From 189b5a125679f68b64c2ddb806457868689cdaf2 Mon Sep 17 00:00:00 2001 From: b1131ecdbc91571026ae3b991090f676 Date: Wed, 3 Feb 2021 12:27:49 +0000 Subject: [PATCH] version 2 (remplacement de ** par __; ajout d'espace, ...) --- module2/exo1/toy_notebook_fr.ipynb | 51 ++++++++++-------------------- 1 file changed, 17 insertions(+), 34 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index ad3b374..a73c892 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -11,13 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## En demandant à la lib maths" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "## En demandant à la lib maths\n", "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*" ] }, @@ -43,14 +37,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## En utilisant la méthode des aiguilles de Buffon" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait commeapproximation:" + "## En utilisant la méthode des aiguilles de Buffon\n", + "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__:" ] }, { @@ -72,9 +60,9 @@ "source": [ "import numpy as np\n", "np.random.seed(seed=42)\n", - "N=10000\n", - "x=np.random.uniform(size=N, low=0, high=1)\n", - "theta=np.random.uniform(size=N, low=0, high=pi/2)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, @@ -82,14 +70,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Avec un argument \"fréquentiel\" de surface" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonctionsinus se base sur le fait que si $X \\sim U(0, 1)$ et $Y \\sim U(0, 1)$ alors $P[X^2+Y^2 \\le 1]= \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + "## Avec un argument \"fréquentiel\" de surface\n", + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonctionsinus se base sur le fait que si $X\\sim U(0, 1)$ et $Y\\sim U(0, 1)$ alors $P[X^2+Y^2 \\leq 1]= \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { @@ -111,17 +93,18 @@ } ], "source": [ - "%matplotlib inline\n", + "%matplotlib inline \n", "import matplotlib.pyplot as plt\n", "\n", "np.random.seed(seed=42)\n", - "N=1000\n", - "x=np.random.uniform(size=N, low=0, high=1)\n", - "y=np.random.uniform(size=N, low=0, high=1)\n", - "accept=(x*x+y*y)<=1\n", - "reject=np.logical_not(accept)\n", + "N = 1000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "y = np.random.uniform(size=N, low=0, high=1)\n", + "\n", + "accept = (x*x+y*y)<=1\n", + "reject = np.logical_not(accept)\n", "\n", - "fig, ax=plt.subplots(1)\n", + "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')" @@ -131,7 +114,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,en moyenne, $X^2+Y^2$ est inférieur à 1 :" + "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1 :" ] }, { -- 2.18.1