From 3d392e96b0d52bfb287a52e5ed455d4fb4890f57 Mon Sep 17 00:00:00 2001 From: a829a5ef5d74929a9597c44c80f67c38 Date: Mon, 15 Mar 2021 20:56:00 +0000 Subject: [PATCH] no commit message --- module2/exo1/toy_notebook_en.ipynb | 30 +++++++++++++++++++++++++++--- 1 file changed, 27 insertions(+), 3 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 75dbd28..c308d13 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -33,7 +33,15 @@ "source": [ "## Using a surface fraction argument\n", "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:\n", - " \n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "%matplotlib inline \n", "import matplotlib.pyplot as plt\n", "\n", @@ -49,9 +57,25 @@ "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')\n", - "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:\n", - "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "4*np.mean(accept)" ] } -- 2.18.1