{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# À propos du calcul de $\\pi$\n", "## En demandant à la lib maths\n", "Mon ordinateur m’indique que $\\pi$ vaut *approximativement* " ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.141592653589793\n" ] } ], "source": [ "from math import *\n", "print (pi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## En utilisant la méthode des aiguilles de Buffon \n", "Mais calculé avec la **méthode** des [https://fr.wikipedia.org/wiki/Aiguille_de_Buffon], on obtiendrait comme **approximation** :" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.128911138923655" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "np.random.seed(seed=42)\n", "N = 10000\n", "x = np.random.uniform(size=N, low=0, high=1) \n", "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Avec un argument \"fréquentiel\" de surface\n", "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq1]=\\pi/4$ (voir [https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80]). Le code suivant illustre ce fait :" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "EOL while scanning string literal (, line 13)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m13\u001b[0m\n\u001b[0;31m ax.scatter(x[reject],y[reject], c='r’, alpha=0.2, edgecolor=None)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m EOL while scanning string literal\n" ] } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", "\n", "accept=(x*x+y*y)<=1 \n", "reject=np.logical_not(accept)\n", "\n", "fig, ax=plt.subplots(1) \n", "ax.scatter(x[reject],y[reject], c='r’, alpha=0.2, edgecolor=None) \n", "ax.scatter(x[reject],y[reject], c='r’, alpha=0.2, edgecolor=None) \n", "ax.set_aspect('equal')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il est alor saisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inferoeir à 1 :" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (, line 1)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m 4.np.mean(accept)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "4.np.mean(accept)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 4 }