diff --git a/module2/exo1/Tutoriel.ipynb b/module2/exo1/Tutoriel.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f8e15c7a78d9de2f0e6d92f741ab1e79274f1194 --- /dev/null +++ b/module2/exo1/Tutoriel.ipynb @@ -0,0 +1,181 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2+2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n" + ] + } + ], + "source": [ + "x=10\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "x = x + 10\n", + "print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Petit exemple de completion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "mu, sigma = 100, 15" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.random.normal(loc=mu, scale=sigma, size=10000)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEFRJREFUeJzt3X+s3fVdx/HnSzor+0FWbMGubbx1qT+AODaaBiUxKCrdWFb2x5ISN5pI0oWwuJkZbbfEzT+aYNwPJRFMN5Cik6bZD2kGzNW6ZFnCxi6TUUpXqaPCpZXeuehQE1zZ2z/Ot+GsPbf3V3vPvffzfCQn53ve38/3fD/vAH31++N8SVUhSWrTTwx7ApKk4TEEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ1bMuwJTGb58uU1MjIy7GlI0oLy2GOPfa+qVkw2bt6HwMjICKOjo8OehiQtKEn+bSrjPB0kSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNm/e/GJbmq5FtDw5t30dvv2Fo+9bi4pGAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIZNGgJJ1iT5SpJDSQ4meX9X/2iS55M83r3e1rfN9iRHkhxOcn1f/aokB7p1dyTJ+WlLkjQVU3l20Engg1X1rSSvAx5Lsq9b98mq+lj/4CSXAZuBy4E3AP+Y5Oer6mXgLmAr8HXgIWAj8PC5aUWSNF2ThkBVHQeOd8svJjkErDrLJpuA3VX1EvBMkiPAhiRHgYuq6hGAJPcBN2IIaJaG+SA3aaGb1jWBJCPAm4FvdKX3JXkiyT1JlnW1VcBzfZuNdbVV3fLp9UH72ZpkNMno+Pj4dKYoSZqGKYdAktcCnwM+UFU/oHdq543AlfSOFD5+auiAzess9TOLVTuran1VrV+xYsVUpyhJmqYphUCSV9ELgM9U1ecBquqFqnq5qn4EfArY0A0fA9b0bb4aONbVVw+oS5KGZCp3BwW4GzhUVZ/oq6/sG/ZO4MlueS+wOcnSJGuBdcCj3bWFF5Nc3X3nzcAD56gPSdIMTOXuoGuA9wAHkjze1T4E3JTkSnqndI4C7wWoqoNJ9gBP0buz6LbuziCAW4F7gQvpXRD2orAkDdFU7g76GoPP5z90lm12ADsG1EeBK6YzQUnS+eMvhiWpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGjZpCCRZk+QrSQ4lOZjk/V394iT7kjzdvS/r22Z7kiNJDie5vq9+VZID3bo7kuT8tCVJmoqpHAmcBD5YVb8EXA3cluQyYBuwv6rWAfu7z3TrNgOXAxuBO5Nc0H3XXcBWYF332ngOe5EkTdOkIVBVx6vqW93yi8AhYBWwCdjVDdsF3NgtbwJ2V9VLVfUMcATYkGQlcFFVPVJVBdzXt40kaQimdU0gyQjwZuAbwKVVdRx6QQFc0g1bBTzXt9lYV1vVLZ9elyQNyZRDIMlrgc8BH6iqH5xt6IBanaU+aF9bk4wmGR0fH5/qFCVJ0zSlEEjyKnoB8Jmq+nxXfqE7xUP3fqKrjwFr+jZfDRzr6qsH1M9QVTuran1VrV+xYsVUe5EkTdNU7g4KcDdwqKo+0bdqL7ClW94CPNBX35xkaZK19C4AP9qdMnoxydXdd97ct40kaQiWTGHMNcB7gANJHu9qHwJuB/YkuQV4FngXQFUdTLIHeIrenUW3VdXL3Xa3AvcCFwIPdy9J0pBMGgJV9TUGn88HuG6CbXYAOwbUR4ErpjNBSdL54y+GJalhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsOm8jsBSfPMyLYHh7Lfo7ffMJT96vzxSECSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhk0aAknuSXIiyZN9tY8meT7J493rbX3rtic5kuRwkuv76lclOdCtuyNJzn07kqTpmMqRwL3AxgH1T1bVld3rIYAklwGbgcu7be5MckE3/i5gK7Cuew36TknSHJo0BKrqq8D3p/h9m4DdVfVSVT0DHAE2JFkJXFRVj1RVAfcBN8500pKkc2M21wTel+SJ7nTRsq62Cniub8xYV1vVLZ9eHyjJ1iSjSUbHx8dnMUVJ0tnMNATuAt4IXAkcBz7e1Qed56+z1Aeqqp1Vtb6q1q9YsWKGU5QkTWZGIVBVL1TVy1X1I+BTwIZu1Riwpm/oauBYV189oC5JGqIZhUB3jv+UdwKn7hzaC2xOsjTJWnoXgB+tquPAi0mu7u4Kuhl4YBbzliSdA0smG5DkfuBaYHmSMeAjwLVJrqR3Suco8F6AqjqYZA/wFHASuK2qXu6+6lZ6dxpdCDzcvSRJQzRpCFTVTQPKd59l/A5gx4D6KHDFtGYnSTqv/MWwJDXMEJCkhhkCktQwQ0CSGjbphWFpKka2PTjsKUiaAY8EJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDZs0BJLck+REkif7ahcn2Zfk6e59Wd+67UmOJDmc5Pq++lVJDnTr7kiSc9+OJGk6pnIkcC+w8bTaNmB/Va0D9nefSXIZsBm4vNvmziQXdNvcBWwF1nWv079TkjTHJg2Bqvoq8P3TypuAXd3yLuDGvvruqnqpqp4BjgAbkqwELqqqR6qqgPv6tpEkDclMrwlcWlXHAbr3S7r6KuC5vnFjXW1Vt3x6XZI0ROf6wvCg8/x1lvrgL0m2JhlNMjo+Pn7OJidJ+nEzDYEXulM8dO8nuvoYsKZv3GrgWFdfPaA+UFXtrKr1VbV+xYoVM5yiJGkyMw2BvcCWbnkL8EBffXOSpUnW0rsA/Gh3yujFJFd3dwXd3LeNJGlIlkw2IMn9wLXA8iRjwEeA24E9SW4BngXeBVBVB5PsAZ4CTgK3VdXL3VfdSu9OowuBh7uXJGmIJg2BqrppglXXTTB+B7BjQH0UuGJas5MknVf+YliSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhkz5FVJJOGdn24FD2e/T2G4ay3xZ4JCBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatisQiDJ0SQHkjyeZLSrXZxkX5Knu/dlfeO3JzmS5HCS62c7eUnS7JyLI4Ffr6orq2p993kbsL+q1gH7u88kuQzYDFwObATuTHLBOdi/JGmGzsfpoE3Arm55F3BjX313Vb1UVc8AR4AN52H/kqQpmm0IFPDlJI8l2drVLq2q4wDd+yVdfRXwXN+2Y13tDEm2JhlNMjo+Pj7LKUqSJjLb/9H8NVV1LMklwL4k3znL2Ayo1aCBVbUT2Amwfv36gWMkSbM3qxCoqmPd+4kkX6B3eueFJCur6niSlcCJbvgYsKZv89XAsdnsX2ca2fbgsKcgaQGZ8emgJK9J8rpTy8BvA08Ce4Et3bAtwAPd8l5gc5KlSdYC64BHZ7p/SdLszeZI4FLgC0lOfc/fVdWXknwT2JPkFuBZ4F0AVXUwyR7gKeAkcFtVvTyr2UuSZmXGIVBV3wXeNKD+H8B1E2yzA9gx031Kks4tfzEsSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGzfh/NC9Jc2Vk24ND2/fR228Y2r7ngkcCktQwQ0CSGmYISFLDDAFJapgXhs+DYV7EkqTp8EhAkhpmCEhSwwwBSWrYnIdAko1JDic5kmTbXO9fkvSKOQ2BJBcAfwm8FbgMuCnJZXM5B0nSK+b67qANwJGq+i5Akt3AJuCp87Ez79KRNFvD+nNkrh5XMdeng1YBz/V9HutqkqQhmOsjgQyo1RmDkq3A1u7jfyc5DCwHvnce5zYf2OPCt9j7g8Xf47zoL38666/42akMmusQGAPW9H1eDRw7fVBV7QR29teSjFbV+vM7veGyx4VvsfcHi7/Hxd7f6eb6dNA3gXVJ1ib5SWAzsHeO5yBJ6szpkUBVnUzyPuAfgAuAe6rq4FzOQZL0ijl/dlBVPQQ8NINNd04+ZMGzx4VvsfcHi7/Hxd7fj0nVGddlJUmN8LERktSweRsCSS5I8s9Jvth9vjjJviRPd+/Lhj3H2Ujy+iSfTfKdJIeS/Moi7PH3kxxM8mSS+5P81ELvMck9SU4kebKvNmFPSbZ3j0g5nOT64cx66ibo78+6f0+fSPKFJK/vW7eg+oPBPfat+4MklWR5X23B9Tgd8zYEgPcDh/o+bwP2V9U6YH/3eSH7C+BLVfWLwJvo9bpoekyyCvg9YH1VXUHvRoDNLPwe7wU2nlYb2FP3SJTNwOXdNnd2j06Zz+7lzP72AVdU1S8D/wJshwXbHwzukSRrgN8Cnu2rLdQep2xehkCS1cANwKf7ypuAXd3yLuDGuZ7XuZLkIuDXgLsBqur/quo/WUQ9dpYAFyZZArya3m9CFnSPVfVV4PunlSfqaROwu6peqqpngCP0Hp0ybw3qr6q+XFUnu49fp/f7HliA/cGE/wwBPgn8IT/+A9YF2eN0zMsQAP6c3j+MH/XVLq2q4wDd+yXDmNg58nPAOPDX3SmvTyd5DYuox6p6HvgYvb9VHQf+q6q+zCLqsc9EPS3Gx6T8LvBwt7xo+kvyDuD5qvr2aasWTY8TmXchkOTtwImqemzYczmPlgBvAe6qqjcD/8PCOy1yVt158U3AWuANwGuSvHu4s5pzU3pMykKR5MPASeAzp0oDhi24/pK8Gvgw8MeDVg+oLbgez2behQBwDfCOJEeB3cBvJPlb4IUkKwG69xPDm+KsjQFjVfWN7vNn6YXCYurxN4Fnqmq8qn4IfB74VRZXj6dM1NOUHpOyECTZArwd+J165b7yxdLfG+n9ZeXb3Z87q4FvJfkZFk+PE5p3IVBV26tqdVWN0Lsg809V9W56j5fY0g3bAjwwpCnOWlX9O/Bckl/oStfRe5z2oumR3mmgq5O8Okno9XiIxdXjKRP1tBfYnGRpkrXAOuDRIcxvVpJsBP4IeEdV/W/fqkXRX1UdqKpLqmqk+3NnDHhL99/poujxrKpq3r6Aa4Evdss/Te/Oi6e794uHPb9Z9nYlMAo8Afw9sGwR9vgnwHeAJ4G/AZYu9B6B++ld4/ghvT8sbjlbT/ROM/wrcBh467DnP8P+jtA7L/549/qrhdrfRD2etv4osHwh9zidl78YlqSGzbvTQZKkuWMISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUsP8He2JG9B7s1k4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "plt.hist(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Utilisation d'autres langages" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext rpy2.ipython" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%R\n", + "plot(cars)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb deleted file mode 100644 index 0bbbe371b01e359e381e43239412d77bf53fb1fb..0000000000000000000000000000000000000000 --- a/module2/exo1/toy_notebook_fr.ipynb +++ /dev/null @@ -1,25 +0,0 @@ -{ - "cells": [], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} -