From 4e19449eaec1a56e98fbe9fa3f4a5916d25cd1a1 Mon Sep 17 00:00:00 2001 From: Xavier Nardou Date: Mon, 23 Mar 2020 18:20:31 +0100 Subject: [PATCH] Commit de l'exercice 1, premier essai --- module2/exo1/toy_document_fr.Rmd | 47 ++++++++++++++++------------ module2/exo1/toy_document_fr.html | 52 +++++++++++++++++++------------ 2 files changed, 59 insertions(+), 40 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 42f1e11..a3745db 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,33 +1,40 @@ --- -title: "Votre titre" +title: "À propos du calcul de pi" author: "Xavier Nardou" -date: "La date du jour" +date: "23 Mars 2020" output: html_document --- -```{r setup, include=FALSE} -knitr::opts_chunk$set(echo = TRUE) +# En demandant à la lib maths +Mon ordinateur m’indique que π vaut *approximativement* +```{r} +pi ``` -## Quelques explications - -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . - -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: - -```{r cars} -summary(cars) +# En utilisant la méthode des aiguilles de Buffon +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) ``` -Et on peut aussi aisément inclure des figures. Par exemple: - -```{r pressure, echo=FALSE} -plot(pressure) +# Avec un argument “fréquentiel” de surface +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $\ X∼U(0,1)$ et $\ Y∼U(0,1)$ alors $\ P[X2+Y2≤1]=π/4$ (voir [méthode de Monte Carlo](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80) sur Wikipedia). Le code suivant illustre ce fait: +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. - -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $\ X2+Y2$ est inférieur à 1: +```{r} +4*mean(df$Accept) +``` -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. diff --git a/module2/exo1/toy_document_fr.html b/module2/exo1/toy_document_fr.html index 2657761..81dd159 100644 --- a/module2/exo1/toy_document_fr.html +++ b/module2/exo1/toy_document_fr.html @@ -12,7 +12,7 @@ -Votre titre +À propos du calcul de pi