{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sujet 2 : le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle\n",
"\n",
"William Playfair était un des pionniers de la présentation graphique des données. Il est notamment considéré comme l'inventeur de l'histogramme. Un de ses graphes célèbres, tiré de son livre \"A Letter on Our Agricultural Distresses, Their Causes and Remedies\", montre l'évolution du prix du blé et du salaire moyen entre 1565 et 1821. Playfair n'a pas publié les données numériques brutes qu'il a utilisées, car à son époque la réplicabilité n'était pas encore considérée comme essentielle. Des valeurs obtenues par numérisation du graphe sont aujourd'hui téléchargeables, la version en [format CSV](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv) étant la plus pratique.\n",
"\n",
"Quelques remarques pour la compréhension des données :\n",
"- Jusqu'en 1971, la livre sterling était divisée en 20 shillings, et un shilling en 12 pences.\n",
"- Le prix du blé est donné en shillings pour un quart de boisseau de blé. Un quart de boisseau équivaut 15 livres britanniques ou 6,8 kg.\n",
"- Les salaires sont donnés en shillings par semaine."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mission 0 : preparer les données\n",
"\n",
"Le document csv est téléchargé et est enregistré localement."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Unnamed: 0 \n",
" Year \n",
" Wheat \n",
" Wages \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1 \n",
" 1565 \n",
" 41.0 \n",
" 5.00 \n",
" \n",
" \n",
" 1 \n",
" 2 \n",
" 1570 \n",
" 45.0 \n",
" 5.05 \n",
" \n",
" \n",
" 2 \n",
" 3 \n",
" 1575 \n",
" 42.0 \n",
" 5.08 \n",
" \n",
" \n",
" 3 \n",
" 4 \n",
" 1580 \n",
" 49.0 \n",
" 5.12 \n",
" \n",
" \n",
" 4 \n",
" 5 \n",
" 1585 \n",
" 41.5 \n",
" 5.15 \n",
" \n",
" \n",
" 5 \n",
" 6 \n",
" 1590 \n",
" 47.0 \n",
" 5.25 \n",
" \n",
" \n",
" 6 \n",
" 7 \n",
" 1595 \n",
" 64.0 \n",
" 5.54 \n",
" \n",
" \n",
" 7 \n",
" 8 \n",
" 1600 \n",
" 27.0 \n",
" 5.61 \n",
" \n",
" \n",
" 8 \n",
" 9 \n",
" 1605 \n",
" 33.0 \n",
" 5.69 \n",
" \n",
" \n",
" 9 \n",
" 10 \n",
" 1610 \n",
" 32.0 \n",
" 5.78 \n",
" \n",
" \n",
" 10 \n",
" 11 \n",
" 1615 \n",
" 33.0 \n",
" 5.94 \n",
" \n",
" \n",
" 11 \n",
" 12 \n",
" 1620 \n",
" 35.0 \n",
" 6.01 \n",
" \n",
" \n",
" 12 \n",
" 13 \n",
" 1625 \n",
" 33.0 \n",
" 6.12 \n",
" \n",
" \n",
" 13 \n",
" 14 \n",
" 1630 \n",
" 45.0 \n",
" 6.22 \n",
" \n",
" \n",
" 14 \n",
" 15 \n",
" 1635 \n",
" 33.0 \n",
" 6.30 \n",
" \n",
" \n",
" 15 \n",
" 16 \n",
" 1640 \n",
" 39.0 \n",
" 6.37 \n",
" \n",
" \n",
" 16 \n",
" 17 \n",
" 1645 \n",
" 53.0 \n",
" 6.45 \n",
" \n",
" \n",
" 17 \n",
" 18 \n",
" 1650 \n",
" 42.0 \n",
" 6.50 \n",
" \n",
" \n",
" 18 \n",
" 19 \n",
" 1655 \n",
" 40.5 \n",
" 6.60 \n",
" \n",
" \n",
" 19 \n",
" 20 \n",
" 1660 \n",
" 46.5 \n",
" 6.75 \n",
" \n",
" \n",
" 20 \n",
" 21 \n",
" 1665 \n",
" 32.0 \n",
" 6.80 \n",
" \n",
" \n",
" 21 \n",
" 22 \n",
" 1670 \n",
" 37.0 \n",
" 6.90 \n",
" \n",
" \n",
" 22 \n",
" 23 \n",
" 1675 \n",
" 43.0 \n",
" 7.00 \n",
" \n",
" \n",
" 23 \n",
" 24 \n",
" 1680 \n",
" 35.0 \n",
" 7.30 \n",
" \n",
" \n",
" 24 \n",
" 25 \n",
" 1685 \n",
" 27.0 \n",
" 7.60 \n",
" \n",
" \n",
" 25 \n",
" 26 \n",
" 1690 \n",
" 40.0 \n",
" 8.00 \n",
" \n",
" \n",
" 26 \n",
" 27 \n",
" 1695 \n",
" 50.0 \n",
" 8.50 \n",
" \n",
" \n",
" 27 \n",
" 28 \n",
" 1700 \n",
" 30.0 \n",
" 9.00 \n",
" \n",
" \n",
" 28 \n",
" 29 \n",
" 1705 \n",
" 32.0 \n",
" 10.00 \n",
" \n",
" \n",
" 29 \n",
" 30 \n",
" 1710 \n",
" 44.0 \n",
" 11.00 \n",
" \n",
" \n",
" 30 \n",
" 31 \n",
" 1715 \n",
" 33.0 \n",
" 11.75 \n",
" \n",
" \n",
" 31 \n",
" 32 \n",
" 1720 \n",
" 29.0 \n",
" 12.50 \n",
" \n",
" \n",
" 32 \n",
" 33 \n",
" 1725 \n",
" 39.0 \n",
" 13.00 \n",
" \n",
" \n",
" 33 \n",
" 34 \n",
" 1730 \n",
" 26.0 \n",
" 13.30 \n",
" \n",
" \n",
" 34 \n",
" 35 \n",
" 1735 \n",
" 32.0 \n",
" 13.60 \n",
" \n",
" \n",
" 35 \n",
" 36 \n",
" 1740 \n",
" 27.0 \n",
" 14.00 \n",
" \n",
" \n",
" 36 \n",
" 37 \n",
" 1745 \n",
" 27.5 \n",
" 14.50 \n",
" \n",
" \n",
" 37 \n",
" 38 \n",
" 1750 \n",
" 31.0 \n",
" 15.00 \n",
" \n",
" \n",
" 38 \n",
" 39 \n",
" 1755 \n",
" 35.5 \n",
" 15.70 \n",
" \n",
" \n",
" 39 \n",
" 40 \n",
" 1760 \n",
" 31.0 \n",
" 16.50 \n",
" \n",
" \n",
" 40 \n",
" 41 \n",
" 1765 \n",
" 43.0 \n",
" 17.60 \n",
" \n",
" \n",
" 41 \n",
" 42 \n",
" 1770 \n",
" 47.0 \n",
" 18.50 \n",
" \n",
" \n",
" 42 \n",
" 43 \n",
" 1775 \n",
" 44.0 \n",
" 19.50 \n",
" \n",
" \n",
" 43 \n",
" 44 \n",
" 1780 \n",
" 46.0 \n",
" 21.00 \n",
" \n",
" \n",
" 44 \n",
" 45 \n",
" 1785 \n",
" 42.0 \n",
" 23.00 \n",
" \n",
" \n",
" 45 \n",
" 46 \n",
" 1790 \n",
" 47.5 \n",
" 25.50 \n",
" \n",
" \n",
" 46 \n",
" 47 \n",
" 1795 \n",
" 76.0 \n",
" 27.50 \n",
" \n",
" \n",
" 47 \n",
" 48 \n",
" 1800 \n",
" 79.0 \n",
" 28.50 \n",
" \n",
" \n",
" 48 \n",
" 49 \n",
" 1805 \n",
" 81.0 \n",
" 29.50 \n",
" \n",
" \n",
" 49 \n",
" 50 \n",
" 1810 \n",
" 99.0 \n",
" 30.00 \n",
" \n",
" \n",
" 50 \n",
" 51 \n",
" 1815 \n",
" 78.0 \n",
" NaN \n",
" \n",
" \n",
" 51 \n",
" 52 \n",
" 1820 \n",
" 54.0 \n",
" NaN \n",
" \n",
" \n",
" 52 \n",
" 53 \n",
" 1821 \n",
" 54.0 \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"0 1 1565 41.0 5.00\n",
"1 2 1570 45.0 5.05\n",
"2 3 1575 42.0 5.08\n",
"3 4 1580 49.0 5.12\n",
"4 5 1585 41.5 5.15\n",
"5 6 1590 47.0 5.25\n",
"6 7 1595 64.0 5.54\n",
"7 8 1600 27.0 5.61\n",
"8 9 1605 33.0 5.69\n",
"9 10 1610 32.0 5.78\n",
"10 11 1615 33.0 5.94\n",
"11 12 1620 35.0 6.01\n",
"12 13 1625 33.0 6.12\n",
"13 14 1630 45.0 6.22\n",
"14 15 1635 33.0 6.30\n",
"15 16 1640 39.0 6.37\n",
"16 17 1645 53.0 6.45\n",
"17 18 1650 42.0 6.50\n",
"18 19 1655 40.5 6.60\n",
"19 20 1660 46.5 6.75\n",
"20 21 1665 32.0 6.80\n",
"21 22 1670 37.0 6.90\n",
"22 23 1675 43.0 7.00\n",
"23 24 1680 35.0 7.30\n",
"24 25 1685 27.0 7.60\n",
"25 26 1690 40.0 8.00\n",
"26 27 1695 50.0 8.50\n",
"27 28 1700 30.0 9.00\n",
"28 29 1705 32.0 10.00\n",
"29 30 1710 44.0 11.00\n",
"30 31 1715 33.0 11.75\n",
"31 32 1720 29.0 12.50\n",
"32 33 1725 39.0 13.00\n",
"33 34 1730 26.0 13.30\n",
"34 35 1735 32.0 13.60\n",
"35 36 1740 27.0 14.00\n",
"36 37 1745 27.5 14.50\n",
"37 38 1750 31.0 15.00\n",
"38 39 1755 35.5 15.70\n",
"39 40 1760 31.0 16.50\n",
"40 41 1765 43.0 17.60\n",
"41 42 1770 47.0 18.50\n",
"42 43 1775 44.0 19.50\n",
"43 44 1780 46.0 21.00\n",
"44 45 1785 42.0 23.00\n",
"45 46 1790 47.5 25.50\n",
"46 47 1795 76.0 27.50\n",
"47 48 1800 79.0 28.50\n",
"48 49 1805 81.0 29.50\n",
"49 50 1810 99.0 30.00\n",
"50 51 1815 78.0 NaN\n",
"51 52 1820 54.0 NaN\n",
"52 53 1821 54.0 NaN"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"\n",
"data_url = \"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\"\n",
"\n",
"data_file = \"Wheat.csv\"\n",
"\n",
"import os\n",
"import urllib.request\n",
"if not os.path.exists(data_file):\n",
" urllib.request.urlretrieve(data_url, data_file)\n",
" \n",
"\n",
"raw_data = pd.read_csv(data_file)\n",
"raw_data\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Vérifications qu'il n'existe aucune donnée vide."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Unnamed: 0 \n",
" Year \n",
" Wheat \n",
" Wages \n",
" \n",
" \n",
" \n",
" \n",
" 50 \n",
" 51 \n",
" 1815 \n",
" 78.0 \n",
" NaN \n",
" \n",
" \n",
" 51 \n",
" 52 \n",
" 1820 \n",
" 54.0 \n",
" NaN \n",
" \n",
" \n",
" 52 \n",
" 53 \n",
" 1821 \n",
" 54.0 \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"50 51 1815 78.0 NaN\n",
"51 52 1820 54.0 NaN\n",
"52 53 1821 54.0 NaN"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il existe des données vides.\n",
"Suppression des lignes contenant des données inexistantes (année 1815, 1820, 1821)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Unnamed: 0 \n",
" Year \n",
" Wheat \n",
" Wages \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1 \n",
" 1565 \n",
" 41.0 \n",
" 5.00 \n",
" \n",
" \n",
" 1 \n",
" 2 \n",
" 1570 \n",
" 45.0 \n",
" 5.05 \n",
" \n",
" \n",
" 2 \n",
" 3 \n",
" 1575 \n",
" 42.0 \n",
" 5.08 \n",
" \n",
" \n",
" 3 \n",
" 4 \n",
" 1580 \n",
" 49.0 \n",
" 5.12 \n",
" \n",
" \n",
" 4 \n",
" 5 \n",
" 1585 \n",
" 41.5 \n",
" 5.15 \n",
" \n",
" \n",
" 5 \n",
" 6 \n",
" 1590 \n",
" 47.0 \n",
" 5.25 \n",
" \n",
" \n",
" 6 \n",
" 7 \n",
" 1595 \n",
" 64.0 \n",
" 5.54 \n",
" \n",
" \n",
" 7 \n",
" 8 \n",
" 1600 \n",
" 27.0 \n",
" 5.61 \n",
" \n",
" \n",
" 8 \n",
" 9 \n",
" 1605 \n",
" 33.0 \n",
" 5.69 \n",
" \n",
" \n",
" 9 \n",
" 10 \n",
" 1610 \n",
" 32.0 \n",
" 5.78 \n",
" \n",
" \n",
" 10 \n",
" 11 \n",
" 1615 \n",
" 33.0 \n",
" 5.94 \n",
" \n",
" \n",
" 11 \n",
" 12 \n",
" 1620 \n",
" 35.0 \n",
" 6.01 \n",
" \n",
" \n",
" 12 \n",
" 13 \n",
" 1625 \n",
" 33.0 \n",
" 6.12 \n",
" \n",
" \n",
" 13 \n",
" 14 \n",
" 1630 \n",
" 45.0 \n",
" 6.22 \n",
" \n",
" \n",
" 14 \n",
" 15 \n",
" 1635 \n",
" 33.0 \n",
" 6.30 \n",
" \n",
" \n",
" 15 \n",
" 16 \n",
" 1640 \n",
" 39.0 \n",
" 6.37 \n",
" \n",
" \n",
" 16 \n",
" 17 \n",
" 1645 \n",
" 53.0 \n",
" 6.45 \n",
" \n",
" \n",
" 17 \n",
" 18 \n",
" 1650 \n",
" 42.0 \n",
" 6.50 \n",
" \n",
" \n",
" 18 \n",
" 19 \n",
" 1655 \n",
" 40.5 \n",
" 6.60 \n",
" \n",
" \n",
" 19 \n",
" 20 \n",
" 1660 \n",
" 46.5 \n",
" 6.75 \n",
" \n",
" \n",
" 20 \n",
" 21 \n",
" 1665 \n",
" 32.0 \n",
" 6.80 \n",
" \n",
" \n",
" 21 \n",
" 22 \n",
" 1670 \n",
" 37.0 \n",
" 6.90 \n",
" \n",
" \n",
" 22 \n",
" 23 \n",
" 1675 \n",
" 43.0 \n",
" 7.00 \n",
" \n",
" \n",
" 23 \n",
" 24 \n",
" 1680 \n",
" 35.0 \n",
" 7.30 \n",
" \n",
" \n",
" 24 \n",
" 25 \n",
" 1685 \n",
" 27.0 \n",
" 7.60 \n",
" \n",
" \n",
" 25 \n",
" 26 \n",
" 1690 \n",
" 40.0 \n",
" 8.00 \n",
" \n",
" \n",
" 26 \n",
" 27 \n",
" 1695 \n",
" 50.0 \n",
" 8.50 \n",
" \n",
" \n",
" 27 \n",
" 28 \n",
" 1700 \n",
" 30.0 \n",
" 9.00 \n",
" \n",
" \n",
" 28 \n",
" 29 \n",
" 1705 \n",
" 32.0 \n",
" 10.00 \n",
" \n",
" \n",
" 29 \n",
" 30 \n",
" 1710 \n",
" 44.0 \n",
" 11.00 \n",
" \n",
" \n",
" 30 \n",
" 31 \n",
" 1715 \n",
" 33.0 \n",
" 11.75 \n",
" \n",
" \n",
" 31 \n",
" 32 \n",
" 1720 \n",
" 29.0 \n",
" 12.50 \n",
" \n",
" \n",
" 32 \n",
" 33 \n",
" 1725 \n",
" 39.0 \n",
" 13.00 \n",
" \n",
" \n",
" 33 \n",
" 34 \n",
" 1730 \n",
" 26.0 \n",
" 13.30 \n",
" \n",
" \n",
" 34 \n",
" 35 \n",
" 1735 \n",
" 32.0 \n",
" 13.60 \n",
" \n",
" \n",
" 35 \n",
" 36 \n",
" 1740 \n",
" 27.0 \n",
" 14.00 \n",
" \n",
" \n",
" 36 \n",
" 37 \n",
" 1745 \n",
" 27.5 \n",
" 14.50 \n",
" \n",
" \n",
" 37 \n",
" 38 \n",
" 1750 \n",
" 31.0 \n",
" 15.00 \n",
" \n",
" \n",
" 38 \n",
" 39 \n",
" 1755 \n",
" 35.5 \n",
" 15.70 \n",
" \n",
" \n",
" 39 \n",
" 40 \n",
" 1760 \n",
" 31.0 \n",
" 16.50 \n",
" \n",
" \n",
" 40 \n",
" 41 \n",
" 1765 \n",
" 43.0 \n",
" 17.60 \n",
" \n",
" \n",
" 41 \n",
" 42 \n",
" 1770 \n",
" 47.0 \n",
" 18.50 \n",
" \n",
" \n",
" 42 \n",
" 43 \n",
" 1775 \n",
" 44.0 \n",
" 19.50 \n",
" \n",
" \n",
" 43 \n",
" 44 \n",
" 1780 \n",
" 46.0 \n",
" 21.00 \n",
" \n",
" \n",
" 44 \n",
" 45 \n",
" 1785 \n",
" 42.0 \n",
" 23.00 \n",
" \n",
" \n",
" 45 \n",
" 46 \n",
" 1790 \n",
" 47.5 \n",
" 25.50 \n",
" \n",
" \n",
" 46 \n",
" 47 \n",
" 1795 \n",
" 76.0 \n",
" 27.50 \n",
" \n",
" \n",
" 47 \n",
" 48 \n",
" 1800 \n",
" 79.0 \n",
" 28.50 \n",
" \n",
" \n",
" 48 \n",
" 49 \n",
" 1805 \n",
" 81.0 \n",
" 29.50 \n",
" \n",
" \n",
" 49 \n",
" 50 \n",
" 1810 \n",
" 99.0 \n",
" 30.00 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"0 1 1565 41.0 5.00\n",
"1 2 1570 45.0 5.05\n",
"2 3 1575 42.0 5.08\n",
"3 4 1580 49.0 5.12\n",
"4 5 1585 41.5 5.15\n",
"5 6 1590 47.0 5.25\n",
"6 7 1595 64.0 5.54\n",
"7 8 1600 27.0 5.61\n",
"8 9 1605 33.0 5.69\n",
"9 10 1610 32.0 5.78\n",
"10 11 1615 33.0 5.94\n",
"11 12 1620 35.0 6.01\n",
"12 13 1625 33.0 6.12\n",
"13 14 1630 45.0 6.22\n",
"14 15 1635 33.0 6.30\n",
"15 16 1640 39.0 6.37\n",
"16 17 1645 53.0 6.45\n",
"17 18 1650 42.0 6.50\n",
"18 19 1655 40.5 6.60\n",
"19 20 1660 46.5 6.75\n",
"20 21 1665 32.0 6.80\n",
"21 22 1670 37.0 6.90\n",
"22 23 1675 43.0 7.00\n",
"23 24 1680 35.0 7.30\n",
"24 25 1685 27.0 7.60\n",
"25 26 1690 40.0 8.00\n",
"26 27 1695 50.0 8.50\n",
"27 28 1700 30.0 9.00\n",
"28 29 1705 32.0 10.00\n",
"29 30 1710 44.0 11.00\n",
"30 31 1715 33.0 11.75\n",
"31 32 1720 29.0 12.50\n",
"32 33 1725 39.0 13.00\n",
"33 34 1730 26.0 13.30\n",
"34 35 1735 32.0 13.60\n",
"35 36 1740 27.0 14.00\n",
"36 37 1745 27.5 14.50\n",
"37 38 1750 31.0 15.00\n",
"38 39 1755 35.5 15.70\n",
"39 40 1760 31.0 16.50\n",
"40 41 1765 43.0 17.60\n",
"41 42 1770 47.0 18.50\n",
"42 43 1775 44.0 19.50\n",
"43 44 1780 46.0 21.00\n",
"44 45 1785 42.0 23.00\n",
"45 46 1790 47.5 25.50\n",
"46 47 1795 76.0 27.50\n",
"47 48 1800 79.0 28.50\n",
"48 49 1805 81.0 29.50\n",
"49 50 1810 99.0 30.00"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = raw_data.dropna().copy()\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## mission 1 : Reproduire le graphe de Playfair à partir des données numériques.\n",
"1. Représentez, comme Playfair, le prix du blé par des barres\n",
"2. Représentez, comme Playfair, les salaires par une surface bleue délimitée par une courbe rouge. \n",
"3. Superposez les deux de la même façon dans un seul graphique. Le style de votre graphique pourra rester différent par rapport à l'original, mais l'impression globale devrait être la même."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Représentation du prix du blé par des barres."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5,0,'Year')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEUlJREFUeJzt3XuMpXV9x/H3R7YiSkGQgSJoB+2qBZpWGQkXLy1owHoBbSGQaDdKSzSoeGmaxUaJbUxIaxvbtLbdAHW9VEA0Li3ecFWMSKHDxbCAlIsWVlZ2lKCUNAjy7R/nWXdcfrszs+w5z5mZ9ys5Oef5Pc858/3NM7uf5/fcTqoKSZK29aS+C5AkjScDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqSmFX0X8ETst99+NTk52XcZkrSoXHfddT+qqom5llvUATE5Ocn09HTfZUjSopLkf+aznLuYJElNBoQkqcmAkCQ1DS0gklyYZHOSDbPa9k1yRZLbu+d9Zs07J8kdSW5LcsKw6pIkzc8wRxAfA07cpm01sL6qVgLru2mSHAqcBhzWveejSXYbYm2SpDkMLSCq6pvA/ds0nwSs7V6vBU6e1X5RVT1cVd8D7gCOHFZtkqS5jfoYxAFVtQmge96/az8IuGfWchu7NklST8blIHUabc3vQk1yZpLpJNMzMzNDLkuSlq9RB8R9SQ4E6J43d+0bgWfNWu5g4N7WB1TVmqqaqqqpiYk5LwSUJO2kUQfEZcCq7vUqYN2s9tOS7J7kEGAlcO2Ia5OkRWFy9eUj+TlDu9VGkk8Dvwvsl2QjcC5wHnBJkjOAu4FTAKrq5iSXALcAjwJnVdXPh1WbJGluQwuIqjp9O7OO387yHwI+NKx6JEkLMy4HqSVJY8aAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKmpl4BI8u4kNyfZkOTTSZ6SZN8kVyS5vXvep4/aJEkDIw+IJAcB7wSmqupwYDfgNGA1sL6qVgLru2lJWrYmV1/e68/vaxfTCmCPJCuApwL3AicBa7v5a4GTe6pNkkQPAVFVPwA+DNwNbAJ+UlVfAQ6oqk3dMpuA/VvvT3Jmkukk0zMzM6MqW5KWnT52Me3DYLRwCPBM4GlJ3jjf91fVmqqaqqqpiYmJYZUpScteH7uYXgF8r6pmquoR4HPAMcB9SQ4E6J4391CbJKnTR0DcDRyV5KlJAhwP3ApcBqzqllkFrOuhNkkaub4PRm/PilH/wKq6JsmlwPXAo8ANwBpgT+CSJGcwCJFTRl2bJGmrkQcEQFWdC5y7TfPDDEYTkqQx4JXUkqQmA0KS1GRASJKaDAhJGoFxPVNpRwwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgyIMTO5+vK+S5AkwICQJG2HASFJajIgJElNBoQkqamXgEjy9CSXJvlukluTHJ1k3yRXJLm9e96nj9okSQN9jSD+DvhSVb0A+G3gVmA1sL6qVgLru2lJUk9GHhBJ9gJeBlwAUFU/q6oHgJOAtd1ia4GTR12bJGmrPkYQzwFmgH9NckOS85M8DTigqjYBdM/7t96c5Mwk00mmZ2ZmRle1JC0zfQTECuBFwD9V1QuBh1jA7qSqWlNVU1U1NTExMawaJWnZ6yMgNgIbq+qabvpSBoFxX5IDAbrnzT3UJknqzCsgkhwyn7b5qKofAvckeX7XdDxwC3AZsKprWwWs25nPlyTtGivmudxnGWzlz3YpcMRO/tx3AJ9K8mTgLuDNDMLqkiRnAHcDp+zkZ0uSdoEdBkSSFwCHAXsnecOsWXsBT9nZH1pVNwJTjVnH7+xnSpJ2rblGEM8HXgM8HXjtrPYHgT8ZVlGSpP7tMCCqah2wLsnRVXX1iGqSJI2B+R6DuCHJWQx2N/1i11JVvWUoVUmSejff01w/AfwacAJwJXAwg91MkqQlar4B8RtV9X7goapaC7wa+K3hlSVJ6tt8A+KR7vmBJIcDewOTQ6lIkjQW5nsMYk13++33M7igbU/gA0OrSpLUu3kFRFWd3728ksHN9iRJS9x8b7VxQJILknyxmz60u+JZkrREzfcYxMeALwPP7Kb/G3jXMArS8jS5+vK+S5C0jfkGxH5VdQnwGEBVPQr8fGhVSZJ6N9+AeCjJM4ACSHIU8JOhVSVJ6t18z2J6D4Ozl56b5CpgAvjDoVUlSerdfM9iuj7JyxncvC/AbVX1yBxvkyQtYvMdQQAcyeDiuBXAi5JQVR8fSlWSpN7N9zTXTwAfBl4CvLh7tL7PQdICePaWxtl8RxBTwKFVVcMsRpI0PuZ7FtMGBndzVYNbgZKWorm+cvTfGZza+qvALUmuBR7eMr+qXjfc8iRJfZlrF9PXumVuYOsdXSVJy8Bcu5gOAl4PfAb4IIMvDNoTuKmqrhxybZK06CylXc47DIiq+tOqOgY4AHgfcD/wFmBDkltGUN+StJT+gKTFxH97CzPfs5j2APZi8EVBewP3AjcNqyhJUv92OIJIsqa7tcbFwNHAt4FTqmqqqt48igKlhXALUdp15joG8Wxgd+CHwA+AjcADwy5KksbFct7o2OEupqo6MUmAw4BjgPcChye5H7i6qs4dQY2SpB7MeaFcDWwAvgB8EbgKeC5w9pBr681y3mJYCH9P0tI214Vy72QwcjiWwXUQVwFXAxfiQWpJWtLmGkFMApcCR1bVc6rqTVX10ar6TlU9NvzyJM2Ho7knzt/h4811DOI9oypEkjRe5nuzPmnZcYty8XLd7RoGhCSpqbeASLJbkhuS/Ec3vW+SK5Lc3j3v01dt2+NWyej5O9e4Wg5/m32OIM4Gbp01vRpYX1UrgfXd9KK2HP6AJC1dvQREkoOBVwPnz2o+CVjbvV4LnDzsOvwPXJK2r68RxEeAPwNmnyp7QFVtAuie9++jMC0Ohrs0fCMPiCSvATZX1XU7+f4zk0wnmZ6ZmdnF1Um7nmGmxaqPEcSxwOuSfB+4CDguySeB+5IcCNA9b269uarWdHeTnZqYmBhVzZK07Iw8IKrqnKo6uKomgdOAr1XVG4HLgFXdYquAdaOuTcPllvTi4HrSFuN0HcR5wCuT3A68spuWJPVkvt8oNxRV9Q3gG93rHwPH91mPJGmrcRpBSJLGiAGhZc997lKbASFJajIgJElNBoQkqcmAkDT2PE7UDwNCv+A/wvnx96TlwoCQJDUZEJKkJgNCktRkQCxyC90fvjP7z0fxMzQcrgs9EQaEJKnJgFii3HL8ZUvl9zGO/RjHmrRrGBCSpCYDQtLY8HjXeDEgJElNBoQ0htwy1jgwICRJTQaEtAw5QtF8GBCSpCYDQpLUZEBIGil3by0eBsQi4T+q8ec6+mX+PhY/A0KS1GRASJoXRwTLjwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUtPIAyLJs5J8PcmtSW5OcnbXvm+SK5Lc3j3vM+raJElb9TGCeBR4b1X9JnAUcFaSQ4HVwPqqWgms76YlST0ZeUBU1aaqur57/SBwK3AQcBKwtltsLXDyqGuTJG3V6zGIJJPAC4FrgAOqahMMQgTYv7/KJEm9BUSSPYHPAu+qqp8u4H1nJplOMj0zMzO8AiVpmeslIJL8CoNw+FRVfa5rvi/Jgd38A4HNrfdW1ZqqmqqqqYmJidEULEnLUB9nMQW4ALi1qv521qzLgFXd61XAulHXJknaakUPP/NY4E3ATUlu7NreB5wHXJLkDOBu4JQeapMkdUYeEFX1LSDbmX38KGuRJG2fV1JLkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaxi4gkpyY5LYkdyRZ3Xc9krRcjVVAJNkN+EfgVcChwOlJDu23KklansYqIIAjgTuq6q6q+hlwEXBSzzVJ0rI0bgFxEHDPrOmNXZskacRSVX3X8AtJTgFOqKo/7qbfBBxZVe+YtcyZwJnd5POB20ZeaD/2A37UdxE9sN/Li/0ejV+vqom5FloxikoWYCPwrFnTBwP3zl6gqtYAa0ZZ1DhIMl1VU33XMWr2e3mx3+Nl3HYx/RewMskhSZ4MnAZc1nNNkrQsjdUIoqoeTfJ24MvAbsCFVXVzz2VJ0rI0VgEBUFVfAL7Qdx1jaNntVuvY7+XFfo+RsTpILUkaH+N2DEKSNCYMiB4luTDJ5iQbtml/R3e7kZuT/NWs9nO6W5DcluSEWe1HJLmpm/f3STLKfizUQvqdZDLJ/yW5sXv886zlF32/k1w8q2/fT3LjrHmLfn0vpM/LYF3/TpL/7Po2neTIWfPGc11XlY+eHsDLgBcBG2a1/R7wVWD3bnr/7vlQ4DvA7sAhwJ3Abt28a4GjgQBfBF7Vd992Yb8nZy+3zecs+n5vM/9vgA8spfW9wD4v6XUNfGVL3cDvA98Y93XtCKJHVfVN4P5tmt8GnFdVD3fLbO7aTwIuqqqHq+p7wB3AkUkOBPaqqqtr8Bf1ceDk0fRg5yyw301LqN8AdFuGpwKf7pqWxPpeYJ+bFlufYbv9LmCv7vXebL3Ga2zXtQExfp4HvDTJNUmuTPLirn17tyE5qHu9bftis71+AxyS5Iau/aVd21Lp9xYvBe6rqtu76aW+vuHxfYalva7fBfx1knuADwPndO1ju67H7jRXsQLYBzgKeDFwSZLnMBhibqt20L7YbK/fm4BnV9WPkxwBfD7JYSydfm9xOr+8Jb3U1zc8vs9LfV2/DXh3VX02yanABcArGON1bUCMn43A57oh5bVJHmNwn5bt3YZkY/d62/bFptnvqpoBtux2ui7JnQxGG0ul3yRZAbwBOGJW85Je360+d7sXl/K6XgWc3b3+DHB+93ps17W7mMbP54HjAJI8D3gyg5t4XQaclmT3JIcAK4Frq2oT8GCSo7p9un8ErOun9Cek2e8kExl8TwjdiGIlcNcS6jcMtiK/W1Wzdycs9fX9uD4vg3V9L/Dy7vVxwJZda+O7rvs+2r+cHwyG15uARxhsLZzB4D/GTwIbgOuB42Yt/+cMznC4jVlnMwBT3fJ3Av9AdwHkuD4W0m/gD4CbGZzlcT3w2qXU7679Y8BbG8sv+vW9kD4v9XUNvAS4ruvfNcAR476uvZJaktTkLiZJUpMBIUlqMiAkSU0GhCSpyYCQJDUZENI8ZeBbSV41q+3UJF/qsy5pWDzNVVqAJIczuAr2hQy+FvdG4MSquvMJfOaKqnp0F5Uo7TIGhLRAGXxXxUPA04AHq+ovk6wCzmJwwd+3gbdX1WNJ1jC47fMewMVV9RfdZ2wE/gU4EfhIVX2mh65IO+S9mKSF+yCDK31/Bkx1o4rXA8dU1aNdKJwG/Buwuqru7+499PUkl1bVLd3nPFRVx/bRAWk+DAhpgarqoSQXA/9bVQ8neQWDO9BOd1/4tQdbb998epIzGPxbeyaDL4fZEhAXj7ZyaWEMCGnnPNY9YHBb5gur6v2zF0iyksHdO4+sqgeSfBJ4yqxFHhpJpdJO8iwm6Yn7KnBqkv0AkjwjybMZfHvYg8BPu28HO2EHnyGNHUcQ0hNUVTcl+SDw1SRPYnAHz7cC0wx2J20A7gKu6q9KaeE8i0mS1OQuJklSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKa/h9Ti0SiSt9BMQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.bar( data['Year'],data['Wheat'] )\n",
"plt.ylabel('Wheat')\n",
"plt.xlabel('Year')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Représentation des salaires par une surface bleue délimitée par une courbe rouge"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VIW9//H3N5kJ4ILXarAUSxFr7bXLpVeu2mvpYnFXFMW1Vay9D6WtXjfu72I3qz6tVESrtVZjFaO2LiAR4aoUlApWRYMrigpShCQsYQ8JSWb5/v6YQUNMIEDOnJk5n9fzzJOZM2c4n/Mcnc+c3dwdERGJrpKwA4iISLhUBCIiEaciEBGJOBWBiEjEqQhERCJORSAiEnEqAhGRiFMRiIhEnIpARCTiYmEH6Ir999/fBwwYEHYMEZGCMn/+/DXuXr6j8QqiCAYMGEB1dXXYMURECoqZfdiV8bRpSEQk4lQEIiIRpyIQEYk4FYGISMSpCEREIi6wIjCznmb2spm9YWZvm9m12eGfMrOZZrYo+3ffoDKIiMiOBblG0AIc4+7/BgwCTjCzo4CxwDPufgjwTPa1iIiEJLAi8IzN2Zfx7MOB04DK7PBK4PSgMoiIFKy6Orj8ctiwIfBJBbqPwMxKzex1YDUw093nAQe4+wqA7N8+nXx2lJlVm1l1fX19kDFFRPLH+vUwdiz++c+T+sMfeeF3cwOfZKBF4O4pdx8EHAgcYWZf3onPVrj7YHcfXF6+wzOkRUQKW1MTjBuHDxyI/+5GHm49k0P9PaYkTg180jk5asjdNwB/B04AVplZX4Ds39W5yCAikpeSSfjTn/CDD4arr2bG5m9wZI/XOT/1AB/4wJxECPKooXIz+5fs817AUOBd4AlgZHa0kcDUoDKIiOS1ZBLOOw9+8hPmrf08x/acy4nJabzS8tWcxgjyonN9gUozKyVTOI+6+3QzexF41Mx+CCwDzgowg4hIfkqnYdQomDyZn8Vu5IbEGEhYKFECKwJ3fxP4WgfD1wLfDWq6IiJ5zx2uuAImTuS3sV9xQ/J/Qo2jM4tFRHLtmmvgttu4PXY5P0/+Ouw0KgIRkZyaMAGuv577YxdzafJmIJzNQW2pCEREcqWiAsaMoSp+Fj9IVpAPJQAFcocyEZGC9/DD+OjRzIqfyDmJB0lTGnaij2iNQEQkaNOn4xdcwEvxIQxPTiZBWdiJtqEiEBEJ0uzZ+IgRvFkyiJOS02j0PcJO9AkqAhGRoMybhw8bxmI+z/Hpp9mQ7h12og5pH4GISBDefBM/8URqW/twLDNZldwv7ESd0hqBiEh3W7QIP+446hv3YCiz+LC1b9iJtktrBCIi3Wn5cnzoUDatT3Gc/Z33Wg4KO9EOqQhERLpLOo2fdhpNKzZyYuls3mj+YtiJukRFICLSXaZPx157jf/u8QAvNn/iUmt5S/sIRES6gzvccAO1ZQOobDk37DQ7RWsEIiLdYc4ceOklxsf/SKrAvlq1RiAi0h1uuIF18T7clfhB2El2mopARGR3vfYazJjB7/1ymukVdpqdpiIQEdld48bRGOvNH1I/CTvJLlERiIjsjkWL8MmTucN/wgbfJ+w0u0RFICKyO8aPJ0mcW7ks7CS7TEUgIrKr6urwykrutYupTX067DS7TEUgIrKrbr4ZTyS5pWRM2El2i4pARGRXrFuH33UXk0rO5b3EwLDT7BYVgYjIrvjjH7HNm7kpNjbsJLutsE5/ExHJB1u24LfeyozYyVS3fCXsNLstsDUCM/usmc02s4Vm9raZXZYd/mszqzWz17OPk4LKICISiMcfx9au5fbYFWEn6RZBrhEkgavc/VUz2xuYb2Yzs+/d4u43BThtEZHg3HcftfHP8WTzd8JO0i0CWyNw9xXu/mr2eQOwEOgX1PRERHJi+XJ85kwqfSReJLtZczIXZjYA+BowLzvoEjN708zuNbN9O/nMKDOrNrPq+vr6XMQUEdmxBx7A3KlkZNhJuk3gRWBmewGPAZe7+ybgT8DBwCBgBTCho8+5e4W7D3b3weXl5UHHFBHZMXd84kSej32L95OFfchoW4EWgZnFyZTAX9x9CoC7r3L3lLungbuBI4LMICLSbV54AVu8mAdjF4WdpFsFedSQAfcAC9395jbD+7YZbTiwIKgMIiLdauJEtpTuyYPNI8JO0q2CPGroaOAC4C0zez077GfAeWY2CHBgKfCjADOIiHSPxkb8kUeY5GfRyF5hp+lWgRWBuz8PWAdvPRnUNEVEAjNlCrZ5Mw/2+AG0hB2mexXHsU8iIkGbOJFl8YHMbBkSdpJupyIQEdmRpUth9mzu84voeENHYVMRiIjsSGUlaYz7vHjOHWhLRSAisj3pNH7ffcwpPYZ/pvqHnSYQKgIRke2ZMwdbupQH4z8IO0lgVAQiItszcSKNsd78tXl42EkCoyIQEelMQwM+eTIPp89hC3uEnSYwKgIRkc5UVmJNTTwQvzjsJIHSHcpERDqSSODjx/Ny/Gieazkq7DSBUhGIiHTk4YexZcu4qecfIRF2mGCpCERE2kun8XHjeD/+ZSY3nxx2msCpCERE2ps2DXvnHW7s8SDFeCZxe9pZLCLSljvccAM1ZQdR2XJO2GlyQmsEIiJtPfcczJvHTWV3kIrIV6TWCERE2ho3jnXxPtzVelHYSXJGRSAistWrr8KMGdziV9BMr7DT5IyKQERkq3HjaIz15vbUj8NOklMqAhERgEWL8MmTucN/wgbfJ+w0OaUiEBEBuPFGEiU9+D2Xh50k51QEIiK1tXhlJfdyMXWpA8JOk3MqAhGR664jnUxzS8mYsJOEQkUgItH2/PNQUcHtpZfxfuKgsNOEQkUgItHV2or/6EesKOvPL1PXhp0mNIEVgZl91sxmm9lCM3vbzC7LDv+Umc00s0XZv/sGlUFEZLvGj8feeYdL7A4afK+w04QmyDWCJHCVu/8rcBTwUzM7DBgLPOPuhwDPZF+LiOTWokX49dczJXYWU1qK/wqj2xNYEbj7Cnd/Nfu8AVgI9ANOAyqzo1UCpweVQUSkQ+4wejRN6Z5cYbeGnSZ0ObmikpkNAL4GzAMOcPcVkCkLM+uTiwwiIh954AF49lmujv+JZYm+YacJXeA7i81sL+Ax4HJ337QTnxtlZtVmVl1fXx9cQBGJljVr8CuvpDr+dW5PjAo7TV4ItAjMLE6mBP7i7lOyg1eZWd/s+32B1R191t0r3H2wuw8uLy8PMqaIRMmYMaTXb2R0SQWuAyeBYI8aMuAeYKG739zmrSeAkdnnI4GpQWUQEdnGs89CZSU3l/wP81u+HHaavBHkPoKjgQuAt8zs9eywnwHjgEfN7IfAMuCsADOIiGQsWoSffz7Lyw7mmtZfhp0mrwRWBO7+PJ3f7PO7QU1XROQTli/Hhw5l0/oUw2w6WyJ0r4GuiMZ92EQkulatwocOpWnFRk4snc0bzV8MO1HeURGISPFavx4//nhal9QwrPRvvNj8tbAT5SUVgYgUp82b4aSTSC1YyIjYdJ5tOTrsRHlLRSAixae5GU4/nfTLr/D92CSmtxwbdqK8piIQkeLS0gJnnw3PPMOoeCWPtA4PO1HeUxGISPFoaoIzzoAZM7gsfgf3JC4MO1FBUBGISHFoaIBTTsHnzuXH8Xu4K3Fx2IkKhopARArf+vVwwgmkq+fzg/hfub/13LATFRQVgYgUttWr8eOOI7VgIefHHmNS62lhJyo4KgIRKVy1tfjQoSQWf8iZsek6OmgXqQhEpDCtWIEPGUJzzRqGlc5gVsuQsBMVLBWBiBSexkb81FNpWb6a40ufZW7LEWEnKmgqAhEpLKkUfP/7+Kuv8b2yqSqBbrDT9yMws33N7KtBhBER2aH//V94/HHGxH7PlJZTwk5TFLpUBGb2dzPrbWafAt4AJprZzTv6nIhIt7rzTpgwgTtil3JL4tKw0xSNrq4R7JO93/AZwER3PxwYGlwsEZF2ZszAL7mEp+OncGnylrDTFJWuFkEse3/hs4HpAeYREfmkt97CzzqLhaVf4ZzUQ6QpDTtRUelqEVwHzAA+cPdXzGwgsCi4WCIiWcuX4yefzJqWvTmVaWxK7xV2oqLTpaOG3H0SMKnN6yXAmUGFEhEB4JVX8GHD2LK2idNK/86S5gPDTlSUurqz+Atm9oyZLci+/qqZ/SLYaCISaY89hn/rW6xY15MhJS/o7mIB6uqmobuBq4EEgLu/CeiqTiLS/dxh3DgYMYL5qUEc4fN4teVLYacqal09oWwPd3/ZzNoOSwaQR0SirLUVRo+GiROZHDuXC1on0kzPsFMVva6uEawxs4MBBzCzEcCKwFKJSPSsXQvHHQcTJ/Lb2K84K/lXlUCOdHWN4KdABfBFM6sF/gl8P7BUIhItL76In3suqdqVjCp7kImt3ws7UaR0aY3A3Ze4+1CgHPiiu3/D3Zdu7zNmdq+Zrd66gzk77NdmVmtmr2cfJ+1WehEpbOk03HgjPmQItStL+U7seZVACLq0RmBmV7Z7DbARmO/ur3fysfuA24H72w2/xd1v2rmYIlJ06uvhwgvh6aeZGhvBD1N/Zl1qn7BTRVJX9xEMBkYD/bKPUcC3gbvN7P919AF3nwOs64aMIlJsnnsOHzSIxMzZXBa/g+HJR1UCIepqEewH/Lu7X+XuV5EphnLgm8BFOznNS8zszeymo3138rMiUsg2boSrr8aPOYYP1+zFN+MvcVvix4Dt8KMSnK4WQX+gtc3rBPA5d98CtOzE9P4EHAwMInPU0YTORjSzUWZWbWbV9fX1OzEJEck7W7bAhAn4wIEwbhwPllzIvyWqeal5UNjJhK4fNfRX4CUzm5p9fSrwkJntCbzT1Ym5+6qtz83sbrZzATt3ryBzpBKDBw/2rk5DRPJIMgn33Ydfey1WU8OzseP5Vc/f8kLzv4edTNro6rWGrjezp4CjyazDjXb36uzbXd7Fb2Z93X3r+QfDgQXbG19ECpR75hIRv/gF9t57vBo/kl/2vJ+nmr+jU1HzUJdvVenu1Wa2DDJneJhZf3df1tn4ZvYQmR3K+5tZDXAN8G0zG0TmxLSlwI92PbqI5KVZs/CxY7H581lcdhi/7FHFIy2nQUL7AfJVVw8fHUZme/5ngNVk9hm8C3R6ARB3P6+DwffsQkYRKQQvvwxXXw3PPsvKsv78umwif269QPcOKABd3Vl8PXAU8L67H0Tm7mT/CCyViBSOhQvhzDPhyCPZMPdN/if+ewa0vk9F60UqgQLR1SJIuPtaoMTMStx9Npkjf0Qkitxh5kwYNgz/0pdoemIm18eupX9iCTclLqOVHmEnlJ3Q1X0EG8xsL2Au8BczW412+YhET0MDVFbit9+Ovfce6+Pl3FXyM271y1iZKg87neyi7RaBmV1OZhPQ6UATcDmZo4T2IXP7ShEpduk0VFfDAw/glZVYQwOvx/+DO3rcz/0tZ+vXfxHY0RrBgcCtwBeBN4EXyBTDNHfX5SNEilUyCXPmQFUVXlWF1daSLInzKOdwZ49LmdtyRNgJpRtttwjcfQyAmZWRuazEfwIXk7nG0AZ3Pyz4iCKSE1u2ZLb7V1XhU5/A1q+juaQXf+N4pve8gUnNp7CBfXfuWgJSELq6j6AX0JvMJqF9gDrgraBCiUiObNwITz4JU6bgTz6FNTXSULoP0/xU/q/ncB5vPp4m9oTmsINKkHa0j6CCzLkCDcA8MpuGbnb39TnIJiJBSKXg0Ucz2/xnzcISCdbEPs2U9AVM7zGcp1u+TYIyfflHyI7WCPoDPYBFQC1QA2wIOpSIBMAdpk3Df/5zbMEClscPYnL6v3mi7Ayeaz0Kp0SbfSJqR/sITrDMXWi+RGb/wFXAl81sHfCiu1+Tg4wisrvmzIGxY+HFF/mw7BB+1eMRHmwZkfnyT4UdTsK2w30E7u7AAjPbQOauZBuBU4AjyFw/SETy1RtvZC778NRT1Jd9hmvLKrir9SKSxMNOJnlkR/sI/pvMmsDRZO5B8A/gReBetLNYJH+5w6234mPGsLmkNzfEbuSW1ktoplfYySQP7WiNYAAwGbiizeWjRSSfNTXBqFHwl7/wf/HTuSh1L2vTuhmgdG5H+wiu3N77IpJnli7Fhw+HN97gutj1XJv4WWY/gMh2dPl+BCKS52bOxM89l6aGFBeUTaeq5aSwE0mB0E8FkULnDuPH4yecwKLNfTmypFolIDtFawQihayxES6+GB59lKmxEVyYmEiD7xV2KikwWiMQKVSLF+NHHUV60mR+ERvH8OSjKgHZJVojEClETz2Fn38+DY0lfK/saaa3HBt2IilgWiMQKSTpNPzmN/jJJ/Nu0+c4wqpVArLbtEYgUigaGmDkSKiqYlLsfC5O3E2j7xF2KikCKgKRQtDUBKecQvr5fzA2fjPjE5cDFnYqKRIqApF819oKZ56Jz53LRfGHeKD1nLATSZHRPgKRfJZMwve+B08/zU9jFSoBCURgRWBm95rZajNb0GbYp8xsppktyv7VBVBEOpNOZ64ZNHky/xubwJ8S/xV2IilSQa4R3Aec0G7YWOAZdz8EeCb7WkTac4crroCJE/lN7BpuTOqyXxKcwIrA3ecA69oNPg2ozD6vBE4PavoiBe2aa+C227g9djm/SOq2HxKsXO8jOGDr5ayzf/vkePoi+W/CBLj+eu6PXcylyZvR0UEStLzdWWxmo8ys2syq6+vrw44jkhsVFTBmDFXxs/hBsgKVgORCrotglZn1Bcj+Xd3ZiO5e4e6D3X1weXl5zgKKhOahh/DRo5kZP5FzEg+SpjTsRBIRuS6CJ4CR2ecjgak5nr5Ifpo+Hb/wQl6KDWF4cjIJysJOJBES5OGjD5G5v/GhZlZjZj8ExgHHmtki4Njsa5Fomz0bHzGCN0sGcVJqmi4bITkX2JnF7n5eJ299N6hpihScefPwYcNY7J/n+PTTbEj3DjuRRFDe7iwWKXpvvYWfeCK1rX04lpmsSu4XdiKJKBWBSK5t2gTXXIN//evUN+7BUGbxYWvfsFNJhKkIRHKluRluvhkfOBCuu46qlpP4JnN5r/WgsJNJxKkIRIKWTMI99+CHHAJXXcXsjYdzdM9qzkw+qhKQvKAiEAmKOzz2GP6Vr8B//RevrfoMJ/d8hu8mZ/BC8+FhpxP5iIpAJAjPPIMfeSSMGMEHS4zzekzh8MRLPNl8TNjJRD5BRSDSnV55BY49FoYOZeUbq/hR2UQObX2Lh1uGo8tFSL7SHcpEusMrr8DvfgePPcaG+P78Jv57bmsdTSs9wk4mskMqApFd1dICkybhf/gD9vLLNMX2ZkLs19yUvJJNvnfY6US6TEUgsrNqa+HOO/GKCmz1av4Z/wJ3lN3G3a0j2YTODJbCoyIQ6YpVq+CJJ6CqCp85E0+mmFF6Mnf2vJRpzUNx7W6TAqYiEOnM0qVQVZX58n/+ecydZfGBTPIruTv+I95LDIRU2CFFdp+KQGQrd3jnHZgyBa+qwl57DYB34l+lqvRXVNkZzE98BTAVgBQVFYFEWzqdOeKnqgqfMgVbtAiAV2Jf54myG5mUOoP3EweHHFIkWCoCKV7usGZNZudu20dNDdTWkq6phWXLKWnYSNJiPFfyHab1uJJJradRl9RF4CQ6VARSWDZuhHffheXLM1fx3LQJGho+/rt+PV5XR3pZDbaijpJE6zYfT2PUl36aGu9HTfpgVsW+SXXPo5jUfAobUvtqk49EkopA8os7bNjw8S/3Dz6AhQth4ULSC9+lZEVdhx/bYr3YbHuziX2o8c9QZ//JytiBrOzZjxrvx5KWftTQj5V8mmQq/vEHk9mHSISpCCQ4qRSsWwf19bB6deZvR7/iN26ElStJL6+FulpKmrds889sLtmbd/lX3vFjWdLjiyzkX1nYchAb2YdN9GYze5H0OHibDzmw7cqAiHRCRSBd19j48Zf61i/2tWs/8UjXr8FX11Oybg2WTnf6zzXZHmy2vdnM3qz0A1jO4ayODfvoV/zSRD8Wpw+iLv0ZPrpOT0tuZlUkSlQEkrlhSk3NRztR2z68tpZ03UqsfjUlW5o6/HiSGOtL9mMt+1Hv+7HWD2Fd7GjWxvtQb31Y5X2oS5SzMl2+za/4lMe2/RUPkMg+RCRnVATFKp3ObGtv/4t9zZrMjtZly/Dly0kvXUZp/apPfLyhpDd11o/l6X6ssiGsKy1nTc8+rKYPK1N9qE2UU085a9mPBvaGdLsra2rbu0jBUBEUupYWeP99ePttWLAA3n6b9IK3sSUfdLpZpqlkT5Zbf5am+lNbOoi6Hv2psc/yz8SBfJjqRy392Jxuc9E0B9Lol7pIkVIR5CP3zPb4ttviV67MPFasgJUr8RUrSNetpKR2OZbKHPOYslKWlB7Cm6mv8s/4CNaVlFPv+7M6tR8rk5lNN2vZjw3pf+Gjbe4pdMikSMSpCHJtxQqYOzfzBd9us42vXUt6VX1me3y7I2e22lDyKVZYX+pSn2ZVyTeojfVnYfzLzG/+Eu/6obQms9e/1xEzItJFoRSBmS0FGsj8Fk26++AwcuSEe+Y4+KlT8alTsXnztnl7U8k+rLP9WOP7UZ/en7Ulh22zPX5VqpzaRDkr+TSrOIDWdJsbnaTRF76I7LYw1wi+4+5rQpx+92tq2vaom9dey3z5L14MwOuxwUyLX89TfgIfJPuznn1JpuPb/htptD1eRHIqepuGksnMSUwNDZnDJjt6NDZ2/Nj6/pYtHz335mZ8zVq8ppbSTRu2mVSrlfH3kmN4ssdVPNZ6KjXJfiHNtIhI58IqAgf+ZmYO3OXuFYFMZfx4/KGHSW/YhDc0ULJ5U6fb3rcnSSnNJXvQxB400/OjR5P3Yov3ZCOHsCr2bVb26Eed9ePDZD+WJvuxzPuzJbWHdsaKSF4LqwiOdvc6M+sDzDSzd919TtsRzGwUMAqgf//+uzaVXr2Yu7gvdY2H0lSyN5tLerO5x940WG8afC+avFfmke6ZeXjmC76RPWliDxrZk0b2pJWyTx4n356OmxeRAhVKEbh7XfbvajOrAo4A5rQbpwKoABg8eHD780+75pJL+N7vLqGmgcx2dxER+YSc32jVzPY0s723PgeOAxbkOoeIiGSEsUZwAFBlZlun/1d3fzqEHCIiQghF4O5LgH/L9XRFRKRjOd80JCIi+UVFICIScSoCEZGIUxGIiEScikBEJOJUBCIiEaciEBGJOBWBiEjEqQhERCJORSAiEnEqAhGRiFMRiIhEnIpARCTiVAQiIhGnIhARiTgVgYhIxKkIREQiTkUgIhJxKgIRkYhTEYiIRJyKQEQk4lQEIiIRpyIQEYk4FYGISMSFUgRmdoKZvWdmi81sbBgZREQkI+dFYGalwB+BE4HDgPPM7LBc5xARkYww1giOABa7+xJ3bwUeBk4LIYeIiBBOEfQDlrd5XZMdJiIiIYiFME3rYJh/YiSzUcAogP79++/yxA49FDZs2OWPi4iEaje+/rosjCKoAT7b5vWBQF37kdy9AqgAGDx48CeKoqtmzdrVT4qIREMYm4ZeAQ4xs4PMrAw4F3gihBwiIkIIawTunjSzS4AZQClwr7u/nescIiKSEcamIdz9SeDJMKYtIiLb0pnFIiIRpyIQEYk4FYGISMSpCEREIk5FICIScea+y+dq5YyZ1QMfhp0jR/YH1oQdIgSa72jRfOfG59y9fEcjFUQRRImZVbv74LBz5JrmO1o03/lFm4ZERCJORSAiEnEqgvxTEXaAkGi+o0XznUe0j0BEJOK0RiAiEnEqgoCZ2b1mttrMFrQbfqmZvWdmb5vZjW2GX21mi7PvHd9m+OFm9lb2vdvMrKMb/OSNnZlvMxtgZlvM7PXs48424xf8fJvZI23mbamZvd7mvaJd3p3NdwSW9yAzeyk7b9VmdkSb9/Jzebu7HgE+gG8C/w4saDPsO8AsoEf2dZ/s38OAN4AewEHAB0Bp9r2Xga+TucPbU8CJYc9bN873gLbjtft3Cn6+270/AfhVFJb3dua7qJc38LetuYGTgL/n+/LWGkHA3H0OsK7d4B8D49y9JTvO6uzw04CH3b3F3f8JLAaOMLO+QG93f9Ez/9XcD5yemznYNTs53x0qovkGIPsr72zgoeygYl/eQIfz3aEimm8Hemef78PHd2DM2+WtIgjHF4AhZjbPzJ4zs//IDu8HLG8zXk12WL/s8/bDC01n8w1wkJm9lh0+JDusWOZ7qyHAKndflH1d7Mt7q/bzDcW9vC8HxpvZcuAm4Ors8Lxd3qHcmEaIAfsCRwH/ATxqZgPJrBa259sZXmg6m+8VQH93X2tmhwOPm9mXKJ753uo8tv1VXOzLe6v2813sy/vHwBXu/piZnQ3cAwwlj5e3iiAcNcCU7Grgy2aWJnMNkhrgs23GO5DMamVN9nn74YWmw/l293pg6+ai+Wb2AZm1h2KZb8wsBpwBHN5mcLEv7w7nO7tpsJiX90jgsuzzScCfs8/zdnlr01A4HgeOATCzLwBlZC5E9QRwrpn1MLODgEOAl919BdBgZkdlt7deCEwNJ/pu6XC+zazczEqzwweSme8lRTTfkPlF+K67t90EUOzLGzqY7wgs7zrgW9nnxwBbN4nl7/IOe697sT/IrBKvABJkmv+HZL4AHwQWAK8Cx7QZ/+dkjiZ4jzZHDgCDs+N/ANxO9mTAfH3szHwDZwJvkzmi4lXg1GKa7+zw+4DRHYxftMu7s/ku9uUNfAOYn52/ecDh+b68dWaxiEjEadOQiEjEqQhERCJORSAiEnEqAhGRiFMRiIhEnIpApB3LeN7MTmwz7GwzezrMXCJB0eGjIh0wsy+TOSv0a0Ap8Dpwgrt/sBv/Zszdk90UUaTbqAhEOmGZ+yU0AnsCDe5+vZmNBH5K5uS4F4BL3D1tZhVkLkfcC3jE3a/L/hs1wF3ACcDv3X1SCLMisl261pBI564lc+ZrKzA4u5YwHPhPd09mv/zPBf4KjHX3ddlr68w2s8nu/k7232l096PDmAGRrlARiHTC3RvN7BFgs7u3mNlQMldNrc7eQKoXH19W+Dwz+yGZ/6c+Q+YmJFuL4JHcJhfZOSoCke1LZx+QuVzwve7+y7YjmNkhZK42eYS7bzCzB4GebUZpzEldZbIxAAAAgElEQVRSkV2ko4ZEum4WcLaZ7Q9gZvuZWX8yd6NqADZl7zZ1/Hb+DZG8ozUCkS5y97fM7FpglpmVkLni5GigmsxmoAXAEuAf4aUU2Xk6akhEJOK0aUhEJOJUBCIiEaciEBGJOBWBiEjEqQhERCJORSAiEnEqAhGRiFMRiIhE3P8HggsLtKw/eNgAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot( data['Year'],data['Wages'], 'r-')\n",
"plt.fill_between(data['Year'],data['Wages'], color='blue')\n",
"\n",
"plt.ylabel('Wages')\n",
"plt.xlabel('Year')\n",
"\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Superposition des deux dans un seul graphique"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8VPWd//HXJxcSVEARVG4maFEQKMhFUSxutYhWQeutXtpia2Vtu7padZdWu2310V9tvay17talaqUVKxcVKCneALEIBUFQCEERJRCIEO4JJJPLfH5/zBACnEiAZM5k8n4+Hucxc86cmfl8c+C859y+x9wdERGRA6WFXYCIiCQnBYSIiARSQIiISCAFhIiIBFJAiIhIIAWEiIgEUkCIiEggBYSIiARSQIiISKCMsAs4Gh06dPDc3NywyxARaVaWLFmyxd07Hmq+Zh0Qubm5LF68OOwyRESaFTMrbMh82sUkIiKBFBAiIhJIASEiIoGa7BiEmT0HXAFsdvc+8WntgYlALrAWuN7dt8df+wlwK1AD3Onurx/J91ZVVVFUVERFRcVRtyFVZGdn07VrVzIzM8MuRUSakaY8SP088BTw5zrTxgKz3P1hMxsbH/9PMzsLuAHoDXQG3jKzM9y95nC/tKioiDZt2pCbm4uZHXUjmjt3Z+vWrRQVFdG9e/ewyxGRZqTJdjG5+zvAtgMmXwmMjz8fD1xVZ/pL7h5x98+AT4BzjuR7KyoqOPHEExUOcWbGiSeeqC0qETlsiT4GcbK7FwPEH0+KT+8CrK8zX1F82hFROOxPfw8RORLJcpA6aA0WeC9UMxtjZovNbHFJSUkTlyUi0nIl+kK5TWbWyd2LzawTsDk+vQjoVme+rsDGoA9w93HAOIBBgwYd8obauWPzjq7iA6x9+PJDznP33XeTk5PDXXfdBcCIESPo1q0bzzzzDAD33HMPXbp0Yfbs2cyYMeOoa5o6dSpnnHEGZ5111lF/lojIXonegpgOjI4/Hw1MqzP9BjPLMrPuQA9gUYJrazTnn38+8+fPByAajbJlyxby8/NrX58/fz5VVVWN9n1Tp05l5cqVjfZ5IpLcGvuHb32aLCDM7K/AAuBMMysys1uBh4HhZrYaGB4fx93zgUnASuA14EdHcgZTshg6dGhtQOTn59OnTx/atGnD9u3biUQiFBQUcPbZZ1NWVsa1115Lz549ufnmm3GPbRAtWbKECy+8kIEDBzJixAiKi4sB+OMf/8jgwYPp168f11xzDXv27GH+/PlMnz6d++67j/79+7NmzZrQ2i0iqaXJdjG5+431vHRxPfP/CvhVU9WTSJ07dyYjI4N169Yxf/58zjvvPDZs2MCCBQto164dX/7yl2nVqhVLly4lPz+fzp07M3ToUN59913OPfdc7rjjDqZNm0bHjh2ZOHEi999/P8899xxXX301t912GwAPPPAAzz77LHfccQejRo3iiiuu4Nprrw255SKSSpp1Z33JbO9WxPz58/nxj3/Mhg0bmD9/Pu3ateP8888H4JxzzqFr164A9O/fn7Vr13L88cezYsUKhg8fDkBNTQ2dOnUCYMWKFTzwwAPs2LGDsrIyRowYEU7jRKRFUEA0kb3HIZYvX06fPn3o1q0bjz32GG3btuV73/seAFlZWbXzp6enU11djbvTu3dvFixYcNBn3nLLLUydOpV+/frx/PPP8/bbbyeqOSLSAiXLaa4pZ+jQocyYMYP27duTnp5O+/bt2bFjBwsWLOC8886r931nnnkmJSUltQFRVVVVe4C7tLSUTp06UVVVxYQJE2rf06ZNG0pLS5u2QSLS4qT8FkRDTkttCn379mXLli3cdNNN+00rKyujQ4cO9b6vVatWTJkyhTvvvJOdO3dSXV3NXXfdRe/evXnooYc499xzycnJoW/fvrWhcMMNN3Dbbbfx5JNPMmXKFE4//fQmb5+IpD7be+ZMczRo0CA/8IZBBQUF9OrVK6SKkpf+LiKpI3ds3lH9+DWzJe4+6FDzaReTiIgEUkCIiEggBYSIiARSQIiISCAFhIiIBFJAiIhIoJQPiFNOAbPGG0455dDfeffdd/PEE0/Ujo8YMYLvf//7teP33HMPjz/+eFM0V0Sk0aR8QGzalPjPa0h330OHDm3cwkREGlnKB0QYGtLdd69evbj44osZMGAAffv2Zdq0abXvf+ihh+jZsyfDhw/nxhtv5NFHHwVgzZo1XHrppQwcOJCvfOUrrFq1CoDJkyfTp08f+vXrx7BhwxLfYBFJSSnf1UYYGtLd9zHHHMOrr75K27Zt2bJlC0OGDGHUqFEsWbKEl19+maVLl1JdXc2AAQMYOHAgAGPGjOHpp5+mR48eLFy4kB/+8IfMnj2bBx98kNdff50uXbqwY8eOkFsvIqlCAdFEDtXdt7vz05/+lHfeeYe0tDQ2bNjApk2bmDdvHldeeSWtW7cGYOTIkQCUlZUxf/58rrvuutrviEQitd91yy23cP3113P11VcnvrEikpIUEE3kUN19T5gwgZKSEpYsWUJmZia5ublUVFRQX99Y0WiU448/nmXLlh302tNPP83ChQvJy8ujf//+LFu2jBNPPLGpmygiKU7HIJrIobr73rlzJyeddBKZmZnMmTOHwsJCAC644AL+9re/UVFRQVlZGXl5sXvPtm3blu7duzN58mQA3J0PPvgAiB2bOPfcc3nwwQfp0KED69evD6fRIpJSUj4gTj45nM/b2933kCFD9pvWrl07OnTowM0338zixYsZNGgQEyZMoGfPngAMHjyYUaNG0a9fP66++moGDRpEu3btAJgwYQLPPvss/fr1o3fv3rUHtu+77z769u1Lnz59GDZsGP369WvcRotIi6TuvpNQWVkZxx13HHv27GHYsGGMGzeOAQMGHNVnpsLfRURiEtXdt45BJKExY8awcuVKKioqGD169FGHg4jIkVBAJKEXX3wx7BJERFLzGERz3m3WFPT3EJEjkXIBkZ2dzdatW7VSjHN3tm7dSnZ2dtiliEgzk3K7mLp27UpRURElJSVhl5I0srOz6dq1a9hliEgzk3IBkZmZSffu3cMuQ0Sk2Uu5XUwiItI4FBAiIhJIASEiIoEUECIiEkgBISIigRQQIiISSAEhIiKBQgkIM7vbzPLNbIWZ/dXMss2svZm9aWar448nhFGbiIjEJDwgzKwLcCcwyN37AOnADcBYYJa79wBmxcdFRFqs3LF5oX5/WLuYMoDWZpYBHANsBK4ExsdfHw9cFVJtIiJCCAHh7huAR4F1QDGw093fAE529+L4PMXASUHvN7MxZrbYzBarvyURkaYTxi6mE4htLXQHOgPHmtm3Gvp+dx/n7oPcfVDHjh2bqkwRkRYvjF1MXwM+c/cSd68CXgHOBzaZWSeA+OPmEGoTEZG4MAJiHTDEzI4xMwMuBgqA6cDo+DyjgWkh1CYiknBhH4yuT8K7+3b3hWY2BXgfqAaWAuOA44BJZnYrsRC5LtG1iYjIPqHcD8Ldfw78/IDJEWJbEyIikgR0JbWIiARSQIiISCAFhIiIBFJAiIgkQLKeqfRFFBAiIhJIASEiIoEUECIiEkgBISIigRQQIiISSAEhIiKBFBAiIhJIASEiIoEUECIiEkgBISIigRQQIiISSAEhIiKBFBAiIhJIASEiIoEUECIiEkgBISIigRQQIiISSAEhIiKBFBAiIhJIASEiIoEUECIiEkgBISIigRQQIiISSAEhIiKBFBBJJndsXtgliIgACggREamHAkJERAIpIEREJJACQkREAoUSEGZ2vJlNMbNVZlZgZueZWXsze9PMVscfTwijNhERiQlrC+J3wGvu3hPoBxQAY4FZ7t4DmBUfFxGRkCQ8IMysLTAMeBbA3SvdfQdwJTA+Ptt44KpE1yYiIvuEsQVxGlAC/MnMlprZM2Z2LHCyuxcDxB9PCnqzmY0xs8VmtrikpCRxVYuItDBhBEQGMAD4g7ufDezmMHYnufs4dx/k7oM6duzYVDWKiLR4YQREEVDk7gvj41OIBcYmM+sEEH/cHEJtIiISl/CAcPfPgfVmdmZ80sXASmA6MDo+bTQwLdG1iYjIPhkhfe8dwAQzawV8CnyXWFhNMrNbgXXAdSHVJiIihBQQ7r4MGBTw0sWJrkVERIIdcheTmZ1sZs+a2cz4+FnxX/kiIpLCGnIM4nngdaBzfPxj4K6mKkhERJJDQwKig7tPAqIA7l4N1DRpVSIiErqGBMRuMzsRcAAzGwLsbNKqREQkdA05SP1jYqegnm5m7wIdgWubtCoREQndIQPC3d83swuBMwEDPnL3qiavTEREQnXIgDCz7xwwaYCZ4e5/bqKaREQkCTRkF9PgOs+ziV2r8D6ggBARSWEN2cV0R91xM2sH/KXJKhIRkaRwJH0x7QF6NHYh0rLljs0LuwQROUBDjkH8jfgprsQC5SxgUlMWJSIi4WvIMYhH6zyvBgrdvaiJ6hERkSTRkGMQcxNRiIiIJJd6A8LMStm3a2m/lwB397ZNVpWIiISu3oBw9zaJLERERJJLg89iMrOTzOzUvUNTFiXSUujsLUlmDbkfxCgzWw18BswF1gIzm7guEREJWUO2IB4ChgAfu3t3YldSv9ukVTUz+hUoIqmoIQFR5e5bgTQzS3P3OUD/Jq5LRERC1pDrIHaY2XHAP4AJZraZ2PUQIiKSwurdgjCzp8xsKHAlse417gJeA9YAIxNTnohI85JKu5y/aBfTamJXUecDvwb6uPt4d38yvstJjlAq/QMSaU70f+/w1BsQ7v47dz8PuBDYBvzJzArM7GdmdkbCKhQRkVAc8iC1uxe6+2/c/WzgJuBqoKDJKxM5AvqFKNJ4GnIdRKaZjTSzCcSuf/gYuKbJKxMRSQIt+UfHF/XFNBy4EbgcWAS8BIxx990Jqk1EREL0RVsQPwUWAL3cfaS7T2gp4dCSfzEcDv2dRFLbF3XW99VEFiIiIsnlSG45KiJJRltzR09/w4MpIEREJJACQqQe+kXZfGnZNQ4FhIiIBAotIMws3cyWmtmM+Hh7M3vTzFbHH08Iq7b66FdJ4ulvLsmqJfzbDHML4t/Z/4rsscAsd+8BzIqPN2st4R+QiKSuUALCzLoSuwDvmTqTrwTGx5+PB65q6jq0AhcRqV9YWxBPAP8BROtMO9ndiwHijyeFUZg0Dwp3kaaX8IAwsyuAze6+5AjfP8bMFpvZ4pKSkkauTqTxKcykuQpjC2IoMMrM1hLr3+kiM3sB2GRmnQDij5uD3uzu49x9kLsP6tixY6JqFhFpcRIeEO7+E3fv6u65wA3AbHf/FjAdGB2fbTQwLdG1SdPSL+nmQctJ9kqm6yAeBoab2WpgeHxcRERCUm9nfYng7m8Db8efbwUuDrMeERHZJ5m2IEREJIkoIKTF0z53kWAKCBERCaSAEBGRQAoIEREJpIAQkaSn40ThUEBILf0nbBj9naSlUECIiEggBYSIiARSQIiISCAFRDN3uPvDj2T/eSK+Q5qGloUcDQWEiIgEUkCkKP1y3F+q/D2SsR3JWJM0DgWEiIgEUkCISNLQ8a7kEur9IEREpAF27oT8/NrhL1Pnwr3nQocOTfq12oIQSUL6ZdzCrV0LjzzC+En/RbRLVzj+eBg6FMaMofz3f6RN5W7e+OvWJi9DWxAiIslg/XqYPBmfOBFbtAiAkzrm8uKWi1id1Zt8erMk0pvCaA6nfmcm/5lxZpOXpIAQaYFyx+ax9uHLwy5DNm6EyZOZ8sL/wW8KAFieMYBJmb9hYvQ6qr63ksLfXA6RcMpTQIiIJNLnn8PLL8PEifi8eZg7x3bM5eeZv2KyX0dBdY/aWXNYGWKhCggRkabnzlX5c+Cix/C5c7FolI8yezMx45dM4Tp2fW9NbEshySggRCShWtzurfXr4dZbeeLNN1mTeSYT0x5gUtr1fFDVu3aWHNaEWGD9dBZTM6GzWpKfltH+Wvzfwx2efx7v04eKOfO5/5If8qWqAu6v/iUfVPc+9PuTgAJCRKSxFRfDqFHw3e+yoPxszk77kAlnfx2wsCs7LAoIEWmQFr9F0EAjV87Fe/em8rVZ3Jv5BBdUzWZV5Wlhl3VEdAxCRKQx1NTAvffy+789wZLMIXw3fTzLI2eEXdVRUUCIiByt0lK48UbIy+O5gaMYs+RlalJg9dr8WyAiEqbCQnzkSDx/JXdl/oHpX+tGzZLUWLXqGISIyJFauBA/91z2rFrHlZkz+X3V7WFX1KgUECIiR+CKgnfwCy9kw/ZjuSBtATMiw8MuqdEpIEREDsfu3XDHHTw1/bcs8sEMji5kWaRX2FU1CQWEiEhDzZuH9+sHTz3FnwaO5MLKt/i8umnvyRAmBYSIyKGUl8O99+LDhrFhfZRLs9/ml1/7VyJkhV1Zk0p4QJhZNzObY2YFZpZvZv8en97ezN40s9XxxxMSXZuIyIH6bfwIHzAAHnuMZ9L/lbOqPuT1igvDLishwtiCqAbucfdewBDgR2Z2FjAWmOXuPYBZ8XERkXAUFcGPfsQrL9zH5k/LGJn9BmOq/0CpHxd2ZQmT8IBw92J3fz/+vBQoALoAVwLj47ONB65KdG0iImzcCHfeiX/pS9Q8PY4X+19Kr+oVzKhIvbOUDiXUqznMLBc4G1gInOzuxRALETM7KcTSRKSF6Vi2He6+G3/6aaKRKv6c9l1+nX4/lZfks31pu7DLC0VoAWFmxwEvA3e5+y6zhvVyaGZjgDEAp556atMVKCKpr6YG3nkHJk7knWefp6ammglp3+HXmQ/EOtirgRzyw64yNKEEhJllEguHCe7+SnzyJjPrFN966ARsDnqvu48DxgEMGjTIE1KwiKSOaBTmzYNJk/DJU7DNm6hIP4a8Xhfwi4//QH5lD6gJu8jkkPCAsNimwrNAgbs/Xuel6cBo4OH447RE1yYiKaqyEt55h1+8+TT+5zFY8UYiadn8nct5NfubvFzxdTpe/jaFK3oc+rNakDC2IIYC3waWm9my+LSfEguGSWZ2K7AOuC6E2kQkVWzfDjNnwvTp+N9nYqW7uCGjFTOil/Fq9jeZVDGS3RwHFWEXmrwSHhDuPo/6b6t0cSJrEZEUU1oKU6Yw4aUn8EfzsZoatmSczPTodbzeehQf/KCKjx6/RqHQQKnRJ62ItFzRKMyZE7v/8yuvYHv20PmETjxi/8mMVqOYVzkYJw3KISdTd8U7HAoIEWl+qqth0SLumzsez/0Btn49ZRnteCn6LV7MGs2nt22j8LdXhF1ls6eAEJHk5w6rV8Obb8IbbxCdPYe00l3cbmm8lXYJE7IfYWLFKCpoDRHIMW0pNAYFhIgkH3f4+OPY6aj/+AfzXp0Jv42d+V6Ukcvr0W8yN3s4H46p5oMnb9RpqU1EASEi4du2DfLzufW9qXD1s0T/MY+0LSUAbE/vwIrTe/DflT9nRuUlfFx9OmBQATmttaXQlBQQIpI4u3YxYEMBPFMM+fmwYgXRFfmkfV4MwM+AdRndmVtzGe9lX8Csyq+wsuZMcr7xdwp/c3m4tbdACggRaVzusHUr/Td+BH/aHAuC/Hyiy1eQtqGIVwBegPK0Yyiws1gRvYTVWb1Z4b3Z+P0SFv3v6Njn6FTU0CkgROTw1NTA5s2xXk83buTmpa/Bf8yFTz/F16zB13xKWukupgL8BSKWxUdpvVge/RdWZ/Vm/RV7mPPyLayN5sZOPwWIxB5y2miXUTJRQIjIPqWl9Nr8aewK5HgA7B2mvldAzfgxpJVswmr2HRX+FVD5ZivWpXVndfQ01qZfwLrs0yn5+jbmvvJtPvXTiNakx2aOQM6X8ijktHDaJ4dFASHSAmVVRWDx4trdP7W7gNavYybAn/bNuy29A8V0Yle343hh/QVsTu/M55mdKYp2Zm1lZ+wHBbz3h2/tC4Hq2JDTI49C1LdRc6aAEGkJIhH45z9jVxzPmcOH786Hx6sBqLRWfJzWk+XRoXySNYbiS8v4YPooirwzn3MKlTWx+y7nfDMvdqD4gFNKc9qWECU90S2SBFBAiKSiykp47z3+bf5LcPHj+LvzsUgFUYwPMwawcOAo3vnwJhZX9GGNn05NTXxVEIGcnnkUTjsv3PolKSggRFJAerRmvy2E6Lx3SSvfw73Aiox+zPHbmZf9VV6vGMbO6uPJ+WoehYt02qh8MQWESHMVicAbb8CkSSyd9Ao8sgeAVRl9mOW3Mj/7X8gfE4ldaQy62lgOmwJCpBnJrKmKnWE0cSL+6lRs1052ZZzAzF5DyVt9G69VXEhJdfx27jW60liOjgJCJNlVV8Ps2TBpEosmTIJHSynLaMer0at4NfubzKi4mM5ff1NXGkujU0CIJKG0aE0sFCZOxF9+Bdu6hd3pbXj7zIH89bMfM638EirJ0tXG0qQUECJhq6qKdWVd55qEhTPfgkd2UJ5+LNN9FFOzr+fViks5ZeQsbSlIwiggRBKluhrWrNkvCF6b9U/88Y1YVRUAUYzCjNNZ3uPLTPrsTl6puIxyjtGWgoRCASHSmKLRWNcUa9bEhk8/5cnp/8Bfux8vWEVaZaR21sKM01ifezJ5O29kVXZv3o/0ZqX3pKK6NTmj8rSlIKFTQIg0VEUFFBczsGglTN5zUF9Fs5Z9TPS/S/YLgWrS6d+uA6/tGsBHGcNZld2HpZW9WRHtxZ7qY8m5Jh4EVSG2S6QeCghJHdXVtK0oi/U0WlUV26VTXQ1VVZxRshaWLIHy8thQUVH7eNOyRfC7Tw567dE5K2Hpk0Q3bMQ3bCR9xzYAXgaYEPvKSmvF52md2RDtzPYepzKj9AbWZp/O6prTKKg6nXWcSpfb39gXAgoCaUYUEHJ03GMr4Uikdui6c1PsdpGVlfsNQ9cugzz2m3fvcNvCD+Dh5bUr9L0r95/N/gh+MGP/lXp5OZMKNhD9+/34rlIoLcV2l5IWqeBDgN8dXOYbAM8FN+H/Aby+b7zCsolYNucdm8milaexMfolNmcMY1NWZ4qtM7tHruf9yd9gI53Z5u2hxgDI+Ya2BiS1KCBSUTQa662zpAR27dpvuDJ/buxuXgesvKmsZOzbK+GO12Ir4T17ah8nrSwi+tYv8N3leHxFbeXlFOzZg/+2EnPf7+vnATx9cFkTACYGl3w/wNv7xqtJp9oyuT7TKHm/DRVkU05ryr015WQT7ZbBjOU57E5rUzuUZbUhOnQd2989m2oyqCKTKs+gyjM49usf8nne+eyJZlMWbV37eRVk0+GH81j9vyMppzURsnBPA4ecH9Y5DhDvoRQg57Q8Cul7FAtIpHlQQIQlGoUtW6C4ODZs3AjFxdw/e3FsJb13xV1VBZWV/HHpOlj2e4hE8EgEL4/gFRHmbNpG9V8yYivtSAVWGSGtqpKPAB4/+Gt/BzAjoByMWzIy2f7ecZRzDHtozR6OYY+3Jtotg9eWnESFtSaSlk2FtabSsmHARnZ9cBYRsohYFpXeighZZF60ii2zziFCKyLRVlTEh/Y3vUfhi1+NzX/A0Omu2ax54gqqyKSGdMBiK+m7gw/W5twYnx4lNuydPjiPwtkB8/dsS+G04IO+NW1WsZ32DVhoIi1Lyw2IvDy+/f6M2L7nA/ZX3/vOKvjJvNids6LR2sdfzlsDO/4WG6+urn18amkRfPKng+b/c8Hn8M9H8D3lRMsr8D2xX99Ltu/EH92D1VQfVNbNmVnsWHIMlbTab+jSoYJFbzgVnkWEY6mkPVXWirSeW/nHx6cTsWwq07KIpGUTycombchnbF44mF3elh3RtuyoacP2aFvafn8JHz9z+UGfX0M6OfcE3/e3dmXs7NefT30dvuV8OY/CmQHTu5VTyDmBi6NN1jFU0Lrhy09EmlzLDYj/+R8eenMmvHnwS7dbGpX/zCBKGjWkEyWdGktnZFYNm5e1poZ0qsmghnRqSKfX8RUUfLyVGk+nmvTa97U5ZQ9z57ahnBOotNgv74q01ljfTWzO70dxZmc2RjuxrqoTG7wTn3MKJ/94dvBK+rsBv6Sdek+HzBmSR+HcgOknbmIDXY/4zyYiLUfLDYgXXmDAL17js99fVru/eu9KP+c/An5JO+TcWc/K+LZ6pn+nznSPD1HIuSSPwqU6x11EklvLDYj27dl2TDt2cELYlYiIJKW0sAsQEZHkpIAQEZFACggREQmkgBARkUBJFxBmdqmZfWRmn5jZ2LDrERFpqZIqIMwsHfgf4DLgLOBGMzsr3KpERFqmpAoI4BzgE3f/1N0rgZeAK0OuSUSkRUq2gOgCrK8zXhSfJiIiCWZ+QE+cYTKz64AR7v79+Pi3gXPc/Y4684wBxsRHz4RYv3RHpucZkNnqyN+fSNvSoX3NoedLNWp3y6J2N9y6QthZeoRfmOPuHQ81U7JdSV0EdKsz3hXYWHcGdx8HjEtkUcnAzBa7Fw0Ku45EU7tbFrU7uSTbLqb3gB5m1t3MWgE3ANNDrklEpEVKqi0Id682s38jdn+vdOA5d88PuSwRkRYpqQICwN3/Dvw97DqSUIvbrRandrcsancSSaqD1CIikjyS7RiEiIgkCQVEiMzsOTPbbGYrDph+R7y7kXwz+22d6T+Jd0HykZmNqDN9oJktj7/2pJlZIttxuA6n3WaWa2blZrYsPjxdZ/5m324zm1inbWvNbFmd15r98j6cNreAZd3fzP4Zb9tiMzunzmvJuazdXUNIAzAMGACsqDPtq8BbQFZ8/KT441nAB0AW0B1YA6THX1sEnAcYMBO4LOy2NWK7c+vOd8DnNPt2H/D6Y8B/pdLyPsw2p/SyBt7YWzfwdeDtZF/W2oIIkbu/A2w7YPIPgIfdPRKfZ3N8+pXAS+4ecffPgE+Ac8ysE9DW3Rd47F/Un4GrEtOCI3OY7Q6UQu0GIP7L8Hrgr/FJKbG8D7PNgZpbm6HedjvQNv68Hfuu8UraZa2ASD5nAF8xs4VmNtfMBsen19cNSZf48wOnNzf1tRugu5ktjU//SnxaqrR7r68Am9x9dXw81Zc3HNxmSO1lfRfwiJmtBx4FfhKfnrTLOulOcxUygBOAIcBgYJKZnUZsE/NA/gXTm5v62l0MnOruW81sIDDVzHqTOu3e60b2/yWd6ssbDm5zqi/rHwB3u/vLZnY98CzwNZIuQ8yYAAACsUlEQVR4WSsgkk8R8Ep8k3KRmUWBDtTfDUlR/PmB05ubwHa7ewmwd7fTEjNbQ2xrI1XajZllAFcDA+tMTunlHdTm+O7FVF7Wo4F/jz+fDDwTf560y1q7mJLPVOAiADM7A2gFbCHW5cgNZpZlZt2BHsAidy8GSs1sSHyf7neAaeGUflQC221mHS12nxDiWxQ9gE9TqN0Q+xW5yt3r7k5I9eV9UJtbwLLeCFwYf34RsHfXWvIu67CP9rfkgdjmdTFQRezXwq3EVowvACuA94GL6sx/P7EzHD6iztkMwKD4/GuAp4hfAJmsw+G0G7gGyCd2lsf7wMhUand8+vPA7QHzN/vlfThtTvVlDVwALIm3byEwMNmXta6kFhGRQNrFJCIigRQQIiISSAEhIiKBFBAiIhJIASEiIoEUECINZDHzzOyyOtOuN7PXwqxLpKnoNFeRw2BmfYhdBXs2sdviLgMudfc1R/GZGe5e3UglijQaBYTIYbLYvSp2A8cCpe7+kJmNBn5E7IK/+cC/uXvUzMYR6/a5NTDR3R+Mf0YR8H/ApcAT7j45hKaIfCH1xSRy+H5J7ErfSmBQfKviG8D57l4dD4UbgBeBse6+Ld730Bwzm+LuK+Ofs9vdh4bRAJGGUECIHCZ3321mE4Eyd4+Y2deI9UC7OH7Dr9bs6775RjO7ldj/tc7Ebg6zNyAmJrZykcOjgBA5MtH4ALFumZ9z95/VncHMehDrvfMcd99hZi8A2XVm2Z2QSkWOkM5iEjl6bwHXm1kHADM70cxOJXb3sFJgV/zuYCO+4DNEko62IESOkrsvN7NfAm+ZWRqxHjxvBxYT2520AvgUeDe8KkUOn85iEhGRQNrFJCIigRQQIiISSAEhIiKBFBAiIhJIASEiIoEUECIiEkgBISIigRQQIiIS6P8DznFgNQAHiu0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"p1 = plt.bar( data['Year'],data['Wheat'] )\n",
"\n",
"p2 = plt.plot( data['Year'],data['Wages'], 'r-')\n",
"p2 = plt.fill_between(data['Year'],data['Wages'], color='blue')\n",
"\n",
"plt.ylabel('Value')\n",
"plt.xlabel('Year')\n",
"plt.legend([p1, p2], [\"Wheat\", \"Wages\"])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mission 2 : Améliorez la présentation de ces données\n",
"\n",
"Pour commencer, Playfair a combiné les deux quantités dans un même graphique en simplifiant les unités \"shillings par quart de boisseau de blé\" et \"shillings par semaine\" à un simple \"shillings\", ce qui aujourd'hui n'est plus admissible. \n",
"\n",
