Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
a71d8cf7a2a6b8e7ee04855d19814c1e
mooc-rr
Commits
c82e3987
Commit
c82e3987
authored
Dec 13, 2020
by
a71d8cf7a2a6b8e7ee04855d19814c1e
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
salem plot
parent
da550dd2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
77 additions
and
3 deletions
+77
-3
exercice.ipynb
module2/exo3/exercice.ipynb
+77
-3
No files found.
module2/exo3/exercice.ipynb
View file @
c82e3987
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"14.113000000000001"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"a = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n",
"np.mean(a)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"plt.plot(a)\n",
"plt.grid(True, linestyle=':')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHYNJREFUeJzt3X9s1PeZJ/D342DXgAPGmB92HP+oHUIDFAwku1GjqHivKRtZSkGHSlFQpOOUQ21PSbSqUt0/139W2pxud/86rbSnVo3aS6Ot9nKpoug2VbqrbqQqWtvCcXAczCxm4mFgzsVodpbBxf5+7o+ZocAGPs9jD/7Mx7xfkjX2MJ555s0zjz7+zny/X3HOgYiI4lcXugAiIqoODnQiohWCA52IaIXgQCciWiE40ImIVggOdCKiFYIDnYhoheBAJyJaITjQiYhWiFXL+WCtra2uu7t7OR+SiCh6w8PDM865Tb7bLetA7+7uxtDQ0HI+ZFWlUin09vaGLqPmMSc/ZqTDnEpE5LzmdtzkYtDS0hK6hCgwJz9mpMOcbDjQDa5evRq6hCgwJz9mpMOcbDjQDerqGJcGc/JjRjrMyYZpGdTX14cuIQrMyY8Z6TAnGw50g0KhELqEKDAnP2akw5xsONANWltbQ5cQBebkx4x0mJMNB7rB9PR06BKiwJz8mJEOc7LhQDfo6+sLXUIUmJMfM9JhTjYc6AanT58OXUIUmJMfM9JhTjaynCeJ3r9/v4t5T1Gie6GtoxMXM58t++NufehhZKfTy/64ZCciw865/b7bLeuu/7EbHh7Gvn37QpdR85iT380ZXcx8hq5X31n2Gs6/Nrjsj2nFXrLhJhcDNpYOc/JjRjrMyYYD3WB4eDh0CVFgTn7MSIc52XCgG3C1oMOc/JiRDnOy4UA3GBsbC11CFJiTHzPSYU42HOgG27ZtC11CFJiTHzPSYU42HOgG6TQ/4qXBnPyYkQ5zsuFAN9iyZUvoEqLAnPyYkQ5zsuFAN7hy5UroEqLAnPyYkQ5zsuFAN2hsbAxdQhSYkx8z0mFONhzoREQrBAe6wbVr10KXEAXm5MeMdJiTDQe6QXNzc+gSosCc/JiRDnOy4UA3uHTpUugSosCc/JiRDnOy8Q50EXlYRP5eRD4RkdMi8lL5+hYR+aWITJYvN9z7csPq7OwMXUIUmJMfM9JhTjaaFfo8gD9xzn0JwB8C+I6IPAbg+wDed849AuD98s8r2pkzZ0KXEAXm5MeMdJiTjXegO+eyzrmR8vf/AuATAA8BeA7A6+WbvQ7gG/eqyFqxa9eu0CVEgTn5MSMd5mRj2oYuIt0A+gF8CGCLcy4LlIY+gM3VLq7W8FCeOszJjxnpMCcb9UAXkSYAfwvgZedc3vB7L4rIkIgMZbNZzMzMIJvNIpPJYHZ2FqlUCsViEePj40iSBCMjIwB+/x85MjKCJEkwPj6OYrGIVCqF2dlZZDIZVO5vamoKhUIBExMTmJ+fx+jo6C33UbkcGxvD3NwcJicnkc/nkU6nkcvlkMvlkE6nkc/nMTk5ibm5uRtHebv5Pvbt24fR0VHMz89jYmIChUIBU1NTUT8nAFV/To899lh0z+mhzm689NJLEBG88sorEBG89NJLeOCBB3D8+HFs2rQJg4OD2LZtG5566ik88cQT2LFjB77+9a+jvb0dR48exerVq3Hy5Mlb7qNyeeLECaxfvx6HDx9Gd3c3vve976G/vx/9/f04cOAA2tY4DLQnWLvK4VDXAgDgeN+tl0d6FtBQ53CwI8GmRocnNyfofdBh54YE/RsTdDY5PL01QXODw2DnAurgcKy39LvPl+/jWG/p+sHOBbS2ttb8/9MXv/jF+/71VCwWoaU6p6iI1AN4B8DfOef+onzdpwC+6pzLikgbgH9wzj16t/uJ/ZyiPB2WTow5iciyngbueN8CfnL2AQClU8GFOgXdcp5TeDFi7KV7QXtOUc2nXATADwF8UhnmZb8A8EL5+xcAvL2YQmPCxtJhTn6VYU53x16y0Wxy+QqA4wAGRORU+etZAH8G4GsiMgnga+WfV7TKn2l0d8zJ70jPQugSosBeslnlu4Fz7gMAcod//qPqllPbduzYEbqEKDAnv7fPc58+DfaSDbvK4OzZs6FLiAJz8htor+1t17WCvWTDgW7Q0dERuoQoMCe/4Zk7/dFLN2Mv2XCgG8zMzIQuIQrMya9vHVfoGuwlGw50g6amptAlRIE5+eWKXKFrsJdsONANrl+/HrqEKDAnv9WruELXYC/ZcKAbJEkSuoQoMCe/er7yVNhLNmwrgzVr1oQuIQrMye+3c9zkosFesuFAN7h8+XLoEqLAnPy6m7jJRYO9ZMOBbtDe3h66hCgwJ7+PLnOFrsFesuFANzh37lzoEqLAnPye2sptwxrsJRsOdIPt27eHLiEKzMnv3TRfehrsJRt2lcGpU6dClxAF5uR3tJcrdA32kg0HusHevXtDlxAF5uT3RoqHz9VgL9lwoBvwdFg6zMmvcgYhujv2kg0HugEPtq/DnPx+yhNcqLCXbDjQDSrn/aO7Y05+lXN90t2xl2w40A327NkTuoQoMCe/N1N86Wmwl2zYVQYTExOhS4gCc/J7tpOfctFgL9lwoBv09PSELiEKzMnvg4t86Wmwl2zYVQYXLlwIXUIUmJPfl1t4LBcN9pINB7pBS0tL6BKiwJz8pgo8losGe8mGA93g6tWroUuIAnPy2/gFrtA12Es2HOgGdXWMS4M5+V3ne6Iq7CUbpmVQX18fuoQoMCe/4jw3uWiwl2w40A0KhULoEqLAnPw2r+YmFw32kg0HukFra2voEqLAnPzO5rlC12Av2XCgG0xPT4cuIQrMyW9fK1foGuwlGw50g76+vtAlRIE5+f3qAlfoGuwlGw50g9OnT4cuIQrMye+5Ln7MRYO9ZMOBbrB79+7QJUSBOfn9/BwPn6vBXrLhQDfgwfZ1mJPfcZ7gQoW9ZMOBbsCD7eswJ7+f8AQXKuwlGw50A64WdJaSU1tHJ0Rk2b+WG1foOnzN2awKXUBMuFrQWUpOFzOfoevVd6pYjc751waX9fG4Qtfha86GK3SDsbGx0CVEgTn5HeriCl2DvWTDgW6wbdu20CVEgTn5vZfhS0+DvWTDrjJIp9OhS4gCc/L7g83cU1SDvWTDgW6wZcuW0CVEgTn5fXKFe4pqsJdsvANdRH4kIjkR+fim634gIhkROVX+evbellkbrly5ErqEKDAnv461XKFrsJdsNCv0HwM4+DnX/6Vzbk/5693qllWbGhsbQ5cQBebkl/9d6AriwF6y8Q5059yvAVxehlqIiGgJlrIN/bsi8lF5k8yGqlVUw65duxa6hCgwJ791DaEriAN7yWaxA/2vAPQC2AMgC+DP73RDEXlRRIZEZCibzWJmZgbZbBaZTAazs7NIpVIoFosYHx9HkiQYGRkB8Ps9xEZGRpAkCcbHx1EsFpFKpTA7O4tMJoPK/U1NTaFQKGBiYgLz8/MYHR295T4ql2NjY5ibm8Pk5CTy+TzS6TRyuRxyuRzS6TTy+TwmJycxNzd34/OvN99Hc3MzRkdHMT8/j4mJCRQKBUxNTUX9nABU/Tk1NjYu6Tkd6lrA2lUOA+0J2tY4PL4pwaPrS1+PbypdN9CeYO0qd+Pz3JU9LyuXR3oW0FDncLAjwaZGhyc3J+h90GHnhgT9GxN0Njk8vTVBc4PDYOcC6urqcKy39LvPl+/jWO8C6lD69+aG0u07mxz6NybYuaF0f09uLt3/wY4EDXUOR3o+v57bn1Nzg7vxnA4cOHBvnhPcXZ9Ta2trzfdeXV3dff96KhaL0BLn/G/OiEg3gHecczst/3a7/fv3u6GhIXVxtWZychKPPPJI6DJq3lJyEpFge4ou5+MOtCf41YW6II9dcf61QWhe/yHxNVciIsPOuf2+2y1qhS4ibTf9eAjAx3e67UrS2dkZuoQoMCe/D3P82KIGe8lG87HFnwH4DYBHRWRaRE4A+G8iMiYiHwE4AOCVe1xnTThz5kzoEqLAnPyeeYgnuNBgL9l4D87lnPvW51z9w3tQS83btWtX6BKiwJz83jrPg3NpsJdsuKeoAQ/lqcOc/Hj4XB32kg0HugEP5anDnPx4+Fwd9pINB7oBVws6zMmPK3Qd9pINB7oBVws6zMmPK3Qd9pINB7pBZWcEujvm5FfZAYnujr1kw4FusGPHjtAlRIE5+b19ni89DfaSDbvK4OzZs6FLiAJz8htor+09NGsFe8mGA92go6MjdAlRYE5+wzPcU1SDvWTDgW4wMzMTuoQoMCe/vnVcoWuwl2w40A2amppClxAF5uSXK3KFrsFesuFAN7h+/XroEqLAnPxWr+IKXYO9ZMOBbpAkPKCSBnPyq+crT4W9ZMO2MlizZk3oEqLAnPx+O8dNLhrsJRsOdIPLl3lqVQ3m5NfdxE0uGuwlGw50g/b29tAlRIE5+X10mSt0DfaSDQe6wblz50KXEAXm5PfUVm4b1mAv2XCgG2zfvj10CVFgTn7vpvnS02Av2bCrDE6dOhW6hCgwJ7+jvVyha7CXbDjQDfbu3Ru6hCgwJ783Ujx8rgZ7yYYD3YAH29dhTn7P8wQXKuwlGw50Ax5sX4c5+f2UJ7hQYS/ZcKAbjIyMhC4hCszJ71gvV+ga7CUbDnSDPXv2hC4hCszJ780UX3oa7CUbdpXBxMRE6BKiwJz8nu3kp1w02Es2HOgGPT09oUuIAnPy++AiX3oa7CUbdpXBhQsXQpcQBebk9+UWHstFg71kw4Fu0NLSErqEKDAnv6kCj+WiwV6y4UA3uHr1augSosCc/DZ+gSt0DfaSDQe6QV0d49JgTn7X+Z6oCnvJhmkZ1NfXhy4hCszJrzjPTS4a7CUbDnSDQqEQuoQoMCe/zau5yUWDvWTDgW7Q2toauoQoMCe/s3mu0DXYSzYc6AbT09OhS4gCc/Lb18oVugZ7yYYD3aCvry90CVFgTn6/usAVugZ7yYYD3eD06dOhS4gCc/J7rosfc9FgL9lwoBvs3r07dAlRYE5+Pz/Hw+dqsJdsONANeLB9Hebkd5wnuFBhL9lwoBvwYPs6zMnvJzzBhQp7ycY70EXkRyKSE5GPb7quRUR+KSKT5csN97bM2sDVgg5z8uMKXYe9ZKNZof8YwMHbrvs+gPedc48AeL/884rH1YIOc/LjCl2HvWTjHejOuV8DuHzb1c8BeL38/esAvlHlumrS2NhY6BKiwJz8DnVxha7BXrJZ7Db0Lc65LACULzdXr6TatW3bttAlRIE5+b2X4dtXGuwlm3veVSLyoogMichQNpvFzMwMstksMpkMZmdnkUqlUCwWMT4+jiRJbpwUtrLtbGRkBEmSYHx8HMViEalUCrOzs8hkMqjc39TUFAqFAiYmJjA/P4/R0dFb7qNyOTY2hrm5OUxOTiKfzyOdTiOXyyGXyyGdTiOfz2NychJzc3M3VgY330c6ncbo6Cjm5+cxMTGBQqGAqampqJ8TgKo/p1QqtaTndKhrAWtXOQy0J2hb4/D4pgSPri99Pb6pdN1Ae4K1q9yNlW5lm3Tl8kjPAhrqHA52JNjU6PDk5gS9Dzrs3JCgf2OCziaHp7cmaG5wGOxcQF1d3Y0TNz9fvo9jvQuoQ+nfmxtKt+9scujfmGDnhtL9Pbm5dP8HOxI01Dkc6fn8em5/Tv++5/fP6cCBA/fmOcHd9Tm1trbWfO99+umn9/3rqVgsQkuc8++CLCLdAN5xzu0s//wpgK8657Ii0gbgH5xzj/ruZ//+/W5oaEhdXK3J5/NYt25d6DJq3lJyEhF0vfpOlSvyO//a4LI+btsah+xVCfLYFedfG4Tm9R8SX3MlIjLsnNvvu91iV+i/APBC+fsXALy9yPuJypUrV0KXEAXm5NextrYHaa1gL9loPrb4MwC/AfCoiEyLyAkAfwbgayIyCeBr5Z9XvMbGxtAlRIE5+eV/F7qCOLCXbFb5buCc+9Yd/umPqlwLEREtAd9qN7h27VroEqLAnPzWNYSuIA7sJRsOdIPm5ubQJUSBOflN/ysPn6vBXrLhQDe4dOlS6BKiwJz8vtTMN0U12Es2HOgGnZ2doUuIAnPy+zDHFboGe8mGA93gzJkzoUtYFm0dnRCRRX99+9vfXvTv3i+eeagGTnDxQP2S/p+X8tXWoRvU98trrlq8n3Kh39u1a1foEpbFxcxnS9rR5X0AXa8eXtTvnn9tcNGPG5O3ztfAwbkWrgfZoQnQ/z/fL6+5auEK3YCH8tThoWH9mJEOX3M2HOgGPJSnDg8N68eMdPias+FAN+BqQYerTz9mpMPXnA0HugFXCzpcffoxIx2+5mw40A0qh9yku6scQpbujBnp8DVnw4FusGPHjtAlROHt82wrH2akw9ecDbvK4OzZs6FLiMJAO/eC9GFGOnzN2fBz6AYdHR2hS4jC8Mz9s4PQYt33GZV3avJpa2tDNput2sNufehhZKfTVbu/WsOBbjAzM4OmpqbQZdS8vnUO/+/afT6wPO77jJQ7NT25OcFvctXbkLDSd1zjJhcDDnOdXPE+HlRKzEiHOdlwoBtcv349dAlRWL2K24d9mJEOc7LhQDdIkho4oFIE6tlVXsxIhznZMC6DNWvWhC4hCr+d45/JPsxIhznZcKAbXL58OXQJUehu4p/JPsxIhznZcKAbtLe3hy4hCh9d5qrKhxnpMCcbDnSDc+fOhS4hCk9t5XsNPsxIhznZcKAbbN++PXQJUXg3zbbyYUY6zMmGaRmcOnUqdAlRONrLVZUPM9JhTjYc6AZ79+4NXUIU3kjx0LA+zEiHOdlwoBvwYPs6z/PkDV7MSIc52XCgG/Bg+zo/5ckbvJiRDnOy4UA3GBkZCV1CFI71clXlw4x0mJMNB7rBnj17QpcQhTdTbCsfZqTDnGyYlsHExEToEqLwbCc/meDDjHSYkw0HukFPT0/oEqLwwUW2lQ8z0mFONkzL4MKFC6FLiMKXW3j8DR9mpMOcbDjQDVpaWkKXEIWpAo+/4cOMdJiTDQe6wdWrV0OXEIWNX+CqyocZ6TAnGw50g7o6xqVxne9jeTEjHeZkwwllUF9fH7qEKBTn+WeyDzPSYU42HOgGhUIhdAlR2Lyafyb7MCMd5mTDgW7Q2toauoQonM1zVeXDjHSYk82SBrqITInImIicEpGhahVVq6anp0OXEIV9rVxV+TAjHeZks6oK93HAOTdThfupeX19faFLiMKvLnBV5cOMdJiTDTe5GJw+fTp0CVF4rosfTfBhRjrMyWapA90BeE9EhkXkxWoUVMt2794duoQo/PwcD3nqw4x0mJPNUgf6V5xzewH8MYDviMjTt99ARF4UkSERGcpms5iZmUE2m0Umk8Hs7CxSqRSKxSLGx8eRJMmNQ9RWTiYxMjKCJEkwPj6OYrGIVCqF2dlZZDIZVO5vamoKhUIBExMTmJ+fx+jo6C33UbkcGxvD3NwcJicnkc/nkU6nkcvlkMvlkE6nkc/nMTk5ibm5OYyNjf2b+xgeHsbo6Cjm5+cxMTGBQqGAqampe/acdvfvw9GjR7F69WqcPHkSIoJXXnnllssTJ05g/fr1OHz4MLq7uzEwMID+/n709/djYGAA3d3dOHz4MNavX48TJ0587n2cPHkSq1evxtGjR9He3o5nnnkGvQ867NyQoH9jgs4mh6e3JmhucBjsXEAd3I3DmlZOQHCst3T9YOcC/sO2eTy9tfR7/RsT7NyQoPdBhyc3J9jU6HCwI0FDncORntLvHu+79fJQ1wLWrnIYaE/Qtsbh8U0JHl1f+np8U+m6gfYEa1c5HOr6/Ps40rOAhrrSY21qLD32XZ9TXd1dn1Nzg6vqc3p5x/yN53TgwIF785w8/0+tra3B/p9efvll1XM6uX3e9Jx8/0/f/OY37+mMAHBPZoSWOFedNx1E5AcACs65/36n2+zfv98NDa34906rRkTQ9eo7y/64518bDPK4IR+bz/n+eOzzrw2iWjNvOYnIsHNuv+92i16hi8haEXmw8j2AZwB8vNj7iwFPQadznKcN82JGOszJZimfctkC4C0RqdzPG865/1uVqmoUT0Gn8xOeNsyLGekwJ5tFr9Cdc//snNtd/trhnPvTahZWiyrbzOjuKttL6c6YkQ5zsuHHFg22bdsWuoQovJdhW/kwIx3mZMO0DNLpdOgSovAHm+N702m5MSMd5mTDgW6wZcuW0CVE4ZMr3LvPhxnpMCcbDnSDK1euhC4hCh1ruaryYUY6zMkmmoHe1tEJEQny1dbRCQBobGwMnEIc8r8LXUHtY0Y6Vc/pgfrgc+ReqsbBuZbFxcxnQXeCIKIVYOH6ip4j0azQa8G1a9dClxCFdQ2hK6h9zEiHOdlwoBs0NzeHLiEK0//KN7J8mJEOc7LhQDe4dOlS6BKi8KVmvpHlw4x0mJMNB7pBZ+e9f1NjJfgwx1WVDzPSYU42HOgGZ86cCV1CFJ55iCcl8GFGOszJhgPdYNeuXaFLiMJb53lAJR9mpMOcbDjQDXj4XB0e8tSPGekwJxsOdAMePleHhzz1Y0Y6zMmGA12jvHdZ5ZRty/UVK66q/JiRDnOyiWZP0aDKe5e9BaDr1X+3bA8b6x6qXFX5MSMd5mTDFbpB5WS5dHfMyY8Z6TAnGw50g7fPMy4N5uTHjHSYkw3TMhho515rGszJjxnpMCcbDnSD4Zl436hcTszJjxnpMCcbDnSDvnVcLWgwJz9mpMOcbDjQDXJFrhY0mJMfM9JhTjYc6AarV3G1oMGc/JiRDnOy4UA3qGdaKszJjxnpMCcbxmXw2zn++afBnPyYkQ5zsuFAN+hu4p9/GszJjxnpMCcbDnSDjy5ztaDBnPyYkQ5zsuFAN3hqKw+2r8Gc/JiRDnOy4UA3eDfNuDSYkx8z0mFONkzL4GgvVwsazMmPGekwJxsOdIM3UjyUpwZz8mNGOszJhgPd4HkebF+FOfkxIx3mZMOBbvBTHmxfhTn5MSMd5mTDgW5wrJerBQ3m5MeMdJiTDQe6wZspxqXBnPyYkQ5zsmFaBs928h13Debkx4x0mJMNB7rBBxcZlwZz8mNGOszJhmkZfLmFx5XQYE5+zEiHOdksaaCLyEER+VREzorI96tVVK2aKvC4EhrMyY8Z6TAnm0UPdBF5AMD/APDHAB4D8C0ReaxahdWijV/gakGDOfkxIx3mZLOUFfoTAM465/7ZOfc7AG8CeK46ZdWm63x/RoU5+TEjHeZks5SB/hCAz276ebp83YpVnOeffxrMyY8Z6TAnG3FucX/SiMgRAF93zv3H8s/HATzhnPvPt93uRQAvln98FMCniy83uFYAM6GLiABz8mNGOsyppMs5t8l3o1VLeIBpAA/f9HMHgAu338g599cA/noJj1MzRGTIObc/dB21jjn5MSMd5mSzlE0u/wTgERHpEZEGAEcB/KI6ZRERkdWiV+jOuXkR+S6AvwPwAIAfOedOV60yIiIyWcomFzjn3gXwbpVqicGK2HS0DJiTHzPSYU4Gi35TlIiIagt3/SciWiE40BVEZEpExkTklIgMha6nVojIj0QkJyIf33Rdi4j8UkQmy5cbQtZYC+6Q0w9EJFPuqVMi8mzIGmuBiDwsIn8vIp+IyGkReal8PXtKiQNd74Bzbg8/QnWLHwM4eNt13wfwvnPuEQDvl3++3/0Y/zYnAPjLck/tKb8fdb+bB/AnzrkvAfhDAN8pH06EPaXEgU6L5pz7NYDLt139HIDXy9+/DuAby1pUDbpDTnQb51zWOTdS/v5fAHyC0t7n7CklDnQdB+A9ERku7/lKd7bFOZcFSi9QAJsD11PLvisiH5U3yXAzwk1EpBtAP4APwZ5S40DX+Ypzbi9KR5b8jog8Hbogit5fAegFsAdAFsCfhy2ndohIE4C/BfCycy4fup6YcKArOOculC9zAN5C6UiT9PkuiUgbAJQvc4HrqUnOuUvOuQXnXALgf4I9BQAQkXqUhvn/cs797/LV7CklDnQPEVkrIg9WvgfwDICP7/5b97VfAHih/P0LAN4OWEvNqgyoskNgT0FEBMAPAXzinPuLm/6JPaXEHYs8ROSLKK3KgdKetW845/40YEk1Q0R+BuCrKB0R7xKA/wrg/wD4GwCdANIAjjjn7us3BO+Q01dR2tziAEwB+E+V7cT3KxF5CsA/AhgDUDkS+n9BaTs6e0qBA52IaIXgJhciohWCA52IaIXgQCciWiE40ImIVggOdCKiFYIDnYhoheBAJyJaITjQiYhWiP8PDqEsSGd9hX4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.hist(a, histtype='bar', ec='black')\n",
"plt.grid(True, linestyle=':')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
...
...
@@ -16,10 +91,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.
3
"
"version": "3.6.
4
"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment