diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 97fb2db8949e38b3dbc39a9a94b9a2205e564363..b0fae62041a94833812047bb1180988edc1ce373 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,5 +1,5 @@ --- -title: "Interagir avec Gitlab via RStudio" +title: "A propos du calcul de pi" author: "Mary-Lorène Goddard" date: "26 avril 2020" output: html_document @@ -10,24 +10,43 @@ output: html_document knitr::opts_chunk$set(echo = TRUE) ``` -## Quelques explications +## En demandant à la lib maths -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +Mon ordinateur m'indique que \(\pi\) vaut approximativement -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: - -```{r cars} -summary(cars) +```{r} +pi ``` -Et on peut aussi aisément inclure des figures. Par exemple: +## En utilisant la méthode des aiguilles de Buffon + +Mais calculé avec la **méthode** des [aguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r pressure, echo=FALSE} -plot(pressure) + +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +## Avec un argument "fréquentiel" de surface + +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X$ ~ $U(0,1)$) et $Y$ ~ $U(0,1)$ alors $P[X^2 + Y^2\leq1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipédia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. +```{r} +set.seed(42) +N = 1000 +df=data.frame(X=runif(N),Y=runif(N)) +df$Accept=(df$X**2 + df$Y**2<=1) +library(ggplot2) +ggplot(df,aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` + +Il est alors aisé d'obtenir une approximation (pas terrible) de \pi en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: + +```{r} +4*mean(df$Accept) +``` diff --git a/module2/exo1/toy_document_fr.html b/module2/exo1/toy_document_fr.html index 1788a54049e7cefb15d836802d7ff25dece6ffda..424cf50869db485918ed1cfdbb65e5e97e05ea46 100644 --- a/module2/exo1/toy_document_fr.html +++ b/module2/exo1/toy_document_fr.html @@ -12,7 +12,7 @@ -Interagir avec Gitlab via RStudio +A propos du calcul de pi