"Utilisez deux ordonnées différentes, une à gauche et une à droite, et indiquez les unités correctes. À cette occasion, n'hésitez pas à proposer d'autres représentations que des barres et des surface/courbes pour les deux jeux de données si ceci vous paraît judicieux."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEKCAYAAABDkxEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcHGW59//PRRYCSBpZT0iQCjxBDGBiCGsUROQBbBZFliAc2R4iKiCLHAvUYwv6/Oqnwk9QDzkROIBGVpGEFMo5yuKBAEIgKgGBAAUEIjt9spiQgev3R9VAZ5jprumZnunp/r5fr35113JX3zUFfeW+66r7NndHRESkWa0z2BUQERGpRoFKRESamgKViIg0NQUqERFpagpUIiLS1BSoRESkqTUsUJnZFWb2spk90sN2M7NLzGyxmf3FzKY0qi4iIjJ0NbJFdSVwQJXtBwITstcM4NIG1kVERIaohgUqd/8j8HqVXQ4FrvbUfcBGZjamUfUREZGhafggfvdY4PmK5SXZuqVddzSzGaStLoCd119//cbXTkSkhaxcudLdfUjmJQxmoLJu1nU7npO7zwJmAWywwQa+YsWKRtZLRKTlmNk/BrsO9RrM6LoE2KpieRzw4iDVRUREmtRgBqq5wBez7L/dgbK7v6/bT0RE2lvDuv7M7Brgk8CmZrYE+A4wAsDdZwK3Ap8BFgMrgRMaVRcRERm6bKhN89HdPao1a9awZMkSVq1aNUi1aj6jRo1i3LhxjBgxYrCrIiJNwMxWuvsGVbZfARwEvOzuO2brNgauAwIgAY509zeybecCJwFvA6e7+20Nq3srBKpnnnmGDTfckE022QSz7nI02ou789prr7Fs2TLGjx8/2NURkSaQI1DtBSwnfWyoM1D9AHjd3SMzC4EPuvs3zGwicA2wK7Al8HtgO3d/uxF1H5Kpil2tWrVKQaqCmbHJJpuohSkiufXw7OuhwFXZ56uAz1asv9bdV7v7M6S3cHZtVN1aIlABClJd6O8hIv1gi84kt+x982x9T8/BNsRgPkclIiIDZ7iZPVixPCt7RrUeuZ+D7Q8tGaiCMO7X4yVRseY+Z555JltvvTVnnHEGAPvvvz9bbbUVl112GQBnn302Y8eO5fbbb2fevHl9rtPNN9/Mdtttx8SJE/t8LBFpCx3uPrWXZV4yszHuvjQb4u7lbP2APgfbMl1/g23PPfdk/vz5ALzzzju8+uqrLFq06N3t8+fPZ82aNf32fTfffDOPPvpovx1PRJpbf/8DPKe5wHHZ5+OAORXrp5vZumY2nnRw8T81qhIKVP1k2rRp7waqRYsWseOOO7LhhhvyxhtvsHr1ah577DE+9rGPsXz5cg4//HC23357jjnmGDqzLhcsWMDee+/NzjvvzP7778/Spemzzz//+c/ZZZddmDRpEp///OdZuXIl8+fPZ+7cuZxzzjlMnjyZp556atDOW0RaQ/bs673Ah81siZmdBETAfmb2JLBftoy7LwKuBx4Ffgd8tVEZf9CiXX+DYcstt2T48OE899xzzJ8/nz322IMXXniBe++9l0KhwEc/+lFGjhzJww8/zKJFi9hyyy2ZNm0a99xzD7vtthunnXYac+bMYbPNNuO6667jm9/8JldccQWHHXYYJ598MgDf+ta3uPzyyznttNM45JBDOOiggzj88MMH+cxFpBW4+9E9bNq3h/2/D3y/cTV6jwJVP+psVc2fP5+zzjqLF154gfnz51MoFNhzzz0B2HXXXRk3bhwAkydPJkkSNtpoIx555BH2228/AN5++23GjElnPHnkkUf41re+xZtvvsny5cvZf//9B+fkREQGiQJVP+q8T/XXv/6VHXfcka222ooLL7yQ0aNHc+KJJwKw7rrrvrv/sGHD6OjowN3ZYYcduPfee993zOOPP56bb76ZSZMmceWVV3LnnXcO1OmIiDQF3aPqR9OmTWPevHlsvPHGDBs2jI033pg333yTe++9lz322KPHch/+8Id55ZVX3g1Ua9aseTcRY9myZYwZM4Y1a9Ywe/bsd8tsuOGGLFu2rLEnJCLSBFqyRZUnnbwRdtppJ1599VW+8IUvrLVu+fLlbLrppj2WGzlyJDfeeCOnn3465XKZjo4OzjjjDHbYYQcuuOACdtttN7beemt22mmnd4PT9OnTOfnkk7nkkku48cYb2XbbbRt+fiIifRGE8XrAh5Ko+HhvyrXEWH+PPfYYH/nIRwapRs1LfxeR1hGEcZ/+EV5rrL9GCMK4kETFcvb5YOBHwMgkKo4PwngycH4SFQ+pdRx1/YmISKMcFYTx57PPJdLxAN8ESKLiQtJR2WtSoBIRkYZIouIsoHP4nI7O1lVvteQ9KhERaQ5JVLwg+/hIEMZfAIYFYTwBOB2Yn+cYalGJiMhAOA3YAVhNOpfV/wBn5CmoFpWIiDRcEhVXAt/MXr2iQCUiIg0ThPEtVJkCJE/WX2sGqlKhn49X+/5f3mk+zjrrrP6tm4hIc/tRXw+ge1T9JM80H9OmTRus6omIDIokKt7V+SIdnf0N0inv783W1aRA1U/yTPPxkY98hH333ZcpU6aw0047MWfOnHfLX3DBBWy//fbst99+HH300fzoR+k/Qp566ikOOOAAdt55Zz7xiU/wt7/9DYAbbriBHXfckUmTJrHXXnsN/AmLiPRCEMZF4CngEuCnwOIgjA/MU7Y1u/4GQZ5pPtZff31+85vfMHr0aF599VV23313DjnkEBYsWMCvf/1rHn74YTo6OpgyZQo777wzADNmzGDmzJlMmDCB+++/n6985SvcfvvtnH/++dx2222MHTuWN998c5DPXkSkpguBfZKouBggCONtgRj4ba2CClT9qNY0H+7Oeeedxx//+EfWWWcdXnjhBV566SXuvvtuDj30UNZbbz0ADj74YACWL1/O/PnzOeKII979jtWrV7/7XccffzxHHnkkhx122MCfrIhI77zcGaQyT/Pe1PZVKVD1o1rTfMyePZtXXnmFBQsWMGLECIIgYNWqVfQ03uI777zDRhttxMKFC9+3bebMmdx///3EcczkyZNZuHAhm2yySaNPUUSkV4Iw7vyX9KIgjG8lnRnYgSOAB/IcQ/eo+lGtaT7K5TKbb745I0aM4I477uDZZ58F4OMf/zi33HILq1atYvny5cRxDMDo0aMZP348N9xwAwDuzp///GcgvXe12267cf7557Ppppvy/PPPD85Ji4hUd3D2GgW8BOwNfBJ4BfhgngO0ZosqRzp5I9Sa5uOYY47h4IMPZurUqUyePJntt98egF122YVDDjmESZMmsfXWWzN16lQKhTTFfvbs2Xz5y1/me9/7HmvWrGH69OlMmjSJc845hyeffBJ3Z99992XSpEmDcs4iItUkUfGEvh5D03w0ieXLl/OBD3yAlStXstdeezFr1iymTJnSp2O2wt9FRFJDcZqP/tKaLaohaMaMGTz66KOsWrWK4447rs9BSkSkVShQNYlf/epXg10FEZGm1DKByt0xs8GuRtMYal26ItLagjDeAvi/wJZJVDwwCOOJwB5JVLy8VtmWyPobNWoUr732mn6cM+7Oa6+9xqhRowa7KiIina4EbgO2zJafoJ2m+Rg3bhxLlizhlVdeGeyqNI1Ro0Yxbty4wa6GiEinTZOoeH0QxucCJFGxIwjjt/MUbIlANWLECMaPHz/Y1RARkZ6tCMJ4E7IpP4Iw3h3I9SxRSwQqERFpemcBc4FtgzC+B9gMODxPwYbeozKzA8zscTNbbGZhN9sLZnaLmf3ZzBaZWZ8fDBMRkeaTRMWHSEel2BP4ErBDEhX/kqdsw1pUZjYM+BmwH7AEeMDM5rr7oxW7fRV41N0PNrPNgMfNbLa7v9WoeomIyMCpGOuvq+2yh5hvqnWMRnb97QosdvenAczsWuBQoDJQObChpXnlHyCdTKujgXUSEZGBdXD2vjlpa+r2bHkf4E5gUAPVWKBypNQlwG5d9vkpaZ/li8CGwFHu/k7XA5nZDGAGwMiRIxtSWRER6X+dY/0FYTwPmJhExaXZ8hjSXreaGnmPqrunb7s+6LQ/sJA0r34y8FMzG/2+Qu6z3H2qu08dPlz5HyIiQ1DQGaQyLwHb5SnYyF/9JcBWFcvjSFtOlU4AIk+f1F1sZs8A2wN/amC9RERk4N0ZhPFtwDWkjZbpwB15CjayRfUAMMHMxpvZyKxSc7vs8xywL4CZbQF8mHTWRxERGWBmdmaWgf2ImV1jZqPMbGMz+y8zezJ7zzWHVFdJVDwVmAlMIu1Bm5VExdNy1auRww6Z2WeAHwPDgCvc/ftmdgqAu880sy1Jh9UYQ9pVGLn7L6sds7tpPkREWkVP03k0epoPMxsL3A1MdPd/mNn1wK3AROB1d4+yx4w+6O7fqLsidWjoDR93v5X0RCvXzaz4/CLwvxtZBxERyW04sJ6ZrQHWJ71dcy7pjLwAV5Fm6g1ooGqJQWlFRKSm4Wb2YMVrRuVGd38B+BHpLZmlQNnd/xPYwt2XZvssJU0zH9iKD/QXiojIoOhw96k9bczuPR0KjAfeBG4ws2MHqnLVKFCJiAjAp4Fn3P0VADO7ifQB3ZfMbIy7LzWzMcDL9Rw8CONneP8jSiRRcZtaZdX1JyIywIIwHuwqdOc5YHczWz8bLWhf4DHSbO3jsn2OA+bUefypwC7Z6xPAJUDV5LlOalGJiAjufr+Z3Qg8RDqU3cPALNLh7a43s5NIg9kR9Rw/iYqvdVn14yCM7wb+tVZZBSoREQHA3b8DfKfL6tVkz7v2RRDGUyoW1yFtYW2Yp6wClYiIDIQLKz53AAlwZJ6CClQiItJwSVTcp96ytQNVqbAF8H+BLSmVD6RUmAjsQal8eb1fKiIi7ScI4yKwAzCqc10SFc+vVS5P1t+VwG2kI5wDPAGc0fsqioi0lybN7hsUQRjPBI4CTiMdMu8IYOs8ZfMEqk0pla8H0nmiSuUO4O26aioiIu1qzyQqfhF4I4mK3wX2YO0ZNnqUJ1CtoFTYhM4HtUqF3YFynRUVEZH29I/sfWUQxlsCa0hHwagpTzLFWaQPfG1LqXAPsBlweD21FBGRtjUvCOONgB+SPqvlwGV5CuZIpig/RKmwN+lcUQY8Tqm8pv66iohIu0mi4gXZx19n09KPSqJirt65vEMo7Uo62dUU4GhKhS/2vpoiItKugjBePwjjbwdh/PMkKq4GNg/C+KA8ZfOkp/8C2BZYyHtJFA5cXWd9RUSk/fwHsIA0iQJgCXADMK9WwTz3qKYCEymVGzcVsIiItLptk6h4VBDGRwMkUfEfQRhbnoJ5uv4eAf6pL7UTEZG291YQxuuRZZAHYbwt6TiCNeVpUW0KPEqp8Ke1DloqH9L7eoqISJv6DvA7YKsgjGcD04Dj8xTME6hKdVdLREQESKLifwVh/BCwO2kG+deSqPhqnrJ50tPv6lv1RESk3QVhPA1YmETFOAjjY4HzgjC+OImKz9Yq23OgKhXuplT+OKXCMtaePtgAp1Qe3deKi4hI27gUmBSE8STgHOAK0uzxvWsVrBKoyh/P3nNNbCUiIlJFRxIVPQjjQ4FLkqh4eRDGx9UsRW/moyoVNqdiaHZK5ed6W0sREWlby4IwPhc4FtgrCONhwIg8BWunp5cKh1AqPAk8A9xFOivjb+uuqoiItKOjSDPHT0qi4t+BsaTj/tWU5zmqC0izNJ6gVB4P7AvcU2dFRUSkPS0DLk6i4n8HYbwdMBm4Jk/BPIFqDaXya8A6lArrUCrfkX2BiIhIXn8E1g3CeCzwB+AE0ol5a8oTqN6kVPhA9iWzKRUuBjrqrKiIiLQnS6LiSuAw4CdJVPwc6bT0NeUJVIeSTnh1JulTxU8BB9dZURERaU8WhPEewDFAnK0blqdgngd+V6TvhdHALXVVT0RE2t0ZwLnAb5KouCgI422AO/IUzDPNx5eA80lbVe/Q+cAvbFNvbUVEpL0kUfEu0szxzuWngdPzlM3zHNXXgR0olXONySQiItIpCOMfJ1HxjCCMb2HtUY4ASKJizQHO8wSqp4CVddRPRETkF9n7j+o9QJ5AdS4wn1Lhftae5iNXk01ERNpXEhUXZO93BWE8Etgu2/R4EhXX5DlGnqy/fwduB+4jnUa481WTmR1gZo+b2WIzC3vY55NmttDMFplZW47UHoRx7Z1ERIawIIw/CTwJ/Az4N+CJIIz3ylM2T4uqg1L5rN5WysyGZRXaD1gCPGBmc9390Yp9NsoqfIC7P2dmm/f2e0REZEi4EPjfSVR8HCAbneIaYOdaBfMEqjsoFWaQpqZXdv29XqPcrsBid38awMyuJX0m69GKfb4A3OTuzwG4+8s56iMiIkPPiM4gBZBExSeCMM41KG2eQPWF7P3cinV50tPHAs9XLC8Bduuyz3bACDO7E9gQuNjdr+56IDObAcwAGDlyZI4qi4hIk3kwCOPLeS+54hhy3kbK88Dv+DorZd2s65qaOJy02bcvsB5wr5nd5+5PrFXIfRYwC2CDDTZ4X3qjiIg0vS8DXyV9dspIh+X7tzwF8zzwuz5wFvAhSuUZlAoTgA9TKs+rUXIJsFXF8jjgxW72edXdVwArzOyPwCTgCUREZEBleQOXATuSNixOBB4HrgMC0mmejnT3N3p77CQqrg7C+KekA9K+Q5r191aesnmy/v4DeAvYM1teAnwvR7kHgAlmNt7MRgLTgbld9pkDfMLMhpvZ+qRdg4/lqbiIiPS7i4Hfufv2pI2Gx4AQ+IO7TyANMt1mcNcShHGR9Lnci4GfAouDMD4wT9k8gWpbSuUfAGm+e6n8D7rv1luLu3cApwK3kZ7s9e6+yMxOMbNTsn0eIx3o9i/An4DL3P2RPBUXEZH+Y2ajgb2AywHc/S13f5M0Ce6qbLergM/W+RUXAvskUfGTSVTcG9gH+P/yFMyTTPEWpcJ6dN5fKhW2pTL7rwp3vxW4tcu6mV2Wf0jOWR5FRKRuw83swYrlWdn9/07bAK8A/2Fmk0gTHb4GbOHuSwHcfWkfHiN6OYmKiyuWnwZyZXrnCVTfIW31bEWpMBuYBhzf2xqKiMig6nD3qVW2DwemAKe5+/1mdjF1dvNVCsL4sOzjoiCMbwWuJ234HEF6i6imPFl//0Wp8BDpdPQGfE0D1IqItJwlwBJ3vz9bvpE0UL1kZmOy1tQYcraCKlTOX/gSsHf2+RXgg3kOkCfrbxqwkFI5plQ4FjiPUuFiSuVne1lZERFpUu7+dzN73sw+7O6Pkz429Gj2Og6Isvc5vTluEhVP6Gvd8nT9XQpMolSYBJwDXAFczXtRUUREWsNpwOwsU/tp4ATSpLvrzewk4DnSLrsBlSfrr4NS2UkzPy6hVL6YdBQJERFpIe6+0N2nuvtH3f2z7v6Gu7/m7vu6+4Tsvdbwef0uT4tqGaXCucCxwF6UCsOAXOMziYiI9FWeFtVRpOnoJ1Eq/510DD+lk4uISG5BGG8RhPHlQRj/NlueGITxSXnK5sn6+ztwUcXyc6T3qERERPK6knSko29my0+QDs10ea2CeVpUIiIifbVpEhWvJx3njyQqdgBv5ymoQCUiIgNhRRDGm5CNchSE8e5AOU/B6l1/aeLEVZTKx/a1hiIi0tbOIh2YfNsgjO8BNgMOz1OweouqVH4b2IxSQbMViohI3ZKo+BDp87d7Al8Cdkii4l/ylM2Tnp4A91AqzAVWvLu2VL6opwIiIiKw1lh/XW0XhDFJVLyp1jHyBKoXs9c66EFfERHpnc6x/jYnbU3dni3vA9wJ9EOgKpW/W1/dRHqW/UtqsKshIg3WOdZfEMbzgIlJVFyaLY8BfpbnGHkGpd0M+BdgB2DUe+vLn+p1jUVEpF0FnUEq8xKwXZ6Cebr+ZpM+lHUQcArp6Lmv9LaGIiLS1u4Mwvg24BrSFPXpwB15CuZ5jmoTSuXLgTWUyndRKp9IOjeViIhILklUPBWYCUwCJgOzkqh4Wp6yeVpUa7L3pZQKRdLEinH1VFRERNpXEhV/A/ymt+XyBKrvUSoUgLOBnwCjgTN7+0UiIiL1yJP1Ny/7VCZNJxSROinbUaT3at+jKhW2oVS4hVLhVUqFlykV5lAqbDMAdRMRkRYRhPHX8qzrTp5kil8B1wP/BGwJ3ECatdHWgjAe7CqIiAwlx3Wz7vg8BfPcozJK5V9ULP+SUuHUPAcXEZH2FoTx0cAXgG2CMJ5bsWlD4LU8x8gTqO6gVAiBa0lz348CYkqFjQEolV/vTaVFRKStzAeWApsCF1asXwb026C0R2XvX+qy/kTSwKX7VSLS1pQk07MkKj4bhPESYEUSFe+q5xh5sv7G13NgWZv+QxYZHPp/b/AlUfHtIIxXBmFcSKJirskSK+VpUYmIiPTVKuCvQRj/FxVTRiVR8fRaBRWoZMjTv5hFhoQ4e/WaApWISBf6x0//S6LiVfWWzTPNxzRgIaXyCkqFY4EpwMWUys/W+6UiItJegjCeAPw/wEQqpoxKomLNhLw8D/xeCqykVJhEOi/Vs8DV9VW1eekB3nz0dxKROv0HaTzpIB2O72rgF1VLZPIEqg5KZQcOJW1JXYympBcRkd5ZL4mKfwAsiYrPJlGxBOSagDdPoFpGqXAucCzpg77DgBF1V1VE+oVat32jv9+AWxWE8TrAk0EYnxqE8eeAzfMUzBOojgJWAydRKv8dGAv8sO6qiohIOzoDWB84HdgZ+Ge6H//vffI88Pt34KKK5efIeY/KzA4ALgaGAZe5e9TDfrsA9wFHufuNeY4t0gjK9hq6dO2aWxIVH8g+LgdO6E3ZPFl/y0iHSqpUBh4EzqZUfrq7YmY2DPgZsB+wBHjAzOa6+6Pd7Pf/Arf1puIiIjJ0BGF8B++PJSRRseZ9qjxdfxcB55B2+Y0Dvg78nHSQ2iuqlNsVWOzuT7v7W9n+h3az32nAr4GXc9RlwKkfe+Dpby7NSv9t9snXSWPJOcC3gYWkDZ6a8jzwewCl8m4Vy7MoFe6jVD6fUuG8KuXGAs9XLC8BKo+DmY0FPkea+bFLTwcysxnADICRI0fmqPLgUfeDiAxVWQ/Xg8AL7n6QmW0MXAcEQAIc6e5v1HPsJCou6LLqniCMcw1SmydQvUOpcCTQee/o8Ipt72vGVbBu1nXd/8fAN9z9bbPuds8Kuc8CZgFssMEG1b6zKgUREZGqvgY8BozOlkPgD+4emVmYLX+jngMHYbxxxeI6pAkV/5SnbJ6uv2NIszNeBl7KPh9LqbAeUG0CxSXAVhXL44AXu+wzFbjWzBLSAPhvZvbZPBWX9qNuF5HGMbNxQBG4rGL1oUDn0EdXAX35fV5A2lpbANwLnA2clKdgnqy/p4GDe9h6d5WSDwATzGw88AIwnXSWx3e5+7tTiJjZlcA8d7+5Zp1Empxa79KEhptZ5T2hWVlvVacfk44+VDmgwxbuvhTA3ZeaWa7nnrqTRMW6p4zKk/W3GXAyaR/le/uXyidWK+buHWZ2Kmk23zDgCndfZGanZNtn1ltpERHptQ53n9rdBjM7CHjZ3ReY2Scb8eVBGB9WbXsSFW/qaVuee1RzgP8Gfg+83ZuKufutwK1d1nUboNz9+N4cW4YGtSyGBl2ntjcNOMTMPkM6YOxoM/sl8JKZjclaU2PoW3b2ScCewO3Z8j7AnaSPOznQp0C1PqVyXTfPRESk+bn7ucC5AFmL6uvufqyZ/ZB09Igoe5/Tl68BJiZRcSlAEMZjgJ8lUbHmw795kinmUSp8pg+VExGRoSkC9jOzJ0kHb+h2dKGcgs4glXkJ2C5PwTwtqq8B51EqrAbWkKadO6Xy6OrFRERkqHH3O0m75HD314B9++nQdwZhfBtwDWnrajpwR56CebL+NKWHtBTdjxEZeElU7Bwxfa9s1awkKv4mT9meA1WpsD2l8t8oFaZ0v738UG8rKiIi7SsLTLmCU6VqLaqzSdPSL+xmm5NzwisREZG+qNKiKp+cve8zUJURERHpqlrXX9WHsyiVe8x5FxHpK91LbB1BGA8Drkqi4rH1lK+Wnn5wlddB9XyZNB+Nn5eP/k4i9Uui4tvAZkEY1zX9RbWuv17NwCgiIlJFQjq1x1xgxbsro+JFPZbIVOv6O6tqyVK55sFFREQyL2avdVh74NuaqmX96fkpERHpF0lU/G69Zat1/dV9UGms3t5kruem9EB8hzSGroU0oyCMNyOdRmQH0oFvAUiiYs1Hnap1/f0LpfIPKBV+Qncz+ZbKp9dTWRERaUuzSae1Pwg4hXSQ21fyFKyW9fdY9t45I2PXlzQZZaatrVX+Hs14Hs1YJ2l6myRR8XJgTRIV70qi4onA7nkKVuv6uyV7v6rHfURERPJZk70vDcK4SJpYMS5PwTwz/G4HfJ33z/CrIZREpE8G4v6pNI3vBWFcIB2e7yfAaODMPAXzTPNxAzATuIxezvArIiICkETFednHMunsvrnlCVQdlMqX9rpWItIrailINcmoL5D+xg9NQRhvA1wM7AG8A9wLnJlExadrla2W9bdx9ukWSoWvkA7Nvvq97eXX66+yiIh0Z6gHpCp+BfwM+Fy2PJ10EsXdahWs1qJaQJqWbtnyORXbHNim19UUkUGjFpsMMkui4i8qln8ZhPGpeQpWy/ob39daiYjI+7Vwq6maO4IwDoFrSRs7RwFxEMYbAyRRscdeumpdf7sAz1Mq/z1b/iLweeBZoKSuPxER6YWjsvcvdVl/IjV66ap1/f078GkASoW9gAg4DZgMzAIOr6+uItJu2rXbsU1bTt1KomLdvXTVRqYYVtFqOgqYRan8a0rlbwP/q94vlPz09H/z0zVam/4e0gg1AlWhs8W1L3B7xbY8ae0iIiJ9Vi1QXQPcRakwB/gH8N8AlAr/C7VlRdqCWkjSDKpl/X2fUuEPwBjgPymVO0dQX4f0XpWIiKB7UXkEYTwNWJhExRVBGB8LTAEuTqLis7XKVu/CK5Xv62bdE3XWU0RE2telwKQgjCeRzkt1OXA1sHetgtW6/kRERPpLRxIVHTiUtCV1MTlnkldShIiIDIRlQRifCxwL7BWE8TBgRJ6CalGJiMhAOIp0vNiTkqj4d2As8MM8BdWiEhGRhsuC00UVy8+R3qOqSYFKRCQnZffVLwjjZaTwuX6wAAALGklEQVRDJVUqAw8CZ1eb7qOhXX9mdoCZPW5mi80s7Gb7MWb2l+w138wmNbI+IiIyaC4inYVjLOkU9F8Hfk46SO0V1Qo2rEVlZsNI5x7ZD1gCPGBmc9390YrdngH2dvc3zOxA0jEEa85NIiIiQ84BSVSs/H2fFYTxfUlUPD8I4/OqFWxk19+uwGJ3fxrAzK4lTUt8N1C5+/yK/e8jjbIiIjLAzGwr0ntG/0Q6A+8sd7/YzDYGrgMCIAGOdPc36viKd4IwPhK4MVuuHNi8a5fgWhrZ9TcWeL5ieUm2ricnAb/tboOZzTCzB83swY6Ojn6soojI+6X3otpOB3C2u38E2B34qplNBELgD+4+AfhDtlyPY4B/Bl4GXso+HxuE8XpA1QkUG9mism7WdRs1zWwf0kD18e62u/ss0m5BNthgg6qRV0REes/dlwJLs8/LzOwx0sbFocAns92uAu4EvtHb42fJEgf3sPnuamUbGaiWAFtVLI8DXuy6k5l9FLgMONDdX2tgfURE2tlwM3uwYnlW1gh4HzMLgI8B9wNbZEEMd19qZpvX8+VBGG8GnEzahfhu7Emi4ok1K17PF+b0ADDBzMYDLwDTgbXa02b2IeAm4J/dXWMIisiAacNU8w53n1prJzP7APBr4Ax3/x+z7jrH6jKHdBaO3wNv96ZgwwKVu3eY2anAbcAw4Ap3X2Rmp2TbZwL/CmwC/Fv2x8j1hxQRkf5nZiNIg9Rsd78pW/2SmY3JWlNjSO8x1WP9JCr2ussQGvwclbvf6u7bufu27v79bN3MLEjh7v/H3T/o7pOzl4KUiPSrNk2M6DVLWwuXA4+5+0UVm+YCx2WfjyNtGdVjXhDGn6mnoEamEBERgGmkmXh/NbOF2brzgAi43sxOAp4Djqjz+F8DzgvCeDWwhjThzpOoOLpWQQUqEWkJbXjPqV+5+910n60NsG9fj59ExVxTenRHgUpERBomCOPtk6j4tyCMp3S3PYmKD9U6hgKViAwpajkNOWeTpqVf2M02Bz5V6wAKVCIi0jBJVDw5e9+n3mMoUIlIU1LLqTUEYXxYte1JVLyp2nZQoBKRQaRg1BZ6GjYJ0q4/BSoRGXwKSO0riYon9PUYClQiItIwQRifVW17EhUvqrYdFKhEpA49tZDUcpJu1P38VCcFKhHpkQKP9FUSFb/b12MoUImIApI0TBDG/5JExR8EYfwTupmTMImKp9c6hgKVSJtQMJJB8lj2/mDVvapQoBJpMQpI0kySqHhL9n5VvcdQoBIRkYYLwng74Ou8f4ZfDaEk0qrUcpIh5gZgJnAZzTLDr4iISIWOJCpeWk9BBSqRJqeWkwxlQRhvnH28JQjjrwC/AVZ3bk+i4uu1jqFAJSIijbSANC29c1LGcyq2ObBNrQMoUIk0CbWcpBUlUXF8X4+hQCUygBSMpF0FYXwE8LskKi4LwvhbwBTggiQqPlyr7DoNr51IG0oDkohU+HYWpD4O7A9cRZoFWJMClUgfKCCJ5NaZkl4ELk2i4hxgZJ6CClTSdqoFl562KSCJ9NkLQRj/O3AkcGsQxuuSMwYpUElD1fPD39syCi4iQ8KRwG3AAUlUfBPYmLUzAHukZIo2UO0Gfm/nFdI8RCJSjyQqrqRi2vkkKi4FluYpqxZVE1ALQkSkZ20VqAazu0lBRESkPm0VqEREZOhRoBIRkaamQCUiIk1NgUpERJqaApWIiDQ1BSoREWlqClQiItLUGhqozOwAM3vczBabWdjNdjOzS7LtfzGzKY2sj4iI9KzWb/ZgaVigMrNhwM+AA4GJwNFmNrHLbgcCE7LXDODSRtVHRER6lvM3e1A0skW1K7DY3Z9297eAa4FDu+xzKHC1p+4DNjKzMQ2sk4iIdC/Pb/agMHdvzIHNDgcOcPf/ky3/M7Cbu59asc88IHL3u7PlPwDfcPcHuxxrBmmLC9JZIf/RkEo3n+FAx2BXYhDovNuLzntgrAc8VLE8y91ndS7k+c0eLI0cPd26Wdc1KubZh+yPOaubfVuamT3o7lMHux4DTefdXnTeTSPX7/FgaGTX3xJgq4rlccCLdewjIiKN17S/x40MVA8AE8xsvJmNBKYDc7vsMxf4Ypb9tztQdvdc85OIiEi/yvObPSga1vXn7h1mdirpjI7DgCvcfZGZnZJtnwncCnwGWAysBE5oVH2GqLbr7szovNuLzrsJ9PSbPcjVAhqYTCEiItIfNDKFiIg0NQUqERFpagpUA8zMrjCzl83skS7rT8uGLllkZj+oWH9uNpzJ42a2f8X6nc3sr9m2S8ysu9TSptGb8zazwMz+YWYLs9fMiv2HzHl3d85mdl3FeSVmtrBiW8te657Ou1WuNfR43pPN7L7s3B40s10rtrXE9R4Q7q7XAL6AvUgfWn6kYt0+wO+BdbPlzbP3icCfgXWB8cBTwLBs25+APUifffgtcOBgn1s/nndQuV+X4wyZ8+7unLtsvxD413a41lXOuyWudU/nDfxnZ71JE8fubLXrPRAvtagGmLv/EXi9y+ovk47QsTrb5+Vs/aHAte6+2t2fIc2O3DUbZmq0u9/r6X/ZVwOfHZgzqE8vz7tbQ+28ezhnIB2QGTgSuCZb1erXGuj2vLvVQuftwOjsc4H3nktqmes9EBSomsN2wCfM7H4zu8vMdsnWjwWer9hvSbZubPa56/qhpqfzBhhvZg9n6z+RrWuV8wb4BPCSuz+ZLbf6te7U9byhta/1GcAPzex54EfAudn6drne/aKRQyhJfsOBDwK7A7sA15vZNvQ8pEnTDnXSSz2d91LgQ+7+mpntDNxsZjvQOucNcDRrtypa/Vp36nrerX6tvwyc6e6/NrMjgcuBT9M+17tfKFA1hyXATVlT/09m9g6wKT0PabIk+9x1/VDT7Xm7+ytAZ3fgAjN7irT11RLnbWbDgcOAnStWt/q17va8s27flr3WwHHA17LPNwCXZZ9b/nr3J3X9NYebgU8BmNl2wEjgVdLhS6ab2bpmNp503q4/eTrM1DIz2z3r8/8iMGdwqt4n3Z63mW1m6dw4ZC2sCcDTLXTenwb+5u6VXTytfq2hm/Nug2v9IrB39vlTQGeXZztc7/4z2Nkc7fYi7fZYCqwh/dfTSaQ/0L8EHiEdhv9TFft/kzQj6HEqsn+Aqdn+TwE/JRtlpFlfvTlv4PPAItKsqIeAg4fieXd3ztn6K4FTutm/Za91T+fdKte6p/MGPg4syM7vfmDnVrveA/HSEEoiItLU1PUnIiJNTYFKRESamgKViIg0NQUqERFpagpUIiLS1BSoRKqw1N1mdmDFuiPN7HeDWS+RdqL0dJEazGxH0lEFPkY6RfdC4AB3f6oPxxzu7h39VEWRlqZAJZKDpXNlrQA2AJa5+wVmdhzwVdIHl+cDp7r7O2Y2i3S6h/WA69z9/OwYS4B/Bw4AfuzuNwzCqYgMORrrTySf75KOnPAWMDVrZX0O2NPdO7LgNB34FRC6++vZ2HZ3mNmN7v5odpwV7j5tME5AZKhSoBLJwd1XmNl1wHJ3X21mnyYd8f3BbALW9Xhv2oajzewk0v+/tiSdJK8zUF03sDUXGfoUqETyeyd7QTodwxXu/u3KHcxsAulo2bu6+5tm9ktgVMUuKwakpiItRFl/IvX5PXCkmW0KYGabmNmHSGdzXQb8TzZb6/6DWEeRlqAWlUgd3P2vZvZd4Pdmtg7piNmnAA+SdvM9AjwN3DN4tRRpDcr6ExGRpqauPxERaWoKVCIi0tQUqEREpKkpUImISFNToBIRkaamQCUiIk1NgUpERJra/w/Jqsi2FOwwOwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax1 = plt.subplots()\n",
"color = 'tab:orange'\n",
"ax1.set_xlabel('Year')\n",
"ax1.set_ylabel('Shillings par semaine', color=color)\n",
"\n",
"ax2 = ax1.twinx()\n",
"\n",
"color = 'tab:blue'\n",
"ax2.set_ylabel('shillings par quart de boisseau de blé', color=color)\n",
"\n",
"p1 = plt.bar( data['Year'],data['Wheat'] )\n",
"\n",
"p2 = plt.bar( data['Year'],data['Wages'])\n",
"\n",
"\n",
"plt.legend([p1, p2], [\"Wheat\", \"Wages\"])\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mission 3 : Pouvoir d'achat\n",
"\n",
"L'objectif de Playfair était de montrer que le pouvoir d'achat des ouvriers avait augmenté au cours du temps. \n",
"Essayez de mieux faire ressortir cette information. \n",
"\n",
"1. Faites une représentation graphique du pouvoir d'achat au cours du temps, définie comme la quantité de blé qu'un ouvrier peut acheter avec son salaire hebdomadaire.\n",
"\n",
"2. Dans un autre graphique, montrez les deux quantités (prix du blé, salaire) sur deux axes différents, sans l'axe du temps.Trouvez une autre façon d'indiquer la progression du temps dans ce graphique.\n",
"\n",
"3. Quelle représentation des données vous paraît la plus claire ?\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Représentation graphique du pouvoir d'achat au cours du temps\n",
"\n",
"Le pouvoir d'achat est définie comme la quantité de blé qu'un ouvrier peut acheter avec son salaire hebdomadaire."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8XOWV8PHfmZFGZdSLJUu2LLk3XHABEptqEjphQxIgEELIsmRD2LTNZt9skg28mzdlNz0LYSEQAiEBUpYQg+lgum1s425LtmVLsqzey2g0z/vHFI+k0eiOrJFmpPP9fPRBunPnznMZmDNPO0eMMSillFIAtolugFJKqdihQUEppVSABgWllFIBGhSUUkoFaFBQSikVoEFBKaVUgAYFpZRSARoUlFJKBWhQUEopFZAw0Q2IVF5eniktLZ3oZiilVFzZtm1bgzEmf6Tz4i4olJaWsnXr1oluhlJKxRURqbRyng4fKaWUCtCgoJRSKkCDglJKqQANCkoppQI0KCillArQoKCUUipAg4JSSqkADQpKKWXRs7trqajvmOhmRJUGBaWUsqCp08Xtj2zjip+9zpPbqia6OVGjQUEppSwor/P2EHKcDr76xE6+/PgOOnvdE9yqsadBQSmlLPAHhd/9/VncedE8/ry9mqt+8Tr7a9smuGVjS4OCUkpZUFHfQUqinZnZqXz54vk8eutZtPW4ufoXb/DYu8cwxkx0E8eEBgWllLKgvK6D2flObDYB4ANz89h453rWlObwr3/axS9fLp/gFo4NDQpKKWVBeV0Hc/LTBhzLT0/i4c+sZUlRBm+UN05Qy8aWBgWlVNzo6evn2nveZMvRpnF93W5XP9Ut3cydljbkMZtNKMpKoanTNa5tihYNCkqpuHHwZDtbK5t5o7xhXF/XvzchVFAAyHU6aNSgoJRSI2vpcnHXX/dy32sVp32tQye9H87Vzd2nfa1IjBgU0hw0d7nweOJ/sjnuKq8ppeKDx2N4clsV33t2P02dLpITbdx49ixSHaP/2Cn3fTjXtI5vUCiv68AmMCs3NeTjOc4k+j2G1u4+sp2OcW3bWNOeglJqzO2paeXae9/ka398n9l5Tr5z1RJ6+jy8vL/+tK7r3ytQ09IzFs20rKK+g1m5TpIS7CEfz/UFgskwhKQ9BaXUmGnr6eNHzx3k4beOkp3q4D8/tpyPnlmMx8DPXypn464TXL5s+qivX+ELCtUt3RhjEJExanl4oVYeBcvxBYXJMNmsQUEpNWau+9Xb7K9t48azZ/GVixeQmZoIgF3g0qWFPLHtOF0u96iGkHrd/VQ2dZGVmkhLVx+NnS7y0pLG+haGcPd7ONLQyQULpw17zqmg0Bv19kSbDh8ppcZEa1cfe0+08aUN87nr6qWBgOB32RnTT2sI6WhDF/0ew7q5eQDUtIzPvMKxpi76+g1zw/QU/MFpMgwfaVBQSo2Jigbv0M6i6RkhH19blkNeWhJ/21Uzquv75xPOnZ8PjN8KpIr6TmD4lUcA2U5vAGzs0KCglJqktlU2seY/XqChw9qQyGHfh+fsfGfIx+024dKlhby0v44uV+TZRcvrOhCB9fO8PYXqceop+IPRnDBBISnBTnpSwqSYU9CgoJQKaVdVK/XtveyqarV0fkV9B4l2YWZO6GWbAJcv8w4hvbS/LuL2lNd3MCM7hcKMZFId9nFbgVRe18G09CQykhPDnpeTNjk2sEU1KIjIJSJyQETKReTrIR4/X0RaRWSH7+db0WyPUsq6pq4+wLuL2IqKOu+yzUT78B8ra0q9Q0gbd52IuD3ldR3MzU9DxJtWYrzmFCrqO8IOHfnlOB060RyOiNiBXwKXAouB60VkcYhTNxtjVvh+7opWe5RSkfF/wB08aa385OGGTmbnhR468rPbhMvOiHwIqd9jBnw4F2eljMsGNmMMFXXWgkKuM0nnFEawFig3xhw2xriA3wNXR/H1lFJjyD8+fqhu5J5CX7+HysbOsOPufv5VSJEMIVU1d+FyewIfzuPVU6hr76W91x12j4LfZMl/FM2gUAwcD/q7yndssHNEZKeIPCMiS6LYHqVUBPzfesvrOkbM6XPct2zTyofnmtIc8tOT+Nv71oeQ/JO9c6elA1CclUxDh4uevn7L1xiNU69rYfgozUFzpyvui+1EMyiE2mo4+N/We8AsY8xy4OfAX0JeSOQ2EdkqIlvr609vm7xSyhp/T6HLlzY6nJFWHgXzr0J6+UCd5RrHgz+ci7JSgOjvVRgpEV6wXKcDt8fQ1h3fdZujGRSqgJlBf88ABixQNsa0GWM6fL9vBBJFJG/whYwx9xljVhtjVufn50exyUopv+YuFwsKvN/MRxpC8n94zskb+cMT4PIIh5DK6zrIT08iM8W7AuhUUIjuCqTyug7SkhKYlj7yzumcQP6j+J5sjmZQ2ALME5EyEXEA1wFPBZ8gIoXiS14iImt97Zkc5YuUimMej6G5q4+zZucAI082V9R3kJeWNGQX83BW+4aQrK5COuRbeeRXPE49hfK6DuZMS7OUYynXt6s53vcqRC0oGGPcwB3AJmAf8LgxZo+I3C4it/tOuxbYLSI7gZ8B15l4H5BTahJo7e6j32OYleukICNpxGWph+s7LQ0d+dltwmW+jWwjDSGFWgFUmJmMSPQ3sFXUd4RNbxHMnym1Ic5XIEV1n4IxZqMxZr4xZo4x5j98x+41xtzr+/0XxpglxpjlxpizjTFvRrM9Silr/Ktocp0O5hekB4rbDKeiPnwW0VAuO2M6ve6Rh5D8K4DmFZy6fqLdRkF6clR7Cm09fZxs67U0nwCTJ1Oq7mhWSg3h/2DLcTqYNy097Aqkpk4XzV19zImgpwDeIaRpFlYhBSaZBwWdoqzkqPYU/Gm6rd7XZMmUqkFBKTVEcFCYX5BGd18/VcMkoDvsn2SOsKcQvAqpI8wQ0nDLQqO9VyGS5agAyYl2nA573O9V0KCglBrCHxRy0xyBYZvhViBVjDIoAFy5vIhet4fn99YOe86hunbSkxPIH7QCyLuruSdqdZEr6jtJtAslYXI5DZablqTDR0qpycc/BJKd6ghsGBtuBdLh+k4cCTaKs1Mifp0zS7IpzkrhqR3Dp9Mu900yD14BVJSVgsvtido38/K6DkpznSSEyeU0mDf/kQYFpdQk09jpwumwk5xoJzMlkcKMZA4NswKpor6DslwndlvkpTFtNuGK5dPZfKiB5mE+TMvrOpkXYggn2stSrSbCC5brdOjqI6XU5NPU6SInzRH4e15BGgeHHT7qZM60yCaZg121vAi3x7Bx99AJ59auPho6Qq8Aiuau5l53P8eauiIOCpMhU6oGBaXUEE2dLnKcp8bw5xeEXoHkcns41tTFbIs7mUNZPD2DOflO/jfEEFJ5vTcQhfpw9vcUorECqbLRW/oz4qCQ5h0+iuftVhoUlFJDNHW6ApuxAOYXpNHT5+F4c9eA8441ddLvMafVUxARrlpezJajTZwYlA7bvz9ibn76kOdlpCTgdNijEhQC1dYinDzPdTro6ze0W8zpFIs0KCilhvD2FIKHj0JPNpfXeRPhjWblUbCrVhRhDDy9c+AQUnldB0nDTGJHs9iOPyhEsksbvDUVAJrieF5Bg4JSagBjDI2Dg4JvGGVwuovDDd4Pz7IRiuuMpCzPybIZmTy1c+AQUrlvp/Rwk9jeoDD2SfEq6jsozkoh1ZEQ0fP88zDxnBRPg4JSaoBOVz8ut2dAUEhPTmR65tAVSBV1nRRkJJE+Qv1iK65aXsSu6laONHQGjpWPUPWsODt6PQUrBYMG8w+5xXMFNg0KSqkBmoN2MwebV5DOobqBw0eHGyLPeTScK5YVIUJgz0KXy011S3f4oJCVQmPn2Bbb8fhLf47iviZD/iMNCkqpAYKT4QWbPy2N8roO+n0rkPzZSyMddx9OYWYya0tzeGpnNcYYDtd3Ykz4NBNFWcnA2K5Aqm7ppqfPE/HKIzg1pxDPqS40KCilBvCvsx/cU5hfkE6v28PxJu8KpIYOF2091uoXW3XViiIq6jvZe6LNUu6hosyx3avQ1tPHVx7fiQisLMmK+PkpDjupDrv2FJRSk4d/PHzo8NHAyebRJsIL57Kl00mwCU/tqKG8rgO7TSjNHb4nMpYb2Orae/jEr95m+/Fmfn79ShZNzxjVdXKcDho7dKJZKTVJNIWZUwAC8woVEdRltirb6WD9vDz+urOGQ3XtzMpNxZEw/MdUYWYyNoHq01yBdLypi4/d+xZHGzp54OY1XLGsaNTXynU6dPhIKTV5NHW6cNhtpCUNXI6ZlpRAcVZKoKdQUd9BcqItMIQzVq5aUURNaw8vH6gfcbI30W6jIOP0iu3sr23jo/e8SWt3H4/+/VmcO//06sDHe1I8DQpKqQH8G9dC1SWeOy0tsIHtcH0HZXlp2EaRCC+cixcXkpRgw+W2Ntl7OhvYtlU28fF738ImwhP/cA5nlmSP6jrBcpzxnT5bg4JSaoDBu5mDzS9Io6LeuwKpor4z4mprVqQlJbBhUQFgrcBNUVbKqFYfbT/WzCfvf4e8tCSe/Nw5geGx05WX5h0+itf8RxoUlFIDDN7NHGxeQTout4dDde0cb+4a00nmYB9bPQObwLIZI68AKspK5kRL5MV2Hnn7GEkJdh6//RxmZFsvpDOSHKcDl9sTtppcLNOgoJQaIHxPwftt+vk9JzFmbCeZg52/YBrvffNiSz2F4qwUXP0eGiJILeHxGF49WMd58/PJS0sa+QkRiPcNbBoUlFIDhAsK/hxIz+7xls+MVk8BICs1dBsGO7VXwfoKpF3VrTR0uLhw4bRRtS2c3ED+Iw0KSqk41+vup6PXPWQ3s5/TtwJpT00bEL2eQiT8GVQjmWx+aX8dNoHzTnOlUSg5cZ4pVYOCUlPElqNN7DjeEvac5s4+gAFV1wab79vEVpSZHHEW0Wjwb2CrbrYeFF4+UMfKkmyyhwl+pyNXh4+UUvHgX/74Pnc/vTfsOf6Uz8P1FODUvMJosohGQ0ZyAmlJCZZXINW19/B+VSsXLBj7XgKcGj6KZI4jlkx8mFdKRV1nr5sjDZ20pPaFPc//7TY7zHi+f/I3mvMJkfAW27G+ge2VA/UAXBCF+QSAVEcCyYk2HT5SSsWufSfaMMb7od/SNfyHlT8o5IYZPlpQ6O0pxMJ8gl9RVgo1rVaDQh2FGcksHmVuIyty43gDmwYFpaaA3dWtgd+Di9gMdirv0fDLNJcWZfKtKxZz9YrisWvgabJaga2v38Pmgw1csDA/5I7tsZITx/mPNCgoNQXsqWkLlLQcKSjYBLJShq+kZrMJn1lXRmaYc8ZbcVYKTZ0uul3hi+1sOdpEe6+bCxZEZ+jILzctfvMfhQ0KImITkY+PV2OUUtGxu6aNs8pysNskbFBo7HSRneoY83xG0VbsX4E0wrzCy/vrcNhtfHBuXlTbE8/ps8MGBWOMB7hjnNqilIqCXnc/h062s3xmFjOzUzgcrqfQ4YrKMs1os1pX4aX9dZw1OwdnUnTX2PjTZ8dj/iMrw0fPi8hXRWSmiOT4f6LeMqXUmDhY24HbY1halElZnpMj9eGHj4bbzRzL/GU5wwWFY41dVNR3Rn3oCLxzMr1uD10jDGfFIivh8jO+f34+6JgBZo99c5RSY21PjXeSeUlRBtsq03j7cBPGmJATrU1drkAqi3hSkOEtthMuKLx8oA4gKqktBgvewBbtXslYG7GnYIwpC/GjAUGpOLGnpo30pARKclIpy3fS3dfPybbQ493x2lNItNuYkZ3Kpj0naesJvRfjpf11zM5zUpoX/aW08Zz/aMSgICKpIvJvInKf7+95InKFlYuLyCUickBEykXk62HOWyMi/SJyrfWmK6Ws2F3TyqKiDGw2YbbvA/FwQ8eQ8/o9huYuV9jdzLHsO1cvoaK+g7//zVZ6+gYO23S53Lx1uDFqG9YG8wfWeJxstjKn8CDgAj7g+7sK+L8jPUlE7MAvgUuBxcD1IrJ4mPO+D2yy2GallEX9HsO+E20sLcoEoMwXFEKtQGrpcmHM0NrM8eKCBdP4r48v592jTdzxu+24+z2Bx94sb8Tl9ozLfAJ4N6/BJO0pAHOMMT8A+gCMMd2AlfVqa4FyY8xhY4wL+D1wdYjzvgD8Eaiz1mSllFWH6zvo6fOwpMi7e7cwI5nkRFvIyeZAios4DQoAV68o5q6rlvDCvpP8yx93BQrvvHSgDqfDztqy8Vkj408oGI97FazMgLhEJAXv5DIiMgew0icqBo4H/V0FnBV8gogUA9cAFwJrrDRYKWWdP8X1kmJvULDZhNJcZ8ieQiDFRZjdzPHgpnNKaers48cvHCQ7NZFvXL6IV/bXsW5eHo6E8dmv63TYcSTYJm1Q+HfgWWCmiDwKfBD4tIXnhepNDF60+xPgX4wx/eG2nIvIbcBtACUlJRZeWikF3vQWSQk25gYlr5ud72T/ifYh555KcRG/PQW/Oy+aS3OXi/tfP0JLdx81rT3804Z54/b6IkKe00FjHCbFGzEoGGOeE5FtwNl4P+j/yRjTYOHaVcDMoL9nADWDzlkN/N4XEPKAy0TEbYz5y6A23AfcB7B69er42w2i1ATZU9PGwsJ0EuynviGX5Tl5bs9J+vo9JAYdb7SQDC9eiAjfumIxrd19PLmtCmDc5hP8ctIcgVTk8WTEoCAivwVeAzYbY/ZHcO0twDwRKQOqgeuAG4JPMMaUBb3OQ8DTgwOCUmp0jDHsqWnliuVFA46X5aXh9hiqmrsDE89gLW12PLHZhB9cuwy3x9Dt6mdaRvK4vn5OnGZKtTJ89CCwDvi5iMwGdgCvGWN+Gu5Jxhi3iNyBd1WRHfi1MWaPiNzue/ze02u6UiqcquZu2nrcgUlmv1MrkDqGBIX0pIRxG3cfD4l2Gz+/fuWEvHau00FF3dClv7HOyvDRSyLyKt6J4AuA24ElQNig4HvuRmDjoGMhg4Ex5tMW2quUssifLtu/HNUvsFehvpMLF5463tTpCluGU0UmxxmfmVKtDB+9CDiBt4DNwBpjjC4fVSrG+dNl+4vi+GU7HWSlJg5ZgRSvu5ljVY7TQXdfP10ud0zUsrbKSj/xfbyb15YCy4ClviWqSqkYtrumlXnT0khOtA95rCxv6LLUxs743c0ci/L8qS7ibAWSldxHXzLGnIt3P0Ej3jmGlmg3TCl1evbUtLG4KHTJyVBBoamzV3sKY8hfvS7ehpCs5D66Q0T+gHeC+SPAr/GmrlBKxai6th7q23uHzCf4zc5zcqK1J1CpzBjjGz6K741rsSTHGZ+7mq0MdKUAPwK2GWPcUW6PUmoMBHYyD9tT8G5mO9rYyaLpGXT0uunrN+Q4Y6fEZrzzD8XFW/4jK8NHPwR6gNt9vYbl0W+WUup0+GsohBs+glOJ8U7tZtaewlg5lf8ovjawWRk+uhN4FJjm+3lERL4Q7YYppUZvd3UbpbmppCeH/uZfmpcKnAoKgd3MOqcwZtKTEnDYbXE30Wxl+OizwFnGmE4AEfk+3uWpP49mw5RSo7fnRCvLZmQN+3iqI4Hpmckc9mVLbeqYPHmPYoWIkOOr1RxPrCxJFSC4YkU/1lJnK6UmQGtXH8ebuoedT/DzrkDy7ridTMnwYkk8bmCzmubiHRH5M95gcDXwQFRbpZQatT0nQu9kHqw0z8kzu04Ap4aPNCiMrdy0kXsKxhjK6zp492gTW482c6iunZ98YgVzp6WHfV60WElz8SMReQVv/iOAW4wx26PaKqXUqO2pDr/yyG92npPmrj6aO100d7lISrCR6hi60U2NXq7TwTtHmvjYvW+SleogOzWRbKeD7FQHxsB7x5rZerSJ5i5vXem8tCQaO3vZuKuWOy+K0aAQRAAPOnSkVEzbU9PK9MxkctPCryQKrEBq7KSxw7ubOVxdExW569eW0Ov20Nzl4nhTF+9XuWju6sPl9pYKLc1NZcOiAtaU5bCmNIfS3FQu/elmthxtmrA2W8l99C3gY3hLZgrwoIg8YYwZsU6zUmr87a5pG7GXAEFBob7Tu5tZk+GNubNm53LW7NwBx4wxdLn6cfcbMlOHrg5bXZrNn9+rxt3vGVAHY7xYecXr8SbB+3djzLfxFtv5ZHSbpZQajV53P4frO1g0feSgMDMnFbtNONLQqbuZx5GI4ExKCBkQANaU5tDp6mdfiOp448FKUDgKBFenSAIqotIapdRpqWruxmOgNNc54rmJdhslOakcaeiksdNFzjAfUmp8rS3LAZiwISQrQaEX2CMiD4nIg8BuoENEfiYiP4tu85RSkTjW2AXArNxUS+eX5Tk53NBJs/YUYsb0zBSKs1ImLChYmWj+s+/H75XoNEUpdboqG72b0UoiCAqvlzfgcnsmRW3myWJtWQ6bDzVgjBn3yX8rS1J/Mx4NUUqdvsqmLlIddvJHWHnkV5bnDKyE0T0KsWNNaQ5/3l7N0cauASVTx8PkKcaqlOJYYxclOamWv13ODvrA0aAQO9aUZgOw5cj4DyFpUFBqEqls8gYFq8ryTwUFTYYXO+ZOSyM7NXFC5hU0KCg1SXg8hmNNXZYnmQEK0pNJ8ZXrzNagEDNEhNWlORMSFKxsXvsrYAYdbgW2Ar8yxvREo2FKqcicbO/B5fZQYmE5qp/NJpTmOdl3ok17CjFmTWk2z+89SV17D9PSk0d+whix0lM4DHQA/+P7aQNOAvN9fyulYkClfzlqBMNH4J1XsNuEjGFqL6iJsabUu19h69HmcX1dK0tSVxpjzg36+68i8pox5lwR2ROthimlIhPpHgW/y5dNx5lkx2bTvEexZElRJsmJNt490sRlZ0wft9e1EhTyRaTEGHMMQERKgDzfY/GVKFypSayyqRO7TSjKSonoeZedMX1cP3SUNY4EGytnZrO1cnznFawMH30FeF1EXval0N4M/LOIOAHdw6BUjKhs7KI4K4XECUiipqJjTVkOe2vaaO/pG7fXtLJ5baOIzAMW4s2Suj9ocvkn0WycUsq6SFceqdi3pjQbj4H3jrVw3vz8cXlNq18pVgFLgGXAx0XkU9FrklJqNI5FuEdBxb4zS7Kx24St47g01cqS1N8Cc4AdnKrVbICHo9gupVQEWrv7aOnq057CJONMSmBJUQbvjuPOZisTzauBxcaYwXsVlFIxwr/yqCRnfPPkqOhbPSuHR9+pxOX24EiI/nyRlVfYDRRGuyFKqdGrbPJmR9WewuSztiybXreHXdWt4/J6VoJCHrBXRDaJyFP+n2g3TCkF7x5p4v89sw93vyfseZWBnoIGhclmden4Ft2xMnz079FuhFJqqD9vr+JrT75PX7/hkiWFrCzJHvbcY41d5KUl4Uyy8r+0iid5aUnMznN6J5vPmxP117OyJPXVqLdCKRVgjOGnLx7iJy8c4sySLN471sK2yuawQaGyqVOHjiaxNaU5PLunFo/HRH3n+bDDRyLyuu+f7SLSFvTTLiJtVi4uIpeIyAERKReRr4d4/GoReV9EdojIVhFZN/pbUSr+udwevvLETn7ywiGuXTWD3992DiU5qSPmvznW2BVxziMVP9aU5dDa3cehuo6ov9awPQVjzDrfP9NHc2ERsQO/BC4GqoAtIvKUMWZv0GkvAk8ZY4yILAMex7tJTqkpp7Wrj394ZCtvH27iKxfP544L53pTKM/K5rVD9cOWZux193OircdyCU4VfwJFd442saBwVB/Jlo040Swic0Qkyff7+SJyp4hkWbj2WqDcGHPYGOMCfg9cHXyCMaYjaKmrk6EpupWaEqqau/i7e97gvcoWfnrdCr5w0bxAAFhdmkNDhyswmTzY8aZujNGVR5NZSU4q86al0dnrjvprWVl99EegX0TmAg8AZcDvLDyvGDge9HeV79gAInKNiOwH/gZ8JtSFROQ23/DS1vr6egsvrVR8+ekLhzjR2sMjnz2Lq1cM/N9kte9b4tbK0ENIx3zLUXWPwuQlIjz3pXP5h3GYaLYSFDzGGDdwDfATY8yXACspFUPNhgzpCRhj/myMWQh8BLg71IWMMfcZY1YbY1bn549P/g+lxtOxpi6WFmWytixnyGNz89PISE4YNtVB5ShTZqv4YrXu9umyEhT6ROR64Gbgad8xK9U4qoCZQX/PAGqGO9kY8xowR0TyhjtHqcnqRGsPhZmhq2vZbMKqWdnD9hQqG7twOuxaOU2NCStB4RbgHOA/jDFHRKQMeMTC87YA80SkTEQcwHXAgE1vIjJXfOFPRM4EHEBjJDegVLwzxlDb2sP0rOFLLq4uzaG8roPmzqElTI41dVGS6xy3b5JqcrOyT2EvcGfQ30eA71l4nltE7gA2AXbg18aYPSJyu+/xe4GPAp8SkT6gG/iE5lhSU01jpwtXv4fpGWGCwizvvMK2ymY2LC4Y8FhlYyfzpkV3RYqaOqxkSZ0H/D9gMRD4r9YYM3uk5xpjNgIbBx27N+j37wPfj6C9Sk06ta3e8iTTw1RMWz4zi0S7sHVQUPB4DMebu9mwqGDY5yoVCSvDRw8C9wBu4AK8KbN/G81GKTWV1LR0AzB9mDkFgOREO0uLM9k2qDRjbVsPLrdH9yioMWMlKKQYY14ExBhTaYz5d+DC6DZLqdjn8Rhe3l/H6Y541rb5egqZ4Wsrr56Vzc6qVnrd/YFjgZVHuhxVjRErQaFHRGzAIRG5Q0SuAaZFuV1KxbxXDtZxy0Nb2Hyo4bSuU9PSQ6JdRlw9tGpWDi63h91BKZSPacpsNcasBIUvAql4J5tXATfhXZ6q1JS247j3w3nvCUupwIZV29pNYWbyiInOApvYgvIgVTZ2kWCTsENPSkXCyuqjLb5fO/AuT1VKQeAb+/7TDAo1rT1Mzwg/dATeFMpleU62HG3mH87zHqts6mJGdgoJ9uhX5FJTg5XVR/OBfwZmBZ9vjNF5BTWl+Sth7a9tP63rnGjt5swwabGDrZqVzUu+eQwR4Vijd4+CUmPFSkWOJ4B7gf8B+kc4V6kp4WRbD/XtvWQkJ1BR30Ffv4fEUXxb93gMJ1t7h93NPNia0mye3FbF4YZO5uSnUdnYyYqZVvJTKmWNlf+K3caYe4wx7xpjtvl/ot4ypWLYripvL+GqFUX09RsO13eO6jr+jWuRWgMyAAAd80lEQVRFI6w88ls1y5sbaevRJlq6XLT1uHWSWY2pcEV2ckQkB/iriPyjiEz3H/MdV2rK2l3Tighcs3IGAPtrRzev4N+4ZrWnMCffSXZqIluPNmtdZhUV4YaPtuHNaupfEvHPQY8ZYMQdzUpNVrurW5mTn8YZxZkk2IT9te0Di4VYVNPq3bhmtacgIqyalcO2ymbWz/dmDJ6lcwpqDIWrvFY2ng1RKp7sqm7lnNm5OBJszJ2WNuoVSJH2FMC7NPWFfSfZfsy7NFV7CmosWam89vngSmsiki0i/xjdZikVu+raezjZ1svS4kwAFhSmc2CUK5BqWrtx2G0Rpb32J8f7684apqUnkeKwj+q1lQrFykTz3xtjWvx/GGOagb+PXpOUim3+/Qln+ILCwsIMalp7aO3qi/hata09FGQmjbhxLdgZMzJxJNho6HBpL0GNOStBwSZBidpFxI637oFSU9KuqjZEYEkgKHjTVh84GXlv4URLz4g5jwZLSrCzzPfamghPjTUrQeE54HERuUhELgQeA56NbrOUil27qlspy3OSluSdkls43RsURrMC6URbN0WjSFGxypfyQhPhqbFmJSh8DXgR+Bzwed/vX4tmo5SKZburWwNDRwCFGclkJCdEvLPZ4/FWXCuMsKcAsMa3X0H3KKixFnZHs2+o6DfGmBvx7mpWakqrb++ltq1nQFAQERZOz4h4BVJjp4u+fkNRmDKcwzl3fj7//OEFQ6qwKXW6wvYUjDH9QL6vxrJSU97uGu8k85KizAHHFxWmc/BkBx6P9doKJ3x7FArDlOEcjiPBxucvmBsYwlJqrFj5L+oo8IaIPAUE9vIbY34UrUYpFat2+9JbLCnOGHB8QWEGHb2VVLd0M9PiiqATvj0KRWHKcCo13qwEhRrfjw3Q6uBqSvNPMmckJw44fmqyud16UPCV4Yxk45pS0WalnsJ3xqMhSsWD3dWtrCodmvprfoEvKJxo42KL4/wn2noi3rimVLRZqafwMt5cRwNoPQU11TR29FLT2sOnBw0dAaQlJVCSk8r+CPYqnGjpoTAzmaBtQEpNOCvDR18N+j0Z+Cjgjk5zlIpd/qI6S4szQz6+oDA9ohVIta09WkZTxRwrw0eDaye8ISKvRqk9SsWsPTXeD/zBK4/8FhWm8+K+k/T09ZOcOHI+oprW7kAeI6VihZWEeDlBP3ki8mGgcBzaplRM2VXVyqzcVDJTEkM+vqAwA4+B8rqOEa/l8RhOtvUwXVceqRhjZfgouK6CGzgC3BrNRikVi3ZVt7KiZPjSl8ErkIYbYvJr6Oylr9/o8JGKOVaGj7SugprymjtdVLd0c9M5s4Y9pzTXSVKCzdK8wokW7x6FSJPhKRVtVlYfJQP/CKzD22N4HbjHGNMT5bYpFTN2DUqXHYrdJswvSLeULdW/cU17CirWWEmI9zCwBPg58AtgEfDbaDZKqVgTWHk0zCSz34LCdPadsBIUvBvXNCioWGNlTmGBMWZ50N8vi8jOaDVIqVi0u7qVkpxUMlNDTzL7LSxM58ltVTR09JKXljTsebWtPTgSbOToxjUVY6z0FLaLyNn+P0TkLOCN6DVJqdiza1C67OEsLPRubBupPGeNb4+CblxTscZKUDgLeFNEjorIUeAt4DwR2SUi70e1dUqNUk9fP595aAvbKptO+1otXS6qmruHJMELJXgFUji1rd2jyo6qVLRZGT66JOqtUGqM7Tjewkv766hp6eZvd67HHkEN5MF2V3tXE1npKeSlJZGXljTiCqSalh7Wlg3NoaTURLOyJLVyPBqiBvrRcweYkZPKx1fPnOimxKUdx1sA7zf2J7cd5xNrSkZ9re3HmoGRJ5n9FhaGX4Hk37im2VFVLLIyfDRqInKJiBwQkXIR+XqIxz8pIu/7ft4UkeWhrjMVPfx2Jd9/Zj+97v6Jbkpc2n6smZKcVFaWZPFfzx2ks3f06bqe33eS5TOzyLY4KbywMJ0Dte30D1Nwp6GjF7fHjKo2s1LRFrWg4Cvl+UvgUmAxcL2ILB502hHgPGPMMuBu4L5otSeedPa6aenqo7HTxbO7aye6OXFpx/EWVpZk8W+XL6KuvZf7Xjs8quvUtHTzflUrH15ivezlgsJ0et0eKhs7Qz7u36MwmtrMSkVbNHsKa4FyY8xhY4wL+D1wdfAJxpg3jTHNvj/fBmZEsT1xo9pXfAXg0XeOTWBL4tOJ1m5OtvWyYmYWq2blcPkZ07nvtcOcbIt8v+Vze7xB+cNLrKf7WjTdOyE93GSz7lFQsSyaQaEYOB70d5Xv2HBuBZ4J9YCI3CYiW0Vka319/Rg2MTb5g8LFiwt490gTByPI0a9gxzHvfMKKmd48RV+7ZAFuj4f/eu5AxNfatOckc6elMSc/zfJz5k5LI9VhZ9Oe0L083c2sYlk0g0Ko5R4hB1lF5AK8QeFfQj1ujLnPGLPaGLM6Pz9/DJsYm6qbvUHhixvm4bDbePRtneuPxI7jLTjsNhYXeb+xz8p1cvM5pTyxrYq9NdbrHTR3unj3aFNEQ0cAyYl2bjx7Fn/dWcPRhqFDSCd045qKYdEMClVA8NKZGXhrPQ8gIsuA+4GrjTGNUWxP3Khp6SbBJiwszOCyMwr503vVpzVROtVsP97CoqIMkhJO1TT4woXzyEhO5Lsb92FM6AngwV7Yd5J+j4lo6Mjvs+vLSLDbuOeViiGPndCNayqGRTMobAHmiUiZiDiA64Cngk8QkRLgT8BNxpiDUWxLXKlu6aYwMxm7Tbjx7Fm097p5aueQeBozGjt6ue+1Ctz9noluCu5+D7uqWlk5c2CK68zURO68aB6vlzfwykFrQ5Cb9pykKDPZ0v6EwaalJ3P9mpn88b2qAXNEACdaunXoSMWsqAUFY4wbuAPYBOwDHjfG7BGR20Xkdt9p3wJygf8WkR0isjVa7YknNS3dFPuKr6yalc3CwnQeebvS8jfc8fboO8f47sb9PLGtaqKbwsGTHXT39QfmE4LddPYsZuWm8t2/7RsxgHW53Gw+VM+HlhSO+hv9befNAeC+Vwf2Frw9BV15pGJTVPcpGGM2GmPmG2PmGGP+w3fsXmPMvb7fP2uMyTbGrPD9rI5me+JFdfOpoCAifPLsWeypaQtsyIq2tp4+OiIYrnrN9837py8coqdvYvdV+P8dhQoKjgQbX79kIYfqOvjD1uNDHg/26oF6et0ePhThfEKw4qwUPnrmDB7bcpy6du/kcr+/4pr2FFSMimpQUJHr6/dQ29ZDcfapb5LXrCzG6bDzyNvRX566q6qV837wMnc+tt3S+W09fWw/3sLashxq23p4ZIInxXccbyY7NZFZuakhH79kaSFry3L44aYDNHW6hr3Opj21ZKcmsrb09FJRfO78Obj7Pdy/+QjgHWpze7TimopdGhRizMm2HjyGQE8BIC0pgY+sLObp92to6Qr9QebxGI42dFLT0k1Ll4uevv6Ih5u2HG3ihv95m+auPl47WE9rd9+Iz3mropF+j+ErF89n/bw8fvlyOe09Iz8vWnYcb2HFzKxhh3xEhLuvXkpHj5vvP7M/5Dkut4cX99dx0aICEuyn979IaZ6TK5cX8cjblTR3uqhp1YprKrZpUIgx/uWoRYMKut949ix63R6eDDFu/1ZFI1f8/HXO/89X+MD3XmLFXc+z8JvPMvcbz7D025v44Pde4t5XK8KmzNh8qJ6bHniH/IwkfnnDmbg9hlcO1I3Y3tcO1uN02FlZks1XP7SA5q4+Hnj9SIR3PTbae/o4VNfBipnZYc9bUJjOrevK+MPW42w9OjSL6tuHG2nvcY9q1VEon79gLl2ufh584wi1vo1rmvdIxSorWVLVOKrxfWgEDx+Bd5fsqlnZ/O6dY9y6rgwR4WhDJ9/duI/n9npXyfz7lYtJTrTT5eqnu6+fLpebLlc/h0528L1n9vPYu8f4P5ct4kOLCwZ8k960p5Yv/G47c6al8dtb15Kd6iAvzcEL++q4ekW4/Yaw+VAD58zJw5FgY/nMLC5ZUsj9m4/wqXNKx30d/q6qVoyBFSVD5xMGu/Oiefx1Zw3/9pfdPP2FdQN6BJv21JLqsLN+Xt6YtGt+QTqXLCnkoTeP8tn1s4GhQV+pWKFBIcYEegohhhduPLuEL/1hJ8/urmVbZTO/eesoiXYbX/3QfD67fjbJifYhz/F77WA9dz+9l3/47TbOmZ3Lt65czKLpGfxlezVfeWInZxRn8ptb1gYqi120sICNu07gcntwJITuUB5t6ORYUxefXV8WOPaVD83nub213PNKOd+4fHCqq+ja7p9knjFyUHAmJfCtK5dw+yPbBnxYezyG5/ee5Lz5+WH/fUbq8xfM5dk9tdy/+TBJCTayR6jgptRE0eGjGFPd0k2u00GKY+gH0qVLp5OdmsjnHn2PB944wjUri3nlq+dzx4XzRvwAO3d+Ps/803ruunoJ+2rbuPxnm7n1oS186fEdrCnN5pHPnjWg1OSGxQW097p598jwRWo2H/KuOjp33qld5vMK0rlm5Qx+81ZlIMfPeNl+rIXZec4RS2b6fXhJARcsyOfHzx8MtHX78Rbq2nvHbOjI74wZmZy/IJ+2HrduXFMxTYNCjKlu6Rl2aCE50c6XP7SADYsK+Osd6/jBtcuZFkH1rgS7jU+dU8qrX72Amz9QyqsH6zl/fj4P3bKWtKSBncZ1c/NITrTx/N7hs7S+dqiBmTkpQ1b6fHHDPIwx/OzFcsttO13GmMAks1UiwneuWorbY7j76b2ANwFegk24YOG0MW/jFy6cC+gks4ptGhRiTHVz14CVR4PddPYs7r95NUtHscvWLzM1kW9fuYQt39jAAzevCdnLSHHYWTc3n+f3ngy5iqmv38NbFY2sn5c/5FvvzJxUblhbwuNbj4fM/RMN1S3dNHT0WppPCFaSm8odF8xl465aXjlQx6Y9tZwzJ5fMlLEf3lk1K4dPrJ7JxYtHv/dBqWjToBBDjDHUtPQMmWSOlmynA1uYMpUfWlxATWsPe0OUltx+rIWOXveAoaNgn79wLg67jR89Pz7ZS8JtWhvJbefNZnaek688vpOjjV1jPnQU7PvXLuMz68pGPlGpCaJBIYY0d/XR3dcfMytTLlg4DRF4fu/JIY+9drAeu034wNzckM+dlp7MLR8s5amdNeyvtZ6ZNBRjDC/vr+OB148Mu/dix7EWHAk2FhZmRHz9pAQ7d39kKY2dLkS8wVCpqUqDQgzxrzwKN3w0nvLTkzizJJsX9g0NCpsP1bNyZhYZycMPs9x27mwcdhuPbxl9TqT9tW3c9MC73PLQFu5+ei/3vDo06yh4ewpLizKGXSk1kg/OzeOGs0q4ZElhRPM0Sk02GhRiiD+bZqwEBYANiwrYXd1GTVCmz+ZOF+9Xt7J+mKEjv6xUB+cvyOfp92uGrVc8nPr2Xv71T7u47Keb2VXdyreuWMyVy4v44aYDvLR/YJDq6/ewq7p1xE1rI/nuNWdwz42rTusaSsU7DQoxJBAUxmlOwQr/pOiLQb2F18sbMAbWzx95c9dVK4qoa+/lncPWSmX09PVzzysVXPCfr/DE1uPeVVL/fD6fWVfGDz66jMXTM/inx3ZQXtcReM6B2nZ63Z6IJ5mVUkNpUIghNS3dpCTaY2pj05x8J2V5Tp4LmlfYfKiejOQEllvYJHbRwgKcDrvlehB3/O49vv/sfs6encOmL53Lt69cQlaqd2d0isPOfZ9aTVKijdse3hrIzeTftDa4hoJSKnIaFGJIdXM3RVmxtbFJRLh4cYEvH1AfxhheO9jAunl52MOsXPJLcdi5eHEBz+yuxeUOX8PgQG07L+yr486L5nH/zWtC1kUuzkrhnhtXcby5izsf206/x7DjWAu5TgczYqiHpVS80qAQQ2pauynODp3yeSJtWFRAX7/h1YP1lNd1UNvWM+xS1FCuWlFEa3dfoO7CcB584wjJiTZu+UBp2PPWlObwnauW8urBen6waT87jjeHzYyqlLJOcx/FkOrmbpYURb6kMtpWzcomOzWR5/ee5GRbLwDrIkgWt25uPlmpiTy1s4YNwyz3bOzo5U/bq7l21QyyLSTSu+GsEvaeaOVXrx4G4CMjJO5TSlmjPYUY0e3qp7HTFVMrj/zsNuHChQW8vL+Ol/fXMTvfyYwIejSOBBuXLp3O83tP0uUKXdHtsXeP4XJ7RuwlBPv2lUtYW+YtgqOTzEqNDQ0KMWK4lNmx4uLFBbT1uHm9vCGioSO/q5YX0d3Xzwv7htZocLk9PPxWJefOz2deQbrlaybabfzqxlX82+WLOGd26E10SqnIaFCIEeFSZseC9fPyAhvDzrWwFHWwtWU5FGQk8dSOoauQ/rarhrr2Xj7zwdKIr5vtdPDZ9bNPu0KaUspL/0+KETUxuEchmDMpgXVz80i0C2eP4lu53SZcsayIVw/W0dp1qlynMYYHXj/C3GlpnDc/8h6IUmpsaVCIEdUt3dgECmI4xcL/uWwR//3JVaQ6Rrc+4arlRfT1G57dcyJwbGtlM7ur27jlg6W6ekipGKBBIUZUN3dTmJFMYgwPg8ydlnZaaZ+XzchkVm7qgI1sv379CJkpifzdyhlj0USl1GmK3U+gKaa6pTtmh47Giohw9fIi3qpopK69h+NNXWzaU8sNZ5WErDSnlBp/GhRiRHVLd8ykzI6mq1YU4THwt/dP8Js3j2IT4VPnzJroZimlfHTzWgzo9xhqW3tico/CWJs7LZ1F0zN4fGsVVU1dXHbGdC1PqVQMmVI9hbq2nqhe//fvHuOqX7zOwZPtET2vrr0Ht8dMiZ4CeCec951oo73XrVXIlIoxUyYoPLv7BOf+8GV+/foRPBZy+/f09fPA60fYVtls6fq7qlr55v/u5v2qVj7632+y+VD4PD/BAsV1Jvmcgt+Vy6cDcGZJ1qjKZyqlomfKBIWVJdl8YE4edz29l+vue5vKxuELyr+47yQX//hV7n56Lzf/+l321oQvJ9ne08cdj71HXloSf7tzHcXZKXz6wS089u4xS22LxeI60TQjO5X/+5Gl3HX10oluilJqkCkTFAoyknng5tX88Npl7DvRxiU/2czDbx0d0Gs43tTFZ3+zlVt/s5WkBDu/uGEl6ckJ3PLQuwMqjwUzxvCNP+/meFMXP71uJUuKMnni9nNYNzePf/3TLr67cd+IPZOpFhQAbjx7FkuLMye6GUqpQaZMUADvksiPrZ7Jc18+lzVlOXzrf/fwyfvfobyug5+9eIgNP3qVNysa+D+XLWTjneu5YlkRD96yhq7efj794LuBoi7BHt96nKd21vDli+cHkrOlJyfywM2ruensWdz32mE+9+g2ul39w7arpqWbrNREnEk676+UmlhTKij4Tc9M4Te3rOF7f3cGu6pb2fCjV/nR8wfZsLiAF79yHredOyeQ52dhYQa/umkVRxo6uf232+h1n/pwP3iynW8/tYcPzs3lc+fPHfAaCXYbd129hG9esZjn9p7kE/e9RVvP0KACvuI6ugJHKRUDpmRQAG+v4bq1JWz60rl86pxZ/PbWtfzyhjNDLo/8wNw8fnDtMt463Mi/PPk+Ho+h29XP5x99j7SkBH78iRUhq5CJCLeuK+NXN65iV3UrP3vhUMi21LT0TJlJZqVUbIvqeIWIXAL8FLAD9xtjvjfo8YXAg8CZwDeMMf8ZzfaEUpyVYmnC85qVM6hp6eGHmw4wPSuF5k4Xh+o6ePgza5mWHj5f0YeWFPLxVTN56M2jXH9WyYAyk8YYqlu6OWeOpn5WSk28qPUURMQO/BK4FFgMXC8iiwed1gTcCYx7MBiNfzx/DjecVcI9r1Tw+y3H+cfz53CuxcyeX/3wApIT7fzH3/YNON7W7aaj1z2lJpmVUrErmsNHa4FyY8xhY4wL+D1wdfAJxpg6Y8wWIPRge4wREe66aglXLS/iggX5fOni+Zafm5+exJ0XzeWl/XW8cuBUoZnqGE+ZrZSaWqI5fFQMHA/6uwo4K4qvNy4S7DZ+dv3KUT330x8o43fvHOPup/fywbl5JNptgaAwVXYzK6ViWzR7CqGS44+8lTjUhURuE5GtIrK1vt76TuFY40iw8W+XL6aivpNH3q4EgorraFBQSsWAaAaFKmBm0N8zgKG1GC0wxtxnjFltjFmdnx/f1bkuWjSN9fPy+PHzB2nqdFHd0o0jwUau0zHRTVNKqagGhS3APBEpExEHcB3wVBRfLy6ICN+8YjGdrn5+/PxBqpu7Kc5KwRZiSatSSo23qM0pGGPcInIHsAnvktRfG2P2iMjtvsfvFZFCYCuQAXhE5IvAYmNM+GRDcW5+QTo3nT2Lh986Sl5aEvML0ie6SUopBUR5n4IxZiOwcdCxe4N+r8U7rDTlfHHDPP6yo5q69l7OXxDfQ2JKqcljyu5onmhZqQ6+7FvSWpyVOsGtUUopL83ANoFuWFtCbWtPoL6AUkpNNA0KEyjBbuNrlyyc6GYopVSADh8ppZQK0KCglFIqQIOCUkqpAA0KSimlAjQoKKWUCtCgoJRSKkCDglJKqQANCkoppQLEmFGVOJgwIlIPVE50O8ZJHtAw0Y2YAHrfU4ve9/iYZYwZMdFa3AWFqUREthpjVk90O8ab3vfUovcdW3T4SCmlVIAGBaWUUgEaFGLbfRPdgAmi9z216H3HEJ1TUEopFaA9BaWUUgEaFMaRiPxaROpEZPeg418QkQMiskdEfhB0/F9FpNz32IeDjq8SkV2+x34mIjKe9xGpSO5bREpFpFtEdvh+7g06P67uG0Lfu4j8Iej+jorIjqDHJu17Ptx9T6b3fJj7XiEib/vubauIrA16LPbeb2OM/ozTD3AucCawO+jYBcALQJLv72m+fy4GdgJJQBlQAdh9j70LnAMI8Axw6UTf2xjed2nweYOuE1f3Pdy9D3r8v4BvTYX3PMx9T5r3fJj/1p/ztxu4DHgllt9v7SmMI2PMa0DToMOfA75njOn1nVPnO3418HtjTK8x5ghQDqwVkelAhjHmLeP9r+dh4CPjcwejE+F9hxSP9w3D3jsAvm9/Hwce8x2a7O85EPK+Q5pE922ADN/vmUCN7/eYfL81KEy8+cB6EXlHRF4VkTW+48XA8aDzqnzHin2/Dz4eb4a7b4AyEdnuO77ed2yy3Hew9cBJY8wh39+T/T33G3zfMLnf8y8CPxSR48B/Av/qOx6T77fWaJ54CUA2cDawBnhcRGbj7TYOZsIcjzfD3fcJoMQY0ygiq4C/iMgSJs99B7uegd+WJ/t77jf4vif7e/454EvGmD+KyMeBB4ANxOj7rUFh4lUBf/J1E98VEQ/enChVwMyg82bg7XZW+X4ffDzehLxvY0w94B9S2iYiFXh7FZPlvgEQkQTg74BVQYcn+3se8r59Q4iT+T2/Gfgn3+9PAPf7fo/J91uHjybeX4ALAURkPuDAmyTrKeA6EUkSkTJgHvCuMeYE0C4iZ/vGZj8F/O/ENP20hLxvEckXEbvv+Gy89314Et233wZgvzEmeJhgsr/nEOK+p8B7XgOc5/v9QsA/bBab7/dEz9ZPpR+8XeYTQB/ebwO34v0wfATYDbwHXBh0/jfwrkg4QNDqA2C17/wK4Bf4NiHG6k8k9w18FNiDd1XGe8CV8Xrfw9277/hDwO0hzp+07/lw9z2Z3vNh/ltfB2zz3d87wKpYfr91R7NSSqkAHT5SSikVoEFBKaVUgAYFpZRSARoUlFJKBWhQUEopFaBBQakwxOt1Ebk06NjHReTZiWyXUtGiS1KVGoGILMW7E3UlYAd2AJcYYypO45oJxhj3GDVRqTGjQUEpC8Rb76ETcALtxpi7ReRm4PN4N+K9CdxhjPGIyH140yenAH8wxtzlu0YV8CvgEuAnxpgnJuBWlApLcx8pZc138O62dQGrfb2Ha4APGGPcvkBwHfA74OvGmCZfnp+XReRJY8xe33U6jTEfnIgbUMoKDQpKWWCM6RSRPwAdxpheEdmAN7vrVl9RrBROpUG+XkRuxfv/VxHeYir+oPCH8W25UpHRoKCUdR7fD3jTG//aGPPN4BNEZB7ejJhrjTEtIvIIkBx0Sue4tFSpUdLVR0qNzgvAx0UkD0BEckWkBG+FrXagzVdB68NhrqFUzNGeglKjYIzZJSLfAV4QERverJi3A1vxDhXtBg4Db0xcK5WKnK4+UkopFaDDR0oppQI0KCillArQoKCUUipAg4JSSqkADQpKKaUCNCgopZQK0KCglFIqQIOCUkqpgP8PyG51a/w49qMAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"purchasingPower = data['Wages']/data['Wheat']\n",
"plt.plot( data['Year'],purchasingPower)\n",
"\n",
"plt.ylabel('purchasing power')\n",
"plt.xlabel('Year')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Représentation des deux quantités (prix du blé, salaire) sur deux axes différents\n",
"Le prix du blé est sur l'axe y. Le salaire est le temps sont sur l'axe x (Salaire en haut et temps en bas)."
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEjCAYAAAAYFIcqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8nNWV+P/PGfVqq1jFcpF7B9u4gAFTTIeEkkAghJKQQHZTN+SbJdmQsvvN/gjJstnvazfFu0BMQicQCKYZFjDFuPeCDZZcZcmyJKuXmTm/P+YZeaw6I81oRtJ5v15+jfRMu/P4kY7uufeeK6qKMcYY01euaDfAGGPM4GaBxBhjTL9YIDHGGNMvFkiMMcb0iwUSY4wx/WKBxBhjTL9YIDGmCyLy7yLy3YDvXxeR/wn4/t9E5HvRaZ0xscUCiTFd+xBYAiAiLiAXmBVw/xLggyi0y5iYY4HEmK59gBNI8AWQHUCdiGSJSBIwA9gtIm+JyCYR2S4i1/qfLCL3i8geEVklIk+KyPed45NE5DUR2Sgi74nIdOf4jSKyQ0S2isjqgf2oxvRPfLQbYEwsUtWjIuIWkXH4AsoaoAg4BzgJbAMagetVtVZEcoGPROQl4Czgc8A8fD9jm4CNzksvB76uqvtEZDHwW+Bi4CfA5ap6RERGDtgHNSYMLJAY0z1/r2QJ8BC+QLIEXyD5EBDgX0VkKeB17s8HzgNeVNUmABH5m3Ob7jz/WRHxv0dSwHv9UUSeAZ6P+CczJowskBjTPf84yRx8qa1DwL1ALfAIcCswCjhLVdtEpBRIxhdguuICalR1bsc7VPXrTg/lamCLiMxV1RNh/jzGRISNkRjTvQ+Aa4AqVfWoahUwEl96aw0wAqhwgshFwHjnee8DnxGRZKcXcjWAqtYCJSJyI4D4nOl8PUlV16rqT4BKYOzAfUxj+scCiTHd245vttZHHY6dVNVK4HFggYhswNc72QOgquuBl4Ct+NJUG/Clw3Aed5eIbAV2Av4B+l85A/Y7gNXOc40ZFMTKyBsTfiKSrqr1IpKKLzDcraqbot0uYyLBxkiMiYzlIjIT35jJCgsiZiizHokxxph+sTESY4wx/TJoA4mIlDqDk1ucwc4hTUQeEZEKZzDWfyzbWTm9z7nNimYbI62bc/AzETniXAdbROSqaLYxkkRkrIi8LSK7RWSniHzHOT4sroMePv9wugaSRWSdUwFhp4j83Dke1Wtg0Ka2nDn7C5zZM0Oes+itHnhMVWc7xx7ENzX1ARG5D8hS1X+MZjsjqZtz8DOgXlV/Hc22DQQRKQQKVXWTiGTgWy1/HXAnw+A66OHz38TwuQYESHMmciTgm2r+HeAGongNDNoeyXCjqquBqg6HrwVWOF+vwPdDNWR1cw6GDVUt8w/aq2odsBvfavphcR308PmHDfWpd75NcP4pUb4GBnMgUeANp/jd3dFuTJTkq2oZ+H7IgLwotydaviki25zU15BM63QkIsX4anmtZRheBx0+Pwyja0BE4kRkC1ABrFLVqF8DgzmQnKuq84ErgW84aQ8z/PwOmATMBcqAf4tucyLPWS3/F+C7zmr5YaWLzz+srgGnysJcYAywSERmR7tNgzaQqOpR57YCeAFYFN0WRUW5kzf2548rotyeAaeq5c4Plhf4b4b4deDkxf8CPK6q/uKOw+Y66OrzD7drwE9Va4B3gCuI8jUwKAOJiKQ5g22ISBpwGb6iesPNS8Adztd3AC9GsS1R4f/hcVzPEL4OnIHWh4HdqvpQwF3D4jro7vMPs2tglH+bARFJAS7BV5onqtfAoJy1JSIT8fVCwLc6/wlV/UUUmxRxIvIkcCG+2k/lwE+BvwLPAOOAg8CNTmHBIambc3AhvpSGAqXAPf5c8VAjIucB7+Gr9+V1Dv8I3zjBkL8Oevj8tzB8roEz8A2mx+HrCDyjqv8sIjlE8RoYlIHEGGNM7BiUqS1jjDGxwwKJMcaYfrFAYowxpl8skBhjjOmXQR1IhvGK9nbD/RzY5x/enx/sHMTC5x/UgQSI+gmMAcP9HNjnN8P9HET98w/2QGKMMSbKIraOREQeAa4BKgJKfmcDTwPF+BYO3aSq1c59PwTuAjzAt1X19SDeQ1NTUyPS/sHC7XYTHz98d0y2zz+8Pz/YOejL529sbFRVDVtHIpKBJOj9M5y9rZ/EVyNnNPAmMFVVPT29R1pamjY0NESk/cYYM1SJSKOqpoXr9SKW2gpx/4xrgadUtUVVS4BPGCaF14wxZrAb6DGS7mrmFwGHAh53mG42rBGRu0Vkg4hscLvdEW2sMcaY3sXKYLt0cazLnJuqLlfVBaq6YDjnRY0xpqnVg9vj7f2BETbQgaS7mvmHgbEBjxsDHB3gthljzKDyyAclzPjJazS39TicHHEDHUi6q5n/EnCziCSJyARgCrBugNtmjDGDyoETDWSlJpKcEBfVdkQsNxS4d4SIHMa3d8QDwDMichdOzXwAVd0pIs8AuwA38I3eZmwZY8xwd7CqkXHZ0V8CEbFAoqq3dHPXsm4e/wtgSG9OZYwx4XSoqonFE7Kj3YyYGWw3xhgTgla3l6MnmxgbAz0SCyTGGDMIHalpQpWYSG1ZIDHGmEHoYFUjAONyLJAYY4zpg/ZAYj0SY4wxfXGoqpGkeBej0pOi3RQLJMYYMxgdPNHI2OxUXK6uCoMMLAskxhgzCB2oamR8DKS1wAKJMcYMOqrKoarGmJj6CxZIjDFm0KlubKO+xR0TA+1ggcQYYwadWJqxBRZIjDFm0ImlNSRggcQYYwadQ04gGZtlgcQYY0wfHDzRyKiMJFISo1s+3s8CiTHGDDKxUj7ezwKJMcYMMhZIjDHG9Fmr20tZjJSP97NAYowxg8iRmia8SsysagcLJMYYM6jE2tRfiFIgEZHviMgOEdkpIt91jmWLyCoR2efcZkWjbcYYE8tibTEiRCGQiMhs4GvAIuBM4BoRmQLcB7ylqlOAt5zvjTHGBIil8vF+0eiRzAA+UtVGVXUD7wLXA9cCK5zHrACui0LbjDEmpsVS+Xi/aASSHcBSEckRkVTgKmAskK+qZQDObV5XTxaRu0Vkg4hscLvdA9ZoY4yJBbE29ReiEEhUdTfwS2AV8BqwFQg6IqjqclVdoKoL4uPjI9RKY4yJPf7y8cM+kACo6sOqOl9VlwJVwD6gXEQKAZzbimi0zRhjYlVNYxt1Le6YWkMC0Zu1lefcjgNuAJ4EXgLucB5yB/BiNNpmjDGx6kAMztgCiFZu6C8ikgO0Ad9Q1WoReQB4RkTuAg4CN0apbcYYE5NiceovRCmQqOr5XRw7ASyLQnOMMWZQOBSjgcRWthtjzCARa+Xj/SyQGGPMIBGLU3/BAokxxgwaFkiMMcb0WSyWj/ezQGKMMYPAUad8vPVIjDHG9EmsTv0FCyTGGDMoxOpiRLBAYowxg8KhqkYS413kZcRO+Xg/CyTGGDMIHDzRyNislJgqH+9ngcQYYwaBg1WNjM9Ji3YzumSBxBhjYlyslo/3s0BijDExLlbLx/tZIDHGmBgXy1N/wQKJMcbEPAskxhhj+sUfSMZmp0S5JV2zQGKMMTHu4IlGctOTSE2M1l6EPbNAYowxMc5X9Tc2eyNggcQYY2KWqrLpYDV7y+tidnwEorTVroj8A/BVQIHtwJeBVOBpoBgoBW5S1epotM8YY6KpqdXDS1uP8NiaA+w8Wkt6UjzXzSuKdrO6Jao6sG8oUgS8D8xU1SYReQZ4BZgJVKnqAyJyH5Clqv/Y02ulpaVpQ0ND5BttjDEDoLSygT9/dIBnNx7mZFMb0/IzuO2c8Vw/r4i0pPD93S8ijaoatmXy0Rq5iQdSRKQNX0/kKPBD4ELn/hXAO0CPgcQYYwY7j1d5e08Fj310gNV7jxPvEq6YXcBtZ49n0YRsRGKvtlZHAx5IVPWIiPwaOAg0AW+o6hsikq+qZc5jykQkr6vni8jdwN0AiYmJA9VsY4wJqxP1LTy94RCPf3SQIzVN5Gcm8Q+XTOWWRWPJy0yOdvNCMuCBRESygGuBCUAN8KyIfCnY56vqcmA5+FJbEWmkMcZEyI4jJ3nk/RJe3lZGq8fLORNz+PHVM7hkZj4JcYNz/lM0UluXACWqehxARJ4HlgDlIlLo9EYKgYootM0YYyKirrmNX7/+MY99dIC0xHhuWTSW284Zz+S8jGg3rd+iEUgOAmeLSCq+1NYyYAPQANwBPODcvhiFthljTFipKq/tOMbP/raTiroW7jinmO9dNpXM5IRoNy1sojFGslZEngM2AW5gM75UVTrwjIjchS/Y3DjQbTPGmHA6XN3IT1/cyVt7KphZmMny2xZw5tiR0W5W2A349N9wsum/xphY5PZ4efSDUh5atReAey+byp1LiomPkTGQoTL91xhjhqSth2r44fPb2VVWy7Lpefz82lmMyYrdVenhYIHEGGPCoK65jX97Yy8r1pSSl5HE7780n8tnFQyKdSD9ZYHEGGP6QVV5fecxfvqSbzD99rPH8/3Lp5ExhAbTe2OBxBhj+ujYyWZ+/NftvLm7ghmFmfzhtgXMHYKD6b2xQGKMMX30vWe2sPlgDf901Qy+fG7sDKYPtOH5qY0xpp8qaptZs/8E91wwka8tnThsgwhYIDHGmD55dccxVOHqOYXRbkrUWSAxxpg+WLmtjGn5GUzJH/wlTvrLAokxxoTo2Mlm1h+o4uozrDcCFkiMMSZkr2wvQxWusrQWYIHEGGNCtnJ7GdMLMpiclx7tpsQECyTGGBOCozVNbDxQzWfOHB3tpsQMCyTGGBOCV7aXAZbWCmSBxBhjQrByexmzRmcyITdsxXMHPQskxhgTpMPVjWw+WGOztTqwQGKMMUHyp7VsEeLpLJAYY0yQVm4rY07RCMbnWFor0IAHEhGZJiJbAv7Vish3RSRbRFaJyD7nNmug22aMMd05VNXI1sMnucbSWp0MeCBR1Y9Vda6qzgXOAhqBF4D7gLdUdQrwlvO9McbEhJU2W6tb0U5tLQM+VdUDwLXACuf4CuC6qLXKGGM6WLmtjDPHjmRs9tDeNrcvoh1IbgaedL7OV9UyAOc2L2qtMsaYAKWVDWw/cpJrrDfSpagFEhFJBD4LPBvi8+4WkQ0issHtdkemccYYE8Cf1rpyTkGUWxKbotkjuRLYpKrlzvflIlII4NxWdPUkVV2uqgtUdUF8vG3waIyJvJXbypg3biRjsiyt1ZVoBpJbOJXWAngJuMP5+g7gxQFvkTHGdLD/eD27ymq55gyrrdWdqAQSEUkFLgWeDzj8AHCpiOxz7nsgGm0zxphAp2prWVqrO1HJDalqI5DT4dgJfLO4jDEmZry8rYwF47MoHJES7abErGjP2jLGmJj1SUU9e47VWW2tXlggMcaYbqzcVoaILULsjQUSY4zpxsrtR1lYnE1+ZnK0mxLTLJAYY0wX9pbXsbe83mprBcECiTHGdMGf1rpits3W6o0FEmOM6UBVWbm9jMUTssnLsLRWb4IKJCIyIZhjxhgzFHxcXscnFfVcbYsQgxJsj+QvXRx7LpwNMcaYWLFyWxkugStmWVorGD0uSBSR6cAsYISI3BBwVyZg/T1jzJCjqqzcVsY5k3IYlZEU7eYMCr2tbJ8GXAOMBD4TcLwO+FqkGmWMMdGyu6yO/ZUNfPX8idFuyqDRYyBR1ReBF0XkHFVdM0Bt6reXth7lwdf28O7/uYg4l0S7OcaYQWTl9qPEuYTLZ+VHuymDRrC1tjaLyDfwpbnaU1qq+pWItKqfdhw5yeHqJto8XuJccdFujjFmkPCntZZMyiEn3dJawQp2sP1PQAFwOfAuMAZfeismnahvBcCrGuWWGGMGk51Hayk90cjVVhIlJMEGksmqej/QoKorgKuBOZFrVv9UNbQA4LU4YowJwcvbyoh3CZfbbK2QBBtI2pzbGhGZDYwAiiPSojCoavD1SDwWSYwxQfItQjzKuZNzyUpLjHZzBpVgA8lyEckC7se3k+Eu4MGItaqfTjiBRC21ZYwJ0vYjJzlU1WQl4/sgqMF2Vf0f58t3gZifE+fvkViHxBgTrJXbykiIEy6faWmtUAVbIiVfRB4WkVed72eKyF2RbVrfNLd5aGz1AJbaMsYER1V5eVsZ503OZURqQrSbM+gEm9r6I/A64C88sxf4bl/fVERGishzIrJHRHaLyDkiki0iq0Rkn3Ob1ZfX9qe1wFJbxpjgbDlUw5GaJqut1UfBBpJcVX0G8AKoqhvw9ON9/wN4TVWnA2cCu4H7gLdUdQrwlvN9yKrqTwUS65AYY4KxclsZiXEuLp1pixD7IthA0iAiOYACiMjZwMm+vKGIZAJLgYcBVLVVVWuAa4EVzsNWANf15fVPOFN/ATzWIzHG9MLrVV7ZXsbSqbmMSLG0Vl8EG0i+h2+21iQR+QB4DPhWH99zInAceFRENovI/4hIGpCvqmUAzm1eV08WkbtFZIOIbHC73Z3urwpIbXmtS2KM6cXmQzUcPdlss7X6IdhZW5tE5AJ8RRwF+FhV23p5Wk/vOR/4lqquFZH/IIQ0lqouB5YDpKWldYoUVaeNkfSxhcaYYWPltjIS411cMsPSWn0Vyg6Ji/CNZ8wHbhGR2/v4noeBw6q61vn+Oec1y0WkEMC5rejLiwcOtluJFGNMT/xprQumjiIj2dJafRXs9N8/Ab8GzgMWOv8W9OUNVfUYcEhEpjmHluFb4PgScIdz7A7gxb68fuBgu42RGGN6svFgNcdqm7nG0lr9Emz13wXATA3ffNpvAY+LSCKwH/gyvqD2jLM+5SBwY19e2Kb/GmOCtXJbGUnxLpZZWqtfgg0kO/BV/y0Lx5uq6ha67tEs6+9rVwXM2rKxdmNMdzxOWuuiaXmkJwX7q9B0pbetdv+Gb8pvBrBLRNYB7b+pVfWzkW1e6KoaWkmMc9Hq8drKdmNMtzaUVlFR12KztcKgtzD8v85jNnOqAnBMq2poJTc9kaMnm22w3RjTrZXby0hOcHHx9C5XGpgQ9DbYXgRcDzwL/BzfxlbpwHZVfTfCbQtZm8dLbbOb3AzfzmYWR4wxXfGltY5x8fQ80iyt1W+97dn+fQBnUHwBsAT4CvDfIlKjqjMj38TgVTsD7bnOFpmW2jLGdGVtyQkq61u4eo7V1gqHYENxCpCJb0OrEcBRYHukGtVX/hlbo5xAYqktY0xXVm4rIyUhztJaYdLbYPtyYBa+/dnXAh8CD6lq9QC0LWT+Ve25Gb7dzaxDYozpyO3x8tqOYyybkUdKYly0mzMk9DZGMg5IAo4BR/CtSq+JdKP66kSH1Jb1SIwxHa0tqeJEQ6stQgyj3sZIrhARwdcrWQLcC8wWkSpgjar+dADaGLSqet/M5FHOYLsVbTTGdPTytjJSE+O4cJqltcKl1zESZzX7DhGpwVc6/iRwDb7aW7EVSBpaEYHsVEttGWM686W1yrhkRj7JCZbWCpfexki+ja8nci6+dSQfAGuAR4jRwfas1ETi43wZO0ttGWMCffjpCaob22wRYpj11iMpxled9x/8e4XEsqqGVrJSE3CJ73sLJMaYQCu3lZGeFM8FU0dFuylDSm9jJN8bqIaEw4mGVnLSknA5kcRSW8YYvzaPl9d2HuPSmZbWCrdQ9iOJeVUNrWSnJeISJ5AEGUk2Hqhi08GYnNFsjAmTDz6p5GRTG1fPsbRWuA29QJKeGHJq63O/W8MNv/0wgi0zxkTbym1lZCTFc/7U3Gg3ZcgZMoHE41WqG1vJCeyRWGrLGAO0ur28vvMYl87KJyne0lrhNmQCSU1jK6qcltqyWlvGGID3PzlObbPbFiFGyJAJJP7yKNlpibicT2U7JBpjwLcIMTM5nvMm22ytSBgygcRfHiUnLclSW8aYdi1uD6t2lnP5rAIS44fMr7yYEpVC/CJSiq8QpAdwq+oCEckGnsa3dqUUuCmU4pCn9Uj8qS3rkRgz7L23t5K6FrctQoygaIbni1R1rqr6926/D3hLVacAbznfB629RxIwa8tSW8aYldvLGJGSwLmTbbZWpMRSP+9aYIXz9QrgulCeXFXvCyRZqYGztmIrkDS2uvnr5iMW4IwZIM1tHlbtKueKWQUkxMXSr7uhJVpnVoE3RGSjiNztHMv3l2FxbrsszSkid4vIBhHZ4Ha7249XN7aSkRxPYryLOJd/1lZEP0PInlp3iO8+vYW95fXRbooxw8K7e49Tb2mtiIvWZsXnqupREckDVonInmCfqKrLgeUAaWlp7X/a+8qj+Kr+SggLEgdyivC6kioADlc3Mq0gY8De15jhauW2MrJSE1gyKSfaTRnSohJIVPWoc1shIi/gK0lfLiKFqlomIoVARTCv9cvX9jBrdCZVDS1kO4HEn9oKJoXU6h6Ybouqsr7UF0iO1DQNyHsaM5w1t3l4c3c5184taq8IbiJjwM+uiKSJSIb/a+AyYAfwEnCH87A7gBeDeb3fvfMp33xiMyfqW8lO821oFUpqa6ACyafHG9onBByptkBiTKS983EFja0eW4Q4AKLRI8kHXvBtvEg88ISqviYi64FnROQu4CBwYygvWtXQypljRgKhpbZaPJ72rz1ebQ9C4eZPayUnuDhsPRJjIu7lbWXkpCWyeEJ2tJsy5A14IFHV/cCZXRw/ASzr6+tWN/oKNkLfU1ttHi9xrsjU4VlfWkVueiJT8jI4aoHEmIhqavXw1u4Kbphvaa2BMGTOcJtH2wfb40KotdUxkETKupIqFhZnMyYrxVJbxkRQTWMrD76+h6Y2j83WGiDRmrUVER0H24OZkNXqCQwkkZnBdaSmiSM1TXz1/AmcbGqjoq6FFrfHqpAOQwdONPDp8XoumpaHSGTSqMPVoapGHn6/hKfXH/IFkTmFLJ5gs7UGwiAPJKf/IGb5p/86/axgxki66pGoalh/yNc74yMLi7PZXVYLwLGTzYzPSQvbe5jYt/lgNV/+43pqGts4b3Iu//e62RTn2jXQXzuOnGT56v2s3F6GAJ+dO5q7l05kekFmtJs2bAzqQKIdftePSndmbYWwsr2rQHL9bz/k4ul5fHvZlLC0c11pFRlJ8cwozKS2qQ3wzdyyQDJ8vLfvOPf8aSO56UncvXQiv3v7Uy77zWq+ffFk7l46yYoJhkhVeW9fJX9Y/SkffHKC9KR4vnJuMV8+dwKjR6ZEu3nDzqAOJB17JLlOIAkpteU+PbXl9njZdriGyXnpYWvlupIqzirOIs4lFGX5LnKbuTV8vLK9jO88tZlJo9J57CuLyMtM5nPzx/DPf9vFr9/Yy4tbjvKvN8xhYXHkZhe1uD1sKK1m9d7jHKxq5OozCrl8EJYNafN4eXnbUZavLmF3WS15GUncd+V0blk0jhEpCdFu3rA1pAJJdh9WtrcEjJG4PV6O1Tbj1fCteD9R38InFfVcP68IgIIRyYhgM7eGiafWHeRHL2xn7tiRPHrnIkak+n7Z5Wcm81+3zudze8q5/687ufH3a7h54Vjuu3I6I1MT+/2+qkpJZQPv7j3O6r3H+Wh/FU1tHhLihJGpiby64xh5GUncsmgcX1w8jvzM5H6/ZyTVt7h5at1BHnm/hKMnm5mSl86Dnz+Da+eOtrHGGDC4A0lAHMl06mzBqQWJ3hBnbbV6vFRV+xYNhmsG1/pSXyV8/1z2pPg4RqUn2cytYeD3737KA6/uYenUUfz+S/NJTez843bx9HzO/l4Ov3lzHw+/X8Kbu8u5/5qZfPbM0SGP09U2t/HhJydYvc8XPA4711hxTio3LRjD0qmjOHtiDskJcbzzcQV/+ugA//HWPv7z7U+4fFY+t51dzNkTs2NqEkBFXTN//KCUP390gNpmN4smZPMv183moml5uCK05suEblAHEk96fvvXuRlJ7V8Hk9r66Ys7ONnUxrIZp17D7VGOnvT98IWrR7K+tIrEeBdzxoxoP1aUlWJlUoYwVeWXr33M79/9lGvOKOShm+b2OAaSmhjPj66awbVzR/OjF3bwnae28NzGw/zf62b3OI7m9So7jp7k3Y+Ps3rfcTYdrMHjVdIS41gyOZd7LpjEBVNGMS4ntdNzl83IZ9mMfA6caODPHx3gmQ2HeWX7Mabmp3Pb2eO5fv4Y0pOi9+vh0+P1/Pfq/Ty/6QhtXi9XzCrg7qUTmTcuK2ptMt0b1IEkUG5aYCDx3faU2tpzrI66ZjfnTzm19Wabx9veU3CHMZDMGzvytO530cgUth85GZbXN7HF41X+6YXtPLX+ELcuHsc/Xzs76GoJs0aP4Pm/W8Ljaw/w4Gsfc9m/r+bby6bwtfMntgeiitpmVu+rZPXe47z/SWX7hm6zizK5Z+lELpg6ivnjs4Ie+xifk8Y/XT2T7106jb9tO8qf1hzg/hd38sCre7hh/hhuO2c8U/MHrsDohtIq/rB6P6t2lZMY7+LGBWP46vkTmWCz22LakAkkOemn8sr+rnlPqa3mNg/Nbs9p60haPd72nkI4eiT1LW52HDnJNy6afNrxoqwU3thZjterA9o9V1U++OQEiydmD7pB1sGgxe3hH57ewivbj/HNiyZz72VTQ04TxbmE288p5vJZBfz8bzv51esf8+KWI1wwdRTv7atkz7E6AHLTE7lg6igumDqK86bktk806auUxDhuWjCWG88aw9bDJ3lsTSlPbzjEnz46wNkTs7nt7GIum5UfkevG61VW7S7nD+9+yqaDNYxMTeDbF0/m9iXF/f5cZmAMmUDS8YKLc0mPqa3GVg8tbd7TxkjcHuVITTMQnjGSTQeq8Sos6lDrp2hkCq0eL5X1LeQN4CDne/squf2RdfzLtbO47ZziAXvf4aChxc3X/7yR9/ZV8uOrZ/DV8yf26/XyM5P57a1n8dbucn7y4k7++GEpZ43P4gdXTGPplFHMLMyMyB8hIsLcsSOZO3YuP756Jk+vP8SfPzrAN57YRH6mMzi/aFxYrtvmNg8vbD7Cf6/ez/7KBsZkpfCzz8zkpoVjuxxPMrFryPxvBfZIwJfe6im11dTmocXt7bSO5Eh1IxCeHsm6kiriXML8DnndopGnpgAPZCB5Yu1BAF7ZfswCSRjVNLZy56Pr2Xa4hl99/gxuXDA2bK+9bEY+F0wdRZtHSUkc2NlJ2WmJ/N2Qb1urAAAdrUlEQVSFk7h76UTe+biCx9Yc4Ddv7uM///cTLp9VwG3njGfxhNAH5082tvHntQd49INSKutbmF2Uyf+7ZR5XzS6wuliD1BAKJKf3SER67pE0+wOJ5/RActTpkfjHSN7eU0F5bTM3LxoXcpvWlVYxa3QmaR0GLf1rSY7WNHUKMpFSUdvMm7vLyUiOZ23JCSrrWyxtEAb1LW5u+sMaSisb+d2XzuLyWQVhf4/4OBfRnOEa55L2wfnSygYeX+sbnF+5vSykwfnD1adKmDS2elg6dRT3LJ3Ikkk5MTVTzIRuyASSUR16JHEiPfdIWj20eZWWgB7J8boWmtp8ZeX9PZIVa0rZeqiGLywcG9LF3uL2sOVQDbefPb7Tff6VtwM5BfjZjYdxe5UHbjiDbzyxiTd2lvPFxaEHR3O6p9YdZG95PY9+eSEXTetyd+ghpTg3YHB+61Ee+6iU+1/cyS9f+5gb5hdx29njmdJhcH7nUV8Jk5e3+UqYfObM0Xzt/InMHG0lTIaKIRNIOvZIXNL9YLuq0tTmwau+X/h+JZWN7V/7eyRVDa1UN7ZxvC608Yxth0/S6vaysIu9EDKTE8hIjh+wKcBer/LU+oOcMzGHq+YUUJyTyqs7yiyQ9JPHq/zxw1IWFmcNiyASKCUxjpsWjuXGBWPYcqiGP605wFPrDvHYGt/g/O3nFJORHM/y1ft5b18laYlx3LmkmK+cN6E9tWuGjqETSNI6jpF0n9pqcXvb76trdrcf31fhmxFTkJmM20l5+adX7j5WF1IgWRdQqLErRSNTBmx1+/ufVHKoqon/c/l0RIQr5xSyfPV+qhta2wtdmtCt2nWMw9VN/PjqGdFuStSICPPGZTFvXBb/dPUMnt5wiMc/OsjfP74JgFEZSfzgimncumh8+6p+M/QMmUASuCARwOXqPrXV3HaqF1LX7CYrNYH4OBcffFIJwLic1Pbiiv5Asqeslgumjur8Yt1YX1rFlLz09rItHY3JSmlfeRxpT647SHZaIpfP8i2+vHJ2Ab9751NW7S7npjAODA83D79fwpisFC6dGf5xkcEoJz2Jv79wMvcsncS7eyuoa3ZzxewCK2EyDAz6KRK/+vwZ3DC/iIwOA309zdpqOi2QtJGcEMfls/LxKqQkxJGbnojbqzS3eWhs9T3WP38/GB6vsrG0utO030CjRw7M6vaKumZW7Srn82eNaf+BnlM0gqKRKby6vSzi7z9UbTtcw/rSau5cUhyx7ZkHqziXcPH0fK6dW2RBZJiIWiARkTgR2SwiLzvfZ4vIKhHZ59wGNZ3p0pn5PHTT3E4D4a4eBtubWk/vkSTGu7hilm8ntaKsFOJdLjxebe+NAO37iARjd1ktdS3uHgNJ0cgU6prd1Da3Bf26ffHsBt8g+80LT/U8RISr5hTw/ieVEX//oeqR90tIT4rnCwutR2dMNHsk3wF2B3x/H/CWqk4B3nK+71Fc/XEyk7vOu7pcQndrChtbT++RJMa5WDwxmxEpCYzJSiE+TmjzeNsDyaRRaXx6vP60NSc96W18BE6fAhwp/kH2sydmM3HU6WXxr5xTSJtHeWt3ecTef6g6drKZl7eVceOCMWR0c/0ZM5xEJZCIyBjgauB/Ag5fC6xwvl4BXNfr63jbul3d6xLf7KyuBI6R1Db5eiQJcS5+e+t8vn/ZNOJdclqPZMmkXNo8yv7K+t4/HL7xkTFZKT1usDMQU4D9g+xfXNx5CvLcMSMpyEzmle3HIvb+Q9WfPirFo8qXl0yIdlOMiQnR6pH8BvgBEPgnfr6qlgE4t13OpxSRu0Vkg4hscLvdXT0E6CW11WGMxF8Q79zJucwuGkGcy4Xbq1Q3tjrHffs+7ykLbpxkV1ktZ44d2eNjxvgDSQR7JE+uO0hWakL7IHsgl0u4YnYB7+49Tn1L9+fRnK6p1cPjaw9y6Yz8LqvqGjMcDXggEZFrgApV3diX56vqclVdoKoL4uO7n3Tmku5TW4FjJA2tHhI7lGXw90hO1PsCyfzxWSTGudh9rPdxkla3l0NVjUzqpVppbnoSiXGuiAWSrgbZO7pqTiGtbi9v76mISBuGouc3H6amsY27zrPeiDF+0eiRnAt8VkRKgaeAi0Xkz0C5iBQCOLf9+u3mcnWf2grskQCd9oqIjxPcHi/Vja24BHLSkpiSnx5Uj+RgVSNehQmjeg4kLpdQODI5Yqkt/yD7LT2UdjlrfBa56Um8uiO8s7c+/KSSq/7jvdNSiEOB16s88n4Js0Zn9jiRwpjhZsADiar+UFXHqGoxcDPwv6r6JeAl4A7nYXcAL/bnfYKdtQWQ1qHSaLxLcHuVEw2tjExNJM4lTC/IDGrmVkllAwATcnvf870oQlOAexpkDxTnEq6Ync/be453Oif98dLWo+wqq+XAicbeHzyIrN53nE+PN3DXeROsNpQxAWJpHckDwKUisg+41Pm+z+JE8HSzsr1jjyQ9+fRA0j5G0tDavqBwRmEGFXUtnKhv6fF9S5wB+Qk97GznF6nV7R986htk76k34nfV7EKa2jy8uzd86a11pb5Za2Unh9YukI98UMqojCSuOWN0tJtiTEyJaiBR1XdU9Rrn6xOqukxVpzi3Vf15bQlyQSJARnLnHonH6ZFkp/oCyfQCX4G5j3tZmFhS2UBOWmJQ5SCKslKoqGsJelpxsJ5Y6xtkv2J27yuuF03IJjstMWyzt47XtbD/uK9XVnayOSyvGQv2ldexeu9xbj97fI/b5hozHA3ZnwiXSPfTfzukcTquio+POzX9198jmV7oq2i6O4hAUhzktqCjR6agGt6/3IMZZA8UH+fispn5vLW7PCxjGhtKT8X/oRRIHvmglKR4lxW6NKYLQzaQxDm9iq70ltqKd9amHK9raS9qmJueRG56Ent6GScpqWwIen/pMRFYS/KcUy4+lP1TrpxTSEOrh/f3Vfb7/deVVpGc4CInLZFjQyS1VdXQyvObDnP9vKJOVaaNMUM4kPS0sVVjq4fMgODRcXVynMt3Wk42tZ1WVXhGYUaPNbcaWtyU17YEHUj8q9vDNeDu9SpPrTvE2ROzmdTDIHtHSyblMCIlgVfCMHtrXUkV88ZmMSY7dcj0SJ5Ye4AWt5ev2JRfY7o0ZANJTyvbm9o8pwWPjju7xQesls/LPPUX6PSCDPaW17WXmO/IP2NrYpCBpGCEryx9uALJB59WcrCqMahB9kAJcS4unZnPql3l/RqvqW1uY3dZLQsnZFOYmTwkAkmr28tjaw5w/pRcpnbYsMkY4zOEA0n3qa3mNg+pAftfd561FRBIMgIDSSYtbi+l3Uxr9QeSYMdIkuLjyMtICltqy7+SPZhB9o6unF1AXbObDz/te3pr44FqvAqLJ2RTMCKZY0MgkKzcfpSKuhbrjRjTg6EbSFzdp7aaWj2kBASSzA6BJCHuVCAZlXFqMyv/gPuebla4l/oDSRBTf/2KslI4GoaxhIq6Zt7YGfwge0fnTcklPSmeV/sxe2t9SRXxLmHeuJGMHplMfUvkqxv3ZtPBav629WifnquqPPx+CZNGpXHBlOD3ojFmuBm6gaSL6b8er1Je20xjq4fkhIAeSVLXYyRweo9kcl46cS7pdoV7SWUDo0cknxakelM0MiUsPZK+DLIHSoqP45IZeby+6xht3dWW6cX60ipmF40gNTGeghG+8Z9o9koOVTVyxyPr+NaTm3l+0+GQn7++tJodR2r58rkTui0OaowZ0oGk88r2v2w8zPkPvs2hqsYeU1uBYySjAgJJUnwck0aldbvCfX9lQ6+lUTryLUps7nZ/+WD4B9kXTwhtkL2jK2YXUtPYxtr9oS/haW7zsPXQyfbSIYXO+E+0xkla3V6++cQmUF8pmH/8yzbW7j8R0ms88n4JI1IS+Nz8MRFqpTFDw5ANJHEieDv8Yb35UA2tbi9HTzaTEtAj6bgg0T9GkpEcf1rPBXzjJF3N3FJV9h+vD3rGll9RVgqtHi+VDT2vmO+Jf5C9v2scLpw2itTEuD7V3tp6qIZWj7d9D5b2QDJA+9J39MvX9rD18Eke/PwZPHLHQsZmp3LPnze2px97c6iqkTd2HeOLi8eF1MM0ZjgasoGkq5Xt+8pPBYDAQNKp1pYzRpKX0XnNwPTCDI7UNHXK/Vc3tlHb7A5pfAR8PRLo31qSU+Xi+7d3eHJCHBdNz+P1nce6najQnVObefk2tszLSEYkOj2SVbvKefj9Em4/ZzxXzilkRGoCj9yxEAG+8sf11DS29voaj35QikuE28/pvJeLMeZ0QzaQdExtqSp7AwJJcsBfmR333I53xkhGdRFIZnRTKqV96m+Iqa3R/dyXxD/I/rn5Yzr1nvriqtmFVNa3sr40tPTWutIqpuVnMNIpKZMY7yI3PWnAx0gOVzfy/We3Mrsokx9dNaP9eHFuGstvX8Dh6ia+/ueNPU5zrmtu45kNh7hqTiGFI7rfnMwY4zNkA0lch1lbFXUt1Da7measBUjt4ZeuP7DkBczY8mufudVhnCSUqr+B2hcl9rFH4h9kvyVMpTsunDaKpHgXr+0IfvaW2+Nl04FqFk7IOu346BHJYZmRFqw2j5dvPbkZj1f5z1vmdwqsC4uzefDzZ/DR/ip+9ML2btcZPbPhMPUtbpvya0yQhmwgEfGta/jmE5vwepXNB2sAuPPcYoAe897xru5TWwWZyYxISehUc6uksp54lzAmK7S/YDOTE8hIju9TFeBwDbIHSkuK58Jpo1i5vYyTjcFN3d1VVktDq4dFE3JOOz7Qa0l+/frHbD5YwwOfm9PtWp7r5hXxnWVTeG7jYX77zqed7vd4lT9+WMJZ47OY28sul8YYn+63GBzkXM5+ES9vK+PCaXn86vU9jM9J5bq5RZxsamPZ9DwWT8ihpqlzvtw/RtJVaktEmF6Q0WWPZGx2Kglxocfmvu5L4h9kv/eyqSE/tyd3L53ILcvX8rXHNvDYXYt6TZn5x0cWFZ++2VPhiBQ+/CS0mVJ99b97yvnD6v3cunhcr2Xev3vJFEpPNPCr1z+mOCeNq88obL9v1a5yDlU18cMrZ/TwCsaYQEO2RxI47vF/nttKTWMbv7v1LFIS4/j6BZOYkp/BeVNyu/yl4x8jCSyPEmhGYSYfH6s7bcru/uPBF2vsqGhkCof7kNoK1yB7R2eNz+ahL5zJ+gNVfPepLb0OvK8rqWJsdkp7yRe/whHJ1LW4qeswMaHF7aGxNXz7xJedbOLeZ7YyozCT+6+Z2evjRYRffu4MFozP4nvPbGHzwer2+x75oISikSlcNrPzPvfGmK4N2UASOH6uCv9y3Wxmjs4M6rn+6cBjslK7vH96QQYNrZ72X/5er3LgRGPfA0lW8BtcebzKGzuPcdvDa3ll+zE+f1Z4Btk7uuaM0fzkmpm8tvMYP3lxR7fjCarKhgPVLCrO6XSfP7B0TG/94Llt3Pj7Nd2+ZijcHi/ffnIzrW4v//XFeUGfi+SEOP5w21nkZybztcc2cKiqkR1HTrKupIo7lxQT34eepTHD1ZBNbfm3Qj1nYg7/dPUMZheNCPq5Z4wZwQt/v6TbHPn0Ql9A2n2slnE5qZTXNdPU5ulXj6S22feXe8dKxH6V9S08vf4QT6w9yJGaJgpHJHPvpVP56vkT+/SewfjyuRMor23h9+9+SkFmMt9aNqXTYz49Xk9VQyuLOgy0A+0znspONjPFmeTg9Srv7j1OTWMbmw/VMH9c5+eF4qFVe1lfWs1/3Dy3x22Fu5KTnsQjdy7kht9+wF0r1jMhN420xDi+sGhsv9pkzHAzZANJnBNIstMSQwoi4AtC83r4BTc1Px0R2FNWx+WzCig5HlrV344CpwBPLzgVSFSVTQdr+NOaUl7ZfoxWj5dzJ+dw/zUzuGRG/oD81fyPV0yjoq6Zf1u1l1EZSZ1KsKz1j49M6NwjObW6/VRv65Pj9dQ4g/jPbjjUr0Cyeu9xfvvOp9y8cCzXzi3q02tMzkvn9186i9sfWcfe8nruXFJMZjfB3BjTtQEPJCKSDKwGkpz3f05Vfyoi2cDTQDFQCtykqtXdvU5v/OWyMlPC/xFTE+MpzklrL964P8Sqvx35pwAfrWliekEmTa0eXtxyhD99dICdR2vJSIrni4vH8aWzxzM5Lzyzs4LlH084Ud/Kj17YTm56EpcEjB+sL6kiNz2J4pzOacD8zM5lUgIH5v+2tYz7r5lJamLo/0fVDa3c++xWpuVn8NPPzAr5+YGWTM7l/7thDr95cx9fOdem/BoTqmgkgluAi1X1TGAucIWInA3cB7ylqlOAt5zv+8yf2orUX5fTC05tclVS2UBygouCzM7rToLh3ylx7f4q/uXlXSz+1ze57/nteLzKL66fzUc/WsbPPjtrwIOIX0Kci9/eOp85RSP4xhOb2Hjg1GLFdSVVLJqQ1X6+A3W1KHFdSRV5GUnce9lU6lvcfd4r/scv7qCmsZV//8LcsJQwuXHBWN7/x4sY10VANMb0bMADifrUO98mOP8UuBZY4RxfAVzXn/fxbz6VmRKpQJJJ6YkGGlvdlFY2UJyT1ucKsbnpSSTGufjD6v2s+LCUpVNH8cw95/Dqd87n1sXjSUuKfgYyLSmeR+5cyOiRKdy1YgOfVNRxuLqRoyebO037DTR6ZDJHnUCiqqwvrWLRhGwWTcimOCeVZzYcCrktL209ysptZXz3kqlBT6AIRlfB0BjTu6j8hhKROGAjMBn4L1VdKyL5qloGoKplIpLXzXPvBu4GSExM7OohANS3+KaXRiqQzCjMQNVXKqWksqF9xXtfuFzCvZdNpcXt5eaFY8nrY88m0nLSk3jsK4u44XcfcvvD67jtnGIAFk7oPpAUZCZTesKX+jtc3UTZyWYWTchGRLhxwVh+9frHIe1zX17bzP1/3cG8cSO5Z2nkJhoYY4IXlTmOqupR1bnAGGCRiMwO4bnLVXWBqi6Ij+8+DtY3O4EkOTKxcoYzc2vHkZMcrGoMuVhjR/dcMIlvL5sSs0HEb2x2Ko/euZDaZje/fG0PGUnxTC/ovldQOOLUlrunCjv6As/n5o/BJfDcxuB6JarKD57bRqvby0M3zbUpusbEiKj+JKpqDfAOcAVQLiKFAM5tRX9eu87pkYyIUI+kaGQK6UnxrNpdgdurfZ76OxjNLhrBH247i4Q4YeGE7E5FLwMVjkyhrtlNfYub9aVVZCbHt9c7KxiRzIXT8nhu4+Ggqg0/se4g7+49zg+vmj6szrcxsW7AA4mIjBKRkc7XKcAlwB7gJeAO52F3AC/2533qmiOb2nK5hGkFGXz4iW+P81Cr/g52507O5S9/t4R/vrbnGVOF7YsSm1hXUsXC4uzTxpJuWjCG8toWVu893uPrHDjRwC9W7ua8ybl8abGVdjcmlkSjR1IIvC0i24D1wCpVfRl4ALhURPYBlzrf99mp1Fbk1gRML8jA7fwlHWrV36HgjDEju1397+efybb9yEn2VzZ0Gk+5eHo+2WmJPQ66e7zKvc9sJc4lPPj5M2zbW2NizIAPtqvqNmBeF8dPAMvC9T5NbR4gcqktOLXCfURKAlmptoitK/7Fli9tOQrQvhWvX2K8i+vnFfHYmlJO1LeQk965vtn/vLefDQeqeeimM9tfzxgTO6I/rzTCOm6jG04zCny5/uLcNJs62g1/4cv39lWSnOBi9ujOVQZuWjCWh98v4a9bjnLLorHsOFLLtsM1bDlUw7bDvskMV8wq4Pp5fVu9boyJrCEfSCJR0NBvqhNI+loaZThIio8jNz2RyvpWFk3IJjG+czZ1WkEGZ44dyYOv7eEXK3e1b0g2ekQyZ4wZyRcXj+PWxeMsWBsTo4ZsIHniq4vb60BFSmZyAn934STOm5wb0fcZ7ApHpFBZ39o+7bcr9146lcfWHGBmoS+onDFmZJf7wRhjYo+Eo5R3tKSlpWlDQ0O0m2F68bXHNrBqVzmPf3Ux51rQNSbqRKRRVcOWSrEVXSbixmSlkBAnzBtnW9caMxRZj8REXHltMyWVDZw9sXOpeWPMwAt3j2TIjpGY2JGfmdxeUt4YM/RYassYY0y/WCAxxhjTLxZIjDHG9IsFEmOMMf1igcQYY0y/WCAxxhjTLxZIjDHG9IsFEmOMMf1igcQYY0y/WCAxxhjTLxZIjDHG9MuABxIRGSsib4vIbhHZKSLfcY5ni8gqEdnn3GYNdNuMMcaELho9Ejdwr6rOAM4GviEiM4H7gLdUdQrwlvO9McaYGDfggURVy1R1k/N1HbAbKAKuBVY4D1sBXDfQbTPGGBO6qJaRF5FiYB6wFshX1TLwBRsRyevmOXcDdwd83xj5lg4b8fh6jCY87HyGj53L8EoJ54tFbWMrEUkH3gV+oarPi0iNqo4MuL9aVXscJxGRDaq6INJtHS7sfIaXnc/wsXMZXuE+n1GZtSUiCcBfgMdV9XnncLmIFDr3FwIV0WibMcaY0ERj1pYADwO7VfWhgLteAu5wvr4DeHGg22aMMSZ00RgjORe4DdguIlucYz8CHgCeEZG7gIPAjUG81vLINHHYsvMZXnY+w8fOZXiF9XxGbYzEGGPM0GAr240xxvSLBRJjjDH9EnOBREQeEZEKEdkRcOxnInJERLY4/64KuO8MEVnjlFvZLiLJzvF3ROTjgOd0uS5lKAvlXIrIrQHHtoiIV0TmOved5ZzbT0Tk/zkTJoadMJ7PYX9tQsjnM0FEVjjX4W4R+WHAc4b99RnGc9m3a1NVY+ofsBSYD+wIOPYz4PtdPDYe2Aac6XyfA8Q5X78DLIj25xks57LD8+YA+wO+XwecAwjwKnBltD/bID+fw/7aDPV8Al8EnnK+TgVKgWLn+2F/fYbxXPbp2oy5Homqrgaqgnz4ZcA2Vd3qPPeEqnoi1rhBJsRzGegW4EloX9OTqapr1HelPcYwLV8TjvNpTgnxfCqQJiLx+FZltwK1dn36hONc9uf9Yy6Q9OCbIrLN6cL5V7xPBVREXheRTSLygw7PedTpnt0/HLu7PejqXAb6Aqd+8RUBhwPuO+wcM6eEcj797NrsXlfn8zmgASjDtzzg16pahV2fvQnlXPqFfG0OlkDyO2ASMBffh/8353g8cB5wq3N7vYgsc+67VVXnAOc7/24b0BbHru7OJQAishhoVFV/rrWrC8nmjJ8S6vkEuzZ70t35XAR4gNHABOBeEZmIXZ89CfVcQh+vzUERSFS1XFU9quoF/hvfiQDfXx/vqmqlqjYCr+DLE6KqR5zbOuCJgOcMaz2cS7+bOf2v58PAmIDvxwBHI9vKwaMP59OuzR70cD6/CLymqm2qWgF8ACzArs9u9eFc9vnaHBSBxMmD+l0P+P+6ex04Q0RSnXzfBcAuEYkXkVznuQnANQHPGdZ6OJeIiAtfRYGn/MfUV5G5TkTOdrq5t2Pla9qFej7t2uxZD+fzIHCx+KTh28toj12f3Qv1XPbn2oxqGfmuiMiTwIVArogcBn4KXOhMnVR8MwzuAVDVahF5CFjv3PeKqq50Ts7rzsmIA97EF5GHlVDOpWMpcFhV93d4qb8D/ohvYO5V59+wE6bzmYRdm0DI5/O/gEfx/WIT4FFV3ebcN+yvz3Ccy/783rQSKcYYY/plUKS2jDHGxC4LJMYYY/rFAokxxph+sUBijDGmXyyQGGOM6RcLJMYEyZl3/76IXBlw7CYReS2a7TIm2mz6rzEhEJHZwLPAPHxz7bcAV6jqp/14zXhVdYepicYMOAskxoRIRB7EV/QuDahT1X8RkTuAbwCJwIfAN1XVKyLL8ZXtSQGeVtV/dl7jMPAH4ArgN6r6bBQ+ijFhEXMr240ZBH4ObMJXfnuB00u5Hliiqm4neNyMr1bRfapa5ZTweVtEnlPVXc7rNKjqudH4AMaEkwUSY0Kkqg0i8jRQr6otInIJsBDY4FTdTgEOOQ+/RUTuwvezNhqYCfgDydMD23JjIsMCiTF943X+ga9e0SOqen/gA0RkCvAdYJGq1ojIn4HkgIc0DEhLjYkwm7VlTP+9CdwUUDk1R0TGAZlAHad28rs8im00JmKsR2JMP6nqdhH5OfCmUzq+Dfg6sAFfGmsHsB/fvg/GDDk2a8sYY0y/WGrLGGNMv1ggMcYY0y8WSIwxxvSLBRJjjDH9YoHEGGNMv1ggMcYY0y8WSIwxxvTL/w/HDdjwWWq5dwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax1 = plt.subplots()\n",
"ax1.set_xlabel('Year')\n",
"plt.xticks([0,1,2,3,4], data['Year'])\n",
"ax1.set_ylabel('Wheat')\n",
"\n",
"ax2 = ax1.twiny()\n",
"ax2.set_xlabel('Wages')\n",
"\n",
"p1 = plt.plot(data['Wages'], data['Wheat'] )\n",
"plt.axis([5,31,20,101])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Quelle représentation des données vous paraît la plus claire ?\n",
"La représentation qui me parait la plus claire reste celle inspiré de Playfair (ci-dessous)."
]
},
{
"cell_type": "code",
"execution_count": 123,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEKCAYAAABDkxEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcHGW59//PRRYCSBpZT0iQCjxBDGBiCGsUROQBbBZFliAc2R4iKiCLHAvUYwv6/Oqnwk9QDzkROIBGVpGEFMo5yuKBAEIgKgGBAAUEIjt9spiQgev3R9VAZ5jprumZnunp/r5fr35113JX3zUFfeW+66r7NndHRESkWa0z2BUQERGpRoFKRESamgKViIg0NQUqERFpagpUIiLS1BSoRESkqTUsUJnZFWb2spk90sN2M7NLzGyxmf3FzKY0qi4iIjJ0NbJFdSVwQJXtBwITstcM4NIG1kVERIaohgUqd/8j8HqVXQ4FrvbUfcBGZjamUfUREZGhafggfvdY4PmK5SXZuqVddzSzGaStLoCd119//cbXTkSkhaxcudLdfUjmJQxmoLJu1nU7npO7zwJmAWywwQa+YsWKRtZLRKTlmNk/BrsO9RrM6LoE2KpieRzw4iDVRUREmtRgBqq5wBez7L/dgbK7v6/bT0RE2lvDuv7M7Brgk8CmZrYE+A4wAsDdZwK3Ap8BFgMrgRMaVRcRERm6bKhN89HdPao1a9awZMkSVq1aNUi1aj6jRo1i3LhxjBgxYrCrIiJNwMxWuvsGVbZfARwEvOzuO2brNgauAwIgAY509zeybecCJwFvA6e7+20Nq3srBKpnnnmGDTfckE022QSz7nI02ou789prr7Fs2TLGjx8/2NURkSaQI1DtBSwnfWyoM1D9AHjd3SMzC4EPuvs3zGwicA2wK7Al8HtgO3d/uxF1H5Kpil2tWrVKQaqCmbHJJpuohSkiufXw7OuhwFXZ56uAz1asv9bdV7v7M6S3cHZtVN1aIlABClJd6O8hIv1gi84kt+x982x9T8/BNsRgPkclIiIDZ7iZPVixPCt7RrUeuZ+D7Q8tGaiCMO7X4yVRseY+Z555JltvvTVnnHEGAPvvvz9bbbUVl112GQBnn302Y8eO5fbbb2fevHl9rtPNN9/Mdtttx8SJE/t8LBFpCx3uPrWXZV4yszHuvjQb4u7lbP2APgfbMl1/g23PPfdk/vz5ALzzzju8+uqrLFq06N3t8+fPZ82aNf32fTfffDOPPvpovx1PRJpbf/8DPKe5wHHZ5+OAORXrp5vZumY2nnRw8T81qhIKVP1k2rRp7waqRYsWseOOO7LhhhvyxhtvsHr1ah577DE+9rGPsXz5cg4//HC23357jjnmGDqzLhcsWMDee+/NzjvvzP7778/Spemzzz//+c/ZZZddmDRpEp///OdZuXIl8+fPZ+7cuZxzzjlMnjyZp556atDOW0RaQ/bs673Ah81siZmdBETAfmb2JLBftoy7LwKuBx4Ffgd8tVEZf9CiXX+DYcstt2T48OE899xzzJ8/nz322IMXXniBe++9l0KhwEc/+lFGjhzJww8/zKJFi9hyyy2ZNm0a99xzD7vtthunnXYac+bMYbPNNuO6667jm9/8JldccQWHHXYYJ598MgDf+ta3uPzyyznttNM45JBDOOiggzj88MMH+cxFpBW4+9E9bNq3h/2/D3y/cTV6jwJVP+psVc2fP5+zzjqLF154gfnz51MoFNhzzz0B2HXXXRk3bhwAkydPJkkSNtpoIx555BH2228/AN5++23GjElnPHnkkUf41re+xZtvvsny5cvZf//9B+fkREQGiQJVP+q8T/XXv/6VHXfcka222ooLL7yQ0aNHc+KJJwKw7rrrvrv/sGHD6OjowN3ZYYcduPfee993zOOPP56bb76ZSZMmceWVV3LnnXcO1OmIiDQF3aPqR9OmTWPevHlsvPHGDBs2jI033pg333yTe++9lz322KPHch/+8Id55ZVX3g1Ua9aseTcRY9myZYwZM4Y1a9Ywe/bsd8tsuOGGLFu2rLEnJCLSBFqyRZUnnbwRdtppJ1599VW+8IUvrLVu+fLlbLrppj2WGzlyJDfeeCOnn3465XKZjo4OzjjjDHbYYQcuuOACdtttN7beemt22mmnd4PT9OnTOfnkk7nkkku48cYb2XbbbRt+fiIifRGE8XrAh5Ko+HhvyrXEWH+PPfYYH/nIRwapRs1LfxeR1hGEcZ/+EV5rrL9GCMK4kETFcvb5YOBHwMgkKo4PwngycH4SFQ+pdRx1/YmISKMcFYTx57PPJdLxAN8ESKLiQtJR2WtSoBIRkYZIouIsoHP4nI7O1lVvteQ9KhERaQ5JVLwg+/hIEMZfAIYFYTwBOB2Yn+cYalGJiMhAOA3YAVhNOpfV/wBn5CmoFpWIiDRcEhVXAt/MXr2iQCUiIg0ThPEtVJkCJE/WX2sGqlKhn49X+/5f3mk+zjrrrP6tm4hIc/tRXw+ge1T9JM80H9OmTRus6omIDIokKt7V+SIdnf0N0inv783W1aRA1U/yTPPxkY98hH333ZcpU6aw0047MWfOnHfLX3DBBWy//fbst99+HH300fzoR+k/Qp566ikOOOAAdt55Zz7xiU/wt7/9DYAbbriBHXfckUmTJrHXXnsN/AmLiPRCEMZF4CngEuCnwOIgjA/MU7Y1u/4GQZ5pPtZff31+85vfMHr0aF599VV23313DjnkEBYsWMCvf/1rHn74YTo6OpgyZQo777wzADNmzGDmzJlMmDCB+++/n6985SvcfvvtnH/++dx2222MHTuWN998c5DPXkSkpguBfZKouBggCONtgRj4ba2CClT9qNY0H+7Oeeedxx//+EfWWWcdXnjhBV566SXuvvtuDj30UNZbbz0ADj74YACWL1/O/PnzOeKII979jtWrV7/7XccffzxHHnkkhx122MCfrIhI77zcGaQyT/Pe1PZVKVD1o1rTfMyePZtXXnmFBQsWMGLECIIgYNWqVfQ03uI777zDRhttxMKFC9+3bebMmdx///3EcczkyZNZuHAhm2yySaNPUUSkV4Iw7vyX9KIgjG8lnRnYgSOAB/IcQ/eo+lGtaT7K5TKbb745I0aM4I477uDZZ58F4OMf/zi33HILq1atYvny5cRxDMDo0aMZP348N9xwAwDuzp///GcgvXe12267cf7557Ppppvy/PPPD85Ji4hUd3D2GgW8BOwNfBJ4BfhgngO0ZosqRzp5I9Sa5uOYY47h4IMPZurUqUyePJntt98egF122YVDDjmESZMmsfXWWzN16lQKhTTFfvbs2Xz5y1/me9/7HmvWrGH69OlMmjSJc845hyeffBJ3Z99992XSpEmDcs4iItUkUfGEvh5D03w0ieXLl/OBD3yAlStXstdeezFr1iymTJnSp2O2wt9FRFJDcZqP/tKaLaohaMaMGTz66KOsWrWK4447rs9BSkSkVShQNYlf/epXg10FEZGm1DKByt0xs8GuRtMYal26ItLagjDeAvi/wJZJVDwwCOOJwB5JVLy8VtmWyPobNWoUr732mn6cM+7Oa6+9xqhRowa7KiIina4EbgO2zJafoJ2m+Rg3bhxLlizhlVdeGeyqNI1Ro0Yxbty4wa6GiEinTZOoeH0QxucCJFGxIwjjt/MUbIlANWLECMaPHz/Y1RARkZ6tCMJ4E7IpP4Iw3h3I9SxRSwQqERFpemcBc4FtgzC+B9gMODxPwYbeozKzA8zscTNbbGZhN9sLZnaLmf3ZzBaZWZ8fDBMRkeaTRMWHSEel2BP4ErBDEhX/kqdsw1pUZjYM+BmwH7AEeMDM5rr7oxW7fRV41N0PNrPNgMfNbLa7v9WoeomIyMCpGOuvq+2yh5hvqnWMRnb97QosdvenAczsWuBQoDJQObChpXnlHyCdTKujgXUSEZGBdXD2vjlpa+r2bHkf4E5gUAPVWKBypNQlwG5d9vkpaZ/li8CGwFHu/k7XA5nZDGAGwMiRIxtSWRER6X+dY/0FYTwPmJhExaXZ8hjSXreaGnmPqrunb7s+6LQ/sJA0r34y8FMzG/2+Qu6z3H2qu08dPlz5HyIiQ1DQGaQyLwHb5SnYyF/9JcBWFcvjSFtOlU4AIk+f1F1sZs8A2wN/amC9RERk4N0ZhPFtwDWkjZbpwB15CjayRfUAMMHMxpvZyKxSc7vs8xywL4CZbQF8mHTWRxERGWBmdmaWgf2ImV1jZqPMbGMz+y8zezJ7zzWHVFdJVDwVmAlMIu1Bm5VExdNy1auRww6Z2WeAHwPDgCvc/ftmdgqAu880sy1Jh9UYQ9pVGLn7L6sds7tpPkREWkVP03k0epoPMxsL3A1MdPd/mNn1wK3AROB1d4+yx4w+6O7fqLsidWjoDR93v5X0RCvXzaz4/CLwvxtZBxERyW04sJ6ZrQHWJ71dcy7pjLwAV5Fm6g1ooGqJQWlFRKSm4Wb2YMVrRuVGd38B+BHpLZmlQNnd/xPYwt2XZvssJU0zH9iKD/QXiojIoOhw96k9bczuPR0KjAfeBG4ws2MHqnLVKFCJiAjAp4Fn3P0VADO7ifQB3ZfMbIy7LzWzMcDL9Rw8CONneP8jSiRRcZtaZdX1JyIywIIwHuwqdOc5YHczWz8bLWhf4DHSbO3jsn2OA+bUefypwC7Z6xPAJUDV5LlOalGJiAjufr+Z3Qg8RDqU3cPALNLh7a43s5NIg9kR9Rw/iYqvdVn14yCM7wb+tVZZBSoREQHA3b8DfKfL6tVkz7v2RRDGUyoW1yFtYW2Yp6wClYiIDIQLKz53AAlwZJ6CClQiItJwSVTcp96ytQNVqbAF8H+BLSmVD6RUmAjsQal8eb1fKiIi7ScI4yKwAzCqc10SFc+vVS5P1t+VwG2kI5wDPAGc0fsqioi0lybN7hsUQRjPBI4CTiMdMu8IYOs8ZfMEqk0pla8H0nmiSuUO4O26aioiIu1qzyQqfhF4I4mK3wX2YO0ZNnqUJ1CtoFTYhM4HtUqF3YFynRUVEZH29I/sfWUQxlsCa0hHwagpTzLFWaQPfG1LqXAPsBlweD21FBGRtjUvCOONgB+SPqvlwGV5CuZIpig/RKmwN+lcUQY8Tqm8pv66iohIu0mi4gXZx19n09KPSqJirt65vEMo7Uo62dUU4GhKhS/2vpoiItKugjBePwjjbwdh/PMkKq4GNg/C+KA8ZfOkp/8C2BZYyHtJFA5cXWd9RUSk/fwHsIA0iQJgCXADMK9WwTz3qKYCEymVGzcVsIiItLptk6h4VBDGRwMkUfEfQRhbnoJ5uv4eAf6pL7UTEZG291YQxuuRZZAHYbwt6TiCNeVpUW0KPEqp8Ke1DloqH9L7eoqISJv6DvA7YKsgjGcD04Dj8xTME6hKdVdLREQESKLifwVh/BCwO2kG+deSqPhqnrJ50tPv6lv1RESk3QVhPA1YmETFOAjjY4HzgjC+OImKz9Yq23OgKhXuplT+OKXCMtaePtgAp1Qe3deKi4hI27gUmBSE8STgHOAK0uzxvWsVrBKoyh/P3nNNbCUiIlJFRxIVPQjjQ4FLkqh4eRDGx9UsRW/moyoVNqdiaHZK5ed6W0sREWlby4IwPhc4FtgrCONhwIg8BWunp5cKh1AqPAk8A9xFOivjb+uuqoiItKOjSDPHT0qi4t+BsaTj/tWU5zmqC0izNJ6gVB4P7AvcU2dFRUSkPS0DLk6i4n8HYbwdMBm4Jk/BPIFqDaXya8A6lArrUCrfkX2BiIhIXn8E1g3CeCzwB+AE0ol5a8oTqN6kVPhA9iWzKRUuBjrqrKiIiLQnS6LiSuAw4CdJVPwc6bT0NeUJVIeSTnh1JulTxU8BB9dZURERaU8WhPEewDFAnK0blqdgngd+V6TvhdHALXVVT0RE2t0ZwLnAb5KouCgI422AO/IUzDPNx5eA80lbVe/Q+cAvbFNvbUVEpL0kUfEu0szxzuWngdPzlM3zHNXXgR0olXONySQiItIpCOMfJ1HxjCCMb2HtUY4ASKJizQHO8wSqp4CVddRPRETkF9n7j+o9QJ5AdS4wn1Lhftae5iNXk01ERNpXEhUXZO93BWE8Etgu2/R4EhXX5DlGnqy/fwduB+4jnUa481WTmR1gZo+b2WIzC3vY55NmttDMFplZW47UHoRx7Z1ERIawIIw/CTwJ/Az4N+CJIIz3ylM2T4uqg1L5rN5WysyGZRXaD1gCPGBmc9390Yp9NsoqfIC7P2dmm/f2e0REZEi4EPjfSVR8HCAbneIaYOdaBfMEqjsoFWaQpqZXdv29XqPcrsBid38awMyuJX0m69GKfb4A3OTuzwG4+8s56iMiIkPPiM4gBZBExSeCMM41KG2eQPWF7P3cinV50tPHAs9XLC8Bduuyz3bACDO7E9gQuNjdr+56IDObAcwAGDlyZI4qi4hIk3kwCOPLeS+54hhy3kbK88Dv+DorZd2s65qaOJy02bcvsB5wr5nd5+5PrFXIfRYwC2CDDTZ4X3qjiIg0vS8DXyV9dspIh+X7tzwF8zzwuz5wFvAhSuUZlAoTgA9TKs+rUXIJsFXF8jjgxW72edXdVwArzOyPwCTgCUREZEBleQOXATuSNixOBB4HrgMC0mmejnT3N3p77CQqrg7C+KekA9K+Q5r191aesnmy/v4DeAvYM1teAnwvR7kHgAlmNt7MRgLTgbld9pkDfMLMhpvZ+qRdg4/lqbiIiPS7i4Hfufv2pI2Gx4AQ+IO7TyANMt1mcNcShHGR9Lnci4GfAouDMD4wT9k8gWpbSuUfAGm+e6n8D7rv1luLu3cApwK3kZ7s9e6+yMxOMbNTsn0eIx3o9i/An4DL3P2RPBUXEZH+Y2ajgb2AywHc/S13f5M0Ce6qbLergM/W+RUXAvskUfGTSVTcG9gH+P/yFMyTTPEWpcJ6dN5fKhW2pTL7rwp3vxW4tcu6mV2Wf0jOWR5FRKRuw83swYrlWdn9/07bAK8A/2Fmk0gTHb4GbOHuSwHcfWkfHiN6OYmKiyuWnwZyZXrnCVTfIW31bEWpMBuYBhzf2xqKiMig6nD3qVW2DwemAKe5+/1mdjF1dvNVCsL4sOzjoiCMbwWuJ234HEF6i6imPFl//0Wp8BDpdPQGfE0D1IqItJwlwBJ3vz9bvpE0UL1kZmOy1tQYcraCKlTOX/gSsHf2+RXgg3kOkCfrbxqwkFI5plQ4FjiPUuFiSuVne1lZERFpUu7+dzN73sw+7O6Pkz429Gj2Og6Isvc5vTluEhVP6Gvd8nT9XQpMolSYBJwDXAFczXtRUUREWsNpwOwsU/tp4ATSpLvrzewk4DnSLrsBlSfrr4NS2UkzPy6hVL6YdBQJERFpIe6+0N2nuvtH3f2z7v6Gu7/m7vu6+4Tsvdbwef0uT4tqGaXCucCxwF6UCsOAXOMziYiI9FWeFtVRpOnoJ1Eq/510DD+lk4uISG5BGG8RhPHlQRj/NlueGITxSXnK5sn6+ztwUcXyc6T3qERERPK6knSko29my0+QDs10ea2CeVpUIiIifbVpEhWvJx3njyQqdgBv5ymoQCUiIgNhRRDGm5CNchSE8e5AOU/B6l1/aeLEVZTKx/a1hiIi0tbOIh2YfNsgjO8BNgMOz1OweouqVH4b2IxSQbMViohI3ZKo+BDp87d7Al8Cdkii4l/ylM2Tnp4A91AqzAVWvLu2VL6opwIiIiKw1lh/XW0XhDFJVLyp1jHyBKoXs9c66EFfERHpnc6x/jYnbU3dni3vA9wJ9EOgKpW/W1/dRHqW/UtqsKshIg3WOdZfEMbzgIlJVFyaLY8BfpbnGHkGpd0M+BdgB2DUe+vLn+p1jUVEpF0FnUEq8xKwXZ6Cebr+ZpM+lHUQcArp6Lmv9LaGIiLS1u4Mwvg24BrSFPXpwB15CuZ5jmoTSuXLgTWUyndRKp9IOjeViIhILklUPBWYCUwCJgOzkqh4Wp6yeVpUa7L3pZQKRdLEinH1VFRERNpXEhV/A/ymt+XyBKrvUSoUgLOBnwCjgTN7+0UiIiL1yJP1Ny/7VCZNJxSROinbUaT3at+jKhW2oVS4hVLhVUqFlykV5lAqbDMAdRMRkRYRhPHX8qzrTp5kil8B1wP/BGwJ3ECatdHWgjAe7CqIiAwlx3Wz7vg8BfPcozJK5V9ULP+SUuHUPAcXEZH2FoTx0cAXgG2CMJ5bsWlD4LU8x8gTqO6gVAiBa0lz348CYkqFjQEolV/vTaVFRKStzAeWApsCF1asXwb026C0R2XvX+qy/kTSwKX7VSLS1pQk07MkKj4bhPESYEUSFe+q5xh5sv7G13NgWZv+QxYZHPp/b/AlUfHtIIxXBmFcSKJirskSK+VpUYmIiPTVKuCvQRj/FxVTRiVR8fRaBRWoZMjTv5hFhoQ4e/WaApWISBf6x0//S6LiVfWWzTPNxzRgIaXyCkqFY4EpwMWUys/W+6UiItJegjCeAPw/wEQqpoxKomLNhLw8D/xeCqykVJhEOi/Vs8DV9VW1eekB3nz0dxKROv0HaTzpIB2O72rgF1VLZPIEqg5KZQcOJW1JXYympBcRkd5ZL4mKfwAsiYrPJlGxBOSagDdPoFpGqXAucCzpg77DgBF1V1VE+oVat32jv9+AWxWE8TrAk0EYnxqE8eeAzfMUzBOojgJWAydRKv8dGAv8sO6qiohIOzoDWB84HdgZ+Ge6H//vffI88Pt34KKK5efIeY/KzA4ALgaGAZe5e9TDfrsA9wFHufuNeY4t0gjK9hq6dO2aWxIVH8g+LgdO6E3ZPFl/y0iHSqpUBh4EzqZUfrq7YmY2DPgZsB+wBHjAzOa6+6Pd7Pf/Arf1puIiIjJ0BGF8B++PJSRRseZ9qjxdfxcB55B2+Y0Dvg78nHSQ2iuqlNsVWOzuT7v7W9n+h3az32nAr4GXc9RlwKkfe+Dpby7NSv9t9snXSWPJOcC3gYWkDZ6a8jzwewCl8m4Vy7MoFe6jVD6fUuG8KuXGAs9XLC8BKo+DmY0FPkea+bFLTwcysxnADICRI0fmqPLgUfeDiAxVWQ/Xg8AL7n6QmW0MXAcEQAIc6e5v1HPsJCou6LLqniCMcw1SmydQvUOpcCTQee/o8Ipt72vGVbBu1nXd/8fAN9z9bbPuds8Kuc8CZgFssMEG1b6zKgUREZGqvgY8BozOlkPgD+4emVmYLX+jngMHYbxxxeI6pAkV/5SnbJ6uv2NIszNeBl7KPh9LqbAeUG0CxSXAVhXL44AXu+wzFbjWzBLSAPhvZvbZPBWX9qNuF5HGMbNxQBG4rGL1oUDn0EdXAX35fV5A2lpbANwLnA2clKdgnqy/p4GDe9h6d5WSDwATzGw88AIwnXSWx3e5+7tTiJjZlcA8d7+5Zp1Empxa79KEhptZ5T2hWVlvVacfk44+VDmgwxbuvhTA3ZeaWa7nnrqTRMW6p4zKk/W3GXAyaR/le/uXyidWK+buHWZ2Kmk23zDgCndfZGanZNtn1ltpERHptQ53n9rdBjM7CHjZ3ReY2Scb8eVBGB9WbXsSFW/qaVuee1RzgP8Gfg+83ZuKufutwK1d1nUboNz9+N4cW4YGtSyGBl2ntjcNOMTMPkM6YOxoM/sl8JKZjclaU2PoW3b2ScCewO3Z8j7AnaSPOznQp0C1PqVyXTfPRESk+bn7ucC5AFmL6uvufqyZ/ZB09Igoe5/Tl68BJiZRcSlAEMZjgJ8lUbHmw795kinmUSp8pg+VExGRoSkC9jOzJ0kHb+h2dKGcgs4glXkJ2C5PwTwtqq8B51EqrAbWkKadO6Xy6OrFRERkqHH3O0m75HD314B9++nQdwZhfBtwDWnrajpwR56CebL+NKWHtBTdjxEZeElU7Bwxfa9s1awkKv4mT9meA1WpsD2l8t8oFaZ0v738UG8rKiIi7SsLTLmCU6VqLaqzSdPSL+xmm5NzwisREZG+qNKiKp+cve8zUJURERHpqlrXX9WHsyiVe8x5FxHpK91LbB1BGA8Drkqi4rH1lK+Wnn5wlddB9XyZNB+Nn5eP/k4i9Uui4tvAZkEY1zX9RbWuv17NwCgiIlJFQjq1x1xgxbsro+JFPZbIVOv6O6tqyVK55sFFREQyL2avdVh74NuaqmX96fkpERHpF0lU/G69Zat1/dV9UGms3t5kruem9EB8hzSGroU0oyCMNyOdRmQH0oFvAUiiYs1Hnap1/f0LpfIPKBV+Qncz+ZbKp9dTWRERaUuzSae1Pwg4hXSQ21fyFKyW9fdY9t45I2PXlzQZZaatrVX+Hs14Hs1YJ2l6myRR8XJgTRIV70qi4onA7nkKVuv6uyV7v6rHfURERPJZk70vDcK4SJpYMS5PwTwz/G4HfJ33z/CrIZREpE8G4v6pNI3vBWFcIB2e7yfAaODMPAXzTPNxAzATuIxezvArIiICkETFednHMunsvrnlCVQdlMqX9rpWItIrailINcmoL5D+xg9NQRhvA1wM7AG8A9wLnJlExadrla2W9bdx9ukWSoWvkA7Nvvq97eXX66+yiIh0Z6gHpCp+BfwM+Fy2PJ10EsXdahWs1qJaQJqWbtnyORXbHNim19UUkUGjFpsMMkui4i8qln8ZhPGpeQpWy/ob39daiYjI+7Vwq6maO4IwDoFrSRs7RwFxEMYbAyRRscdeumpdf7sAz1Mq/z1b/iLweeBZoKSuPxER6YWjsvcvdVl/IjV66ap1/f078GkASoW9gAg4DZgMzAIOr6+uItJu2rXbsU1bTt1KomLdvXTVRqYYVtFqOgqYRan8a0rlbwP/q94vlPz09H/z0zVam/4e0gg1AlWhs8W1L3B7xbY8ae0iIiJ9Vi1QXQPcRakwB/gH8N8AlAr/C7VlRdqCWkjSDKpl/X2fUuEPwBjgPymVO0dQX4f0XpWIiKB7UXkEYTwNWJhExRVBGB8LTAEuTqLis7XKVu/CK5Xv62bdE3XWU0RE2telwKQgjCeRzkt1OXA1sHetgtW6/kRERPpLRxIVHTiUtCV1MTlnkldShIiIDIRlQRifCxwL7BWE8TBgRJ6CalGJiMhAOIp0vNiTkqj4d2As8MM8BdWiEhGRhsuC00UVy8+R3qOqSYFKRCQnZffVLwjjZaTwuX6wAAALGklEQVRDJVUqAw8CZ1eb7qOhXX9mdoCZPW5mi80s7Gb7MWb2l+w138wmNbI+IiIyaC4inYVjLOkU9F8Hfk46SO0V1Qo2rEVlZsNI5x7ZD1gCPGBmc9390YrdngH2dvc3zOxA0jEEa85NIiIiQ84BSVSs/H2fFYTxfUlUPD8I4/OqFWxk19+uwGJ3fxrAzK4lTUt8N1C5+/yK/e8jjbIiIjLAzGwr0ntG/0Q6A+8sd7/YzDYGrgMCIAGOdPc36viKd4IwPhK4MVuuHNi8a5fgWhrZ9TcWeL5ieUm2ricnAb/tboOZzTCzB83swY6Ojn6soojI+6X3otpOB3C2u38E2B34qplNBELgD+4+AfhDtlyPY4B/Bl4GXso+HxuE8XpA1QkUG9mism7WdRs1zWwf0kD18e62u/ss0m5BNthgg6qRV0REes/dlwJLs8/LzOwx0sbFocAns92uAu4EvtHb42fJEgf3sPnuamUbGaiWAFtVLI8DXuy6k5l9FLgMONDdX2tgfURE2tlwM3uwYnlW1gh4HzMLgI8B9wNbZEEMd19qZpvX8+VBGG8GnEzahfhu7Emi4ok1K17PF+b0ADDBzMYDLwDTgbXa02b2IeAm4J/dXWMIisiAacNU8w53n1prJzP7APBr4Ax3/x+z7jrH6jKHdBaO3wNv96ZgwwKVu3eY2anAbcAw4Ap3X2Rmp2TbZwL/CmwC/Fv2x8j1hxQRkf5nZiNIg9Rsd78pW/2SmY3JWlNjSO8x1WP9JCr2ussQGvwclbvf6u7bufu27v79bN3MLEjh7v/H3T/o7pOzl4KUiPSrNk2M6DVLWwuXA4+5+0UVm+YCx2WfjyNtGdVjXhDGn6mnoEamEBERgGmkmXh/NbOF2brzgAi43sxOAp4Djqjz+F8DzgvCeDWwhjThzpOoOLpWQQUqEWkJbXjPqV+5+910n60NsG9fj59ExVxTenRHgUpERBomCOPtk6j4tyCMp3S3PYmKD9U6hgKViAwpajkNOWeTpqVf2M02Bz5V6wAKVCIi0jBJVDw5e9+n3mMoUIlIU1LLqTUEYXxYte1JVLyp2nZQoBKRQaRg1BZ6GjYJ0q4/BSoRGXwKSO0riYon9PUYClQiItIwQRifVW17EhUvqrYdFKhEpA49tZDUcpJu1P38VCcFKhHpkQKP9FUSFb/b12MoUImIApI0TBDG/5JExR8EYfwTupmTMImKp9c6hgKVSJtQMJJB8lj2/mDVvapQoBJpMQpI0kySqHhL9n5VvcdQoBIRkYYLwng74Ou8f4ZfDaEk0qrUcpIh5gZgJnAZzTLDr4iISIWOJCpeWk9BBSqRJqeWkwxlQRhvnH28JQjjrwC/AVZ3bk+i4uu1jqFAJSIijbSANC29c1LGcyq2ObBNrQMoUIk0CbWcpBUlUXF8X4+hQCUygBSMpF0FYXwE8LskKi4LwvhbwBTggiQqPlyr7DoNr51IG0oDkohU+HYWpD4O7A9cRZoFWJMClUgfKCCJ5NaZkl4ELk2i4hxgZJ6CClTSdqoFl562KSCJ9NkLQRj/O3AkcGsQxuuSMwYpUElD1fPD39syCi4iQ8KRwG3AAUlUfBPYmLUzAHukZIo2UO0Gfm/nFdI8RCJSjyQqrqRi2vkkKi4FluYpqxZVE1ALQkSkZ20VqAazu0lBRESkPm0VqEREZOhRoBIRkaamQCUiIk1NgUpERJqaApWIiDQ1BSoREWlqClQiItLUGhqozOwAM3vczBabWdjNdjOzS7LtfzGzKY2sj4iI9KzWb/ZgaVigMrNhwM+AA4GJwNFmNrHLbgcCE7LXDODSRtVHRER6lvM3e1A0skW1K7DY3Z9297eAa4FDu+xzKHC1p+4DNjKzMQ2sk4iIdC/Pb/agMHdvzIHNDgcOcPf/ky3/M7Cbu59asc88IHL3u7PlPwDfcPcHuxxrBmmLC9JZIf/RkEo3n+FAx2BXYhDovNuLzntgrAc8VLE8y91ndS7k+c0eLI0cPd26Wdc1KubZh+yPOaubfVuamT3o7lMHux4DTefdXnTeTSPX7/FgaGTX3xJgq4rlccCLdewjIiKN17S/x40MVA8AE8xsvJmNBKYDc7vsMxf4Ypb9tztQdvdc85OIiEi/yvObPSga1vXn7h1mdirpjI7DgCvcfZGZnZJtnwncCnwGWAysBE5oVH2GqLbr7szovNuLzrsJ9PSbPcjVAhqYTCEiItIfNDKFiIg0NQUqERFpagpUA8zMrjCzl83skS7rT8uGLllkZj+oWH9uNpzJ42a2f8X6nc3sr9m2S8ysu9TSptGb8zazwMz+YWYLs9fMiv2HzHl3d85mdl3FeSVmtrBiW8te657Ou1WuNfR43pPN7L7s3B40s10rtrXE9R4Q7q7XAL6AvUgfWn6kYt0+wO+BdbPlzbP3icCfgXWB8cBTwLBs25+APUifffgtcOBgn1s/nndQuV+X4wyZ8+7unLtsvxD413a41lXOuyWudU/nDfxnZ71JE8fubLXrPRAvtagGmLv/EXi9y+ovk47QsTrb5+Vs/aHAte6+2t2fIc2O3DUbZmq0u9/r6X/ZVwOfHZgzqE8vz7tbQ+28ezhnIB2QGTgSuCZb1erXGuj2vLvVQuftwOjsc4H3nktqmes9EBSomsN2wCfM7H4zu8vMdsnWjwWer9hvSbZubPa56/qhpqfzBhhvZg9n6z+RrWuV8wb4BPCSuz+ZLbf6te7U9byhta/1GcAPzex54EfAudn6drne/aKRQyhJfsOBDwK7A7sA15vZNvQ8pEnTDnXSSz2d91LgQ+7+mpntDNxsZjvQOucNcDRrtypa/Vp36nrerX6tvwyc6e6/NrMjgcuBT9M+17tfKFA1hyXATVlT/09m9g6wKT0PabIk+9x1/VDT7Xm7+ytAZ3fgAjN7irT11RLnbWbDgcOAnStWt/q17va8s27flr3WwHHA17LPNwCXZZ9b/nr3J3X9NYebgU8BmNl2wEjgVdLhS6ab2bpmNp503q4/eTrM1DIz2z3r8/8iMGdwqt4n3Z63mW1m6dw4ZC2sCcDTLXTenwb+5u6VXTytfq2hm/Nug2v9IrB39vlTQGeXZztc7/4z2Nkc7fYi7fZYCqwh/dfTSaQ/0L8EHiEdhv9TFft/kzQj6HEqsn+Aqdn+TwE/JRtlpFlfvTlv4PPAItKsqIeAg4fieXd3ztn6K4FTutm/Za91T+fdKte6p/MGPg4syM7vfmDnVrveA/HSEEoiItLU1PUnIiJNTYFKRESamgKViIg0NQUqERFpagpUIiLS1BSoRKqw1N1mdmDFuiPN7HeDWS+RdqL0dJEazGxH0lEFPkY6RfdC4AB3f6oPxxzu7h39VEWRlqZAJZKDpXNlrQA2AJa5+wVmdhzwVdIHl+cDp7r7O2Y2i3S6h/WA69z9/OwYS4B/Bw4AfuzuNwzCqYgMORrrTySf75KOnPAWMDVrZX0O2NPdO7LgNB34FRC6++vZ2HZ3mNmN7v5odpwV7j5tME5AZKhSoBLJwd1XmNl1wHJ3X21mnyYd8f3BbALW9Xhv2oajzewk0v+/tiSdJK8zUF03sDUXGfoUqETyeyd7QTodwxXu/u3KHcxsAulo2bu6+5tm9ktgVMUuKwakpiItRFl/IvX5PXCkmW0KYGabmNmHSGdzXQb8TzZb6/6DWEeRlqAWlUgd3P2vZvZd4Pdmtg7piNmnAA+SdvM9AjwN3DN4tRRpDcr6ExGRpqauPxERaWoKVCIi0tQUqEREpKkpUImISFNToBIRkaamQCUiIk1NgUpERJra/w/Jqsi2FOwwOwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax1 = plt.subplots()\n",
"color = 'tab:orange'\n",
"ax1.set_xlabel('Year')\n",
"ax1.set_ylabel('Shillings par semaine', color=color)\n",
"\n",
"ax2 = ax1.twinx()\n",
"\n",
"color = 'tab:blue'\n",
"ax2.set_ylabel('shillings par quart de boisseau de blé', color=color)\n",
"\n",
"p1 = plt.bar( data['Year'],data['Wheat'] )\n",
"\n",
"p2 = plt.bar( data['Year'],data['Wages'])\n",
"\n",
"\n",
"plt.legend([p1, p2], [\"Wheat\", \"Wages\"])\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}