ZgN1CiCMB3AjgelnWKADXAHgngFkArtEF18FIlO5ZyuG66MrrQKYxDFNlYgsUIhoG4H0AbgcAIUS/EGIPgAsB3CWT3QXgIrl9IYD7hBB9Qoi1AFYDmEVEEwAME0LMF87Q+m5fHlXWgwDOktrLOQDmCiE6hRC7AcxFQQgd9DRCZ90AVWQYJmHK0VAOB7ADwK+I6BUi+iURdQAYL4TYAgDyd5xMPxHARi3/Jrlvotz27/fkEUJkAewFMDqgrIOWejBjlUKj1ZdhmPIpR6BkAJwK4FYhxCkAuiDNWxZMQa0iYH/cPN6TEl1ORIuIaNGOHTsCqlffCM92/XfW9V9DhmGSphyBsgnAJiHEAvn3g3AEzDZpxoL83a6ln6zlnwRgs9w/ybDfk4eIMgCGA+gMKKsIIcRtQoiZQoiZY8eOjXGZdUgDTGxkGGbwEVugCCG2AthIREfLXWcBWAbgYQAq6moOgD/I7YcBzJaRW9PgON8XSrPYfiI6TfpHLvXlUWVdDOAp6Wd5AsDZRDRSOuPPlvsOWhpNSDRafRmGKZ9yl175EoDfEFEzgDUAPgNHSN1PRJcB2ADg4wAghFhKRPfDETpZAFcIIXKynC8AuBNAG4DH5D/AcfjfQ0Sr4Wgms2VZnUT0XQAvyXTXCiE6y7yWhqEx+urGqCXDMMlRlkARQrwKYKbh0FmW9NcBuM6wfxGAEwz7eyEFkuHYHQDuKKW+SSGEcEN0q3bOEjroeujKWUNhmMEHz5SPQb7GnaWts66rtbxqXYFBwtNvbsfUKx/B5j09ta4Kw7BAiUOuBhLFs/RKSHddDyG7dVCFQcG9CzcAcD6twDC1hgVKDPJ12lvyFxsPLp5ctg192VxgmnrSShmGBUoMaqGh6NSpPPNQjTrWgyZWKV7esBufu3sRvv/om5HSH8S3gmkgWKDEIFeDt7fROozqCJTKn6NW7O0eAACs39UVmK4etNLV2/dj9fb9ta4GUwewQIlBvtYaSk3PHo1qmLwqaXpcvX0/rnpoSe20USknop69lm3igzc8iw/e8GwNa8DUCyxQYlATp7zWZdhMPcqeXg8+nqpoKBUs+4rfvIJ7F27Eym21GXkrvSOsqbEPhaknWKDEoBYmr1Ko8+olRiWvs6XJeTX6svnKnSQA91MEES9ysDzzSjL1ykfwrw+8VutqNDQsUGKQr0Ef4/1iozmN+4GtitcmnOpoKOWdZF/vAHZ39RuPtWacT/X0DgRHWVWKqIoHayjJ8uDiTeGJGCvlLr0yKKmJU76UtHUgUarhQyn3Ok+9di6yeYF1P7ig6FitNRR1aVHNlxymzdQDrKHEoNZO+TDqoXOpB6EWRjbgObZknFejv0YCJSfV4FSIClIPUV4Mo2CBEoPazJTXnfLmNKrvaYTO3EYpc0sqeZ3plHMzc7WwbwLI5kq7uEZ+5szBAwuUGNS/U7729Ytbg1JkdSWj2TIp59UI0mLC2NPdj4Vr4y2CXfsnyDClwwIlBrUweZXyxcY6kCexhVpJGkqsM0RDaSilago6c+5YiE/8fH4sjVbdhmqEgM9/axfW7QyeQMkwUWCnfAzqXkOpdQUQvw6lBR9UUENJS4FSxuBh2ZZ9sow80ql0ibmd84ZeYgIulE/+4kUAMAYnMEwpsIYSA9uIUwiBG+euxLZ9vYmfM1LYsDt3IfHTl0zcOpSSr5KXmUnAh6Ic6nE0FJUl6v2og0deU+5buAFn3/jnWldj0MMCJQa2DmLJpr24ad4q/PN9ryZ/UmHc9FCYXV0P3UtMk1cpHxKrqFO+fB+KEihxyohq8uIYL4crH3odK7cdqAv/4WCGBUoMbAJFvfzd/dlqVsdF+H5rSTU0lEpeaCYBH0o5fhgR1eSl0nNHCqB284YYBxYoMbCNGtWItBKvdpS1vNz9ddC5VKMG5cy3CQusSGIGupQnyMYwm0XWUOp8qvye7n68XYWvSaoBQE9/bVY2YBxYoMQgZ+kflECplcmp0AnV5PQe4t6CUu5dOdcZNbCinJF/YS5LHA3F+9uovOf6p/HuHzxV8fO0NjlBD3t6Bip+LsYOC5QY2DoId7XfCmjd3k8AW9K4v7XvhuKHDVf+HEB030Q5d9L1ocQxecn6Ra5n7R+5kQN91TH/HjaqHQCwLuT7MTbYZJgMLFBiEPaSV1pDsRVfVxpKFfKVc5nV6D9SqfJDj+vhWTYCrXLttWoMZBg7LFBiUJvvoURJU5ojt5LEd8pXJ8orurM7/jnSroYS34cSVgF3uZ060ErrgbjWgfqIjGx8WKDEwGZ/V4KmEo3T29GGzZSv/csRt4MrTUOpoMkrAX9Y4YNnpedV1xb6ga3Siz6oifu8av/GHBywQCmBgo/EIlBEtE6gUrhBXrU5vZc6DxuOvCx8AjczjuBTI+2oeetgDFFTCgOAePlZQ0kGFiglEDbzWe1PVWDY6NFPQtp+vS+vH0gpTvkyThP107pJdDRxzDARLV51HzZcbdiHUltYoJRAKqSTUQKl0t+osEZ5yXrVw7sR3ylfSthw/CuN2vGUI5vLWblA1S+qvBjsHWLhXsfLP9jvX1KwQCkBcjUU83GlGVRi0Bilwask9aC+x5+HUvlzRDmPGhQkcS/jFBE1C+snXuI+r3p4Zw4GWKCUgNJQrE55d1RZYQ0lJGy4Ht6N2E75Ki1fH+6UL70+cc9lRGaJqu3WwSOvKeWaKFmgJAMLlBJwZ8JbhrdZ1+SVPFE66ELYcO1fjthhwyWdo3JRXoV0sU9R8rl0IgvkBH09BwPVaHeMnbIFChGliegVIvqT/HsUEc0lolXyd6SW9ioiWk1EK4joHG3/DCJ6XR67meQQn4haiOh3cv8CIpqq5Zkjz7GKiOaUex1RCHPKV8sZbuts6inKK7YPpUomr7AKJrlyc5wS1Gmj+1Dq4anXDqXJxZ0jJnhNyURIQkP5CoDl2t9XApgnhJgOYJ78G0R0HIDZAI4HcC6AnxKR+urQrQAuBzBd/jtX7r8MwG4hxJEAbgRwvSxrFIBrALwTwCwA1+iCq1JQmMmrgj4Uz/L1YVFeddC5xI62qZI4jNrvlOWUd79PE0dDiXgOlBcue9DAJq+6oCyBQkSTAFwA4Jfa7gsB3CW37wJwkbb/PiFEnxBiLYDVAGYR0QQAw4QQ84Xz5t3ty6PKehDAWVJ7OQfAXCFEpxBiN4C5KAihihFm8lKNMlUBiRKluUcNNa0GsatQNad8cObCB66S8KGUnsfVUCKfow4eeg0pd02zwX33kqNcDeVHAL4OQFcYxwshtgCA/B0n908EsFFLt0numyi3/fs9eYQQWQB7AYwOKKuihDnls5XUUDTCnPK/WbABuw70VbYSYVTDh1LBmfKFmepJzEMpvYx8iTavetdQqmWSYw2ltsQWKET0YQDbhRCLo2Yx7BMB++Pm8Z6U6HIiWkREi3bs2BGpojbCNJRcJZ3yuskrdL1h4Ia5KytQi+jEj/KKnracTjTsPEkutBlv6RWHyG0p9oS+6nSklV7/rpxlboD60OoB4I+vbcbi9Z21rkZsytFQ3g3gI0S0DsB9AM4kol8D2CbNWJC/22X6TQAma/knAdgs908y7PfkIaIMgOEAOgPKKkIIcZsQYqYQYubYsWPjXalE2cRtq8eWOqpMmnp5KYBy5qGUEDZcwSivqMvHRyGWcI143kbpSKulQcVey6tOXp4v3fsKPnbr/FpXIzaxBYoQ4iohxCQhxFQ4zvanhBCfAvAwABV1NQfAH+T2wwBmy8itaXCc7wulWWw/EZ0m/SOX+vKosi6W5xAAngBwNhGNlM74s+W+iuKavKwaivNb6bDhMJNXPVCVsOF4pwAQ3sEl6Y8qZ2Jj1LFJrRZFjL7iQIU1FMQPgADq32TYKGQqUOYPANxPRJcB2ADg4wAghFhKRPcDWAYgC+AKIYT6XucXANwJoA3AY/IfANwO4B4iWg1HM5kty+okou8CeEmmu1YIUXE9MeyLjDm5aFOtllfShU7cOry4ZhfGDGnBkeOGlFmXmPmqtHx91G/a1GpiY9Qs5S45EqVuXX1Z9GfzGNnRXHQsaj2r5aOIramxWz4REhEoQohnADwjt3cBOMuS7joA1xn2LwJwgmF/L6RAMhy7A8Adcesch8InXc3HK6qhVKm9z77tRQDAuh9cUFY51VmkL/5NCQ+99v7Goazl60u8f5W832f819PYeaDf2CainrVa3xCK75RPuCKDFJ4pXwJhyztUcukV/YyNYPKqBuVcb1gHnIQPpeDYj6GhyN+wllSNJUd2HuiPVbb3PGUXEUi5vqSGXqG7jmCBUgJKQ+kbyBmPq0ZZieXro6C/EpVe8TiM+Cavyp8DCO943O+RJNHPVM4n71K7b/BE9KFUaxWJwTaqqjNYoMTgQJ9ZoBTW8qqAhqK9KGFLr9QD8Z3y0TOWoz1E9aEk88XG0svIR9R2y10Vudw2E9nkVWmnPM+UrwtYoJSAanPd/VnjcXcUVgdO+dpT+Q6uGjPlE5nYWI4fJmK6aoRpl3PeunfK19Or08CwQCkB1WH3WExerg+lEucW5m1vogqcOCbVmYcS7xxR8hZ8KPHPUc6oOeqUprDPUoeeJ1YuPX9Uk1eZJwqhXE2NNZRkYIFSAqrN2SY2VnRxSL0eEfbX+suwsX0oJaWtvMkrCZt8vMUhS8tTq2+p15uGEn8gk2w9BissUErAjdoJXXqlVjPl6+etiO1DqZrJK9rxJEbWsSY2utbTqGt51caHEpWqLb0S+zyaj7KO3qNGgwVKDGqhoXhNXvXf4ONrD/UxXyEJp3yhrNLzRM2iqhe7TVSpKdX7Ei96PtZW4sMCJQbWD2y5ZpJq1qaAN2y4ttS7hhI+D8X5rdkXG1WWkAdZWBW55FPIfNUxeVU6ykuRhA+F/SnxYYFSAqoTCtNQKtEgPWt52dLU0XtQDf2kvLBh7ZyGcpLwoZTjKI6q4ZUzedI5T3mIiKaiSnfS5WpqerZaCZRGsDyEwQKlBNTjzlkM60qglNsu9nYPoKffHEkWVH49NcdqLL0SJenV//M6Xli9s2i/bms3nTNJk1d5PpRgyl0iJkkNJagOlZ7YmKSmVjMLQz29wDFhgVIC6oHbVxt29per3p907f/h/JufM547uH6N3yJL8b1EWT7ltws24JJfLig65tFQjHmL08Ulnskrmj9O3a/qrJ1mOr9eVpCGUt55wlBjvCSCE2qloVTLLFhJWKCUgHp5rQIlwVHt2p1dgTWJvrc2xA7fLCGqKuwUfVl7YZ6VB4wmr2jniEI5GkrUdPFNXuVqKLrvwZ4uKMrrl8+twZn//UxZWkxBo4yXP9I8rwpTrQU0K0kllq8/aIk6D6US7SJSkVqiSixQWQqxv9hYkoYSfFyZDZvSxfciLKonicUhy5rYqMoIMXqVOwEzUQ3F9+y8wsZ+ou89shwA0NWfxdDWprLqEf97KNHq+vUHX0MuD/z3J06KdZ4gDgIFhTWUUij4UIIFSlCjfmXDbnT1mZduCTx3BBtvfS29Eo/SXqrgxL1ZR6C0ZNJFxzw2c0M5yU5srFyecpeIKVugBIzsSzUjDeTiV6bcAYCeK0g4379oE37/8qaSy8/nBf725/Px55X2z5CzyWuQ4WooloYf5sjt6c/hb376Aj7/68Xl1aOs3NWhGu9G2Dn6BhyTV8aooQQL6CQnNpYT5RXuQ5G/NXLKe+riK8o76g/P3x9goox67mSc8sk33v19WSxY24kv/vZla5qDweTFAqUkggWGa/KyvBcD8sBzq4qjjqKdOSRNldpj70AOTy7bVpG6lJIv7P3LyvudMXxPIOw8NZ/YGFlDKdMpHyuXuQD/vdL/itJZDti+XAdH2Ny7cIPVz1Lu84rqC4qLGhgEVe9gCKphgVICYT6UbD64UScVOmk1eVWpPf77H5fhc3cvwpJNe6xp4lYlySiv/qxzPGUY5ofZzJOM8opjioyco9yReQkZTWm9psOAYxEaZ3+AQPn5n9/CVQ+9jodeedt4vFxNrdJRXlHmybCGMsgI86HkQwRKOQ0mUthwlYxhGzqdCLS9PQNFxwojscrb9MOSKg0lbdBQvBMbi/NGGfk//sZW/OsDr1mPl/W994g3IklNylyNYMGbCziu/xml7b+4Zpf12K4u56uRpjbnnNtexyjkKy5QZHsKSMM+lEFGYaa8ZWJjyGgxqQZj6+Sq1R5V5FGg+h6z7FJe5rDR9Rtv7wMQrqGYSonSUX/+14vx4OJwB2281YZV3rCynd9KRXnpgsB0Dv248L0W3lG//RwqCm/e8u3BlQmiTMFa6YmNUVbRqPQS/9WABUoJuBqKzSkfavJK4uz2zrpa4xtXCwlKFLeDKyFtmIC++n9eB2DWUMJG3uXOQAcKodtxTJ2uhhRyR8r1oYR1wEEaCOATKL66Rg3FPeOosQCA6eOGWNOEab7lPq8kTF7PrdqBl9Z1Go/l3Odkz38wrCHG81BKQD1vW0emNBdbu7BpNqWcu9w0SeB2lIYTEhyhEHseSgnZbL4sP3FMXknMQylnjkjU06pklVrLS2+yYQLFf516+iCTlzoU9DxD5+OUvWJAsCYWhU/fvhAAsO4HFxjKl78B+dmHMshQjc4+D8X5rYyGotfDekRLU7nG6fbPQSav2KdPzuSlMMgT7zMyFOPOlE/gNsYpIrrJK1xoPfzaZhywzH0qTUMxHM/b25z+V9B53CWLypkpn/f+loqnrnE0ypA8UeaoHQwaCguUElCP2zaSyocJnHJGuxVOXwoFZ7NBQ5HaS9zzl3KLonZAmVRxMw9zwpbi7LZ1Ju69iONDiaqhuKYec4ZV2/bjy/e+gn+93xw84JGrJg1EM++a7nc2QEMRIdqN/1jQ84w6H6dWPpSdXX2Ryg9cQLPx5QkLlJJQJi+LD6UwDyX4ePnVMJfj7RwSOZWRQkdpTxPl/DfOXYnP3fWSN5+njGijvjBSIT4UUymlRA2Fmd7KmdgYapIK6YzV3lXb91vP5G6ZNJCQ0N+gFQc8PpQAzUGli2LCtN1K13pQoygvNYnWWn6ExSsPBpMX+1BKIExDCVttuDx7vKEi/jSe7fIapxDCuh6Y2hv08kY5/03zVhnO6932V0Hv1KJ2HmnDsClsjkQp/g9bR1Be2HBpyWyrNzTLi+/qM38OIWzVZf3ajBpKTr+P/rKjPauCuSpAQ3HrGDyYivuKRVl3LKh+QQuRAoPHKc8aSgmEjYIKtmBzfttLbzpH0f4IPUySs32D8itBY7oe98VP4MU2Hy9sRx3RpQ2CMcSFUlL0VFiwRVBHMW/5NrzwVvHKCaJow1a282ubFKjaqq2OYdFNYcunBJmKomqbhTrGb7Tlz5TXyzKnGQh4zkGz/J0yw+t1MAgU1lBKQD3uuMvXR2kwtiR6W7aVUoq5KIy8EEhbImtU/2zqpITvt/TzFpdlKh8oQaCERHkZO1J5aVFuY1g9gsq47K5FAIojg6I+P5XO1qGFBZKE+Q6CnO6A34diN3kF9beFOsaPWil3+foos/qDBoRh65BFcfQfDCYv1lBKQLWzXF6Y7cmyQWRto8UIDcYmdKJpKObtOATVVfXPgS9R3JFiSKRa1FBUHbNACZZcpYx4wwVK6ffCNeGEPHdDu9FJAAAgAElEQVSVziZQCpGHwfmdNMWJPCavkOP+o2Fl+8sIUuAr7ZSPpKEErTUWoqFEMc8eBAoKC5RS0F9uU6MrrOVlzh+lUUV58a2OSUv6OATlV3MCTCaKsvwGgOcijBpKxE5K78RNM+XDnPLqcJTrCHfKh5cRN49qkwNZi9YcNtm2BA0lzOTlH4VHFijuQC1cQ7E75dVvvIYXZRJmkNAYCNVQwuvAGsogQ29nJnNPWMRNFLXXqqF4OlpbGhGaBgCWb9lntNvrBAk/1T+bRmzlfFQK8HbuxkUbtRRBHbl+yLx8ffB5SvGhWK+1rA9sqfOHnFs+Altn52paUSKoDG0mFyAwgGAzUNgse3+5QWWFhaOrtpjIPJQIJi9/u0gi0u9g8KHEFihENJmIniai5US0lIi+IvePIqK5RLRK/o7U8lxFRKuJaAURnaPtn0FEr8tjN5NsPUTUQkS/k/sXENFULc8ceY5VRDQn7nWUgv64TUIjLMoritOxHJOXtxz7sfNueg6X/KL4O+tRv7BXECgmDcU5GHe0FaaJeUa9AefQz99sCPMK/x5KsLZpO5eHErScoqylaighAsXWJsNMPfl8cJsIGtnreYMsQmGrdEdBdfZJLF9vK0K/x/57VU5gRilp6p1yNJQsgK8JIY4FcBqAK4joOABXApgnhJgOYJ78G/LYbADHAzgXwE+JSH1K71YAlwOYLv+dK/dfBmC3EOJIADcCuF6WNQrANQDeCWAWgGt0wVUxRKFzMgmHsHko0TQUy6lDOtqg9FGJ2lmr0aKxE4vw3YfAOiC4A9MJXs6jcMwU/hymoRRMXhGemaUvUTnLCZAIy6muw+5DCRaMYc7osJny+nvgzx51LS9XQ4kSNmxJojr0oFds6pWP4MeGUHV/Pltd1+zscrf9bU/XXkzvTjT/aWgSvLpxDx5ZsiU8YY2ILVCEEFuEEC/L7f0AlgOYCOBCAHfJZHcBuEhuXwjgPiFEnxBiLYDVAGYR0QQAw4QQ84XTou/25VFlPQjgLKm9nANgrhCiUwixG8BcFIRQxcgL4a6MGtRorGHFZTh4w1bHBaKZxYIICxFVqJfbFHwQNIs+Wh0K26Z7oZcb1AGF2e/DRqSlaChh/ol4wl14fu0JnR/b53PDTF5hzzxsHkqQBuPxvwTcSCUMyvEhqOu3Lh4py/7vuSuNx6M45b+mrTYQdK2m9zyJ4A4AuOiW53FFwFcfa00iPhRpijoFwAIA44UQWwBH6AAYJ5NNBLBRy7ZJ7psot/37PXmEEFkAewGMDijLVLfLiWgRES3ascP+Peco5IVAJkhD0ToQ42gv0kxgi2nCVw9zmnC1PfDc2nbwMhiO2Og3mbxcv0Hp5wf8HVTx8aiO3tD5E9pO07NUu6JoF2ETWeP5UKKmc1LaIu7UdUQKZQ8RKGFhw/6jUQcopazlZfdv5IOPl+DjsJXRN1CYHOpPkg0TvGUMTBqJsgUKEQ0B8HsA/yyE2BeU1LBPBOyPm8e7U4jbhBAzhRAzx44dG1C9cAQK324IG62Fja5t2E1e4aM9r1ksRicWMb+KxjFrKPaViG3Y7pvpOr1Cz15m+JIhejn2AIty1vIqmM1Ci7DmDctavslL3w4eBIVpMP777LnHQe1JHgvs9NXcJ4smNhBynaX4OGxt//hDh7vb/usJ0+SiDSa1+jRoxFdZAoWImuAIk98IIR6Su7dJMxbkr/pqziYAk7XskwBslvsnGfZ78hBRBsBwAJ0BZVUMIQSEAJqkhmJsNFqLML1AUWbK2xq2Xpx13aYIanvUcwd1AOo6AqO8SqiAbXJcmBM4KMw0bGHCMNNZKcIgzOEdRbgXr9Qb7f6FTWwMew76cVPKsHk/XoESdCxAoCiHegQTpu2Zl6uh6NiSHjNhqJbGm0gv36jxRjh/zvIeNBLlRHkRgNsBLBdC3KAdehjAHLk9B8AftP2zZeTWNDjO94XSLLafiE6TZV7qy6PKuhjAU9LP8gSAs4lopHTGny33VQz1fAMFiscxV1xGqaNd26SxSCav0DMZ8muZAsNB86oTK04TZx6K7UUyddRewWovM2xhwrBrLU1DMe8v5Zsq/vZUEEYh55bHw0xe1vOGCPBciGAOctqHjdr9ZQR1+iq/rbPOh9yvsMFc0Hwaxf7ewicA/F+n1LV1U/5STV5h6cOWeqkV5Sy98m4AnwbwOhG9KvddDeAHAO4nossAbADwcQAQQiwlovsBLIMTIXaFEEIZJb8A4E4AbQAek/8AR2DdQ0Sr4Wgms2VZnUT0XQBqqdprhRDmT6UlhHrYak5DkA/FOZ4HkPYej9AG/GYC9YCihGCWa/KKGpWTdQWKSUMp3eSl3yu9SFMRUReHLE3TsY+8o1yG3T+ByGVk8wIZrblEFcgqWdxAEG+bMeQPGTXrGkPwFxvtdYjiQwlK05st+DbCfCw2omj3ukApVUPxm2DNkYfRNZSBXN4d3NYTsQWKEOIvMPsyAOAsS57rAFxn2L8IwAmG/b2QAslw7A4Ad0Stb7moNtKUUhpKcQP1jOYM7TfaTHmzCUHPGWkZh9AUweeONFo0jPoiRycZygPCR8xhvg9TOaaq6OUETVItJzpHdbBW/4V2YCCXR2uTPgAR2v92XC3IciuifvhJL8uTP0QoBLX5A3oHHFNY+NOY2mVPfwSBEuqUL2zbzI16OwnyoYQNYLbt68Mhw1uL00T8fgwgV0ZoDkxSE+pPxNUpqpE1ZZRTvjhNmLmm1JnyNvu01Qls/SMaerHrtJh7P0ozMWkoqohSTF4eH0qImcSjoURcSizUh2IQjKVMtrNHednPr5/DVIeo8tj1LVjrENaRam0spI6laihfe6AQZhvok4siUIQ9Tc+ALlAs5yjB5GWrapDQKMWH0tVv/npm2JwfnbC1w2oFC5SI+H0oplFtNpdHJmWPAos0U14r1hapFDYzOzBNAPo51Cq4JlwfSkAkWykfOrL6jUI0i6hhw2ZfTPD9LMnkZQ2SCNbW9PP6l0Z3s0QUCPbPUkfvSI2C1yLsC+UXtv3Zt+ztDSzbX25QJJbyT5rS9OoCxXK9QUvPA/C8O9GWXvHVT9deDMJLfw66RuWpQpR3XNUlqe+JJwwLlIioRlYweZk604LACXs5w87jT6/ntEYVQaCj2TGbnHb4qNBzFZ87WjrXh2JwBKuqleZDMXf+Rg1FX8srYNTpFTzB5wwaUUbzoZj3F+6F+bjeyRVpKJGjvLR6BAh4G/kQn1V42LCmoQScKnhio9IG7fkLGkrxsV7ta4m26y1NsFrqEKA96wEq5omNhe1ui0DxCufg+toWA601LFAiohpEJmAeSi4vAueplOpDKdnkJYCJI9sAAOkYDruoQqBgzw74HkoJ7d1mxw9aEsV23D0W4hvQo6KCtMlyfCjuTHmLcNBHsjaTV9jZwzSxMMtImIYSJuCjhroG9ecqX9CoWz1Pk99MN/9YhXfoB7CK6+NHr1/gTPkAnxwAdFtMXmGBIjps8mpwVKcUNg+lORNwvFQfiuVlt2sohYmFUfALpqgCRXW2ppny7oKIJZjcvLOMg+sT9aUL6yh1gWKeKR9doNjDuNVxcz79vEUmL/Ubcvqw+1GSDyVEQyl1prytHFsZJlORP43pWaln2ZJJRTJXGetnMS970gSYY21t2JTXpqGUEjbMJq8GRz3gpqCw4bxwF48MnXVsHdVq25avNAbZ7N1oxBjO5KhaRdBMeTUaL8WHkrNEz5guUy826vL1pndPH+GZI/aUQDGXf9/CDUVpi+rgms3CR7z+Di+qQC4lushYR+1wHJNXkED79GlTtLLt9ygssEA/ZrrXSqC0NqVjR3l555FY0gTca70NBUUNAsBzq8xLQEWZra9gk1cDs7GzG0+9uQ2A5iOxmbwiaihRonJKdcoLFD4mFaW5+cuJrKEEzJRXRZZi8rJFeYV1kEGdbikain+CphD6RDnzOf6krfgaqqHYOijtvP57qe5JmC+l3CU/wueZBLdZ2xpWjyzZgnteXA/A+WJmlHkygVFerlPe/izbmtJWE1/YPJQoprugex2+lldh370LNxYdd/Jp2yEvUL2avPib8hE4/6bnsL/PsXvaFodUnVugU9738jSli5JYtRi9uHI+lWqrj/N3YfuMo+zrnhUmNhZXpJTZ4Qrbi2oOG9byBZwjbDXhIB9K2Kgc8NvtbRpj8PGgwICoJo0wjS5M0QkLGw7VgLTj+j29f1Gh00wTRXJ0B859UhqKoc2pZ9HalIpkrjKRjfDMg9LogwOzYC9sv/9o87tVksmrTgUKaygRUMIEAJpUWLDwdwDO31G+l+Lf9pRjaZie74QEOOWVQInSn9uEIhAsEApLrwTNQ4knUMJs+h6BEtQBhfhi+nJ567OK8qVBr0Ay16HglLfVUTd5+TQUdzl2S2Z1Ds/EwuAO39TZhgU5lOJD6c8VfAPtzYXREpG9zUZensX1oRic8prJy1aGKcTdVo8goZSW778/Tdh1qHs7aWSb3YcSwSSusH2uoNawQCkR1aBsDu1Ap3wEx7othDbKyFygPKe8XmxQVEzW9aHYO6gSfPJW23SY6SCKUz5jMbf0Z/Noa1bLvXivNYqvayBn13AUpWgo/g4i6mKGYSYpfd9mbV6I6TxGH4rnfhcft2kobZpASaco9B6kUxRJoJg60kg+lJARvecDWVYNJV+I4vSdR28PQWHoQ1oy1nkoHr9fmA+FnfIHBxlLlNcBqcW0SIFi6mx1dd0W0WIPoTWn8SAEUq6GEt4hBflQor3c/sl40UdYtnqUFOUVcI3uvKF0yurIVaPoIg0lpJN1yoeWxpzIjRSLoI36R96uDyXkNoZ989275IdBoGg3PEwDMQUv6Mf7NIGiaygpIrsWp2n2wUEWdq24T67l1daUDggbDtNQIsxlyQnNh+rPH/YcnN8hLRnPzH5PGSWYvPosZdQaFigl4n6x0dfovvW/bwAA3trhLFliaviRNJSc2ZQSpbPOCU0lt9TfMyu9yIdiHzF76qgEim12N8JHWJ4PXHlGh+Zt9xzadlCYqcranEkZhbtXQzELlKCRtS0yzVQHW0cZtPSKagfLtwZ9Ysi5jxmLGVYdV+hrayl0U5CplnmLwFDo5+z3CJSCezZF4VpacyYVPPlR3h/TqsqqXm3Ndg2lLxvcAYctMaPS2KI4BzyDA7um2B6goZQyU/7zv67PrzayQCmRjDtT3rt/xbb9csuumoetUwXYo0U8GoptRJwvmORseCOqfPmFni7A5KWivHyhi/pfYSMsXRjZ7M+mMqKuNpzTOiqj3T2naSi+Z6XyZlJ2Z3LYxEgg2DTo7NcjzewaSpC2mc1Hn/u03yBQsiHBBR4fiUmgaNemByp4NJQAwaybirN5YfdfBGgo6rxtAT4U2/L+bvkRtFInkCZlTBO0cCRQePeHtmQ8S8XY62AYTJXgl6wVLFBKJGOxofbJ5R+GtDgjM1PDDwst9O/3voThGkpeiELYcMBLUaiP3WQVNBHM7SgD8ofagC1LVUQ1HfjTFqcrmFKsJq8m51n5ryOn5bVdR2dXf9G5dPTQY5s/KjDKS8vTZRnRAs49splhAG9EoGmUHtaR6pqYKVTVpqHovjwnyit4AKVMxVb/hTy3aTKtO7GxKWVt9/0hpr0oUXvZvCgsDusPygkxZ6syO1rSARMbzdtuuUU+z/oTMCxQSkSZvPwPU72sQ1ubAJhH+FEcubY0UZzyehSKDV0zsGkoRMFOeVUv/6jPI/5C2rrXtGd+mcM+sLW7u7/oeKEc57c5k7I6cttbgn0omTRZr2PcsMLy48aOXHe4R/Ch+M0gXs1iwFwJOPfIXb3BUFn9OZpG6QMWc6NCXyfLqKFoGpJ39QFn+69POhQUxYcSoGU55QVoKFlnUdZMgGO/byD43dO1BpuJMmjismeSaoCm2N7s+FCMnwoIGXCqcofKQavJBFlrWKBEQO+jh0mB4X/g6sVTdvl+w0zWKGYSW9SOd2Rurmc+gg8lZ9EMVH7APqpX2JbBiLsWkTVU2lCEOseQlgw27Oq2li9CrkU3eflHlAUfil1DmTKq3e1cwib8mRbRdNIU9vuFo97Rd/WZ135SdW0OWD9Ob3OmDsjrlC8uXx9N2wRKW1O66HhW+nZunn0y0qmg1QIKz8l2DUDhftgESnMmFejz8rQ3wzl6+nPuwqo2h7du8vJrz9mcsPpX9X1DAoRBmP9QXXuHLKMeJzeyQCkR9TD1hv+5u15yo7xGtNk1lLBG7U/jcVxHiELJC1jj5E3ntYXLtjalrU75/mze7XiKo7z0ukQ3edkmjAVNbBw3tAX7egdCJ7I1ZcjaCbW5Ji+fYJTJm9NkFcz9uTxGD2mW6e0diFO++cXXr29XV7/1WNBIVF+dIagTAiwaSogA7+nPup2gTaC0ZFIg8g8SnC8KEpGM8rI9J2WuksLd8jzVdZjq0J9zBAoFmNa8KyMUl9Hdn8PIDud56lqZt67CHTD634+BvEBrxqzxAoV2rfoPk9krbP6TGni1NxcL8HqBBUoE9PZxymEj5L7CzieXb3e3v/qhowDYwhvDhcKe7oJ5w2M2CZmJq/anQ6bK652bX4vKugLF7MgGCiulDm3NYCBnd6KWZvIyv0hBI70R7U0YyAlrCKa6Fpuj9u09PWjOkHH+g7r2TIAPpW8g747MwzQU4yKa8D7T3T6BopsmbQIlnxfIah2ZTRNTGrbJh7J1b0+hPMN1dPfnMLQ1gxSZR8Q5qYk0p1NGDQWQYcNWwe/8tigNJSSAwaqhpFNoSpF1IKRfu8k/2DOQw8h2JVBsbarwzIuCKHJ5tDQFL8sEAEOkmdXUbr0DMtP5pUCRZbDJq8H5yEmHYsyQFgBms9OE4a0Y2qqc8v5Rr8BDL7/t/m1zer+phYl6vlEfwf+SFwKpsCgvS1SOfo7WprS1fspBPKJdaWLmEW64hhIlysuuoQyXmuC+HrM5qODsTRdFD729x+lE7124EekUWU13yodiEpp9uYIPxjgBM29+djp6eHKghmIZMSuh09pkNxcNZAXamzMgMndA9y/a5G6bnljPQA5tTWk0Z1LmsOG80+b8x7M54QawpFL2AYYS3sqHYhvIqPfJqKFIk1drc9oqDDwaiuEcPVJwplPk+Ua9Ip93gizsAkWgJUBDUW1IaSim0OGwtu+avJrtGmOtYYFSAscdOsyNojKNuLbs7XVtrP4G98zK7Z6/besi6QvH6e1+IKSxqfzhGoomUHwN0tVQMmmrU77LNe05oznb5LwwgaJrRzbhYupb1BI0I+Rocm+P2WGtC0d/ufp8DMeR6zf9Ob/NlhBRwLGzq3tgMl94Z8EH+1DGDW3BFk1TcOqvm7zMnaTqZJW5yNYJNWdSaMmkQjsgU/6e/hzamtNFGohCzX1qyaSKTLppGWKfDjB5uebFjN0f5ZSnNBSzcG/OpNDWlEZfNm/UEPp9wq7oOgdyaG9OozWTMpq8lBAqmLz8705BQzGvXu38KoFiEnzeFY+L66jyqMEUC5QGRS2U+A/vPdy69IpCqfn+Rqs6vtHSTmvqZHYe6PP87f2in7PdlA6wRwuBdDo4bFhvyP4GWfCh2J3ySqC4jdqqaZjPr/DE7Zdg8lIdyih5H20RUCqdGr2bOvjrP3Yi0gYzScHkZXay5vMCb27dDwFnZQKT09wTnm014zj7jxg7BCu27veGbefz7jXaTBvK2W8SmgplDmpOmzUMHZtTvr05jeZM2uzUl5GFfoGT05YpCTJ5qXvdEhLl5WooASYvpT2YNAy/9uSnpz+H1qY0WpvMWo46v+tPMiyV0+KaHovrr65faRemQYjXJF5cRo9PoIRN1qwFLFAi8B8fPRF//rf3I50it5MxCYTJo9pcB6n/eFef8/C/cd4xAIArf/96Uf6fP7sGAPAv0g+jmzpUecNam6xRP3kBV0OxLXuu225tk+lam9LWUFf1IoyXYbPrdnZp5enmr+gmL/tkTpNj0smnOlubhqIHGPjPoTqMCcPbjKGmStapSaz+W/Hi2l0AgOdX70JHc8YNyDCdH7BH46g0h41ux0BOFEW+HTV+iKe+ftQ9bA2YwzGQy6MpQ2hpMguE1qYUjp0wDID5mXUP5NDWnEFLJmXswJRW3OzTgLK5QsShs1qBxQ+kTWxU+Uwo310uL4qeV382j5ZMytUeTOYk/R4aTV5KQ2lKGzUUdW3tFnPTQE5opkeThuL4stw6Gp5pn0cgs4Zy0DJxRBumjO4AUBhhKAGhc+MnTna/Oe8f9aoXolt2PoWZ9Q479vfh9r+sBVBw/OsvsCpv7NAW7O42d6L5vNBs0eYXU3+x/B1MLl8Y8do6ANV5njR5OABgj9ahl2LysgUZhC3Sp65rjIyw2mfRULI+/4J+ParDaG1KoymdMpovgIBRs/bnkNaMeUkTWWYmZY4yAwodmwpF1zvCbF64bc2mWfT7zHrG777IaCuTQMjnBXoH8m64rNGH0p9FW1MKQ1sz5pn2SkPxCxQtxLbF4n8BCs876MN0qp6uBuLrjF0fSpO9s9aFvklodfc7vqKWppRRw1HXppzqRqd8wLvXn82jtSntXkOY0DMJ955+55wsUA4i0ilCe3MaB/qcjkyZvg4Z1oqZU0e5ar6/we3uHkAmRZgxZRSAwohMsWN/wdw1bYwjvHQNpW8gByLg6EOG4o239xobXE4URkm2L7p5TF6WJdOdT6mazXrKLDd5ZDsAXycYYcVWhU1D0ev04ppdmHrlI1ixdX9RvlEdTnCEzSmvBFZbgIbS2pRCe3O6aCa66vzcAAvfiFMtEAo4frMHFm8qeh6q8x3Z0WwddW+Tq/+q86h6CCHQ3Z91/US2zljde1Mou2JALtNvcqqrjrNd5i9efVpg5bYDaG/OYHhbk1EbzEuB0tqU9nTE2Xze1VBaMmlrYEGv6qhb7Y5mJSBGdZijsPpzebRk0laBA3iXnTEJ+B6pibVm0sZ5KP45IP4ych6Tl8HPI4VeQUMpbrdRTV4qIIajvA4SmtIpvPCWY/ZYtf0AAGCrXMnVeblS2Od7+ToP9GNkRzNOnDQc750+BsccMtQ9tnlPD86/+Tn3bzXSUiPKTbu7cfNTqyEEcMKhw7Grq7+oI12wZhf2dA8gk0ohZZnpvqe7H5+9c5H7t9UpryJZDKr7tr29IHLMe4DPlOAREsGNXdfwdO2hP5d3tY+75ztf/Ht+9U4trdeH4r/P/jJdk5fWqfdqq9MOac0UmRDVNbmdh+8+mVYjeHbVTs/fy7Y40XqjO5qNJq/u/ixufmo1gMIAYmOnM1Fzd/cABnLCvce2iXbffWQ5gMKI1eaMdpzy6aLnrQSSEmj+kfVjb2wFADz+xlZs2t2DhWs7i8pQPha/BjOQK4QNN1vMZUDBB6ZMqCbt4vW39wIARnY0GdN09WXR2pTSRv/F93t/b9YNnzYtc+PMS0qjtcnslFedd4dlTs5APh8YbafMcsoHc8Bg4dC1KNP9Utc9rK1YoLyweice0D5qVitYoMRgb88Alm7eh91d/fj8rxcDAP7tnKMBAESEw0a1ux2K4neLNrov2NghLZ61oD7+s/metEp1Vg370tsXusfU6MRv6vnb214E4DhAm9IpozBYo/k7AJOfx2nQw9rsI95lW/ZhzJAWd4kZ/eUOW4jQW5cD7rY/8mx0R4tndQL92xqqzu3NzojUZvLyCwVdwKmOtLUpbfSB9LnmjeKONpvL42O3vgAAOHHicFz+vsMBFK/k+/UHlwAADhneiu7+nGvyVOw6UHj+E0c4gkMJR6WtTh3dASJgn+VePrvS+Ta5ahN+v9fe7gE8vWIH9nQPGM1O6tmpQBG/o3itbC89Azk31PqtHQc8abr7s2hvzmBYa5NnLo2KDgOc9txj0VDUwGj8sBY3n59v/N65l0pD8geWvLXjAI4cN9R91qY2caAv684z8Ztz1XVOGtlmdcqv31VIAxi+X6OFDZsCEPqyjhalhLfJTDp32TZ32/T+9Pb7fCjadVzyywX4tweXWP1t1YIFShms2n7AbYzvOmK0u3/GlJEeM81vF2wA4JhHAMcMor986mVV+DWUv5rqmMkmjWxzO3L9pdEbUWuTE9FjMnmpEbDC36jVpMpD5GjRb6bI5vJ4ZsUOfPDYcQV7db+uoRRMZjZnueI/H1/hbnvLcMIv1Uujrsk9rmbApwnD2jJGk9fanV34zh+XAdBWLvBoKNJH0uSMGP0aSsHkVWyr3ryn8E2RK887Bp9591QAdl/Ou48Yg1xeYNU2b0esT2B1NUJZx+37nXNMGN6KUe3NRdF/flQn53+e977ktLsNnd3Sx+HtbNR9Hy3Nh36hpwTq379rKqaMbjeeu6s/h46WNI4YOwRrdna5bXF/X9a9f4eNbsfanQeMWrO6b+OH2jWU4w91gga++kEnWEXXILbu7cVATuCIsR04dIRTxmbf+wQ4mpAreH3CQL1/U8e0F5nuFMpvOVX6Uv3X0jvg3AfAPDmzdyCHFhm+nUmRazJX+LVLU/Si+qyyawo13Ks9Fv9qtWCBEgPVMHUtQ41+AOCwUR3Y1dXvjnyv/h9vRNeojmZ09eeso4lMipDSJqK1NafR3pzGM//6fuMIR/e/tDen0ZQpdjQDxQLlukeXu9v7egfcvyePcjqPXV2FcnN5gY/d+gKyeYF3TBpRMC8YTF5jhrRYBUo+L3D3/HWee6GvY6Vs/vr91C9FmZ+a0ikMa20yduTf/sMb7na7weatAiPamzPoaPFqKOt2duEFaWIrTFIt5NXrmkmRG/Vji7w7cZITvLBul1c73NNTKMfvd/vFc05wxtihLRg7tAU79xcLFL1OR4x1osH0Tqo/m3c7pRlTRgZqKKOGmDUUNUn2n95/BK698ASZxj8I6cfwtmZMkJ35nu4BLF7fidc27nEd2CdOHI7egTxW+gJRAKfjzKTIXfbEr6Gs2Lofj77umN7GGYSOev4j2qj0VY0AABiYSURBVJutc5M6u/qxu3vAbdd+c+z2fX1u+TaT12OvbwHg+HpSVGzy6u7PGTVaxd6eAQxrawIROW3OP5iTdVYRniatdNH63bKezgBAaSh6Xfb2DGD9ri589KfPe/qFasECJQY//9QMAMBrm/a4+9QLAcAdzW3s7PZ0eA9+/nQnrWz4D7+6GXsMK+YSkUf1PtCXxYi2JmTSKbeT01Vi/Ut8LZk0mtKEzu7+IkfxermY4pnHjCs653ceXupuj5UNdsf+Qt02dHbjtU2OLXvSyDa3E7x34QY3TZfsbA4d0Yp9PQNGm/7LG3bj239Y6tbDL1B6+nPOMuRanl3aCF11FsPbmjCszSxQ1IgfKGgoaoT5wuqd+N2ijWjJpNDRnEaHT0N5/w+fwX0vOSPBwqcICrXRo9qIyI2Q+p70Z+zrHcCZP3wGgPPinzx5BIgKZhW3HFmfq847xo2GUh2E0l4njWzHIcNbMe/N7R4zzZJNezD9m4+5fx8qTWaqTfRn83jffz6NW55+CwDw2394J9qa0kVCT3Xek2R+fwekOr2hrU2ucNBt/wO5PHYe6Mf4YS2uVrty2378/R0vASiEXavJwFf8pvijUPt6shjamnHXp/JrKJu1CZ9KU9WFjrqPw1oz7vPyd8a/X+ysBvDOaY4VQddW9/UO4OUNTkc9dmgLhrc1GUf58950JiZ3NGfQlE4Vzb/qy+bR0ZJBU5qMzvK9PQOu1j2kJYP9vmfRKQdvU8d0oDmdKmrX+uDTvxjnL55b4x67ce5KnPFfz+DlDXvwwOLq+1RYoMRgpjRB3frMW+4+3URzmBwJrd/V7WoF3zz/WDffKOlc/Prvl+DyexYbz9HenMZWOXLa3zvgmg/Ub6fWCW/bV+gIjhjXgW37+vDIki2ehvb9x5bjgcWbcPrho3HH3/8VzjpmnFtPwPuSqhHQDq0j36BpN8cfOhwkO4lNuwsv/B9f2wwAmDK6A3lRPFET8H7X/JZLTsWo9mZX01u+ZR9e3rAHHc0ZTwesj+53d/cjRU6obSZFeH71Lk/5L6ze6dqiDxvV7i6V8+sX1yOXF7jklwuwZkcXRnc0g4gwpCVtnEcCFAYJ+nF9ALC3Z8AT8bVpdzc+f89i11f1mXdPQ2tTGoeP6cBiOboEnOipqx9ytNZPvvMwN+JPaR1DWjKYOWUkmjMpTBjeilxe4Lt/Wubm/4Y2h+mWS04t6khf3rDbDRIBnEHG1DEdWLer2xVMSzbtcf1uI9qbMG5oCzbtLjzjfb0DuP7xNwGoaDg5Ia+vWDMeN7QVM6aMBOAIlKkyyOCiUw4F4PiRAGC9T0NetK4T97y4HkNaM0aNt3cgh8/8yhFOHzpufFFY8Jtb9+FTty9wz5FOkdNZ+zpjpXmrCcq6H+jfH16G+15yBhitTWmM7mjB7u5+dzA0kMvjJ0+tctO3SnPsXk3oqPY7tLXJWZ6+v7g96QJlmEFovfF2IYhjmK98AFi62RnM3XLJqehocZbSUYOk/3qiYD5+fOlWd3vr3l709Odww/+twGsb91RlImRDCxQiOpeIVhDRaiK6slrnTacInzrtMPfvWy451XNcqdZXPbTEFSinaz4W9cIBwMK1ncikCP/0/iM8ZZx5zDg8/sYW5PIC+3uzblilim76+oNLcMvTq9E7kHM7jyf/5X0485jxbhl/fG2Lu/3zPzvC5YSJjj16wohWbOjsdpeAV53mf/zNiW4nvEHryNfIl/A3n3unW4dpYzowfVxh8p1aNub9Rzsv7tMrCsvN9GfzOO+m5/Dle19xrvubZ6GtOY3+XB4vrulEXzaHD//4LwCAZ1bswM8/PQMdzWmMaG/Cup2Fjuj51TuRF445Rq32+6MnVwJwOupLfrnATfvs1z+AMUOlNvjaZjcdULBDD2lpQu9A3u1o9ei7KfI53jN/Hf60xBGWuu/rA/I6b5p9MgDgPdc/7Ub/AcAxE5yyZk4ZhedW7cQnb3sRubzAtKsedUeow1qbCsv1yGVD5q/Z5UY9qU70rvnr3RGpvqDjkeOGFHWk2zVN45zjnfZw5Ngh6M/mXT+eMqsBzrddJo5s8wwOPvrTF9xtRxPzhjYDBY13/LAWjGhvxrDWDNbt6nKjslRbPO3w0WhrSuPdR4yBzsUyGGVjZ4/rwO/WNKBP/uJFd/vq8491n7caqNzxl8I1KKE1tDWDXz2/Dh/5idOW7nlxvZvmuEOHYdqYDixaVxDuv3/Z0V6UVjF6SDNyeeFqwk8s3Yof/p/Tbk6aPAJEhDFDWtw6CCHwKdnmTp48AkNaMh4trj+bxxd/+zI27e5xNayJI1qL/DwqiOfYCcMweVSbe28Vr2507ulfTXUGGtNGd+CVDV4TmJ95y7fjhrkrcPNTq3HhLc8Hfu4hKRpWoBBRGsAtAM4DcByATxLRcdU6//cuOtHdVk5RxXDNzKK+/TxZ0waUzVuRzQsc7tt3+hGjHWfj1Y/ihbd2uZ34sNbCt7r/64kVOO378/DAoo1IUaHcF648E4Az+e8vq3Ziq6YV/LN0bJ5+uPNyf/jHz2H7vl5s39eHDx47Hpe88zAMb2tCa1MKP/y/la7msmj9bozqaPYEHxw7YSje3tODn//5Lc8I/IITJ2B0RzOeXbUT+3oH0DuQw5a9PVguX5qPnTrJtYer0fkTS7e5UWIfPXUizjn+ECy99lx84OhxWLZlHwZyefz0mdV4eUPBzPilM6cDAH70pDOC1DtExSjNF/NjGaYLAGcd65j9lKDe3T2Ap9/cjje1YApluvzfVzfji799BSu27ndHhb//wumudjJr2qii8wIFU5IyIc5fswvf1/xWh8uBRZsmNBas7fTk0c2TZ93wDO6evw5HSiE+Zkizq2WOH9aCXz2/Dr0DOVeLmjllJL71YeeVUH4/FYK9eF2nW+7EEW2YNLIda3d24cU1jkBcLcPhP3+GM9BRkX9rdx5APi+wfMs+t8NXz3JURzN+/WLBBKpz0SmH4i+rd+JAXxbPrdqBfb0DrvkWcExJY4e2eNrRK/JZp8gZvIwb2opMirB5Tw9yeYHHXi+MxlWElSpzyaa92HWgD9/6X8ef9uUzjwQATB3djtU7DmBPd7/HBPiDj54o76lz35Xg/f6jjpbW3pzG7y4/DYDzbJT2/vKGPe4k5VMmj0BLJoXfv7zJFf4L13biT0ucgZ0KN1dakGLznh7c9uwanDBxGEZ1NGPamA6Phr51b6+roaoPu73vqLF4aV0n7p6/Dtv39+GCd0xAe3MaKQIWXn0WPjnrMLy9p8czcJgwwttPVYJMeJK6ZRaA1UKINQBARPcBuBDAssBcCXLp6VNw9/z17suv869nH+WObACvSawpncJNs0/GV+571d33jknDsfDqs1xT0gUnHoqv/u4197iyoRIRnvv6B/De/3wagGNDVuqzynvoiDacd8IheOyNrXh6xQ6cJB3Dt316hhtaef6JhwBwzCSz/mMeAOA908e45XztQ0fjukeX49hvP+7W4ZTDRrjnAJwOpLs/h+8/9qa777VrzgYRYfKodjyyZAseWVLQkpzrmoBv/3VB7t/6d6dixveexJfvfQXpFOEz75qK//fhwvEzjxmH/3nlbRz7rcddZ+e35fGjxhe0ialXPuI5z/dlB6GbpBQ/+9QMnHuCc/2Hj3U69b+67klPmnHSnq5zzo+edbfVBFWgEBWnc+vfnYrpsn7jhxeO/1IbVT/x1fcBKIRFr93Z5XbSSst77/SxmDyqDRs7e7Cxs8f1P33qtMM8gxo1aDjmW4Xndf8/nu461pXgvPKh19HZ3e+aHr974fEAgEOHt2LL3l7Mvq2gFbzvqLG4Ui4VNKK9GS2ZFG55+i3XN6NQUVinHzEa6+QoWGltirOOGY97F27ECdc8UXSvvnfRCUilCOefcAjumr++6Fk+8Pl3AYC7MrS/Dmu/f767PX3cUKyUEXUzvld4pv8gw7vbmtNYvf0ATr52rnvsb06ZiNmzHIvD0VJDPf/m5/Cdvz4Ob+/pwWGj2vHoV97raovD2prw55U7PPW89PQpSKUIZx9/CH7257cw546FaG1K4ekVO9w0Sji3t6SxbV8fZn7vSVzxgSNwrRQWysdz+JgOPPTy27jl6dU4ctwQ16Sla8+zpo3CnS+sc9vDu44YjRs+cRIyKedDY185a7rHv/nRUya6ptFK0rAaCoCJAHSv0ya5r2r8+0eOxyvf+pDrFNX5ohw9A8CXz5pedPzCkyfiH89wGvn3P3oijho/FOOGtbrCqTmTwr3/cJqb/r8/cZK7PXlUO9b8x/n4mowIAQrzYBTKXwPAdaafPHmEu4+IMO9rZ7jrRQHA0VoHPeddU4s6yi+c4TXL/d07p3j+bkqT2wl/SY4I/XznI8d7OurRQ1pwwYkTADjOzQ8dN96T/r3TxyCjLTH/oePG47PvmQbA6WDUqFFnyXfOxidnFUyS3/rwcfjEzEnu30o7AYCTJo2An8f/+b1Y+M0Pgojw2rfPLjquAhIUROTOJQGcqKbz5DUBwMWnToKfl7/1IdfUBQDfOPcYz/Fpmln0yX85w/PsAOBvTvGWeYXhfuufMjhOrtcFFEK2v3vRCfj06VMBAGcd673vADDZp3lfJu+7zqvf/pB7nv/4mxNx+fsOxxUfOAIXnux9FT943Hh8+rQpRflf+uYH8Sm5/3Jf+wKAuz87y/XPAAVBq/jFpTM9g5x3yMGTzsvf+pDre7zgxEM9x0a2N+E/L36H+/fh2n1XoedXn3+MpzO+9PQpHu3qmEOGulFw/ygF1/w1u1xhMnFEG+ZfdSYmydUlTjnMuZ6dB/rw739cBiGAr5w13Y3w+vA7nDr+1xMr8I/3LMbq7Qdw8YxJ+NOX3uOe8z3Tx7gBIe+dPgYfPWUSWjJpVws6ZHgr/vSl9+D0w0dj+bXn4oa/9Qr4SkH1+KH7KBDRxwGcI4T4nPz70wBmCSG+5Et3OYDLAeCwww6bsX79+qKyKsXurn784dW38Ym/muw6NXXyeWdBQD0qqVQWrevEhBFtng4NcGy7d76wDh0tGdz27Bp89YNH4YJ3TDCW8eDiTRjd0Ywzjhrr6YSEcL4BQfB+u9zPmh0HMLqjBcPaMp6XO58X+NGTK7GhsxunThmJT8ycbL3WP7z6Noa0ZIwd257ufjy5fDte2bAbXzzzSEwY7r3W1dsPYMveHry4Zhcue8/hrnnQzxNLt+LUw0YWaZR92Rya0yksWNuJEyYON47k+rI5nH/Tc5g1bTSuPPcYDG9vKkrz1o4D+N6fluHaC0/wmDgVb+/pwZPLtuHYCcOKzGRCCKzb1Y11u7qwr2egqENWdPVl8daOA3iHTxAK4UQavbx+N17btBefPn2K8ToWr9+Nj936As4/8RDcPPsUjwa380AfFqzpxA1zV+Co8UPxvYtOwOgh3nv17ModWLPjAE6dMhLtzRnX/BYFIQQWru3EIcNbcftf1uLS06fgyHFDPWn29w5g9fYDmL9mFy49fWrRNXT1Zd0gjbFDWlwTkKIvm8NTy7ejtTmNHfv6MGvaKI/PEnAGLmt3HsCojhb0ZXNF7Qlw5gK9tHY3Vm7bjy+8/whju3114x6s2rYf5584wdX8AWe+yLLN+zBldDs+eOx4jOxoLrqOO59fi75sHkeNH4qhrRnPABBwVr5YsLYTnV39OGr8UFw8Y1LRck1CCAzkRNH+SkBEi4UQM0PTNbBAOR3Ad4QQ58i/rwIAIcT3bXlmzpwpFi1aZDvMMAzDGIgqUBrZ5PUSgOlENI2ImgHMBvBwjevEMAwzaGlYp7wQIktEXwTwBIA0gDuEEEtDsjEMwzAVomEFCgAIIR4F8Git68EwDMM0tsmLYRiGqSNYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEqFhJzbGgYh6AASFFg8HsDfg+GEAzKvfRS+j0seB8HpWow7l3stq1OFgeN71UMcoaQ6G590IdUziHKbjRwshhpoSexBCDJp/AHaEHL+tnPwRy6jo8YSuM4k6lHUvq1SHhn/e9VDHwfK8G6GOlXreABaFnVcIMehMXntCjv+xzPxRyqj0caD860yiDuXey2rU4WB43vVQxyhpDobn3Qh1TOIcUa7DyGAzeS0SEdajqVT+atEI9eQ6JkMj1BFojHpyHcs/72DTUG6rcf5q0Qj15DomQyPUEWiMenIdyzzvoNJQGIZhmMox2DQUhmEYpkIMeoFCRHcQ0XYiekPbdxIRzSei14noj0Q0TO5vIqK75P7l6hss8tgzRLSCiF6V/8aZzleFOjYT0a/k/teI6P1anhly/2oiupn0r2HVTx0reR8nE9HT8tktJaKvyP2jiGguEa2SvyO1PFfJ+7WCiM7R9lfkXiZcx7q5l0Q0WqY/QEQ/8ZVVF/cypI4VuZcx6vghIlos79diIjpTK6ti73dkooSCHcz/ALwPwKkA3tD2vQTgDLn9WQDflduXALhPbrcDWAdgqvz7GQAz66COVwD4ldweB2AxgJT8eyGA0+F8hPExAOfVYR0reR8nADhVbg8FsBLAcQD+E8CVcv+VAK6X28cBeA1AC4BpAN4CkK7kvUy4jvV0LzsAvAfA5wH8xFdWvdzLoDpW5F7GqOMpAA6V2ycAeLvS97GUf4NeQxFCPAug07f7aADPyu25AD6mkgPoIKIMgDYA/QD21VkdjwMwT+bbDifMcCYRTQAwTAgxXzit724AF9VTHZOqS0AdtwghXpbb+wEsBzARwIUA7pLJ7kLhvlwIZwDRJ4RYC2A1gFmVvJdJ1TGJuiRZTyFElxDiLwB69XLq6V7a6lhJYtTxFSHEZrl/KYBWImqp9PsdlUEvUCy8AeAjcvvjACbL7QcBdAHYAme26g+FEHon+iupDn+rCuqmrY6vAbiQiDJENA3ADHlsIoBNWv5Ncl891VFR8ftIRFPhjPYWABgvhNgCOC84HK0JcO7PRi2bumdVuZdl1lFRL/fSRj3dyzAqei9j1PFjAF4RQvShNu93ESxQzHwWwBVEtBiOGtov988CkANwKBzzwteI6HB57O+EECcCeK/89+ka1fEOOI1pEYAfAXgBQBaOGuyn0iF+pdYRqMJ9JKIhAH4P4J+FEEEapu2eVfxeJlBHoL7upbUIw75a3csgKnovS60jER0P4HoA/6h2GZJVPYSXBYoBIcSbQoizhRAzANwLxy4NOD6Ux4UQA9JU8zykqUYI8bb83Q/gt6iw2cFWRyFEVgjxVSHEyUKICwGMALAKTgc+SStiEoDN/nJrXMeK30ciaoLz4v5GCPGQ3L1NmgyUCWa73L8JXs1J3bOK3suE6lhv99JGPd1LK5W8l6XWkYgmAfgfAJcKIVTfVPX32wQLFAMqgoOIUgD+H4CfyUMbAJxJDh0ATgPwpjTdjJF5mgB8GI65p+p1JKJ2WTcQ0YcAZIUQy6TavJ+ITpPq+qUA/lBPdaz0fZTXfTuA5UKIG7RDDwOYI7fnoHBfHgYwW9qopwGYDmBhJe9lUnWsw3tppM7upa2cit3LUutIRCMAPALgKiHE8ypxLd5vI0l7+RvtH5yR8xYAA3Ck/GUAvgIn2mIlgB+gMAF0CIAH4DjDlgH4N1GIDlkMYIk8dhNkpE0N6jgVwAo4zr0nAUzRypkJ50V4C8BPVJ56qWMV7uN74JgBlgB4Vf47H8BoOEECq+TvKC3PN+X9WgEtaqZS9zKpOtbpvVwHJ3DjgGwjx9XhvSyqYyXvZal1hDMw69LSvgpgXKXf76j/eKY8wzAMkwhs8mIYhmESgQUKwzAMkwgsUBiGYZhEYIHCMAzDJAILFIZhGCYRWKAwTJ1ARJ8noktLSD+VtNWdGabWZGpdAYZhnMlzQoifhadkmPqFBQrDJIRc3O9xOIv7nQJnQuelAI4FcAOcibE7Afy9EGILET0DZx2zdwN4mIiGAjgghPghEZ0MZ2WBdjgT1T4rhNhNRDPgrIXWDeAv1bs6hgmHTV4MkyxHA7hNCPEOOJ82uALAjwFcLJw1ze4AcJ2WfoQQ4gwhxH/7yrkbwDdkOa8DuEbu/xWALwshTq/kRTBMHFhDYZhk2SgKayz9GsDVcD6ENFeueJ6Gs0SN4nf+AohoOBxB82e56y4ADxj23wPgvOQvgWHiwQKFYZLFv5bRfgBLAzSKrhLKJkP5DFM3sMmLYZLlMCJSwuOTAF4EMFbtI6Im+S0LK0KIvQB2E9F75a5PA/izEGIPgL1E9B65/++Srz7DxIc1FIZJluUA5hDRz+GsFPtjAE8AuFmarDJwPiq2NKScOQB+RkTtANYA+Izc/xkAdxBRtyyXYeoGXm2YYRJCRnn9SQhxQo2rwjA1gU1eDMMwTCKwhsIwDMMkAmsoDMMwTCKwQGEYhmESgQUKwzAMkwgsUBiGYZhEYIHCMAzDJAILFIZhGCYR/j9NH0xzBcD/BAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,9 +2261,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8VPWZ+PHPM5P7lQRCuAQFAS+IigVRq21tbdFqt9qtbuluV3Zrf3Stve3P7m7tdteuXbfVXtxtu9qfrbTq2irVbaWtl+KtVmvBqCAgtwgIgQCBhBBymcnMPL8/zveESZjMTJKZZAjP+/Wa10y+c87JmUM4zzzfq6gqxhhjTDoCo30Cxhhjjh8WNIwxxqTNgoYxxpi0WdAwxhiTNgsaxhhj0mZBwxhjTNosaBhjjEmbBQ1jjDFps6BhjDEmbXmjfQKZNmHCBJ0+ffpon4YxxhxXXn311QOqWpNquzEXNKZPn059ff1on4YxxhxXROTtdLaz6iljjDFps6BhjDEmbWkHDREJisjrIvIb93O1iKwUka3uuSpu25tFpEFENovIZXHl80VknXvveyIirrxQRB525atEZHrcPkvc79gqIksy8aGNMcYMzWAyjS8AG+N+/jLwjKrOBp5xPyMic4DFwJnA5cBdIhJ0+9wNLAVmu8flrvx6oFVVZwF3Are7Y1UDtwDnAwuBW+KDkzHGmJGVVtAQkTrgSuDHccVXAfe51/cBV8eVP6SqIVXdDjQAC0VkMlChqi+rt4jH/f328Y/1CHCpy0IuA1aqaouqtgIrORpojDHGjLB0M43/BP4RiMWV1apqE4B7nujKpwK74rZrdGVT3ev+5X32UdUI0AaMT3KsPkRkqYjUi0h9c3Nzmh/JGGPMYKUMGiLyIWC/qr6a5jElQZkmKR/qPkcLVO9R1QWquqCmJmU3Y2OMMUOUTqZxEfBhEdkBPAS8T0T+B9jnqpxwz/vd9o3AtLj964A9rrwuQXmffUQkD6gEWpIcy4xB6xrbeH1n62ifhjEmiZRBQ1VvVtU6VZ2O18D9rKp+AlgB+L2ZlgCPudcrgMWuR9QMvAbv1a4Kq11ELnDtFdf128c/1jXudyjwFLBIRKpcA/giV2bGoP94fCNf/82bo30axpgkhjMi/JvAchG5HtgJXAugqhtEZDnwJhABblTVqNvnBuCnQDHwhHsA3As8ICINeBnGYnesFhH5OvCK2+5WVW0ZxjmbHHawI0RAEtVIGmNyxaCChqo+DzzvXh8ELh1gu9uA2xKU1wNzE5R344JOgveWAcsGc57m+NTSEaa8KH+0T8MYk8SYm3vKHJ9iMaW1s4f8oE1SYEwus/+hJie0d0eIxpTunmjqjY0xo8aChskJLZ1hALp7Yim2NMaMJgsaJie0dLigEYnidZwzxuQiCxomJ/hBQxXCUcs2jMlVFjRMTmh1QQOsisqYXGZBw+QEv00DIGSN4cbkLAsaJidYpmHM8cGChskJB+ODRsQyDWNylQUNkxP6ZhoWNIzJVRY0TE5o6QwTDHjzTln1lDG5y4KGyQmtHWEmVRQBlmkYk8ssaJiccLAjzORKCxrG5DoLGmbU9URjtHdHmDKuGIDuiFVPGZOrLGiYUdfqxmhMHmeZhjG5zoKGGXWtHT0ATKn0Mg0b3GdM7koZNESkSERWi8haEdkgIv/myr8mIrtFZI17XBG3z80i0iAim0Xksrjy+SKyzr33PbfsK25p2Idd+SoRmR63zxIR2eoeSzBjjp9pTOpt07DqKWNyVTqLMIWA96nqERHJB14UEX+Z1jtV9dvxG4vIHLzlWs8EpgBPi8ipbsnXu4GlwJ+Ax4HL8ZZ8vR5oVdVZIrIYuB34mIhUA7cACwAFXhWRFaraOryPbXKJXx1VVVLQ52djTO5JmWmo54j7Md89ks1dfRXwkKqGVHU70AAsFJHJQIWqvqze3Nf3A1fH7XOfe/0IcKnLQi4DVqpqiwsUK/ECjRlDwq7hu6QgSDAgNiLcmByWVpuGiARFZA2wH+8mvsq99VkReUNElolIlSubCuyK273RlU11r/uX99lHVSNAGzA+ybH6n99SEakXkfrm5uZ0PpLJIf5U6AV5AYryAlY9ZUwOSytoqGpUVecBdXhZw1y8qqaZwDygCfiO21wSHSJJ+VD3iT+/e1R1gaouqKmpSfpZTO7xM438YIDC/KBVTxmTwwbVe0pVDwHPA5er6j4XTGLAj4CFbrNGYFrcbnXAHldel6C8zz4ikgdUAi1JjmXGED9oWKZhTO5Lp/dUjYiMc6+LgfcDm1wbhe8jwHr3egWw2PWImgHMBlarahPQLiIXuPaK64DH4vbxe0ZdAzzr2j2eAhaJSJWr/lrkyswY0uNXTwUDFOUHrU3DmByWTu+pycB9IhLECzLLVfU3IvKAiMzDqy7aAXwaQFU3iMhy4E0gAtzoek4B3AD8FCjG6zXl98K6F3hARBrwMozF7lgtIvJ14BW33a2q2jKMz2tyUCgu0yjMD9o4DWNyWMqgoapvAOcmKP/rJPvcBtyWoLwemJugvBu4doBjLQOWpTpPc/zyG8IL8wIU5Vv1lDG5zEaEm1EX3xBelGcN4cbkMgsaZtSFIzGCASEYEC/TsDYNY3KWBQ0z6nqiMQqC3p9iUX7QqqeMyWEWNMyoC0diFOTFBw3LNIzJVRY0zKgLR+ODhjWEG5PLLGiYUReKHK2eKsyzLrfG5DILGmbUHVM9ZQ3hxuQsCxpm1PVtCA/QE1WisWQTKRtjRosFDTPq+mcaYGtqGJOrLGiYUdenIdw9+1OLGGNyiwUNM+rCkRj5QW8WfMs0jMltFjTMqPOqp7xgYUHDmNxmQcOMunBU+zSEAzZWw5gcZUHDjLpwJEqha8so9DMN63ZrTE6yoGFGXd+GcKueMiaXWdAwoy4ciR1TPRWy6iljclI6y70WichqEVkrIhtE5N9cebWIrBSRre65Km6fm0WkQUQ2i8hlceXzRWSde+97btlX3NKwD7vyVSIyPW6fJe53bBWRJZgxJxyJkZ/n9Z4qdJmGdbk1Jjelk2mEgPep6jnAPOByEbkA+DLwjKrOBp5xPyMic/CWaz0TuBy4yy0VC3A3sBRv3fDZ7n2A64FWVZ0F3Anc7o5VDdwCnA8sBG6JD05mbOiJKgVB70/E73rrrxtujMktKYOGeo64H/PdQ4GrgPtc+X3A1e71VcBDqhpS1e1AA7BQRCYDFar6sqoqcH+/ffxjPQJc6rKQy4CVqtqiqq3ASo4GGjNGxI8Iz3fVVBY0jMlNabVpiEhQRNYA+/Fu4quAWlVtAnDPE93mU4Fdcbs3urKp7nX/8j77qGoEaAPGJznWiNtxoIPv/G4zXrwzmaKqfRrC891zJGrX2ZhclFbQUNWoqs4D6vCyhrlJNpdEh0hSPtR9jv5CkaUiUi8i9c3NzUlObeie2rCX7z/bwIEj4awc/0QVdhlFYW+mIX3KjTG5ZVC9p1T1EPA8XhXRPlflhHve7zZrBKbF7VYH7HHldQnK++wjInlAJdCS5Fj9z+seVV2gqgtqamoG85HS1hmOuudIVo5/ogq7Bm8/WOQHrHrKmFyWTu+pGhEZ514XA+8HNgErAL830xLgMfd6BbDY9YiagdfgvdpVYbWLyAWuveK6fvv4x7oGeNa1ezwFLBKRKtcAvsiVjTg/WHSEbPxAJvW4aii/y61fPWVBw5jclJfGNpOB+1wPqACwXFV/IyIvA8tF5HpgJ3AtgKpuEJHlwJtABLhRVf077Q3AT4Fi4An3ALgXeEBEGvAyjMXuWC0i8nXgFbfdraraMpwPPFSWaWSHn2n4c08d7T1lbRrG5KKUQUNV3wDOTVB+ELh0gH1uA25LUF4PHNMeoqrduKCT4L1lwLJU55ltXS5odIQt08iko0HDZRpWPWVMTrMR4WnyM42OkGUamRSOetfVDxqBgJAXEAsaxuQoCxpp6uyxoJEN/sjvguDRjnJ5QbHqKWNylAWNNHW6YNFp1VMZ1dsQnnf0TzE/GOittjLG5BYLGmnqrZ6yhvCM6m3TCAZ7ywqCASIxCxrG5CILGmnqsuqprOjfEA5eptETseopY3KRBY002TiN7OjfEA5+m4ZlGsbkIgsaabJxGtnRf0Q4eNVTNo2IMbnJgkYaVDWuTcMyjUwKu4bwwn7VUzZhoTG5yYJGGsLRGNGYdxPrtDaNjErUEJ6fZ9VTxuQqCxpp6IrLLqxNI7MGagi36iljcpMFjTTEj82wLreZFY4c2xCeHwhYpmFMjrKgkQY/aATEBvdlmp9RxDeEe9VT1qZhTC6yoJEGv8dUdWmhjdPIsIFGhEcs0zAmJ1nQSIOfXdSUW9DItKNzT/Vv07BMw5hcZEEjDX5D+ISyAjp7osRidkPLlHAkRkEwgLculyffBvcZk7MsaKShN9MoK0QVuiPWrpEp4UisT9UUuGlELGgYk5PSWe51mog8JyIbRWSDiHzBlX9NRHaLyBr3uCJun5tFpEFENovIZXHl80VknXvve27ZV9zSsA+78lUiMj1unyUistU9ljAK/DaNmvJCwLrdZlI4Gu3TCA42uM+YXJZOphEBblLVM4ALgBtFZI57705VnecejwO49xYDZwKXA3e5pWIB7gaW4q0bPtu9D3A90Kqqs4A7gdvdsaqBW4DzgYXALW6t8BHlT1Y4ocwPGtaukSk9EU2Yadg4DWNyU8qgoapNqvqae90ObASmJtnlKuAhVQ2p6nagAVgoIpOBClV9WVUVuB+4Om6f+9zrR4BLXRZyGbBSVVtUtRVYydFAM2L8zKI307CxGhkTjiaqnrI2DWNy1aDaNFy10bnAKlf0WRF5Q0SWxWUAU4Fdcbs1urKp7nX/8j77qGoEaAPGJznWiOoKRxCB6tICwMZqZJLfEB7PmxrdgoYxuSjtoCEiZcCjwBdV9TBeVdNMYB7QBHzH3zTB7pqkfKj7xJ/bUhGpF5H65ubmpJ9jKDrDUYrzg5QW5gFWPZVJoUiMgrxgnzKvIdzaNIzJRWkFDRHJxwsYD6rq/wKo6j5VjapqDPgRXpsDeNnAtLjd64A9rrwuQXmffUQkD6gEWpIcqw9VvUdVF6jqgpqamnQ+0qB09kQpKQhS1hs0LNPIlHA01md9cPDWC++JxfBqMY0xuSSd3lMC3AtsVNXvxpVPjtvsI8B693oFsNj1iJqB1+C9WlWbgHYRucAd8zrgsbh9/J5R1wDPunaPp4BFIlLlqr8WubIR1RWOUlwQpKTA+0ZsbRqZ0zNAl1tVemcWNsbkjrw0trkI+GtgnYiscWVfAT4uIvPwqot2AJ8GUNUNIrIceBOv59WNqup/Nb8B+ClQDDzhHuAFpQdEpAEvw1jsjtUiIl8HXnHb3aqqLUP7qEPXEYpQkp/XWz1l06NnTjgaoyi/b9DIc20cPVGlX82VMWaUpQwaqvoiidsWHk+yz23AbQnK64G5Ccq7gWsHONYyYFmq88ymrp4oJYVBSgv9TMOqpzIlHIlRUdT3z9AftxGOxijGooYxucRGhKehM+y1aRQEA+QFxBrCMygUiVKU3zcw+NVVNmmhMbnHgkYavN5TeYgIJQVBCxoZ1N0T67PUK3htGoD1oDImB1nQSENXONLbCF5RnM/hbgsamRKKRCns13CRF/Cqp2yAnzG5x4JGGjpc9RTA+NICDnaER/mMxo5Q5NiGcL96yqYSMSb3WNBIg9/lFqCqtIBWCxoZ090TpTD/2MF9gE1aaEwOsqCRhu4eb0Q4eFOJtFjQyAhVJRRJ1qZhmYYxucaCRgqRaIxITHvr3b3qqdAon9XY0BNVVEkQNI52uTXG5BYLGin4N65CV+9eXVpId0+sd40NM3Qht5hV/y63vZmGTVpoTM6xoJFCqMcFDfdteLyb6fbgEauiGq7uftfWZ11ujcldFjRS6M008o62aQDWrpEBfqbRv8utXz3VE7NMw5hcY0EjBT/T8LuBVvlBo9OCxnCFIn2r/nxWPWVM7rKgkcLRb8N9q6darHpq2I5W/Q3QpmHVU8bkHAsaKfR+G3ZBo7rMqqcypdsPyMdkGjYi3JhcZUEjhd5Mw/XwKS/MIz8oNio8A/p3MvDZOA1jcpcFjRT6Zxoi4gb42ViN4Rqoy63ffmTVU8bkHgsaKfhBI351uaoSGxWeCam73FqmMRi7WjptiVyTdeks9zpNRJ4TkY0iskFEvuDKq0VkpYhsdc9VcfvcLCINIrJZRC6LK58vIuvce99zy77iloZ92JWvEpHpcfsscb9jq4gsYYQlqkIZX2aTFmbCQF1u86xNY9C27GvnXXc8x0sNB0f7VMwYl06mEQFuUtUzgAuAG0VkDvBl4BlVnQ08437GvbcYOBO4HLhLRPy7wt3AUrx1w2e79wGuB1pVdRZwJ3C7O1Y1cAtwPrAQuCU+OI2ERDe26tJCm7QwA/pX/fkKgjbL7WCta2wDYNPew6N8JmasSxk0VLVJVV9zr9uBjcBU4CrgPrfZfcDV7vVVwEOqGlLV7UADsFBEJgMVqvqyejn0/f328Y/1CHCpy0IuA1aqaouqtgIrORpoRkQ4wY3NpkfPDD9oDDSNiM1ym76G5iOAV0VlTDYNqk3DVRudC6wCalW1CbzAAkx0m00FdsXt1ujKprrX/cv77KOqEaANGJ/kWCMm0QC06tIC2rsjvQHFDE2oJ3GX22BACIhVTw3G1n1e0NhpQcNkWdpBQ0TKgEeBL6pqshxYEpRpkvKh7hN/bktFpF5E6pubm5Oc2uD1Bo3g0W/DVTaVSEYMVD0FkBcMWPXUIDTsbwcsaJjsSytoiEg+XsB4UFX/1xXvc1VOuOf9rrwRmBa3ex2wx5XXJSjvs4+I5AGVQEuSY/Whqveo6gJVXVBTU5POR0pbKMEAtLqqYsD+gw5XqCeKyNE2jHgFwQA9EaueSkd3T5SdLZ0EA0JjaxexmF03kz3p9J4S4F5go6p+N+6tFYDfm2kJ8Fhc+WLXI2oGXoP3aleF1S4iF7hjXtdvH/9Y1wDPunaPp4BFIlLlGsAXubIR0zv3VNyNbVZNGQDbXD2yGZputwCT60TXR35QiNiEhWnZfqCDmML8k6sIRWI0H7ExRCZ78tLY5iLgr4F1IrLGlX0F+CawXESuB3YC1wKo6gYRWQ68idfz6kZVjbr9bgB+ChQDT7gHeEHpARFpwMswFrtjtYjI14FX3Ha3qmrLED/rkISjMQqCAQKBoze2KeOKKcgLsO1Ax0ieypgT6oke093Wlx8MWJtGmrbu9768XHr6RFZvb2FnSye1FUWjfFZmrEoZNFT1RRK3LQBcOsA+twG3JSivB+YmKO/GBZ0E7y0DlqU6z2wJ9Ry7HGkwIJwyoZS39lumMRyJlnr15QcDhK16Ki0N+9oJCLzntBq+8cQmdh7s5Lzp1aN9WmaMshHhKYQi0T6jwX2n1JRapjFMoUjsmO62vvygWKaRpobmI5xUXcKMCaWIwK5Wa2sz2WNBI4WBvg3PrCljZ0undbsdhu6eaNJMw4JGeg4cCVNbUURhXpDJFUXWQcNklQWNFEKRWO8Mt/FOqSklGlN2tli2MVTetU0WNKx6Kh2d4QilhV5N87TqEhvgZ7LKgkYK4Ujib8MzXQ+qhv0WNIYqFEnSEJ5nmUa6OkNRSgq86zhlXDFNbd2jfEZmLLOgkUIoEkvYpjFjQikA2w5YY/hQhXpiFA2UaQSsTSNdneEopQVepjGuJJ9DnT2jfEZmLLOgkUKi3lMA5UX51FYU8uzG/XT3RBPsaVLpTpZpWJtG2jrCEUoKvetYXVLAkZBNcWOyx4JGCsmqUG76wGm8urOVv/nJarvBDcFAARn86ilr00hFVftmGm6Km0OdNsWNyQ4LGimEowPf2P7ivGnc+uEz+dO2Fup3tI7wmR3/knW5LbAut2kJRWJEY9on0wBotSoqkyUWNFII9Qzcwwdg0ZmTANjqJowz6UvV5daqWFLrDHtVo36mUVWSD9hkmiZ7LGikEIrEEk6o55tYXkhlcT6b9lrQGKxkI8IL8wK9s+CagXWEIgAUu95TVVY9ZbLMgkYKydo0AESE02rL2WJBY9BCkWjCMTDgLcxkHQxSOzbTcNP2W9AwWWJBI4VkA9B8p04qY/O+dryJeU06VNVr0xgg0yjKD9JlQSOljrCXafhtGuNc9ZQtR2yyxYJGCuEkVSi+02rLae+OsPewDapKVzgaQ5WkmYY/Lb0ZWFe/TKMoP0hJQdAawk3WWNBIwat3H7h6CuC0SRUAbLYqqrQlW7UPoCjfW7kvagsKJeW3afgjwsGrorJMw2SLBY0kIu6mlWhEeLxTa70pRSxopM/PIpJlGnB05USTWG+bRuHRVQ6qSwtotTYNkyUWNJJI9W3YN66kgNqKQgsag+A3cg90bYtd0PCrX0xifptGaVymMa4knxarnjJZks5yr8tEZL+IrI8r+5qI7BaRNe5xRdx7N4tIg4hsFpHL4srni8g699733JKvuGVhH3blq0Rketw+S0Rkq3v4y8GOmHSDBsDsieW9K6iZ1NKpngJvSVgzsM6QF1RL+mUa1uXWZEs6mcZPgcsTlN+pqvPc43EAEZmDt1TrmW6fu0TE/wp0N7AUb83w2XHHvB5oVdVZwJ3A7e5Y1cAtwPnAQuAWt074iPEHlw1UhRJv1sQy3mo+Yj2o0uRXOw3UXuRXT1m32+T8TKM4v2+bhg3uM9mSMmio6gt463an4yrgIVUNqep2oAFYKCKTgQpVfVm9u+r9wNVx+9znXj8CXOqykMuAlaraoqqtwEoSB6+s8W9syQb3+WZOLKMzHLVpqdPkZxoDzXLrBxOrnkquMxylKD9AMG4N+6qSAtq7IzYNi8mK4bRpfFZE3nDVV34GMBXYFbdNoyub6l73L++zj6pGgDZgfJJjjZjeKpQU4zQAZvWur2FVVOk42qaRONPwRzhbQ3hyneFIb3dbX1WpN1bDpkg32TDUoHE3MBOYBzQB33HlkmBbTVI+1H36EJGlIlIvIvXNzc3JzntQenv4pOhyC171FFjQSFeqgOwP+uu2sRpJdYaivQP7fFW9kxZaFZXJvCEFDVXdp6pRVY0BP8JrcwAvG5gWt2kdsMeV1yUo77OPiOQBlXjVYQMdK9H53KOqC1R1QU1NzVA+UkJH691TX6YJZQVUFufT0GxBIx2hFL2nrE0jPR2JMg0/aFi7hsmCIQUN10bh+wjg96xaASx2PaJm4DV4r1bVJqBdRC5w7RXXAY/F7eP3jLoGeNa1ezwFLBKRKlf9tciVjZjwIHpPiQizJpZZppEmf3xBSb8bns8PGjaVSHKd4WifgX1wtHrKMg2TDYn/x8YRkZ8DlwATRKQRr0fTJSIyD6+6aAfwaQBV3SAiy4E3gQhwo6r6/+tvwOuJVQw84R4A9wIPiEgDXoax2B2rRUS+DrzitrtVVdNtkM8Ivwol1eA+36yaMp7euI99bjqR2oqirJ3b8c4PBv1veL7i3kzDqqeS6QhF+gzsAxhfWgjAgSMWNEzmpQwaqvrxBMX3Jtn+NuC2BOX1wNwE5d3AtQMcaxmwLNU5ZkuqbqH9zZpYxsP1u7jkW89z8vgSnvziu7N5esc1v1dU8QBBo3echmUaSXWGo0woK+xTNr7Mq546cCQ0GqdkxjgbEZ7EYHpPAZwx2ZuDqqQgyKa97TTYwkwD6q2eGmAMTKG1aaSlI3xsppEfDFBVkm9Bw2SFBY0kBjMiHOCiWeNZ/ukLWfG5ixGBx9ftzebpHdc6w1EKggHyBhgDY5lGeroStGkATCgrpLndgobJPAsaSRwNGulVT4kIC2dUM3VcMfNPquLxdU3ZPL3jWlc4MmDVFHgDKgNibRqpdISix2QaADXlhdamYbLCgkYSfrfQdBvC433wrMls2tvONuuCm1BnONpn6ov+RMRW70shGlO6ehJnGjXllmmY7LCgkcRgq6fivXv2BADW7DqU0XMaKzoHuNnFK8oP0m0jwgfk90DrP04DrHrKZI8FjSR6M4005p7qb1p1CQC7Wroyek5jRVc4mrR6CrxR4V1hq54aSGeo71Kv8WrKC+nqifYu0mRMpljQSKIzHKW0IEggkGhGk+SK8oPUVhSyq7UzC2d2/OsMR1JnGgWWaSTTEU6eaQCWbZiMs6CRREc4SvEAI5bTMa2qhJ0tFjQS6eqJpby2RXnB3mzPHMvPIhJlbDXl/gA/CxomsyxoJNEZjlCaIPVP10nVJTRa0EioKxwZcIyGryg/YL2nkkg2qr7GMg2TJRY0kugIRQecGykdddUlNB3u7p3DyhyVaM6k/orygzb3VBKHu7ypzyuK8o95b0K5jQo32WFBIwlvrYKhZxrTqopRhd2HrDG8v3Qawouty21S/noZ40qODRrjSwsJiGUaJvMsaCTREY72WXt5sE7q7UFlVVT9pZtpWNAY2CGXaYwrLjjmvWBAqC4toNkyDZNhFjSS6AwNM9Pwg4b1oOoj5galpWoIL7Q2jaTaunoQgfKixNfRG6vhjQqPxtS635qMsKCRhPdteOiZRm1FEQXBgPWg6sfvRptsRDhYppFKW2eYiqL8AbuE15QX9mYa33pqM+/51nO02RKwZpgsaCSRzliCZIIBYWpVMY02wK+PowswWZvGcBzq6knYnuGrKS+ksaWTI6EID72ykwNHwtz1+4YRPEMzFlnQSMJr0xh60ACvisoyjb5SraXhK8oP0B2J4S3kaPo71NnDuOKBg8aHzp7MwY4wn36gnkOdPZxaW8ZPXtrBj17YxiOvNo7gmZqxJGXQEJFlIrJfRNbHlVWLyEoR2eqeq+Leu1lEGkRks4hcFlc+X0TWufe+55Z9xS0N+7ArXyUi0+P2WeJ+x1YR8ZeEHRE90RjhSCzhaNvBOHViGVv2tdMTtbp5X6pV+3xFeUGiMaUnakEjkbauHipLjm0E9733tIlccEo1LzUcZOq4Yu5dch4Bgdse38iXfrGWzrC1cZjBSyfT+Clweb+yLwPPqOps4Bn3MyIyB2+51jPdPneJiH9nuBtYirdu+Oy4Y14PtKrqLOBO4HZ3rGq8pWXPBxYCt8QHp2xLtwollbPqKglFYmzdZ7Pd+tK9tv464TaVSGJtXT1UJsk0RISvXHEGIvDxhdOYVl1xtNuaAAAgAElEQVTC8196Lzd/8HQADtrU6WYIUgYNVX0Bb+3ueFcB97nX9wFXx5U/pKohVd0ONAALRWQyUKGqL6tX13B/v338Yz0CXOqykMuAlaraoqqtwEqODV5Z438LS7RWwWCcXTcOgHW7bbZbn39ti/NTTCNSYKv3JXOoM5y0egq8v7+Vf/9uPv2emQBMqixiZk0ZAC0dFjTM4A21TaNWVZsA3PNEVz4V2BW3XaMrm+pe9y/vs4+qRoA2YHySY42ITGUaJ1eXUF6UxxuNbZk4rTGhK91Mw01JH7Jut8eIxZS2FA3hvlkTy8mPm6nZX0P8YIeN4TCDl+mG8ER9/zRJ+VD36ftLRZaKSL2I1Dc3N6d1oql0hgaeQXQwAgHhrKmVrNttQcM32Oopm0rkWEfCEWJK0uqpgYwv9ealsuopMxRDDRr7XJUT7nm/K28EpsVtVwfsceV1Ccr77CMieUAlXnXYQMc6hqreo6oLVHVBTU3NED9SXx2uCmW4mQZ47RqbmtptDion/d5TVj01EH+8xZCCRm+mYUHDDN5Qg8YKwO/NtAR4LK58sesRNQOvwXu1q8JqF5ELXHvFdf328Y91DfCsa/d4ClgkIlWuAXyRKxsRfr37cKYR8Z01tZJwNMaWfe3DPtZY0HttU2Rxxb1Bw4Jtf0fnnRq499RASgqCFOUHOGhTjJghSHlHFJGfA5cAE0SkEa9H0zeB5SJyPbATuBZAVTeIyHLgTSAC3Kiq/tfEG/B6YhUDT7gHwL3AAyLSgJdhLHbHahGRrwOvuO1uVdX+DfJZ09FbPTX8TOPMKZUAbGw6zNyplcM+3vGusyfdEeHedxrLNI51qMvLEtJp0+hPRBhfWmiZhhmSlEFDVT8+wFuXDrD9bcBtCcrrgbkJyrtxQSfBe8uAZanOMRsymWlMriwCYG9b97CPNRZ0haOIHA0KA7E2jYG19U5WOPigAV4VlbVpmKGwEeEDyGSmUZQfpLq0gL2HLWiAmxY9P4gb3zkgyzQGdmgYbRoA1aUF1uXWDIkFjQEcHbU8/EwDvMkLLdPwdPaknhYdoNwtLtTebSOX+/MzjYqhZhqlhdamYYbEgsYAOkIR8oNCQV5mLtHkyiLLNJx0FmACqHKNvK32jfgYhzrDFOcHe6vwBmtCWQEHO8I2r5cZNAsaA+h0VSiZYpnGUZ3hCCUpRoMDFOQFKC/MswbbBNId2DeQ6tICQpEYHWGr+jODY0FjAB2hyLCnEIk3ubKIgx1hQjaPkheQ02wrqiotoLXTgkZ/hzqTzzuVyvgyf4CfVVGZwbGgMYB0liMdjEkVXg+q/YftP2nXIK5tlTXYJnQoxWSFqdgAPzNUFjQG0BHObKYxye92a+0agwrI1SX5lmkksP9wNzXlhUPef3ypCxrW7dYMkgWNAXSGMpxpuKDRZO0atId60g7I1aWFtHbYEqXxYjFlz6Fu6qpKhnwMv3qqxSYtNINkQWMAnT2RYU9WGM8PGvtO8KARiyl727qZXFmc1vbVpflWPdVP85EQ4WiMqVXpXcNE/EzjgGUaZpAsaAygMxTNyGhwX3lhHiUFwRM+09jfHqInqmnf8KpKC+jqifZOcmigsdVbPrhu3NCDRlF+kLLCPA5YQ7gZJAsaA+gIRyjJYJdbEWFSZRH7TvA2jd2HBnfDq3ZjNVqsXaNXY2sXAHXDyDQAJpYXsr/dgoYZHAsaA/AyjcwFDfB6UDW1dWX0mMcb/4Y3mEwDbIBfvN2HBncNB1JTXkiz9eYzg2RBIwFV9XpPZbBNA2ByZXHvTfNE1XvDSzPT8OverV3jqMbWLqpLC4Y9xU1tRRH72k/szNcMngWNBI6EvFXRyosyGzTOmlrB/vYQew6duIFjd2sX40ry0+491ZtpWPVUr92tXWkH3WQmlhey/3DIphIxg2JBIwG/sXpyBv5jxlswvRqA+rdbM3rc48meQ4O74fW2aVim0auxtXPY7RkAEysK6eqJ0h6yCSFN+ixoJHC0CqUoo8c9fVI5JQVB6neM2FpSOWf3IINGZXE+AbE2DZ+qDvoaDqTWZikwQ2BBI4GmQ16mMSXDmUZeMMA7TqqifseJmWmoKrtbuwZ1XQMBoaqkwKa7cA52hOnuGd4YDZ8/onz/Cd6jzwzOsIKGiOwQkXUiskZE6l1ZtYisFJGt7rkqbvubRaRBRDaLyGVx5fPdcRpE5HtuHXHcWuMPu/JVIjJ9OOebrj2HuggGhInlmc00AOafXMWmvYdp7z7xRjm3dfXQEY4OumrFJi08andvd9uhjwb39WYa1u3WDEImMo33quo8VV3gfv4y8IyqzgaecT8jInPw1v8+E7gcuEtE/D6tdwNLgdnucbkrvx5oVdVZwJ3A7Rk435T2HOpiUkURwUDyleWG4rzp1cQUXt95KOPHznW93W0HmcFVl9ikhb4dBzuA4Y/RAK8hHDjhxw6ZwclG9dRVwH3u9X3A1XHlD6lqSFW3Aw3AQhGZDFSo6svqdeO4v98+/rEeAS6VVGuEZsDuQ11MyXB7hu+caZUArNvdlpXj57Khji+oKs23+aeczXvbyQsIp9SUDvtYZW6WAss0zGAMN2go8DsReVVElrqyWlVtAnDPE135VGBX3L6Nrmyqe92/vM8+qhoB2oDx/U9CRJaKSL2I1Dc3Nw/zI8GetsHVuw9GeVE+kyuLeKv5SFaOn8s27DlMQGD6hMHd8GrKC9l7uNu6hgIbmw4za2IZhXnDH3gqIkwsL7RMwwzKcIPGRar6DuCDwI0i8u4k2ybKEDRJebJ9+hao3qOqC1R1QU1NTapzTsqfUC9bQQNgZk0ZbzV3ZO34uWr19oPMmVJBRdHg1oGYWVNGW1cPzTZPEpv2tnP6pPKMHW9ieZFlGmZQhhU0VHWPe94P/BJYCOxzVU645/1u80ZgWtzudcAeV16XoLzPPiKSB1QCWe2veuCIN6HelMrsVE8BzKwp5a39R06ob86hSJTXdx7i/BnHJIopnVrr3SQb9p142Vm8Q51hmtq6OWNyRcaOObGi8LjpPbW/vZtvPbWJJctW8/ArO0+o/z+5ZMhBQ0RKRaTcfw0sAtYDK4AlbrMlwGPu9QpgsesRNQOvwXu1q8JqF5ELXHvFdf328Y91DfCsZvkvxa93z2qmMbGMI6HICfUNb+2uNkKRGOfPqB70vrNrywDYsq8906d1XNnY5H3+0zMZNI6jTOPmR9fxw99vo2H/Ef7p0XV84aE1o31KJ6ThZBq1wIsishZYDfxWVZ8Evgl8QES2Ah9wP6OqG4DlwJvAk8CNqurPd30D8GO8xvG3gCdc+b3AeBFpAP4vridWNu3J0hiNeDNrvJvgW/vH/jdnVaUrHGXVtoOIwMIhBI2askIqi/PZcgJcr2Q27T0MwBkZrJ6qrSikMxzlcI53AW/pCPP7Lc38n3edwh/+8b385fknsWLtnhOy6/poG/LkSqq6DTgnQflB4NIB9rkNuC1BeT0wN0F5N3DtUM9xKPxZaLMZNGZNdEGj+QjvnDUha78nFzz62m7+8ZG1lBflc1ptOePctCCDISKcWlvG1hM809jU1M740oJhLfPa3ynuC8zWfUeYf3JViq1Hz2/XNRGJKVfNm0IgILzvtIn8bNVOtuT4eY9FNiK8n+0HOigvzKMiw5MVxptYXkhZYd4J0Rj+5Pq9vZMTXj530pCPM7u2nC37Tqx2oP42NLVx+uRyMtnr3G9U97OYXLVizW5Oqy3vbc85zZ33iV5lORosaPRTv6OVc0+uyuh/zP5EhJk1pTSM8eqWSDTGqm0H+dDZU1h7yyK++P5Th3ysUye6HlTHSf37cO1q6eTu598iGtPen9fvPsw7Z2Y2M62rKqa8MI9NTbl78915sJNXdrTy4XlTesumjiumpCDI5r25e95jlQWNOK0dYTbva2fh9OynuzNryti6f2z/wb+xu432UISLM1AF5/eg2nKC9KC66/kGbn9yEz/6wzYAfv2G16Hww+dMSbbboIkIp08uz+lM48HVbxMMCB99x9FOloGAuOxzbP8fykUWNOK84mafXTiEbqGDNe+kcew7HBrTg/xe2noAEbhw5vCv56muOuKN3WN/+pVQJMpv32giLyB893dbWNfYxoo1ezj3pHFMqx7+nFP9nT6pgk1N7TlZ9dfdE2X5K7tYNKeWSf26wZ9WWzbiQSMWU77yy3U8ub5pRH9vLrGgEeeVHS0U5AU4u64y67/r0jNqAXhm476s/67R8mLDAc6cUkF16eAbv/ubUFbIWVMreWrD2L1evuc3N3O4O8Id15xNZUk+H7nrJTbtbeeqDGcZvtMnl9MeivR2N88lj69rorWzh09ccPIx751aW86BI2EOjOCgz1+t2c3PVu3k7x9eO+arlwdiQSPO6u0tzJs2jqL8zK4NnsjUccXMmVzB02/uT73xcailI8yrb7dy8azhjdCPd/ncSazddWjMr3y4Ys0expcW8OFzpvDbz13MX5w3jVNqSvlQtoLGJK9xORfaNXYc6Ns55H/+9Dan1JTyzgTZaiYaw2MxZdW2g4QjsZTbdvdE+fZTmzl9UjlF+QG+8NDr9ERT7zfWWNBwjoQirN9zmIXTBz+OYKjeP6eW+rdbxuQMrr96fTeRmPKRc6em3jhNH3S9r55cvzdjx8w1z23az1Mb9vJn50whLxhgYkUR//GRs3j2pkuYUJa5rrbx/JvvxqbRbdd4+s19XPLt5/mNa79Zv7uN13Ye4hPnn5ywY8pprp1r/TAm//zhC2/xsXv+xN8vX0Mspr0dDxK574872NPWzb/+2Rz+4yNnsWHPYX62aueQf/fxyoKGE47E+NTFM7j0jImpN86QD5xRS0zh6TFYRfWLVxs5u66y94aUCafUlHH6pHKeGKP1ya++3cIND77K6ZPLuWnR0HuaDVZZYR5nTK7g12/sIZbkpplt9764HYBvP7WZnmiMB1e9TVF+gI/Or0u4fU15IfOmjWPZizvoCkePed9f5dDX0hHmD1ub2XmwE4A/bTvIt5/azCkTSvntG01c8u3nOfWrT/C+7zzPNx7f2Gd6ldaOMD94roH3nlbDO2dO4PK5k7ho1njufHoLh06wtV4saDjVpQXcfMUZnHvSyA0Umju1glNqSvnJSztyshFyKPa2dfOr13ezsekw1w7wn304PjxvCq/saOX1nWNr9cPdh7r49AOvMqmiiJ/+7ULKBzmp43D93XtOYcu+IzwxSlncpr2HeXnbQS6eNYEdBzv5h1+s5Vev7+Gqc6ZSWZz4WogIX7niDPYe7ubeF7cd8/6dK7dw0Tef5Y8NB/jdhr2cd9vT/PW9q/nYPS/T2NrJ3z+8hunjS1nxuYv5x8tPo66qmE9eNJ1pVSX8+MXtXHzHc/zydW8C7h8810BHKMKXP3hG7+/+6pVzONzVw9IHXj2hBp5a0BhFIsIN75nJxqbDPLf5+G/bWL29hXff8RxffHgNxflB/iwLdfDXXTid8aUF3P7kpjETaA8cCXH9T18h1BPjx0vOy1o1VDIfOnsKsyaW8Z9PbxmVqTnu++MOivIDfP/j57JwRjW/WrOHKeOK+PR7Tkm638IZ1SyaU8vdz7/VZwzPpr2Huev5twC4ZcUG/vlX6zm1tpxvX3sO+9tDXPFff2B/e4g7PzaPssI8PnPJLH72fy7gn6+cw32fXMizN72Hd5w0ji/94g0+9/PXWfbSdq6dP61P5nzG5Aq++edns6npMFd87w88tmZ3Vq5NNKZ84aHXuev5hqTbHQlFRuT/hAWNUXb1uVOZOq6YHzyb/A8i120/0MHSB+qpqy7mZ586n2e/9J4hTRmSSllhHp+/dDZ/2tbCMxuP/0C7/UAHH7nrJXYc7OC//+odvVPMjLRgQPiHy05j6/4jXPKt5/ndhpHLODpCER5bs4cPnzOFqtIC7v/kQtb86wd45qZLeqc5SebLHzydUCTGfz2zBfCqmv/pkTeoKM7nm39+Flv3H+HgkRB3fPRsrplfx2cumcnh7gg3XjKTc6aNS3jMk8eX8uMl5zF3SgW/XruHT5x/Mv/6Z3OO2e4vzpvG8//wXt5xUhVffHgNy+t3JTja8Dy46m0eW7OHO57czD0vvDXgdv/06BssvudPWQ8cFjRGWX4wwN+8czqv7TzErpbO0T6dIYlEY3zhodcR4Cd/cx7vnDWByZXZm7vr4wtP4tTaMv7hkbU0th6f1wy8OvcvP/oG7d0RHlp6Ie8+NXM9zYbisjMn8evPXkxtRRE3LV/bOw9btj2xfi+d4Sh/scBbOaEoPzioLxyn1JTxl+efxM9X76J+Rwu3/fZN1ja28e9Xz+Vj501jyYUn889XzuEs15X+C5fO5oHrF/L5S2cnPW5ZYR4/X3oBz9z0Hr5+9dze6XD6qy4t4L5PLuSimRP4l1+tz1hX3N2Hulix1gsWF8+awIfOnsx/PL6JVdsOHrPtrpZOnljXxLxp47I6mwVY0MgJl5zm3Sz++NaBUT6TwVNV7n1xO280tnHrVXM5efzwlyFNpSAvwA8/MZ9IVPnMg68l7fGSy/741kFWbW/hC5fOZt4A33hH2ll1lfzwE/PpicX4l1+tH5Hqjkde3cX08SXDmnjwC5fOprwoj2t++DL3vfw2n7p4BlecNRkR4d+umsv1F8/o3TYvGOBds2vIC6a+/ZUU5PXOSp1MUX6Q737sHEoKgnzu56/z/We2snr70Jf+aWzt5APf/T2f//nrBAPCbR+Zy7euOYcplUXcsmIDv6jfxbvveI6P3v1HfvyHbfzkpR0ERFjyzulD/p3pyt6sfCZtsyaWMbG8kBcbDvKx804a7dNJ250rt/DfzzUQiSkfmFPLh86ePGK/+5SaMv7tqjP5v8vX8vTGfVx25tAnQxxJ7d09lBXmEYkp33pqM1Mqi/jL83Pr3/yk8SV8adFp/PtvN/L3D6/hP/78LEoKMn+rWL+7jac37uNP21r40qJTh/UNeXxZIb/74rtZuXEf+w+H+Oz7ZmXwTNMzsbyIb/z52Xz+odf5zsotBARuWnQahXkB6qqKuXxu8v8fneEI//KrDbzj5HE8t6kZVXj0hgs5Y3JF7/X/5yvncOPPXuMfHnmDs6ZWEo0p//7bjQBcNW9KVmfn9lnQyAEiwkWzJvDClmZiMSUQyG56mcqRUIS8gBBTb+nbdbvbOBKKMLG8iItmjaekII8/vnWA/3pmK+87fSIXz5rAR+fXZT0t7u/D50zhuyu38KMXtuVc0GjpCPPgn96mJ6YsPm8arZ1hfvTCNn61Zg/zpo0jILBm1yG+c+05GVnvO9M+edEMusJRvvv0FrYf7OTBT51P2QDVM/He3HOYn7y0naa2bsaXFXDhKeP52HnTjvnbWL+7jY/e/UdCkRin1Zb3Vk0Nx8SKIv7q/GNHjo+ky+dOYv3XLqM7EuWm5Wv51lObe9/7+MJpXDhzApMri1jgJkVVVVZtb6G8KI/vP9PAkxv28uhrXo+tmz94OvNP7jtu7IqzJnHN/DpKC4L885VzyA8KP1u9k3te2MYNl8wckc8oY6UHim/BggVaX18/2qcxaI+82siXfrGWxz//LuZMydzKbIMRicb45hOb+LHrL59IeWEe582o5o3GNsqL8nj88++iuGD0bnrLXtzOrb95k0dvuPCY/2CjQVV54E9v843HN9HVE0UE/P9iBXkBPvqOOp7dtI8j3RG++dGzs9LDLJOe2rCXzzz4GvNPruInf3PegPX64C1H+8H/+gNHuiOcUlPK/vYQTW3d/NuHz+TKsyfzwpZmunqihCMx7n1xO9GY8qsbL6K2IntLK4+maExZs6uVqeNK+Okfd/DD3x9txD55fAlffP9stjV38P24TjBfvfIMiguCrN11iNs+chb5aVShZYqIvKqqC1JudzwEDRG5HPgvIAj8WFW/OdC2x2vQaGrr4sJvPMsnLjiJWz88l8PdPZQX5RNMknXEYsqzm/bz+PomZk0sY+H0ambXlg/Yrz2Z9bvb+NqKDdS/3cq18+uYPqGUgAgTygqYM6WC8aWFbDtwhF/UN7JpbztlhUH+9UNn9jYujpaOUIR33/Ec4WiMr1xxBovm1DLedVn1/7ZHKgNq2N/Orb/ZyAtbmnnPqTV89cozKMgL8Pi6vUwZV8QFp4yntqKI7p4oXeEoVRmYk2skrFi7hy8+9DqnTargc++bxZ5DXVxwynjOdF9uXtvZyrrGNp7ZtJ+X3zrILz9zEWfVVRKLKUsfqOf5zc3kBwN09RwdgFdelMcD15+fM205I2H3oS66wlHW725j2UteOyDAtfPrWDijmojLSkc6Y/eNmaAhIkFgC97SsY3AK8DHVfXNRNsfr0ED4B8fWcvy+kamVBaxp62b0yeV8/Wr5/K/rzWy+1A3qsqbew4zY0Ipn3rXKfz3cw2s2+1942/vjvQe58qzJvPR+VNp6+qhJ5r437duXDEzako53BXh/73wFr98fTdVJQV89coz+PN3ZH5QXja9fbCDm5avpf5tb8Dfu0+t4cPnTOGu5xrY09ZFbUURE8sLmeieayuKOHNKBe+cOYEj3RG2H+xg/+Fu1u9uI6re1Cd7DnXzVvMRivODHOwI090T5dyTxjG+tJCoKrGYMrWqmJKCPB59tZGnNuyl/u1WSvKD3LToVK67cPqoVzNm0u+3NPPZn73W5+9sfGkBeUFh32FvfIQIfPXKOX0anQ939/Cpn9YzqbKIpe8+hZryQgqCAUoKgzlZLTdSYjFlef0u9reH+Ox7Z+XE38pYChoXAl9T1cvczzcDqOo3Em1/PAcNVeXhV3bx23VNnDmlkgdXvU17d4TCvACnT64gEvXqf5/f0kxLR5gJZQV85Yoz+LNzptDaGWb97jZWb2/l/pd30JlgWoWBFAQDfPLiGXzmvTOpGOGRyJkSjSmv7Wzljw0H+fGL22jvjjCzppRLTptIc3uIfYe7aW4Psfdwd++1KS/Moz109CYYEC8rSdQbKyCQqJOWX376pHLef0Ytf3vR9N5MZ6zZf7ibXa1dTBlXxLOb9rN+dxsdoSgXz5rAe0+fSHFBMK12D5ObxlLQuAa4XFU/5X7+a+B8Vf1s3DZLgaUAJ5100vy33357VM41095qPsJjr+9m8cKT+vSKOHgkxK/X7uGqeVMTVnG0dIRp2H+E8WUFFOYdWyeq6g0q29XaSXF+kIUzqqmryvw6DaPl4JEQaxsPcfGsGgoSfP727h5e3HqA5zbv5+TxpZxWW86E8kJOrS2jvTvC4+uaOHl8CWfXjSMUiVFVko8grG08RGc4QkAEEWHHgQ6a2rr50NmTmTt1dKvpjBmusRQ0rgUu6xc0Fqrq5xJtfzxnGsYYM1rSDRrHw+C+RiC+P14dsGeUzsUYY05ox0PQeAWYLSIzRKQAWAysGOVzMsaYE1LOt1qpakREPgs8hdfldpmqbhjl0zLGmBNSzgcNAFV9HHh8tM/DGGNOdMdD9ZQxxpgcYUHDGGNM2ixoGGOMSZsFDWOMMWnL+cF9gyUi7YA/H3El0JaFXzMByMSKSZk+v2x83kwfM1PXzpfr19CuX+4cz67dwCYApaqaevlIVR1TD6A+7vU92f4dwzxORs8vG583C+eYkWt3vFxDu365czy7dpm5NmO9eurXo30CKWT6/LLxee0a5tbxMi3XP28uX79c/6xZuXZjsXqqXtOYPyXXf8dYZddueOz6DZ1du4EN5tqMxUzjnjHyO8Yqu3bDY9dv6OzaDSztazPmMg1jjDHZMxYzDWOMMVliQQMQkWki8pyIbBSRDSLyBVdeLSIrRWSre65y5ePd9kdE5Af9jvVxEVknIm+IyJMiMmE0PtNIyfC1+5i7bhtE5I7R+DwjbQjX7wMi8qr7G3tVRN4Xd6z5rrxBRL4no7XY9AjJ8LW7TUR2iciR0fo8x41MdvE6Xh/AZOAd7nU53prkc4A7gC+78i8Dt7vXpcDFwN8BP4g7Th6wH5jgfr4Db6naUf+Mx8G1Gw/sBGrcz/cBl47258vB63cuMMW9ngvsjjvWauBCQIAngA+O9uc7jq7dBe54R0b7c+X6wzINQFWbVPU197od2AhMBa7Cu3nhnq9223So6otAd79DiXuUum95FYzxBaMyeO1OAbaoarP7+Wngo1k+/VE3hOv3uqr6f1MbgCIRKRSRyUCFqr6s3l3wfn+fsSpT18699ydVbRrJ8z9eWdDoR0Sm430jWQXU+n9I7nlisn1VtQe4AViHFyzmAPdm8XRzynCuHdAAnC4i00UkD+8/+rQU+4wpQ7h+HwVeV9UQ3s2yMe69Rld2QhjmtTODYEEjjoiUAY8CX1TVw0PYPx8vaJwLTAHeAG7O6EnmqOFeO1Vtxbt2DwN/AHYAkUyeYy4b7PUTkTOB24FP+0UJNjshukZm4NqZQbCg4bgb/qPAg6r6v654n0v7cc/7UxxmHoCqvuWqCJYD78zSKeeMDF07VPXXqnq+ql6IN3/Y1mydcy4Z7PUTkTrgl8B1qvqWK24E6uIOW8cYrxqFjF07MwgWNADX/nAvsFFVvxv31gpgiXu9BHgsxaF2A3NExJ/06wN49axjVgavHSIy0T1XAZ8BfpzZs809g71+IjIO+C1ws6q+5G/sqmHaReQCd8zrSOOaH88yde3MII12S3wuPPB68yheddIa97gCr0fPM3jfeJ8BquP22QG0AEfwvuXNceV/hxco3sCb+2X8aH++4+ja/Rx40z0Wj/Zny8XrB3wV6Ijbdg0w0b23AFgPvAX8ADd4d6w+Mnzt7nB/izH3/LXR/ny5+rAR4cYYY9Jm1VPGGGPSZkHDGGNM2ixoGGOMSZsFDWOMMWmzoGGMMSZtFjSMGWEi8ncict0gtp8uIuuzeU7GpCtvtE/AmBOJiOSp6g9H+zyMGSoLGsYMkpsc70m8yfHOxZuS+zrgDOC7QBlwAPgbVW0SkeeBPwIXAStEpBxvCu5vi8g84IdACd6gvE+qajktk4gAAAFKSURBVKuIzAeWAZ3AiyP36YxJzqqnjBma04B7VPVs4DBwI/B94BpV9W/4t8VtP05V36Oq3+l3nPuBf3LHWQfc4sp/AnxevXm4jMkZlmkYMzS79Oj8Rf8DfAVvYZ+VbsG8IBC/PsPD/Q8gIpV4weT3rug+4BcJyh8APpj5j2DM4FnQMGZo+s+/0w5sSJIZdAzi2JLg+MbkBKueMmZoThIRP0B8HPgTUOOXiUi+W7dhQKraBrSKyLtc0V8Dv1fVQ0CbiFzsyv8q86dvzNBYpmHM0GwElojI/8ObTfX7wFPA91z1Uh7wn3jLiiazBPihiJQA24C/deV/CywTkU53XGNygs1ya8wgud5Tv1HVuaN8KsaMOKueMsYYkzbLNIwxxqTNMg1jjDFps6BhjDEmbRY0jDHGpM2ChjHGmLRZ0DDGGJM2CxrGGGPS9v8BU6Nd2gKzXrcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +2321,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 11, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +2341,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +2365,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +2404,55 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2053781\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +2467,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGbhJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDkr7QAjIqDgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq27dvsXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvbqdwAzM6uXC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJeTnzVqlUxNDQ067AHH3yQFStW9HL2lTU5GzQ7n7NV1+R8zlZd2Xxbt269JyIO6mqmEdGzv7Vr18ZcrrrqqjmH9VuTs0U0O5+zVdfkfM5WXdl8wER0WXvdFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZpkpVdglvUfSzZJuknSRpH17FczMzKrpuLBLWg28G2hFxNHAEuB1vQpmZmbVlO2KWQosl7QU2A+4s/5IZmbWDUWJ3zyVdBZwDrAb+GpEnDrLOKPAKMDg4ODasbGxWac1NTXFwMBAlcw91+RsUH++yR27apvW4HLYubvz8desXlnbvBfyq/a61snZqiubb2RkZGtEtLqZZ8eFXdKTgEuAU4D7gX8ALo6Iz8/1nFarFRMTE7MOGx8fZ3h4uGzeRdHkbFB/vqENW2qb1vo1e9g02fk3VWzfuK62eS/kV+11rZOzVVc2n6SuC3uZrpiXA7dHxE8i4lHgUuDF3czczMzqV6aw/wj4D5L2kyTgZcC23sQyM7OqOi7sEXEdcDFwAzBZPHdzj3KZmVlFpb62NyI+CHywR1nMzKwGvvLUzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMdF3ZJR0j6TtvfzyT9US/DmZlZeR3/NF5E3AI8H0DSEmAHcFmPcpmZWUVVu2JeBvyfiPi/dYYxM7PuKSLKP0n6DHBDRPzFLMNGgVGAwcHBtWNjY7NOY2pqioGBgdLzXgxNzgb155vcsau2aQ0uh527Ox9/zeqVtc17Ie3tVucylzHf8jZ5vXO26srmGxkZ2RoRrW7mWbqwS9obuBN4TkTsnG/cVqsVExMTsw4bHx9neHi41LwXS5OzQf35hjZsqW1a69fsYdNkxz18bN+4rrZ5L6S93epc5jLmW94mr3fOVl3ZfJK6LuxVumJeSdpan7eom5lZf1Qp7K8HLqo7iJmZ1aNUYZe0H/BbwKW9iWNmZt3qvDMUiIiHgCf3KIuZmdXAV56amWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZabsT+MdKOliST+QtE3Scb0KZmZm1ZT6aTzgXOCKiDhZ0t7Afj3IZGZmXei4sEs6AHgpcDpARDwCPNKbWGZmVpUiorMRpecDm4HvA88DtgJnRcSDM8YbBUYBBgcH146Njc06vampKQYGBqon75HJHbsYXA47dy/+vNesXtnReHW33eSOXbVNq2zbdbrMdWhvtzqXuYz5lrep7wlwtm6UzTcyMrI1IlrdzLNMYW8B/wIcHxHXSToX+FlEvH+u57RarZiYmJh12Pj4OMPDw+UT99jQhi2sX7OHTZNle6m6t33juo7Gq7vthjZsqW1aZduu02WuQ3u71bnMZcy3vE19T4CzdaNsPkldF/YyB0/vAO6IiOuK+xcDL+hm5mZmVr+OC3tE3AX8WNIRxUMvI3XLmJlZg5Ttb3gX8IXijJjbgLfUH8nMzLpRqrBHxHeArvp+zMyst3zlqZlZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmSv2CkqTtwAPAz4E93f6StpmZ1a/sb54CjETEPbUnMTOzWrgrxswsM4qIzkeWbgd+CgTw1xGxeZZxRoFRgMHBwbVjY2OzTmtqaoqBgYEqmXtqcscuBpfDzt2LP+81q1d2NF7dbTe5Y1dt0yrbdp0ucx3a263OZS5jvuVt6nsCnK0bZfONjIxs7babu2xhf2pE3CnpYOBrwLsi4pq5xm+1WjExMTHrsPHxcYaHh0vG7b2hDVtYv2YPmyar9FJ1Z/vGdR2NV3fbDW3YUtu0yrZdp8tch/Z2q3OZy5hveZv6ngBn60bZfJK6LuylumIi4s7i/93AZcALu5m5mZnVr+PCLmmFpP2nbwOvAG7qVTAzM6umTH/DIHCZpOnnXRgRV/QklZmZVdZxYY+I24Dn9TCLmZnVwKc7mpllxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmdGGXtETSjZIu70UgMzPrTpUt9rOAbXUHMTOzepQq7JIOBdYBf9ubOGZm1i1FROcjSxcDHwH2B/44Ik6aZZxRYBRgcHBw7djY2KzTmpqaYmBgoErmnprcsYvB5bBzd7+TzK3J+cpmW7N6Ze/CzNC+zk3u2LVo82033/I29T0BztaNsvlGRka2RkSrm3ku7XRESScBd0fEVknDc40XEZuBzQCtViuGh2cfdXx8nLmG9dPpG7awfs0eNk123DSLrsn5ymbbfupw78LM0L7Onb5hy6LNt918y9vU9wQ4Wzf6ka9MV8zxwGskbQfGgBMkfb4nqczMrLKOC3tE/JeIODQihoDXAVdGxGk9S2ZmZpX4PHYzs8xU6qiNiHFgvNYkZmZWC2+xm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMdFzYJe0r6duSvivpZkkf6mUwMzOrpswvKD0MnBARU5KWAd+Q9E8R8S89ymZmZhV0XNgjIoCp4u6y4i96EcrMzKpTqtcdjiwtAbYCzwbOi4g/mWWcUWAUYHBwcO3Y2Nis05qammJgYGDOeU3u2NVxrroNLoedu/s2+wU1OV/ZbGtWr+xdmBna17l+rV/zLe9C74l+eqJma8LrXLbtRkZGtkZEq5v5lyrsv3iSdCBwGfCuiLhprvFarVZMTEzMOmx8fJzh4eE55zG0YUvpXHVZv2YPmyYr/c73omhyvrLZtm9c18M0/177Otev9Wu+5V3oPdFPT9RsTXidy7adpK4Le6WzYiLifmAcOLGbmZuZWf3KnBVzULGljqTlwMuBH/QqmJmZVVNmf/4pwAVFP/tewBcj4vLexDIzs6rKnBXzPeCYHmYxM7Ma+MpTM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8yU+c3Tp0m6StI2STdLOquXwczMrJoyv3m6B1gfETdI2h/YKulrEfH9HmUzM7MKOt5ij4h/i4gbitsPANuA1b0KZmZm1Sgiyj9JGgKuAY6OiJ/NGDYKjAIMDg6uHRsbm3UaU1NTDAwMzDmPyR27Sueqy+By2Lm7b7NfUJPzOVt1vc63ZvXKys9d6P3aT/Nl61cdaW/rsm03MjKyNSJa3cy/dGGXNABcDZwTEZfON26r1YqJiYlZh42PjzM8PDznc4c2bCmVq07r1+xh02SZXqrF1eR8zlZdr/Nt37iu8nMXer/203zZ+lVH2tu6bNtJ6rqwlzorRtIy4BLgCwsVdTMz648yZ8UI+DSwLSL+tHeRzMysG2W22I8H3gicIOk7xd+repTLzMwq6rhDLyK+AaiHWczMrAa+8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM2V+8/Qzku6WdFMvA5mZWXfKbLGfD5zYoxxmZlaTjgt7RFwD3NfDLGZmVgNFROcjS0PA5RFx9DzjjAKjAIODg2vHxsZmHW9qaoqBgYE55zW5Y1fHueo2uBx27u7b7BfU5HzOVl2v861ZvbLycxd6v/bTfNn6VUfa27ps242MjGyNiFY386+9sLdrtVoxMTEx67Dx8XGGh4fnfO7Qhi0d56rb+jV72DS5tG/zX0iT8zlbdb3Ot33jusrPXej92k/zZetXHWlv67JtJ6nrwu6zYszMMuPCbmaWmTKnO14EfAs4QtIdkt7au1hmZlZVxx16EfH6XgYxM7N6uCvGzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDOlCrukEyXdIumHkjb0KpSZmVVX5jdPlwDnAa8EjgJeL+moXgUzM7NqymyxvxD4YUTcFhGPAGPAb/cmlpmZVaWI6GxE6WTgxIg4o7j/RuBFEfHOGeONAqPF3SOAW+aY5CrgniqhF0GTs0Gz8zlbdU3O52zVlc13WEQc1M0Ml5YYV7M89kufChGxGdi84MSkiYholZj/omlyNmh2Pmerrsn5nK26fuQr0xVzB/C0tvuHAnfWG8fMzLpVprBfDxwu6RmS9gZeB/xjb2KZmVlVHXfFRMQeSe8EvgIsAT4TETd3Me8Fu2v6qMnZoNn5nK26JudztuoWPV/HB0/NzOyJwVeempllxoXdzCwzLuxmZpl5QhZ2Saslre53jtlIeqak90g6od9ZZmpyNmh2Pmerrsn5mpwNqud7QhV2SUOSrgauAD4u6SX9ztRO0n8Evkb6Lp23SXp7nyP9QpOzQbPzOVt1Tc7X5GzQZb6IaPQfsG/b7dcCnyhuvxn4B2BNcV99yHYC8Izp+QMfAE4r7r8I+BIw3I98Tc7W9HzOlme+JmerO18jt9glHSDpryTdCnxC0mHFoN8BflTcHgN+CJwx/bRFzHeUpO8B/w34rKQTIrX2UcAhABFxHfBN4C2Lma/J2Zqez9nyzNfkbL3K18jCDpwI7EtasEeAD0haTtoteTVARDwMXAy8pLj/WK/CSDpU0gFtD50CXBIRLyV9wLxB0uHAhdP5CpcBR0vap1f5mpyt6fmcLc98Tc62WPn6VtiVLJX0Vklfl3SWpGcVg58NPBIRe4A/A34KnAZ8FXiKpF8rxrsV+LGk43qU8UhJXwa+AXxY0vTXFP8/YL/i9heBu4B1pE/UJ7ftYdxH+nbL5/0qZWt6PmfLM1+Tsy12vr4V9mJX4zeBNwEfA/YB/qYYfBdwd/HJ9GPSwjyL1ADf5/GvBV4G3Fs8XgtJK9ruPh+4IyKGgCuBTxSP3wc8LGn/iLgP+FfgqUWObwLvLcbbG/g5sD33bE3P52x55mtytn7mW7TCLuk4SR+VdHpxX8CRwBUR8aWI+BhwmKQXAztIn2BHFk/fBgwUj/0F8CpJryZ9KAwC3+0y25MknS/pemCjpIOKfGuAayUpIv4RuF/SOtKewv7FcIr7BwOPkfYwDpb0N8BFwJ6IuDvHbE3P52zVNTlfk7M1Jd+iFHZJzwH+EngA+D1J7y3mvRp4oFhogPOBN5AK9R7gxcXjN5COGD8UEdcAG4DTgeOB/x4Rj7VNo4qXFvN7FemgxNnAAaQvOzuk2LsAuKDI9+1iWV4JEBHfKqaxNCK2AWcCNwP/MyLeQneanK3p+Zwtz3xNztaMfHOdLlP1j7RlfQZpt2Np8difAmcVt1vAJ4GTgZcDX2l77tNIuyqQCvmNpF9hOgb438BT2sYtfTpS0bBnAleTunNWFY9/EXh3cfsZwMZi+LGk/rAlbcv2k2I6q0l7Eu8EPgt8CljRRbs1NlvT8zmbX1e33b//q3WLXdLzSQc4fxv4IPC+YtAO0m+mQvrkuRb4XeCfgUMkPVfSskj96TskvSQiriR93eVHgUuBiyLi36bnFUXLlHQS8BrgQ8BxpL59SGfbTO8d/Bj4OvDKiLie9Ik7UsxzCrgOODYidgBvJHUF3QW8LyIeLBuobU/j1U3LNoPbrprGtRu47brJ9kRouzI/jfdLJL0QOBz4akT8hLQ1fmtEnC7pBcA5klrAOPCfJO0XEQ9J+i7we6RzNC8E/gD4pKTdwCRwezGLvwIujIhdJTIpIkLSsaTdnK8DWyKdHvnrwG0RcaWk20lXr74C2Ar8jqRVEXGPpH8FHpT0dODPgdMkHUz61ah7SbtORMQEMFGh3VqkvZoHgI8DdwPP7Hc2t121bE+EdnPb5dd28ym1xa5kmaQ3SbqR1LF/IDBdeH8ObC+2vm8g7VocBzzE46fwADxK2gU5hLRVfhOpf/1q4J6IuAPSVnnFov5S4DOko8ovBz5SjPIYcKuk5RFxe5HvuaQX607S+aTTy7GE1D6XFBlPBdYCm6PiOa6SVkr6bDHN24FzI+JuSXuRPsn7mW1J0Xa/SdoVbEzbFevdgKTzaVjbFfMMScM0c53bR9KKhrbdAQ1vuwFJ+0q6gIa13YI66a8BVgAvLm4fWAT75CzjnUW6DHZ1cf9kUn/6YaSvALi6eHxfUjfMqrbnHgPs3UmeGfPcD3gbj2/5LwP+CHhHMfxJwPeK6Z9C6u8aKoadVCzLquL2JLCS1L//5fY8wF5dZLuIdMXYAKlr6cy2caaPQ7wT+B+Lla3tdT2DtLKtJx3gaUrbTWe7tFivDmpY2+0PbCH9khjAe5rQbjPyfRn46+L+x4C39bvtSO+JN5Pe/5c0re3a8l0J/H3xWGPWu07/Ftxil3Q2cBuwRdJgRNxP6he6s+gbf40ev0DoW6QDoNMXGl1LOoj6UERcAPxU0udIB0VvAX7RhxQRN0bEIwvlmZHtEOByYBj4HOkAxWtJewl7iun+lHTg9d2kvq+Defw0ymtI59I/EhGXA58mXc16HumI9aNt+Up9qs7I9nfA24tstwJHSNpYbEX9vtIFV1eQ9mB6nq3It4L05jqBdP3AK0jHPY4lbSn1s+3as20mnS3wWtI1DL/R77YrLCdde/EsSatI6/ySYpp9abdZ8u1NWteeSuriOFrSR/rVdpKWkY6xnQx8PCJ+txh0TNs0+9Z2M/J9LCKmt7gngaP62XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI6t41OJtPK+qO3+6aQtkzcD3257/KnAncXtd5Au231S8fwvAU9vG3dVj7K9iXSk+9eBvy/+Xg/8L9K5/IuWrW16B7bd/s+kN9Op/W67WbL9MemUsWc2qO3eTOprfT/wVtKBtOv73W6z5HsfaY9nVRPajrQHduqMx04BrmtC282R7+lFhr6vdx0vRwcLOn1qzinAeHF7GWlramVx/zDS1vqxpF3Ai0lbWv9E+qTapyfhUx+X4Be/3foCHu/uuZd0zuj0uF+jKLSk3aevFuP8ySJlOwb4xvSK2zbeMtLB5ROK++f0OtuMnAeQjm/sBD5c3L8XGOxX282S7a5ivisouvn61XZtr+dbSN1srwW+UDx2T7/bbY58Y8Vj7acL92W9I3VR3ApsKub/gaJ+3Acc3IB1rj3fVaQv5jq03+td6eUoscBPJl0o9Jzi/tIZw88HTp5egUhdD2fSo6I+x8p8AY+fL/854KPF7V8j7XE8ve2FOZq2rwRepGzvaH+suH1I0XbPXexsbRn+kHS+7WZSv/Y3izec+tl2M7KdRzqt7NlNaDvSV0YvIfWhXk3aMr4JeH+/17lZ8v0z6QyzFzSk7b5C2gN7Gmkr+CzShmFT1rn2fF8gXfp/eBPartO/6aLTEUmfAn4WERuK+3uRzrt8B/Ac4JQo2U9eF0mHkvq03hURtyp9odhokWs18J2o56qybrK9PSJuKx47htQtta7I9of9yNZO6TqEM0lvsiNJK+uh9LHt2rIdTXqz/TnpLKuT6FPbSRogdXPsQ2qn3yBdeHI2aUv5cPrYbrPkO5x0fOK3SMe8XkZqv76sdypOey5uP4/0Pr2WdEl939e5GfmOJl3pfi7pm2b7tt6VUfY89s3AucVBhiNJK/HxpBfl7H4V9cIxFOfASzqD1P9/NqkL6QeRTr/sd7YfFdluJ60ce0hb8Tf2MVu7e0kHAd8XEX8n6TTg5obku5/UT3wT6XVdRv/abg/p7IlHSVvqPyet/5PAexvQbnPle1jSa0gFv2/r3XTRLNxPOu70/oi4sAFtNzPfA6SN123Af6W/613Hym6xv450oPRh0jeOXRkRt/QoWymSriUdXNtOOof0QxHxvb6GKszIdhewoUHttpK0BfcG0vffbwbOi4hH533iIpgl26cjYlN/U/2y4sKT6b7su/qdZ6Yi38nAZyOdddLvPPuQfnPhjaQ96r8EPhXpa7r7bpZ8myPiz/qbqpyOC7uk55LO57yYdLCotq/K7VaxB/FB0pbw5yNdtdYITc4GIGkpqfvlYVK+Jr2ujc0G6aIu4LEos3W0iJqcT9KZpNNqP9e01xWan28hpbbYzcys+Zr603hmZlaRC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDP/H+KofDj+oV4qAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -341,9 +2500,14 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, "outputs": [], "source": [] } @@ -364,7 +2528,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4, -- 2.18.1