diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 2c8b2f1acddc5a2a3bc8a5872d44897f918b8800..05e094ec04517e10b0a5aa3573985b90dd540409 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# 1 À propos du calcul de $π$" + "# 1 À propos du calcul de $\\pi$" ] }, { @@ -18,7 +18,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Mon ordinateur m’indique que $π$ vaut *approximativement*" + "Mon ordinateur m’indique que $\\pi$ vaut *approximativement*" ] }, { @@ -89,7 +89,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X ∼ U(0,1)$ et $Y ∼ U(0,1)$ alors $P[X^2+Y^2 ≤1]=π/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait :" + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X ∼ U(0,1)$ et $Y ∼ U(0,1)$ alors $P[X^2+Y^2 ≤1]=\\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait :" ] }, { @@ -131,7 +131,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Il est alors aisé d’obtenir une approximation (pas terrible) de $π$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :" + "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :" ] }, {