{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Titre du document" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEgdJREFUeJzt3WuMnFd9x/HvDwfCvSSNnRrbqkNloEkECXVdWiilMS1RQThvglyVyi2WLKGUm6BgF6kVLyy5UFF4UaisALFKwLjcYlEKGBeKKpWETQgXJ6SxSGovNvFyK5dKAZt/X8xDNax3vbO7s55Zn+9Hsp7nOXOe2f96d35z9swzZ1JVSJIufI8YdQGSpPPDwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ14qJRFwBw2WWX1fr160ddhiQtK3feeee3q2rloP0HCvwkTwJuBq4GCng5cB/wQWA98CDw0qr6Xtd/F7AdOAO8qqo+da77X79+PRMTE4PWLEkCkvz3fPoPOqXzDuCTVfV04JnAvcBO4HBVbQAOd8ckuRLYClwFXA+8M8mK+RQlSRq+OQM/yROB5wHvBqiqn1TV94EtwL6u2z7ghm5/C7C/qh6uqgeAo8CmYRcuSZqfQUb4TwGmgPcm+VKSm5M8Dri8qk4CdNtVXf81wPG+8ye7NknSCA0S+BcBzwLeVVXXAj+mm76ZRWZoO2sN5iQ7kkwkmZiamhqoWEnSwg0S+JPAZFXd3h1/iN4TwENJVgN021N9/df1nb8WODH9Tqtqb1VtrKqNK1cO/CKzJGmB5gz8qvoWcDzJ07qmzcA9wEFgW9e2Dbit2z8IbE1ycZIrgA3AHUOtWpI0b4Neh/9K4NYkjwK+Afw5vSeLA0m2A8eAGwGq6kiSA/SeFE4DN1XVmaFXLkmal4ECv6ruBjbOcNPmWfrvBnYvoi5J0pC5tIIkNWIsllaQLiTrd/7LjO0P7nnRea5E+kUGvtSZLahnY4BruTHwpQWa7xOENGoGvppjUKtVvmgrSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mN8J220nniomoaNQNfFySXT5DO5pSOJDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUiIECP8mDSb6a5O4kE13bpUkOJbm/217S139XkqNJ7kvywqUqXpI0uPksnvb7VfXtvuOdwOGq2pNkZ3f8xiRXAluBq4AnA59J8tSqOjO0qqWOi6RJg1vMlM4WYF+3vw+4oa99f1U9XFUPAEeBTYv4OpKkIRg08Av4dJI7k+zo2i6vqpMA3XZV174GON537mTX9guS7EgykWRiampqYdVLkgY26JTOc6rqRJJVwKEkXz9H38zQVmc1VO0F9gJs3LjxrNslScM10Ai/qk5021PAR+lN0TyUZDVAtz3VdZ8E1vWdvhY4MayCJUkLM2fgJ3lckif8fB/4Q+BrwEFgW9dtG3Bbt38Q2Jrk4iRXABuAO4ZduCRpfgaZ0rkc+GiSn/d/f1V9MskXgQNJtgPHgBsBqupIkgPAPcBp4Cav0JGk0Zsz8KvqG8AzZ2j/DrB5lnN2A7sXXZ3UAD/cXOeL77SVpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakR81keWRoZl0GWFs8RviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AjX0pHGlJ91q2FzhC9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaMXDgJ1mR5EtJPt4dX5rkUJL7u+0lfX13JTma5L4kL1yKwiVJ8zOfEf6rgXv7jncCh6tqA3C4OybJlcBW4CrgeuCdSVYMp1xJ0kINFPhJ1gIvAm7ua94C7Ov29wE39LXvr6qHq+oB4CiwaTjlSpIWatAR/tuBNwA/62u7vKpOAnTbVV37GuB4X7/Jrk2SNEJzBn6SFwOnqurOAe8zM7TVDPe7I8lEkompqakB71qStFCDjPCfA7wkyYPAfuC6JO8DHkqyGqDbnur6TwLr+s5fC5yYfqdVtbeqNlbVxpUrVy7iW5AkDWLOxdOqahewCyDJ84HXV9XLkrwV2Abs6ba3daccBN6f5G3Ak4ENwB3DL10XotkWDJO0eItZLXMPcCDJduAYcCNAVR1JcgC4BzgN3FRVZxZdqSRpUeYV+FX1OeBz3f53gM2z9NsN7F5kbZKkIfKdtpLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1IjFLK0gLZhr5kjnnyN8SWqEI3xpmZntr6MH97zoPFei5cYRviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AjX0pEuEK6xo7k4wpekRhj4ktQIp3S0pPygE2l8zDnCT/LoJHck+XKSI0ne3LVfmuRQkvu77SV95+xKcjTJfUleuJTfgCRpMINM6TwMXFdVzwSuAa5P8mxgJ3C4qjYAh7tjklwJbAWuAq4H3plkxVIUL0ka3JyBXz0/6g4f2f0rYAuwr2vfB9zQ7W8B9lfVw1X1AHAU2DTUqiVJ8zbQi7ZJViS5GzgFHKqq24HLq+okQLdd1XVfAxzvO32ya5t+nzuSTCSZmJqaWsz3IEkawECBX1VnquoaYC2wKcnV5+ieme5ihvvcW1Ubq2rjypUrB6tWkrRg87oss6q+D3yO3tz8Q0lWA3TbU123SWBd32lrgROLrlSStCiDXKWzMsmTuv3HAC8Avg4cBLZ13bYBt3X7B4GtSS5OcgWwAbhj2IVLkuZnkOvwVwP7uittHgEcqKqPJ/lP4ECS7cAx4EaAqjqS5ABwD3AauKmqzixN+ZKkQc0Z+FX1FeDaGdq/A2ye5ZzdwO5FVydJGhqXVpCkRri0gobCJRSk8ecIX5IaYeBLUiOc0pEucOeabvPDUdriCF+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEZ4Hb7UsNmu0ff6/AuTI3xJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGzBn4SdYl+WySe5McSfLqrv3SJIeS3N9tL+k7Z1eSo0nuS/LCpfwGJEmDGWR55NPA66rqriRPAO5Mcgj4M+BwVe1JshPYCbwxyZXAVuAq4MnAZ5I8tarOLM23oPNptuV0JY2/OUf4VXWyqu7q9n8I3AusAbYA+7pu+4Abuv0twP6qeriqHgCOApuGXbgkaX7mNYefZD1wLXA7cHlVnYTekwKwquu2Bjjed9pk1yZJGqGBAz/J44EPA6+pqh+cq+sMbTXD/e1IMpFkYmpqatAyJEkLNFDgJ3kkvbC/tao+0jU/lGR1d/tq4FTXPgms6zt9LXBi+n1W1d6q2lhVG1euXLnQ+iVJA5rzRdskAd4N3FtVb+u76SCwDdjTbW/ra39/krfRe9F2A3DHMIuWtLT8rNsL0yBX6TwH+FPgq0nu7tr+il7QH0iyHTgG3AhQVUeSHADuoXeFz01eoSNJozdn4FfVfzDzvDzA5lnO2Q3sXkRdkqQh8522ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1YpA3XqlBLoMsXXgc4UtSIwx8SWqEgS9JjXAOv3HO1UvtcIQvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGuFlmZIG5oebL2+O8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNmPONV0neA7wYOFVVV3dtlwIfBNYDDwIvrarvdbftArYDZ4BXVdWnlqRySWPDN2QtD4OM8G8Brp/WthM4XFUbgMPdMUmuBLYCV3XnvDPJiqFVK0lasDkDv6o+D3x3WvMWYF+3vw+4oa99f1U9XFUPAEeBTUOqVZK0CAudw7+8qk4CdNtVXfsa4Hhfv8mu7SxJdiSZSDIxNTW1wDIkSYMa9ou2maGtZupYVXuramNVbVy5cuWQy5AkTbfQwH8oyWqAbnuqa58E1vX1WwucWHh5kqRhWWjgHwS2dfvbgNv62rcmuTjJFcAG4I7FlShJGoZBLsv8APB84LIkk8DfAHuAA0m2A8eAGwGq6kiSA8A9wGngpqo6s0S1S5LmYc7Ar6o/nuWmzbP03w3sXkxRki4MXp8/XvzEq0bM9sCT1A4D/wJjsEuajWvpSFIjHOFLOu+c2x8NR/iS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRvjGqzHmm1MkDZOBvwy5Xo6khXBKR5IaYeBLUiOc0pE0Nnzdamk5wpekRhj4ktQIA1+SGuEcvqSx59z+cBj4kpYtnwjmx8A/j3zDlKRRcg5fkhph4EtSI5zSkXTBme/0aStz/ksW+EmuB94BrABurqo9S/W1xo1z9ZLG0ZIEfpIVwD8AfwBMAl9McrCq7lmKrydJi3GuQdqFNPpfqhH+JuBoVX0DIMl+YAsw1oE/30u8HMlLWk6WKvDXAMf7jieB31qir7XkQW2wS+1a6sf/+fwLYqkCPzO01S90SHYAO7rDHyW5r9u/DPj2UIr422Hcy6yGVucSssbhWQ51WuNwnNcaF5FTlwG/Op8TlirwJ4F1fcdrgRP9HapqL7B3+olJJqpq4xLVNTTLoU5rHJ7lUKc1DsdyqBH+v8718zlnqa7D/yKwIckVSR4FbAUOLtHXkiQNYElG+FV1OslfAJ+id1nme6rqyFJ8LUnSYJbsOvyq+gTwiQWcetY0z5haDnVa4/AshzqtcTiWQ42wgDpTVXP3kiQte66lI0mNGJvAT7IuyWeT3JvkSJJXj7qm2SRZkeRLST4+6lpmkuRJST6U5Ovd/+dvj7qmmSR5bfez/lqSDyR59BjU9J4kp5J8ra/t0iSHktzfbS8ZZY1dTTPV+dbuZ/6VJB9N8qRxq7HvttcnqSSXjaK2vjpmrDHJK5Pc1/1+vmVU9fXVM9PP+5okX0hyd5KJJJvmup+xCXzgNPC6qvp14NnATUmuHHFNs3k1cO+oiziHdwCfrKqnA89kDGtNsgZ4FbCxqq6m9+L+1tFWBcAtwPXT2nYCh6tqA3C4Ox61Wzi7zkPA1VX1DOC/gF3nu6hpbuHsGkmyjt6yK8fOd0EzuIVpNSb5fXorAzyjqq4C/m4EdU13C2f/X74FeHNVXQP8dXd8TmMT+FV1sqru6vZ/SC+k1oy2qrMlWQu8CLh51LXMJMkTgecB7waoqp9U1fdHW9WsLgIek+Qi4LFMe6/GKFTV54HvTmveAuzr9vcBN5zXomYwU51V9emqOt0dfoHe+19GZpb/S4C/B97AtDdjjsIsNb4C2FNVD3d9Tp33wqaZpc4Cntjt/xIDPH7GJvD7JVkPXAvcPtpKZvR2er+sPxt1IbN4CjAFvLebdro5yeNGXdR0VfVNeiOnY8BJ4H+q6tOjrWpWl1fVSegNTIBVI65nEC8H/nXURUyX5CXAN6vqy6Ou5RyeCvxuktuT/HuS3xx1QbN4DfDWJMfpPZbm/Itu7AI/yeOBDwOvqaofjLqefkleDJyqqjtHXcs5XAQ8C3hXVV0L/JjxmIL4Bd08+BbgCuDJwOOSvGy0VV0YkryJ3hTpraOupV+SxwJvojf9MM4uAi6hN7X8l8CBJDMtFzNqrwBeW1XrgNfS/VV/LmMV+EkeSS/sb62qj4y6nhk8B3hJkgeB/cB1Sd432pLOMglMVtXP/zr6EL0ngHHzAuCBqpqqqp8CHwF+Z8Q1zeahJKsBuu3I/8SfTZJtwIuBP6nxu+b61+g9wX+5ewytBe5K8isjrepsk8BHqucOen/Nj/TF5Vlso/e4AfhneqsUn9PYBH73DPpu4N6qetuo65lJVe2qqrXd+hVbgX+rqrEalVbVt4DjSZ7WNW1mPJelPgY8O8lju5/9ZsbwxeXOQXoPLrrtbSOsZVbdhw69EXhJVf3vqOuZrqq+WlWrqmp99xiaBJ7V/c6Ok48B1wEkeSrwKMZzwbcTwO91+9cB9895RlWNxT/gufRehPgKcHf3749GXdc56n0+8PFR1zFLbdcAE93/5ceAS0Zd0yx1vhn4OvA14J+Ai8egpg/Qe03hp/QCaTvwy/Suzrm/2146pnUepbcs+c8fP/84bjVOu/1B4LJxq5FewL+v+728C7huTH/ezwXuBL5M7/XO35jrfnynrSQ1YmymdCRJS8vAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEf8HKfuobbIQMVAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "x = np.random.normal(10, 2, 10000)\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "plt.hist(x, bins=50)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }