modification avec réexecution du code sur ma machine

parent be38a660
......@@ -40,66 +40,65 @@
"name": "stdout",
"output_type": "stream",
"text": [
"3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 18:10:19) \n",
"3.6.4 |Anaconda, Inc.| (default, Mar 13 2018, 01:15:57) \n",
"[GCC 7.2.0]\n",
"uname_result(system='Linux', node='3a716011d2b6', release='4.4.0-116-generic', version='#140-Ubuntu SMP Mon Feb 12 21:23:04 UTC 2018', machine='x86_64', processor='x86_64')\n",
"IPython 6.4.0\n",
"IPython.core.release 6.4.0\n",
"PIL 5.2.0\n",
"PIL.Image 5.2.0\n",
"PIL._version 5.2.0\n",
"uname_result(system='Linux', node='1a8f1c635b65', release='4.4.0-164-generic', version='#192-Ubuntu SMP Fri Sep 13 12:02:50 UTC 2019', machine='x86_64', processor='x86_64')\n",
"IPython 7.12.0\n",
"IPython.core.release 7.12.0\n",
"PIL 7.0.0\n",
"PIL.Image 7.0.0\n",
"PIL._version 7.0.0\n",
"_csv 1.0\n",
"_ctypes 1.1.0\n",
"_curses b'2.2'\n",
"decimal 1.70\n",
"argparse 1.1\n",
"backcall 0.1.0\n",
"cffi 1.11.5\n",
"cffi 1.13.2\n",
"csv 1.0\n",
"ctypes 1.1.0\n",
"cycler 0.10.0\n",
"dateutil 2.7.3\n",
"dateutil 2.8.1\n",
"decimal 1.70\n",
"decorator 4.3.0\n",
"decorator 4.4.1\n",
"distutils 3.6.4\n",
"ipaddress 1.0\n",
"ipykernel 4.8.2\n",
"ipykernel._version 4.8.2\n",
"ipykernel 5.1.4\n",
"ipykernel._version 5.1.4\n",
"ipython_genutils 0.2.0\n",
"ipython_genutils._version 0.2.0\n",
"ipywidgets 7.2.1\n",
"ipywidgets._version 7.2.1\n",
"jedi 0.12.1\n",
"jedi 0.16.0\n",
"json 2.0.9\n",
"jupyter_client 5.2.3\n",
"jupyter_client._version 5.2.3\n",
"jupyter_core 4.4.0\n",
"jupyter_core.version 4.4.0\n",
"kiwisolver 1.0.1\n",
"jupyter_client 6.0.0\n",
"jupyter_client._version 6.0.0\n",
"jupyter_core 4.6.3\n",
"jupyter_core.version 4.6.3\n",
"kiwisolver 1.1.0\n",
"logging 0.5.1.2\n",
"matplotlib 2.2.2\n",
"matplotlib.backends.backend_agg 2.2.2\n",
"numpy 1.13.3\n",
"numpy.core 1.13.3\n",
"matplotlib 2.2.3\n",
"matplotlib.backends.backend_agg 2.2.3\n",
"numpy 1.15.2\n",
"numpy.core 1.15.2\n",
"numpy.core.multiarray 3.1\n",
"numpy.core.umath b'0.4.0'\n",
"numpy.lib 1.13.3\n",
"numpy.lib 1.15.2\n",
"numpy.linalg._umath_linalg b'0.1.5'\n",
"numpy.matlib 1.13.3\n",
"numpy.matlib 1.15.2\n",
"optparse 1.5.3\n",
"pandas 0.22.0\n",
"_libjson 1.33\n",
"parso 0.3.0\n",
"patsy 0.5.0\n",
"patsy.version 0.5.0\n",
"pexpect 4.6.0\n",
"pickleshare 0.7.4\n",
"parso 0.6.0\n",
"patsy 0.5.1\n",
"patsy.version 0.5.1\n",
"pexpect 4.8.0\n",
"pickleshare 0.7.5\n",
"platform 1.0.8\n",
"prompt_toolkit 1.0.15\n",
"prompt_toolkit 3.0.3\n",
"ptyprocess 0.6.0\n",
"pygments 2.2.0\n",
"pyparsing 2.2.0\n",
"pytz 2018.5\n",
"pygments 2.5.2\n",
"pyparsing 2.4.6\n",
"pytz 2019.3\n",
"re 2.2.1\n",
"scipy 1.1.0\n",
"scipy._lib.decorator 4.0.5\n",
......@@ -134,16 +133,16 @@
"seaborn 0.8.1\n",
"seaborn.external.husl 2.1.0\n",
"seaborn.external.six 1.10.0\n",
"six 1.11.0\n",
"six 1.14.0\n",
"statsmodels 0.9.0\n",
"statsmodels.__init__ 0.9.0\n",
"traitlets 4.3.2\n",
"traitlets._version 4.3.2\n",
"traitlets 4.3.3\n",
"traitlets._version 4.3.3\n",
"urllib.request 3.6\n",
"zlib 1.0\n",
"zmq 17.1.0\n",
"zmq.sugar 17.1.0\n",
"zmq.sugar.version 17.1.0\n"
"zmq 17.1.2\n",
"zmq.sugar 17.1.2\n",
"zmq.sugar.version 17.1.2\n"
]
}
],
......@@ -179,6 +178,13 @@
"Let's start by reading data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"William: link corrected for an external call to the Mooc gitlab (I didn't copy all the documents on my session)."
]
},
{
"cell_type": "code",
"execution_count": 2,
......@@ -434,7 +440,7 @@
}
],
"source": [
"data = pd.read_csv(\"https://app-learninglab.inria.fr/gitlab/moocrr-session1/moocrr-reproducibility-study/raw/master/data/shuttle.csv\")\n",
"data = pd.read_csv(\"https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/raw/master/data/shuttle.csv?inline=false\")\n",
"data"
]
},
......@@ -452,12 +458,14 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGBNJREFUeJzt3XuQnXWd5/H3t5MACYmAxMkwBAQGhpUCJkDLReaSCFqBKpN1AYUtwXEGM1uSskRHYWZdhmGdqpVRmXFlFGRxhC2NXEbIzmaWixAdprgFiOEmTA8gdEDAGCANIemkv/vHefrxpOnLOZ1++vQ5vF9VqZznOb9++vvtp09/+rn070RmIkkSQFerC5AkTR2GgiSpZChIkkqGgiSpZChIkkqGgiSpVFkoRMTVEfFSRDwywvMREV+PiJ6IWBcRR1dViySpMVUeKfwDsHiU508BDin+LQO+WWEtkqQGVBYKmfkT4FejDFkKXJM19wB7RsQ+VdUjSRrb9BZ+7n2B5+qWe4t1LwwdGBHLqB1NMHPmzGP222+/SSmwUQMDA3R1dd7lmU7tCzq3N/tqP5PV25NPPvnLzHzXWONaGQoxzLph59zIzCuBKwG6u7tzzZo1VdbVtNWrV7Nw4cJWlzHhOrUv6Nze7Kv9TFZvEfHzRsa1Mnp7gfpf+ecDz7eoFkkSrQ2FlcA5xV1IxwOvZuZbTh1JkiZPZaePIuL7wEJgbkT0An8JzADIzG8Bq4BTgR7gDeATVdUiSWpMZaGQmWeN8XwC51X1+SVJzevMy/mSpHExFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklSqNBQiYnFEPBERPRFx4TDP7x8Rd0bEQxGxLiJOrbIeSdLoKguFiJgGXA6cAhwGnBURhw0Z9kXgusw8CjgT+Puq6pEkja3KI4VjgZ7MfCoztwIrgKVDxiTwjuLxHsDzFdYjSRpDZGY1G444HVicmecWy2cDx2Xm8rox+wC3AnsBuwMnZ+YDw2xrGbAMYN68ecesWLGikprHq6+vj9mzZ7e6jAnXqX1B5/ZmX+1nsnpbtGjRA5nZPda46RXWEMOsG5pAZwH/kJlfjYgTgGsj4vDMHNjhgzKvBK4E6O7uzoULF1ZR77itXr2aqVbTROjUvqBze7Ov9jPVeqvy9FEvsF/d8nzeenroT4DrADLzbmA3YG6FNUmSRlFlKNwPHBIRB0bELtQuJK8cMuZZ4CSAiHgPtVB4ucKaJEmjqCwUMnMbsBy4BXic2l1Gj0bEJRGxpBj2OeCTEfFT4PvAH2VVFzkkSWOq8poCmbkKWDVk3UV1jx8DTqyyBklS4/yLZklSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUqDYWIWBwRT0RET0RcOMKYj0TEYxHxaER8r8p6JEmjm97IoIg4PDMfaWbDETENuBz4ANAL3B8RKzPzsboxhwB/DpyYmRsj4jea+RySpInV6JHCtyLivoj4VETs2eDHHAv0ZOZTmbkVWAEsHTLmk8DlmbkRIDNfanDbkqQKRGY2NrD2W/0fA2cA9wHfyczbRhl/OrA4M88tls8GjsvM5XVjbgKeBE4EpgEXZ+b/G2Zby4BlAPPmzTtmxYoVjXU3Sfr6+pg9e3ary5hwndoXdG5v9tV+Jqu3RYsWPZCZ3WMOzMyG/1H7wX0asB54HPgZ8J9GGHsGcFXd8tnA/xwy5p+AHwIzgAOpnWbac7QajjnmmJxq7rzzzlaXUIlO7Suzc3uzr/YzWb0Ba7KBn/MNnT6KiCMj4rIiCN4PfCgz31M8vmyED+sF9qtbng88P8yYmzOzPzOfBp4ADmmkJknSxGv0msI3gAeB383M8zLzQYDMfB744ggfcz9wSEQcGBG7AGcCK4eMuQlYBBARc4HfAZ5qrgVJ0kRp6O4j4FRgc2ZuB4iILmC3zHwjM68d7gMyc1tELAduoXba6erMfDQiLqF2GLOyeO6DEfEYsB34fGZu2MmeJEnj1Ggo3A6cDPQVy7OAW4H3jfZBmbkKWDVk3UV1jxP4bPFPktRijZ4+2i0zBwOB4vGsakqSJLVKo6HwekQcPbgQEccAm6spSZLUKo2ePvoMcH1EDN49tA/w0WpKkiS1SkOhkJn3R8R/AA4FAvhZZvZXWpkkadI1eqQA8F7ggOJjjooIMvOaSqqSJLVEoxPiXQv8NrCW2q2jAAkYCpLUQRo9UugGDituIZUkdahG7z56BPjNKguRJLVeo0cKc4HHIuI+YMvgysxcUklVkqSWaDQULq6yCEnS1NDoLak/joh3A4dk5u0RMYvafEaSpA7S6NTZnwRuAK4oVu1LbYZTSVIHafRC83nU3h3tNYDM/DfA91OWpA7TaChsydr7LAMQEdOp/Z2CJKmDNBoKP46IvwBmRsQHgOuB/1NdWZKkVmg0FC4EXgYeBv6U2nskjPSOa5KkNtXo3UcDwLeLf5KkDtXo3EdPM8w1hMw8aMIrkiS1TDNzHw3aDTgDeOfElyNJaqWGrilk5oa6f+sz82+B91dcmyRpkjV6+ujousUuakcOcyqpSJLUMo2ePvpq3eNtwDPARya8GklSSzV699GiqguRJLVeo6ePPjva85n5tYkpR5LUSs3cffReYGWx/CHgJ8BzVRQlSWqNZt5k5+jM3AQQERcD12fmuVUVJkmafI1Oc7E/sLVueStwwIRXI0lqqUaPFK4F7ouIH1L7y+YPA9dUVpUkqSUavfvoryPin4HfL1Z9IjMfqq4sSVIrNHr6CGAW8Fpm/h3QGxEHVlSTJKlFGn07zr8ELgD+vFg1A/jfVRUlSWqNRo8UPgwsAV4HyMzncZoLSeo4jYbC1sxMiumzI2L36kqSJLVKo6FwXURcAewZEZ8Ebsc33JGkjtPo3UdfKd6b+TXgUOCizLyt0sokSZNuzCOFiJgWEbdn5m2Z+fnM/LNGAyEiFkfEExHRExEXjjLu9IjIiOgeaYwkqXpjhkJmbgfeiIg9mtlwREwDLgdOAQ4DzoqIw4YZNwf4NHBvM9uXJE28Rv+i+U3g4Yi4jeIOJIDM/PQoH3Ms0JOZTwFExApgKfDYkHH/HbgU+LNGi5YkVaPRUPi/xb9m7MuOs6j2AsfVD4iIo4D9MvOfImLEUIiIZcAygHnz5rF69eomS6lWX1/flKtpInRqX9C5vdlX+5lqvY0aChGxf2Y+m5nfHce2Y5h1WbftLuAy4I/G2lBmXglcCdDd3Z0LFy4cRznVWb16NVOtponQqX1B5/ZmX+1nqvU21jWFmwYfRMSNTW67F9ivbnk+8Hzd8hzgcGB1RDwDHA+s9GKzJLXOWKFQ/9v+QU1u+37gkIg4MCJ2Ac7k12/SQ2a+mplzM/OAzDwAuAdYkplrmvw8kqQJMlYo5AiPx5SZ24DlwC3A48B1mfloRFwSEUuaK1OSNBnGutD8uxHxGrUjhpnFY4rlzMx3jPbBmbkKWDVk3UUjjF3YUMWSpMqMGgqZOW2yCpEktV4z76cgSepwhoIkqWQoSJJKhoIkqfS2CYUNfVv46XOvsKFvS6tLkdSEDX1b2Ny/3dfuJHlbhMLNa9dz4pfv4GNX3cuJX76DlWvXt7okSQ0YfO0+/fLrvnYnSceHwoa+LVxw4zre7B9g05ZtvNk/wBduXOdvHdIUV//a3Z7pa3eSdHwo9G7czIyuHduc0dVF78bNLapIUiN87bZGx4fC/L1m0j8wsMO6/oEB5u81s0UVSWqEr93W6PhQ2Hv2rlx62pHsNqOLObtOZ7cZXVx62pHsPXvXVpcmaRT1r91pEb52J0mjb7LT1pYs2JcTD55L78bNzN9rpt9UUpsYfO3ed/dd/OuS3/O1OwneFqEAtd86/IaS2s/es3dl5oxpvn4nScefPpIkNc5QkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUqnSUIiIxRHxRET0RMSFwzz/2Yh4LCLWRcSPIuLdVdYjSRpdZaEQEdOAy4FTgMOAsyLisCHDHgK6M/NI4Abg0qrqkSSNrcojhWOBnsx8KjO3AiuApfUDMvPOzHyjWLwHmF9hPZKkMURmVrPhiNOBxZl5brF8NnBcZi4fYfw3gF9k5peGeW4ZsAxg3rx5x6xYsaKSmserr6+P2bNnt7qMCdepfUHn9mZf7Weyelu0aNEDmdk91rjpFdYQw6wbNoEi4mNAN/CHwz2fmVcCVwJ0d3fnwoULJ6jEibF69WqmWk0ToVP7gs7tzb7az1TrrcpQ6AX2q1ueDzw/dFBEnAz8V+APM3NLhfVIksZQ5TWF+4FDIuLAiNgFOBNYWT8gIo4CrgCWZOZLFdYiSWpAZaGQmduA5cAtwOPAdZn5aERcEhFLimF/A8wGro+ItRGxcoTNSZImQZWnj8jMVcCqIesuqnt8cpWfv51t6NtC78bNzN9rJnvP3nXCxraTTu2rKj0vbmLjG/30vLiJg+fNaXU5alOVhoLG5+a167ngxnXM6Oqif2CAS087kiUL9t3pse2kU/uqykU3Pcw19zzL547YxvmX/YRzTtifS5Ye0eqy1Iac5mKK2dC3hQtuXMeb/QNs2rKNN/sH+MKN69jQ99Zr8M2MbSed2ldVel7cxDX3PLvDumvufpaeFze1qCK1M0NhiunduJkZXTvulhldXfRu3LxTY9tJp/ZVlbXPvdLUemk0hsIUM3+vmfQPDOywrn9ggPl7zdypse2kU/uqyoL99mxqvTQaQ2GK2Xv2rlx62pHsNqOLObtOZ7cZXVx62pHDXmhtZmw76dS+qnLwvDmcc8L+O6w754T9vdiscfFC8xS0ZMG+nHjw3IbuvGlmbDvp1L6qcsnSIzjn+AN4+IF7uP384w0EjZuhMEXtPXvXhn8QNjO2nXRqX1U5eN4cemfNMBC0Uzx9JEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpFKloRARiyPiiYjoiYgLh3l+14j4QfH8vRFxQJX1SM3a0LeFnz73Chv6tow6bs3TG/jarU+w5ukNE7bNZsf2vLiJjW/00/PipjHHNqOqepv5/Jv7tzf8NbhhzXMd9zWocrtDTa9qwxExDbgc+ADQC9wfESsz87G6YX8CbMzMgyPiTODLwEerqklqxs1r13PBjeuY0dVF/8AAl552JEsW7PuWcR+76h7u6qmFwdfv6OH3D96ba889fqe22ezYi256mGvueZbPHbGN8y/7CeecsD+XLD1inJ1XX2+zn//T7+nn/C/f0dDXYFCnfA2q3O5wqjxSOBboycynMnMrsAJYOmTMUuC7xeMbgJMiIiqsSWrIhr4tXHDjOt7sH2DTlm282T/AF25c95bf0tY8vaEMhEH/0rNh2COGRrfZ7NieFzft8MMQ4Jq7n93p35arqnc8n3975tvya1DldkcSmVnNhiNOBxZn5rnF8tnAcZm5vG7MI8WY3mL534sxvxyyrWXAsmLxUOCJSooev7nAL8cc1X46tS8Yo7eYMXPW9L32+Z3o6po2uC4HBrZv2/jCk9m/+Y3BddPmzP2tabvvuc/Qj9/++isvbN/0y+fHs81mx3bN2mPv6e941wEA2994lWmz9gBg22svPzPwxqtjn8/aya9Bs2PH8/kH+2rka1CvTb4GE/K92IB3Z+a7xhpU2ekjYLjf+IcmUCNjyMwrgSsnoqgqRMSazOxudR0TrVP7gs7tLSLWbHv1JftqI1Pte7HK00e9wH51y/OB50caExHTgT2AX1VYkyRpFFWGwv3AIRFxYETsApwJrBwyZiXw8eLx6cAdWdX5LEnSmCo7fZSZ2yJiOXALMA24OjMfjYhLgDWZuRL4X8C1EdFD7QjhzKrqqdiUPbW1kzq1L+jc3uyr/Uyp3iq70CxJaj/+RbMkqWQoSJJKhsI4RMQzEfFwRKyNiDXFuosjYn2xbm1EnNrqOpsVEXtGxA0R8bOIeDwiToiId0bEbRHxb8X/e7W6zmaN0Fcn7K9D6+pfGxGvRcRn2n2fjdJXJ+yz8yPi0Yh4JCK+HxG7FTfj3Fvsrx8UN+a0rkavKTQvIp4Buuv/yC4iLgb6MvMrraprZ0XEd4F/ycyrim/MWcBfAL/KzP9RzF+1V2Ze0NJCmzRCX5+hzfdXvWJamfXAccB5tPk+GzSkr0/QxvssIvYF7gIOy8zNEXEdsAo4FfjHzFwREd8CfpqZ32xVnR4pCICIeAfwB9TuCCMzt2bmK+w4Fcl3gf/YmgrHZ5S+Os1JwL9n5s9p8302RH1fnWA6MLP4u6xZwAvA+6lN8wNTYH8ZCuOTwK0R8UAxBceg5RGxLiKubrdDduAg4GXgOxHxUERcFRG7A/My8wWA4v/faGWR4zBSX9De+2uoM4HvF4/bfZ/Vq+8L2nifZeZ64CvAs9TC4FXgAeCVzNxWDOsFqpnprkGGwvicmJlHA6cA50XEHwDfBH4bWEBth3+1hfWNx3TgaOCbmXkU8DrwlunO29BIfbX7/ioVp8SWANe3upaJNExfbb3PihBbChwI/BawO7WfIUO19Jy+oTAOmfl88f9LwA+BYzPzxczcnpkDwLepzRLbTnqB3sy8t1i+gdoP0xcjYh+A4v+XWlTfeA3bVwfsr3qnAA9m5ovFcrvvs0E79NUB++xk4OnMfDkz+4F/BN4H7FmcToLhpwOaVIZCkyJi94iYM/gY+CDwyOCLsPBh4JFW1DdemfkL4LmIOLRYdRLwGDtORfJx4OYWlDduI/XV7vtriLPY8RRLW++zOjv01QH77Fng+IiYFRHBr19jd1Kb5gemwP7y7qMmRcRB1I4OoHZq4nuZ+dcRcS21w9oEngH+dPC8bruIiAXAVcAuwFPU7vboAq4D9qf2TX1GZrbVpIUj9PV12nx/AUTELOA54KDMfLVYtzftv8+G66sTXmN/Re2NxLYBDwHnUruGsAJ4Z7HuY5lZ7durjVajoSBJGuTpI0lSyVCQJJUMBUlSyVCQJJUMBUlSqbJ3XpMmW3Er5o+Kxd8EtlOb4gJqf2C4tSWFjSIi/hhYVfw9hdRy3pKqjjSVZq2NiGmZuX2E5+4Clmfm2ia2N71urhxpQnn6SG8LEfHxiLivmIf/7yOiKyKmR8QrEfE3EfFgRNwSEcdFxI8j4qnB+foj4tyI+GHx/BMR8cUGt/uliLgPODYi/ioi7i/m0f9W1HyU2h9j/aD4+F0iojci9iy2fXxE3F48/lJEXBERt1Gb3G96RHyt+NzrIuLcyf+qqhMZCup4EXE4tWkR3peZC6idNj2zeHoP4NZigsOtwMXUph84A7ikbjPHFh9zNPCfI2JBA9t9MDOPzcy7gb/LzPcCRxTPLc7MHwBrgY9m5oIGTm8dBXwoM88GlgEvZeaxwHupTcy4/3i+PlI9ryno7eBkaj8419SmnGEmtSkUADZn5m3F44eBVzNzW0Q8DBxQt41bMnMjQETcBPwetdfPSNvdyq+nQwE4KSI+D+wGzKU2ZfI/N9nHzZn5ZvH4g8B7IqI+hA6hNq2FNG6Ggt4OArg6M//bDitrM1PW/3Y+AGype1z/+hh68S3H2O7mLC7YFfP4fIPa7KzrI+JL1MJhONv49RH80DGvD+npU5n5I6QJ5OkjvR3cDnwkIuZC7S6lcZxq+WDU3ut5FrU58f+1ie3OpBYyvyxm2D2t7rlNwJy65WeAY4rH9eOGugX41OCUy1F7X+OZTfYkvYVHCup4mflwMTvl7RHRBfQD/4Xm5q2/C/getTd5uXbwbqFGtpuZG6L2PtGPAD8H7q17+jvAVRGxmdp1i4uBb0fEL4D7RqnnCmqzoK4tTl29RC2spJ3iLanSGIo7ew7PzM+0uhapap4+kiSVPFKQJJU8UpAklQwFSVLJUJAklQwFSVLJUJAklf4/GKF1l7kqzyEAAAAASUVORK5CYII=\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF9JJREFUeJzt3X2UXXV97/H3d5IACYlAg02VQAFJsVyBCOFJtDfx6Qa7JPUCBbyCl940ZUlul9y2htvVa6m1a1V8qHpFY+SiQldNVRBom14e1Ii0IASM4UHBuYBhEhogBshASGYy3/vH2bN7Mkxmzhlmz5lzeL/WmpWz9/mdne939pz5zN5nn9+JzESSJICuVhcgSZo8DAVJUslQkCSVDAVJUslQkCSVDAVJUqmyUIiIqyPiqYh4YC/3R0R8PiK6I2JDRJxQVS2SpMZUeaTwNWDxCPefAcwrvpYBX6qwFklSAyoLhcy8HfjlCEOWANdkzV3AgRHxuqrqkSSNbmoL/+9DgCfqlnuKdU8OHRgRy6gdTTB9+vQTDz300AkpsFEDAwN0dXXmyzOd2pt9tZ9O7W2i+nrkkUeeyczXjjaulaEQw6wbds6NzFwFrAJYsGBBrlu3rsq6mrZ27VoWLlzY6jIq0am92Vf76dTeJqqviPhFI+NaGbs9QP2f/HOBzS2qRZJEa0PhJuDC4iqkU4HnMvNlp44kSROnstNHEfENYCFwcET0AH8OTAPIzJXAGuA9QDfwInBRVbVIkhpTWShk5vmj3J/AJVX9/5Kk5nXeS/mSpDEzFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklSqNBQiYnFEPBwR3RFx2TD3HxAR/xARP4mIByPioirrkSSNrLJQiIgpwJXAGcAxwPkRccyQYZcAD2Xm8cBC4NMRsU9VNUmSRlblkcLJQHdmPpqZu4DVwJIhYxKYFREBzAR+CfRXWJMkaQSRmdVsOOJsYHFmLi2WLwBOyczldWNmATcBbwRmAedm5j8Ns61lwDKAOXPmnLh69epKah6r3t5eZs6c2eoyKtGpvdlX++nU3iaqr0WLFt2bmQtGGze1whpimHVDE+g/AeuBtwNvAG6NiB9m5vN7PChzFbAKYMGCBblw4cLxr/YVWLt2LZOtpvHSqb3ZV/vp1N4mW19Vnj7qAQ6tW54LbB4y5iLg+qzpBh6jdtQgSWqBKkPhHmBeRBxRvHh8HrVTRfU2Au8AiIg5wNHAoxXWJEkaQWWnjzKzPyKWAzcDU4CrM/PBiLi4uH8l8JfA1yLifmqnm1Zk5jNV1SRJGlmVrymQmWuANUPWray7vRl4d5U1SJIa5zuaJUklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVKo0FCJicUQ8HBHdEXHZXsYsjIj1EfFgRPygynokSSOb2sigiHhTZj7QzIYjYgpwJfAuoAe4JyJuysyH6sYcCHwRWJyZGyPiV5v5PyRJ46vRI4WVEXF3RHyo+EXeiJOB7sx8NDN3AauBJUPGvB+4PjM3AmTmUw1uW5JUgcjMxgZGzAN+DzgHuBv4ambeOsL4s6kdASwtli8ATsnM5XVjPgtMA/4DMAv4XGZeM8y2lgHLAObMmXPi6tWrG+tugvT29jJz5sxWl1GJTu3NvtpPp/Y2UX0tWrTo3sxcMOrAzGz4C5gCnAVsAn4K/Az4z3sZew5wVd3yBcD/HjLmC8BdwP7AwcDPgd8YqYYTTzwxJ5vvf//7rS6hMp3am321n07tbaL6AtZlA7/nG31N4TjgIuC3gVuB92bmfRHxeuBO4PphHtYDHFq3PBfYPMyYZzLzBeCFiLgdOB54pJG6JEnjq9HXFL4A3Accn5mXZOZ9AJm5GfizvTzmHmBeRBwREfsA5wE3DRlzI/C2iJgaETOAU6gdgUiSWqChIwXgPcCOzNwNEBFdwH6Z+WJmXjvcAzKzPyKWAzdTO+10dWY+GBEXF/evzMyfRsT/BTYAA9RONzV1lZMkafw0Ggq3Ae8EeovlGcAtwFtGelBmrgHWDFm3csjyJ4FPNliHJKlCjZ4+2i8zBwOB4vaMakqSJLVKo6HwQkScMLgQEScCO6opSZLUKo2ePvow8K2IGLx66HXAudWUJElqlYZCITPviYg3AkcDAfwsM/sqrUySNOEaPVIAOAk4vHjMmyOCHObdx5Kk9tXom9euBd4ArAd2F6sTMBQkqYM0eqSwADimeKu0JKlDNXr10QPAr1VZiCSp9Ro9UjgYeCgi7gZ2Dq7MzDMrqUqS1BKNhsLlVRYhSZocGr0k9QcR8evAvMy8rZi8bkq1pUmSJlpDrylExO8D3wa+XKw6BLihqqIkSa3R6AvNlwCnA88DZObPAT9PWZI6TKOhsDNrn7MMQERMpfY+BUlSB2k0FH4QEX8KTI+IdwHfAv6hurIkSa3QaChcBjwN3A/8AbXPSNjbJ65JktpUo1cfDQBfKb4kSR2q0bmPHmOY1xAy88hxr0iS1DLNzH00aD/gHOBXxr8cSVIrNfSaQmZurfvalJmfBd5ecW2SpAnW6OmjE+oWu6gdOcyqpCJJUss0evro03W3+4HHgd8d92okSS3V6NVHi6ouRJLUeo2ePvofI92fmZ8Zn3IkSa3UzNVHJwE3FcvvBW4HnqiiKElSazTzITsnZOZ2gIi4HPhWZi6tqjBJ0sRrdJqLw4Bddcu7gMPHvRpJUks1eqRwLXB3RHyH2jub3wdcU1lVkqSWaPTqo7+KiH8G3lasuigzf1xdWZKkVmj09BHADOD5zPwc0BMRR1RUkySpRRr9OM4/B1YA/7NYNQ3426qKkiS1RqNHCu8DzgReAMjMzTjNhSR1nEZDYVdmJsX02RGxf3UlSZJapdFQ+GZEfBk4MCJ+H7gNP3BHkjpOo1cffar4bObngaOBj2bmrZVWJkmacKMeKUTElIi4LTNvzcw/ycw/bjQQImJxRDwcEd0RcdkI406KiN0RcXYzxUuSxteooZCZu4EXI+KAZjYcEVOAK4EzgGOA8yPimL2M+wRwczPblySNv0bf0fwScH9E3EpxBRJAZv7hCI85GejOzEcBImI1sAR4aMi4/w5cR23CPUlSCzUaCv9UfDXjEPacRbUHOKV+QEQcQu1y17czQihExDJgGcCcOXNYu3Ztk6VUq7e3d9LVNF46tTf7aj+d2ttk62vEUIiIwzJzY2Z+fQzbjmHW5ZDlzwIrMnN3xHDDiwdlrgJWASxYsCAXLlw4hnKqs3btWiZbTeOlU3uzr/bTqb1Ntr5Ge03hhsEbEXFdk9vuAQ6tW54LbB4yZgGwOiIeB84GvhgRv9Pk/yNJGiejnT6q//P9yCa3fQ8wr5gjaRNwHvD++gGZWc6fFBFfA/4xM29AktQSo4VC7uX2qDKzPyKWU7uqaApwdWY+GBEXF/evbKpSSVLlRguF4yPieWpHDNOL2xTLmZmvGenBmbkGWDNk3bBhkJn/taGKJUmVGTEUMnPKRBUiSWq9Zj5PQZLU4QwFSVLJUJAklQwFSVLpVRMKW3t38pMnnmVr785WlyKpSVt7d7Kjb7fP3wnwqgiFG9dv4vRPfI8PXPUjTv/E97hp/aZWlySpQYPP38eefsHn7wTo+FDY2ruTFddt4KW+Abbv7OelvgE+ct0G/+KQ2kD983d3ps/fCdDxodCzbQfTuvZsc1pXFz3bdrSoIkmN8vk78To+FOYeNJ2+gYE91vUNDDD3oOktqkhSo3z+TryOD4XZM/flirOOY79pXczadyr7TeviirOOY/bMfVtdmqRR1D9/p0T4/J0AjX7ITls7c/4hnH7UwfRs28Hcg6b7AyW1kcHn79133sG/nPlWn78Ve1WEAtT+4vCHSWpPs2fuy/RpU3wOT4COP30kSWqcoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqRSpaEQEYsj4uGI6I6Iy4a5/79ExIbi618j4vgq65EkjayyUIiIKcCVwBnAMcD5EXHMkGGPAf8xM48D/hJYVVU9kqTRVXmkcDLQnZmPZuYuYDWwpH5AZv5rZm4rFu8C5lZYjyRpFJGZ1Ww44mxgcWYuLZYvAE7JzOV7Gf/HwBsHxw+5bxmwDGDOnDknrl69upKax6q3t5eZM2e2uoxKdGpv9tV+OrW3iepr0aJF92bmgtHGTa2whhhm3bAJFBGLgP8GvHW4+zNzFcWppQULFuTChQvHqcTxsXbtWiZbTeOlU3uzr/bTqb1Ntr6qDIUe4NC65bnA5qGDIuI44CrgjMzcWmE9kqRRVPmawj3AvIg4IiL2Ac4DbqofEBGHAdcDF2TmIxXWIklqQGVHCpnZHxHLgZuBKcDVmflgRFxc3L8S+CgwG/hiRAD0N3LOS5JUjSpPH5GZa4A1Q9atrLu9FHjZC8uCrb076dm2g7kHTWf2zH3HbWw76dS+qtK9ZTvbXuyje8t2jpozq9XlqE1VGgoamxvXb2LFdRuY1tVF38AAV5x1HGfOP+QVj20nndpXVT56w/1cc9dG/ujYfi79m9u58LTD+NiSY1tdltqQ01xMMlt7d7Liug281DfA9p39vNQ3wEeu28DW3p2vaGw76dS+qtK9ZTvX3LVxj3XX3LmR7i3bW1SR2pmhMMn0bNvBtK49d8u0ri56tu14RWPbSaf2VZX1Tzzb1HppJIbCJDP3oOn0DQzssa5vYIC5B01/RWPbSaf2VZX5hx7Y1HppJIbCJDN75r5ccdZx7Deti1n7TmW/aV1ccdZxw77Q2szYdtKpfVXlqDmzuPC0w/ZYd+Fph/lis8bEF5onoTPnH8LpRx3c0JU3zYxtJ53aV1U+tuRYLjz1cO6/9y5uu/RUA0FjZihMUrNn7tvwL8JmxraTTu2rKkfNmUXPjGkGgl4RTx9JkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpVGkoRMTiiHg4Iroj4rJh7o+I+Hxx/4aIOKHKeqRmbe3dyU+eeJatvTtHHbvusa185paHWffY1nHbZjNju7dsZ9uLfXRv2T7q2GZUVW+zNezo2z3qdru3bOfb657o2O9BFdsdampVG46IKcCVwLuAHuCeiLgpMx+qG3YGMK/4OgX4UvGv1HI3rt/Eius2MK2ri76BAa446zjOnH/IsGM/cNVd3NFdC4PPf6+btx01m2uXnvqKttnM2I/ecD/X3LWRPzq2n0v/5nYuPO0wPrbk2DF2Xn29Y6nhD3+zj0s/8b29bnfwezCoE78H473d4VR5pHAy0J2Zj2bmLmA1sGTImCXANVlzF3BgRLyuwpqkhmzt3cmK6zbwUt8A23f281LfAB+5bsOwf6Wte2xrGQiDfti99WVHDM1ss5mx3Vu27/HLEOCaOze+4r+Wq6p3rDXsztzrdl8t34Px3O7eRGZWs+GIs4HFmbm0WL4AOCUzl9eN+UfgrzPzjmL5u8CKzFw3ZFvLgGXF4tHAw5UUPXYHA8+0uoiKdGpvI/YV06bPmHrQ634jurqmDK7LgYHd/duefCT7drxYP3bKrINfP2X/A1/2x8zuF559cvf2ZzaPZZvNjO2accDsqa957eEAu198jikzDgCg//mnHx948bmRz2WNoKp6x1rDYG/Dbbf+e1CvTb4H4/azOIpfz8zXjjaostNHQAyzbmgCNTKGzFwFrBqPoqoQEesyc0Gr66hCp/bWyX31P/dUx/UFndvbZPtZrPL0UQ9waN3yXGDzGMZIkiZIlaFwDzAvIo6IiH2A84Cbhoy5CbiwuArpVOC5zHyywpokSSOo7PRRZvZHxHLgZmAKcHVmPhgRFxf3rwTWAO8BuoEXgYuqqqdik/bU1jjo1N7sq/10am+Tqq/KXmiWJLUf39EsSSoZCpKkkqEwBhHxeETcHxHrI2Jdse7yiNhUrFsfEe9pdZ3NiogDI+LbEfGziPhpRJwWEb8SEbdGxM+Lfw9qdZ3N2ktfnbC/jq6rf31EPB8RH273fTZCX52wzy6NiAcj4oGI+EZE7DfZ9pevKYxBRDwOLMjMZ+rWXQ70ZuanWlXXKxURXwd+mJlXFVeMzQD+FPhlZv51MX/VQZm5oqWFNmkvfX2YNt9f9YppZTZRmybmEtp8nw0a0tdFtPE+i4hDgDuAYzJzR0R8k9rFNscwifaXRwoCICJeA/wW8H8AMnNXZj5LbSqSrxfDvg78TmsqHJsR+uo07wD+X2b+gjbfZ0PU99UJpgLTI2IqtT9ONjPJ9pehMDYJ3BIR9xZTcAxaXsz2enWrDwHH4EjgaeCrEfHjiLgqIvYH5gy+d6T491dbWeQY7K0vaO/9NdR5wDeK2+2+z+rV9wVtvM8ycxPwKWAj8CS192XdwiTbX4bC2JyemSdQm+X1koj4LWozvL4BmE9th3+6hfWNxVTgBOBLmflm4AXgZdOdt6G99dXu+6tUnBI7E/hWq2sZT8P01db7rAixJcARwOuB/SPiA62t6uUMhTHIzM3Fv08B3wFOzswtmbk7MweAr1CbJbad9AA9mfmjYvnb1H6Zbhmcubb496kW1TdWw/bVAfur3hnAfZm5pVhu9302aI++OmCfvRN4LDOfzsw+4HrgLUyy/WUoNCki9o+IWYO3gXcDD8SeU36/D3igFfWNVWb+G/BERBxdrHoH8BC1qUg+WKz7IHBjC8obs7311e77a4jz2fMUS1vvszp79NUB+2wjcGpEzIiIoPaz+FMm2f7y6qMmRcSR1I4OoHZq4u8y868i4lpqh7UJPA78QbvN4xQR84GrgH2AR6ld7dEFfBM4jNoP9TmZ+cuWFTkGe+nr87T5/gKIiBnAE8CRmflcsW427b/PhuurE55jfwGcC/QDPwaWAjOZRPvLUJAklTx9JEkqGQqSpJKhIEkqGQqSpJKhIEkqVfbJa9JEKy7F/G6x+GvAbmpTXEDtDYa7WlLYCCLi94A1xfsppJbzklR1pMk0a21ETMnM3Xu57w5geWaub2J7UzOzf9wKlOp4+kivChHxwYi4u5iH/4sR0RURUyPi2Yj4ZETcFxE3R8QpEfGDiHh0cL7+iFgaEd8p7n84Iv6swe1+PCLuBk6OiL+IiHuKefRXRs251N6M9ffF4/eJiJ6IOLDY9qkRcVtx++MR8eWIuJXa5H5TI+Izxf+9ISKWTvx3VZ3IUFDHi4g3UZsW4S2ZOZ/aadPzirsPAG4pJjjcBVxObfqBc4CP1W3m5OIxJwDvj4j5DWz3vsw8OTPvBD6XmScBxxb3Lc7MvwfWA+dm5vwGTm+9GXhvZl4ALAOeysyTgZOoTcx42Fi+P1I9X1PQq8E7qf3iXFebcobp1KZQANiRmbcWt++nNp1xf0TcDxxet42bM3MbQETcALyV2vNnb9vdxb9PhwLwjoj4E2A/4GDgXuCfm+zjxsx8qbj9buA3I6I+hOZRmyZBGjNDQa8GAVydmf9rj5W1Dzqp/+t8ANhZd7v++TH0xbccZbs7snjBrpjH5wvUZmfdFBEfpxYOw+nn34/gh455YUhPH8rM7yKNI08f6dXgNuB3I+JgqF2lNIZTLe+O2mc9z6A2J/6/NLHd6dRC5pliht2z6u7bDsyqW34cOLG4XT9uqJuBDxUBNPi5xtOb7El6GY8U1PEy8/5idsrbIqIL6AMupvZRiI26A/g7ah/ycu3g1UKNbDczt0btc6IfAH4B/Kju7q8CV0XEDmqvW1wOfCUi/g24e4R6vkxtVs31xamrp6iFlfSKeEmqNIriyp43ZeaHW12LVDVPH0mSSh4pSJJKHilIkkqGgiSpZChIkkqGgiSpZChIkkr/HzHofwgP0tIHAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
......@@ -506,10 +514,10 @@
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -3.9210</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Wed, 24 Oct 2018</td> <th> Deviance: </th> <td> 3.0144</td> \n",
" <th>Date:</th> <td>Mon, 06 Apr 2020</td> <th> Deviance: </th> <td> 3.0144</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>11:05:55</td> <th> Pearson chi2: </th> <td> 5.00</td> \n",
" <th>Time:</th> <td>07:33:03</td> <th> Pearson chi2: </th> <td> 5.00</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>6</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
......@@ -537,8 +545,8 @@
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Wed, 24 Oct 2018 Deviance: 3.0144\n",
"Time: 11:05:55 Pearson chi2: 5.00\n",
"Date: Mon, 06 Apr 2020 Deviance: 3.0144\n",
"Time: 07:33:03 Pearson chi2: 5.00\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
......@@ -599,10 +607,10 @@
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -23.526</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Wed, 24 Oct 2018</td> <th> Deviance: </th> <td> 18.086</td> \n",
" <th>Date:</th> <td>Mon, 06 Apr 2020</td> <th> Deviance: </th> <td> 18.086</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>11:05:55</td> <th> Pearson chi2: </th> <td> 30.0</td> \n",
" <th>Time:</th> <td>07:33:03</td> <th> Pearson chi2: </th> <td> 30.0</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>6</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
......@@ -630,8 +638,8 @@
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -23.526\n",
"Date: Wed, 24 Oct 2018 Deviance: 18.086\n",
"Time: 11:05:55 Pearson chi2: 30.0\n",
"Date: Mon, 06 Apr 2020 Deviance: 18.086\n",
"Time: 07:33:03 Pearson chi2: 30.0\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
......@@ -680,12 +688,14 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VOXZ//HPNUs2sgABwhI2NYDIngUQa8EqoFXcUEDEpSD2qUutlVb6WLVWuzz0+blXoYBrFakVROsjCIoLIgQEWWVHSNiXhITsyfX7YwYMMZAhmWSWXO/XK6/MOXOfc647J/nOyZkz9xFVxRhjTHhxBLoAY4wx/mfhbowxYcjC3RhjwpCFuzHGhCELd2OMCUMW7sYYE4ZqDHcRmSkiB0Rk3WmeFxF5RkS2isgaEenn/zKNMcacDV+O3F8Ghp/h+cuBFO/XROCFupdljDGmLmoMd1X9DDhyhiZXA6+qx1dAUxFp468CjTHGnD2XH9bRDthdaTrLO29v1YYiMhHP0T3R0dGp7du3r9UGKyoqcDjC4+0C60vwCZd+gPUlWNWlL5s3bz6kqi1rauePcJdq5lU7poGqTgOmAaSlpemKFStqtcHFixczePDgWi0bbKwvwSdc+gHWl2BVl76IyHe+tPPHy2AWUPkQPBnY44f1GmOMqSV/hPs84BbvVTMDgFxV/cEpGWOMMQ2nxtMyIvImMBhoISJZwCOAG0BVXwQ+AK4AtgIFwO31Vawxxhjf1BjuqjqmhucVuMtvFRljQkJpaSlZWVkUFRU1yPYSEhLYuHFjg2yrvvnSl6ioKJKTk3G73bXahj/eUDXGNEJZWVnExcXRqVMnRKq7rsK/8vLyiIuLq/ftNISa+qKqHD58mKysLDp37lyrbYTHdUXGmAZXVFREYmJigwR7YyMiJCYm1um/Igt3Y0ytWbDXn7r+bC3cjTEmDNk5d2NMyHI6nfTs2fPk9Ny5c+nUqVPgCgoiFu7GmJAVHR3N6tWrT/t8WVkZLlfjjDk7LWOMCSsvv/wyN9xwA1dddRVDhw4FYMqUKaSnp9OrVy8eeeSRk22feOIJunbtyqWXXsqYMWP429/+BsDgwYM5MTzKoUOHTv43UF5ezqRJk06ua+rUqcD3wwmMHDmSbt26MXbsWDxXiUNmZiYXXnghvXv3JiMjg7y8PIYNG3bKi9KgQYNYs2aNX38OjfMlzRjjV394bz0b9hzz6zq7t43nkasuOGObwsJC+vTpA0Dnzp2ZM2cOAEuXLmXNmjU0b96cBQsWsGXLFpYvX46qMmLECD777DOaNGnCrFmzWLVqFWVlZfTr14/U1NQzbm/GjBkkJCSQmZlJcXExgwYNOvkCsmrVKtavX0/btm0ZNGgQS5YsISMjg1GjRvHWW2+Rnp7OsWPHiI6O5pZbbuHll1/mqaeeYvPmzRQXF9OrVy8//NS+Z+FujAlZpzstc9lll9G8eXMAFixYwIIFC+jbty8A+fn5bNmyhby8PK699lpiYmIAGDFiRI3bW7BgAWvWrOHtt98GIDc3ly1bthAREUFGRgbJyckA9OnTh507d5KQkECbNm1IT08HID4+HoBrr72WQYMGMWXKFGbOnMltt91Wtx9ENSzcjTF1VtMRdkNr0qTJyceqyuTJk7nzzjtPafPUU0+d9nJDl8tFRUUFwCnXmqsqzz77LMOGDTul/eLFi4mMjDw57XQ6KSsrQ1Wr3UZMTAyXXXYZ7777LrNnz6a2I+SeiZ1zN8aEtWHDhjFz5kzy8/MByM7O5sCBA1x88cXMmTOHwsJC8vLyeO+9904u06lTJ1auXAlw8ij9xLpeeOEFSktLAdi8eTPHjx8/7ba7devGnj17yMzMBDyfTC0rKwNgwoQJ3HvvvaSnp5/8L8Of7MjdGBPWhg4dysaNGxk4cCAAsbGxvP766/Tr149Ro0bRp08fOnbsyI9+9KOTyzzwwAPceOONvPbaa1xyySUn50+YMIGdO3fSr18/VJWWLVsyd+7c0247IiKCt956i3vuuYfCwkKio6NZuHAhAKmpqcTHx3P77fU01qKqBuQrNTVVa+uTTz6p9bLBxvoSfMKlH6r125cNGzbU27qrc+zYsXpd/yOPPKJTpkyp122ccOzYMc3OztaUlBQtLy8/bbvqfsbACvUhY+20jDHGNLA33niD/v3788QTT9TbrQPttIwxxgCPPvpog23rpptu+sEbvP5mR+7GmFpTrfZ2ycYP6vqztXA3xtRKVFQUhw8ftoCvB+odzz0qKqrW67DTMsaYWklOTiYrK4uDBw82yPaKiorqFHbBxJe+nLgTU21ZuBtjasXtdtf6LkG1sXjx4pOfMg11DdEXOy1jjDFhyMLdGGPCkIW7McaEIQt3Y4wJQxbuxhgThizcjTEmDFm4G2NMGLJwN8aYMGThbowxYcjC3RhjwlDIhfuBY0V8mlVqgxUZY8wZhFy4v75sFy+tK2HCKys4mFcc6HKMMSYohVy43/eTFG7qFsHnWw8x/KnPWLhhf6BLMsaYoBNy4e5wCEM7ufnPPReRFB/FhFdX8Mi76ygqLQ90acYYEzRCLtxPSEmKY85dFzL+os68svQ7rnl+CVsP5Ae6LGOMCQohG+4AkS4nv7+yOy/dns6BvGJGPPcF767ODnRZxhgTcD6Fu4gMF5FNIrJVRB6s5vkOIvKJiKwSkTUicoX/Sz29IV1b8Z97L+KCtvH8ctZqfjdnLcVldprGGNN41RjuIuIEngcuB7oDY0Ske5VmDwGzVbUvMBr4u78LrUmbhGjevGMAP//xubyxbBc3vriU7JzChi7DGGOCgi9H7hnAVlXdrqolwCzg6iptFIj3Pk4A9vivRN+5nA4evLwbU8elsv3gca585nO+3HooEKUYY0xASU0fBhKRkcBwVZ3gnR4H9FfVuyu1aQMsAJoBTYBLVXVlNeuaCEwESEpKSp01a1atis7Pzyc2NvaMbfYdr+CZVUXsO66M6hrB0I4uRKRW26tPvvQlVIRLX8KlH2B9CVZ16cuQIUNWqmpajQ1V9YxfwA3A9ErT44Bnq7S5H/i19/FAYAPgONN6U1NTtbY++eQTn9rlFZXqHa9kasffvq/3v7Vai0rLar3N+uJrX0JBuPQlXPqhan0JVnXpC7BCa8htVfXptEwW0L7SdDI/PO0yHpjtfbFYCkQBLXxYd72KjXTx4s2p3HdpCv/+Ooux/1jGoXz7VKsxJvz5Eu6ZQIqIdBaRCDxvmM6r0mYX8BMAETkfT7gf9GehteVwCPdd2oXnb+rHuj25XP3cEjbtywt0WcYYU69qDHdVLQPuBuYDG/FcFbNeRB4TkRHeZr8G7hCRb4A3gdu8/z4EjZ/2asPsOwdSWl7ByBe+5PMtQfHaY4wx9cKn69xV9QNV7aKq56rqE955D6vqPO/jDao6SFV7q2ofVV1Qn0XXVq/kpsy9axDtmkVz+0uZvJW5K9AlGWNMvQjpT6jWRtum0fzr5wO58LwW/Pbfa3lq4WYbPtgYE3YaXbgDxEW5mXFrGiNTk3lq4RYmv7OWsvKKQJdljDF+4wp0AYHidjqYMrIXbROieObjrRzKL+a5m/oR5XYGujRjjKmzRnnkfoKIcP/Qrvzx6gtY9O0BbpmxnNzC0kCXZYwxddaow/2EcQM78czovqzafZRRU5faHZ6MMSHPwt3rqt5tmXFrOjsPH2fUVBt0zBgT2izcK7m4S0teG9+fg3nF3PjiUnYeOh7okowxplYs3KtI79ScNycOoLC0nBunLrW7OxljQpKFezV6tEtg1sQBVCiMnraUb/cdC3RJxhhzVizcT6NLUhyz7xyAy+Fg9LSvWL8nN9AlGWOMzyzcz+CclrG8decAYtxOxk5fxrpsC3hjTGiwcK9Bx8QmzJo40ALeGBNSLNx90CExhlkTB9IkwsnNM5axca+dgzfGBDcLdx91SIzhzYkDiHI5uXn6MrbstzHhjTHBy8L9LHRMbMIbd/TH6RDG/GMZ2w/aZZLGmOBk4X6WzmkZyxt39EdVGTt9GbuPFAS6JGOM+QEL91o4r1Ucr43vT0FJOWOnL2NfblGgSzLGmFNYuNdS97bxvPKzDI4cL+HmGcs4crwk0CUZY8xJFu510Kd9U6bfmsbuIwXcOnM5eUU2XLAxJjhYuNfRgHMSeeHmfmzce4wJr6ygqLQ80CUZY4yFuz9c0i2J/72xN8t3HuHuN1bZLfuMMQFn4e4nV/dpx6NXXcDCjfuZ/M5au+m2MSagGu09VOvDrRd24vDxEp5ZtIXE2EgevLxboEsyxjRSFu5+9qtLUzhyvJgXP91Gq7hIfnZR50CXZIxphCzc/UxE+MOIHhzKK+GP/9lAy7hIrurdNtBlGWMaGTvnXg+cDuGp0X1I79ic+2ev5suthwJdkjGmkbFwrydRbif/uCWNzi2acOdrK+1uTsaYBmXhXo8SYty8dHsGMZFObn8pk725hYEuyRjTSFi417N2TaN56bYM8orKuP2lTPsUqzGmQVi4N4DubeN54eZ+bD2Qzy/++TWl9iEnY0w9s3BvID9Kacmfru3J51sO8dCcdfYhJ2NMvbJLIRvQjent2X20gGc/3kqHxBjuGnJeoEsyxoQpC/cGdv9lXdh1pIAp8zfRMTGG2EAXZIwJS3ZapoGJCH+9vhdpHZtx/+xv2HrURpE0xvifT+EuIsNFZJOIbBWRB0/T5kYR2SAi60XkDf+WGV6i3E6m3ZJGm4Qonl5VZLfqM8b4XY3hLiJO4HngcqA7MEZEuldpkwJMBgap6gXAffVQa1hp3iSCmbelU14B41/J5JhdImmM8SNfjtwzgK2qul1VS4BZwNVV2twBPK+qRwFU9YB/ywxP57aM5e6+UWw/eNzGgTfG+JXUdEmeiIwEhqvqBO/0OKC/qt5dqc1cYDMwCHACj6rqh9WsayIwESApKSl11qxZtSo6Pz+f2NjweCsyPz+flUcjeWl9CZd2cHFz98hAl1Rr4bJfwqUfYH0JVnXpy5AhQ1aqalpN7Xy5WkaqmVf1FcEFpACDgWTgcxHpoao5pyykOg2YBpCWlqaDBw/2YfM/tHjxYmq7bLBZvHgxj1w5GOf7G5j+xQ4G9+vGzQM6BrqsWgmX/RIu/QDrS7BqiL74clomC2hfaToZ2FNNm3dVtVRVdwCb8IS98dHkK85nSNeWPDJvvY0iaYypM1/CPRNIEZHOIhIBjAbmVWkzFxgCICItgC7Adn8WGu6cDuGZMX05t2UTfv76SnYcOh7okowxIazGcFfVMuBuYD6wEZitqutF5DERGeFtNh84LCIbgE+ASap6uL6KDldxUW6m35KO0yGMfyWT3EK7gsYYUzs+Xeeuqh+oahdVPVdVn/DOe1hV53kfq6rer6rdVbWnqtbunVJDh8QYXrg5lV2HC7jnTbuCxhhTO/YJ1SA04JxE/nhNDz7bfJA//9+3gS7HGBOCbGyZIDUmowOb9uUx44sddGsdxw1p7WteyBhjvOzIPYg99NPzGXReIv89Zx0rvzsa6HKMMSHEwj2IuZwOnr+pH22aRnHnayvtNn3GGJ9ZuAe5pjERTL8ljaLScia+upKiUhtF0hhTMwv3EJCSFMdTo/qwbk8uv/33GruLkzGmRhbuIeLS7kk8MLQr767ew9TP7PNhxpgzs3APIb8YfC4/7dWGv374LYs32cCbxpjTs3APISLClJG96NY6nnveXMX2g/mBLskYE6Qs3ENMTISLaeNScTsd3PHqCrvJhzGmWhbuIah98xiev6kfOw8XcP9bq6mosDdYjTGnsnAPUQPPTeThK7uzcOMBnly4OdDlGGOCjA0/EMJuGdiR9XtyefbjrZzfJp4rerYJdEnGmCBhR+4hTET44zU96NuhKQ/86xu+3Xcs0CUZY4KEhXuIi3Q5efHmVGIjXdzx6gpyCkoCXZIxJghYuIeBpPgoXhyXyv7cYu5+w8aAN8ZYuIeNfh2a8fg1Pfhi6yH+YmPAG9Po2RuqYeTG9Pas25PL9C92cEG7eK7tmxzokowxAWJH7mHm91d2p3/n5jz477WsycoJdDnGmACxcA8zbqeDv4/tR4vYSO58bSUH84oDXZIxJgAs3MNQYmwkU8elcrSghF/8cyUlZfYGqzGNjYV7mOrRLoG/Xt+LzJ1HefS99YEuxxjTwOwN1TB2dZ92bNh7jKmfbueCtvGM7d8x0CUZYxqIHbmHud8M68aPu7TkkXfXs3zHkUCXY4xpIBbuYc7pEJ4Z05f2zWP4r9dXkp1jN9k2pjGwcG8EEqLd/OOWNErKKpj46goKS+wm28aEOwv3RuK8VrE8PaYPG/YeY9Lb39hNto0Jcxbujcgl3ZKYNKwr76/Zy98Xbwt0OcaYemTh3sj814/P5arebfnbgk0s2rg/0OUYY+qJhXsjIyL8z/W9uKBtPL+ctZot+/MCXZIxph5YuDdC0RFOpo1LI8rtZIKNAW9MWLJwb6TaNo1m6rhU9uYU8Yt/fk2pjQFvTFixcG/EUjs240/X9eTLbYf54/sbAl2OMcaPbPiBRm5kajKb9+cx7bPtpCTFMW6ADVFgTDiwI3fDb4d3Y0jXljw6bz1fbj0U6HKMMX7gU7iLyHAR2SQiW0XkwTO0GykiKiJp/ivR1LcTQxSc06IJ//XPr9lx6HigSzLG1FGN4S4iTuB54HKgOzBGRLpX0y4OuBdY5u8iTf2Li3Iz49Z0nA5h/MuZ5BaUBrokY0wd+HLkngFsVdXtqloCzAKurqbdH4H/AYr8WJ9pQB0SY3jx5lR2Hy3grjfsChpjQpnUNMaIiIwEhqvqBO/0OKC/qt5dqU1f4CFVvV5EFgMPqOqKatY1EZgIkJSUlDpr1qxaFZ2fn09sbGytlg02wdiXz7NKmbGuhMHtXdzaPQIR8Wm5YOxLbYRLP8D6Eqzq0pchQ4asVNUaT337crVMdX/ZJ18RRMQBPAncVtOKVHUaMA0gLS1NBw8e7MPmf2jx4sXUdtlgE4x9GQxEfPgtLyzexo96d2H8RZ19Wi4Y+1Ib4dIPsL4Eq4boiy+nZbKA9pWmk4E9labjgB7AYhHZCQwA5tmbqqFt0tCuDL+gNY//ZwMLN9gYNMaEGl/CPRNIEZHOIhIBjAbmnXhSVXNVtYWqdlLVTsBXwIjqTsuY0OFwCE+O6kOPtgncO2sV67JzA12SMeYs1BjuqloG3A3MBzYCs1V1vYg8JiIj6rtAEzjREU5m3JpG02g341/JZG+u3cXJmFDh03XuqvqBqnZR1XNV9QnvvIdVdV41bQfbUXv4aBUfxczb0zleXM7tL2WSV2SXSBoTCuwTqqZG3VrH8/zYfmw5kM9db6yySySNCQEW7sYnP+7Skieu6cFnmw/y8Lvr7DZ9xgQ5GzjM+Gx0Rgd2Hy3g+U+2kdwshruGnBfokowxp2Hhbs7Kry/rStbRQqbM30SbhCiu65cc6JKMMdWwcDdnxeEQpozszcG8Yn7z9hpaxUVxUUqLQJdljKnCzrmbsxbhcvDiuFTOaxXLz19fyfo9tb8Gfu6qbAb95WM6P/gfBv3lY+auyvZjpaa+2f4LXhbuplbio9y8fHsG8VEubnspk91HCs56HXNXZTP5nbVk5xSiQHZOIZPfWWsBESJs/wU3C3dTa60Tonh1fAYlZRXcMnM5x0rO7gqaKfM3UVhafsq8wtJypszf5M8yTT2x/RfcLNxNnZzXKo6Zt6WxN7eQJ1cUkV9c5vOye3Kq/8Tr6eab4GL7L7hZuJs6S+3YnL+P7cd3eRVMfHUFxWXlNS8EtG0afVbzTXCx/RfcLNyNX1zSLYnxPSL4ctth7pu1mvKKmk/RTBrWlWi385R50W4nk4Z1ra8yjR/Z/gtuFu7Gbwa1c/P7K7vzf+v2MfmdNTV+ivWavu3483U9adc0GgHaNY3mz9f15Jq+7RqmYFMntv+Cm13nbvxq/EWdyS0s5ZlFW4iPcvPfPz3/jHdyuqZvOwuDEGb7L3hZuBu/+9WlKRwrLGX6FzuIi3Lzy0tTAl2SMY2OhbvxOxHh4Su7k19cxpMLNxMT4eSOi88JdFnGNCoW7qZeOBzCX6/vRWFpOU98sJEot4NxAzsFuixjGg0Ld1NvnA7hyRv7UFRSzu/fXU+Ey8Go9A6BLsuYRsGuljH1KsLl4Pmx/bi4S0sefGct/16ZFeiSjGkULNxNvYtyO5k2LpULz01k0tvf8O5qG3vEmPpm4W4aRJTbyfRb0sno3JxfvbXaBpcypp5ZuJsGEx3hZOZt6fTvnMj9s1czZ5WdojGmvli4mwYVE+Fi5m3pDDgnkftnf8PsFbsDXZIxYcnC3TS46AgnM25N56LzWvCbt9fw+lffBbokY8KOhbsJiOgIJ/+4JY2fdGvFQ3PXMeOLHYEuyZiwYuFuAibK7eSFm1O5vEdr/vj+Bp5euKXGwcaMMb6xcDcBFeFy8OyYvlzfL5knF27mif9stIA3xg/sE6om4FxOB1NG9iIuysX0L3aQW1jKn6/rictpxx7G1JaFuwkKDofwyFXdSYh28/SiLRwtKOW5m/oSVeVmEMYY39ihkQkaIsKvLuvCH0ZcwKJv9zNuxjJyCkoCXZYxIcnC3QSdWy/sxDOj+/LN7lxGvriUrKMFgS7JmJBj4W6C0lW92/LKzzLYf6yI6/7+JeuycwNdkjEhxcLdBK2B5yby9s8vxOkQbpy6lI+/3R/okowJGRbuJqh1bR3H3LsG0blFEya8soJXvtwZ6JKMCQkW7iboJcVHMfvOgVzSrRWPzFvPw++uo6y8ItBlGRPUfAp3ERkuIptEZKuIPFjN8/eLyAYRWSMii0Sko/9LNY1Zk0gXU8elMfHic3h16Xfc9lImuQWlgS7LmKBVY7iLiBN4Hrgc6A6MEZHuVZqtAtJUtRfwNvA//i7UGKdD+N0V5zNlZC+W7TjMiOe/YPP+vECXZUxQ8uXIPQPYqqrbVbUEmAVcXbmBqn6iqieuV/sKSPZvmcZ874a09syaOICCknKufX4JH67bG+iSjAk6UtM4HiIyEhiuqhO80+OA/qp692naPwfsU9XHq3luIjARICkpKXXWrFm1Kjo/P5/Y2NhaLRtsrC+1d7SogmdXFbM9t4IrOru5PsWN0yF1Xq/tk+BkffEYMmTISlVNq7Ghqp7xC7gBmF5pehzw7Gna3oznyD2ypvWmpqZqbX3yySe1XjbYWF/qpqi0TCe/s0Y7/vZ9HT11qR7MK6rzOm2fBCfriwewQmvIV1X16bRMFtC+0nQysKdqIxG5FPhvYISqFvuwXmPqLNLl5E/X9uRvN/Tm611HueLpz1m67XCgyzIm4HwJ90wgRUQ6i0gEMBqYV7mBiPQFpuIJ9gP+L9OYMxuZmszcuwYRG+li7PSveGbRFsorbOhg03jVGO6qWgbcDcwHNgKzVXW9iDwmIiO8zaYAscC/RGS1iMw7zeqMqTfnt4ln3j0XMaJ3W/7fR5sZO/0r9uYWBrosYwLCpyF/VfUD4IMq8x6u9PhSP9dlTK0s3LCf5TuOALBs+xF+8r+fMjq9PfPX72dPTiFtm0YzaVhXrunbzu/bnrsqmynzN9X7dnzx0Ny1vLlsN/f1KGX85A8Y0789j1/TMyC1mMCw8dxN2Ji7KpvJ76ylsLQcAAUKS8qZuWTnyTbZOYVMfmctgF+Dt+q262s7vnho7lpe/2rXyely1ZPTFvCNhw0/YMLGlPmbTobrCdWddS8sLWfK/E31vu362I4v3ly2+6zmm/Bk4W7Cxp4c38+vZ59F27ps+2xq8pfy03x25XTzTXiycDdho23TaJ/bOh3CF1sO1fu2z6Ymf3FK9R/kOt18E54s3E3YmDSsK9FV7rnqdghu56mhFuF00LxJBDfPWMYD//qGI8frfiu/6rYd7XYyaVjXOq/7bI3p3/6s5pvwZG+omrBx4o3LqlesVDdveI/WPLNoC9M+286ijfv53RXnMzI1Ganl0e3pth2Iq2VOvGl64hy7U8SulmmELNxNWLmmb7tqA7W6eb8Z3o0Rfdry0Jx1THp7DbNX7OYPI3r4fduB8Pg1PXn8mp4sXryYbWMHB7ocEwB2WsY0at1axzP7zoH89fqebDt4nCuf/ZzXNhSTU1D3UzXGBJKFu2n0HA5hVHoHPvn1YG4e0JGPd5Xx4ymLeWnJDkrtjk8mRFm4G+OVEOPmsat78NigaHq0i+cP721g2JOf8eG6fSdGPTUmZFi4G1NF+zgHr4/vz/Rb0nA4hJ+/vpKRLy5l2XYbbdKEDgt3Y6ohIlzaPYkPf/kj/nxdT3YfKWDUtK+4ZeZy1mTlBLo8Y2pk4W7MGbicDsZkdODTSUP43RXdWJOVw4jnljD+5UwLeRPULNyN8UF0hJOJF5/L578ZwgNDu7Diu6OMeG4Jt720nMydRwJdnjE/YOFuzFmIi3Jz9yUpfPHbIUwa1pW1Wbnc8OJSbnxxKQs37KfCbhBigoSFuzG1EBfl5q4h5/HFby/h4Su7k51TyIRXV3DZk5/yxrJdFJaU17wSY+qRhbsxdRAd4eRnF3Vm8aTBPD26D1FuJ7+bs5aBf1nEX/7vW3YfKQh0iaaRsuEHjPEDt9PB1X3aMaJ3WzJ3HuWlJTuY9tk2pn62jUu6tmLsgA78uEsrnA4bmdE0DAt3Y/xIRMjo3JyMzs3Zk1PIm8t38eby3Sx6eQVtE6K4Ia09I1OTad88JtClmjBn4W5MPWnbNJpfD+3KPZeksGjjft5YvotnPt7C04u2MPCcRK5PTWZ4j9bERtqfofE/+60ypp5FuBxc3rMNl/dsQ9bRAt75Opu3V2bxwL++4aG5a7mse2tG9G7LxV1aEOly1rxCY3xg4W5MA0puFsO9P0nhnkvO4+tdR5mzKpv31+zlvW/2EBflYmj31lzeozUXpbQgym1Bb2rPwt2YABARUjs2J7Vjcx656gKWbD3Ee9/s5aMN+/j311nERrr4cdeWDO2exOCurUiIdge6ZBNiLNyNCTC308Hgrq0Y3LUVJWU9+XLbIT5ct4+FGw/wnzV7cTqE9E7NuKSbp01Kq9ha3zHKNB4W7sYEkQjX90FfUaGs2p3Dx9/uZ9HGA/zpg2/50wff0iYhih+ltOCilJZceG4iLWIjA122CUIW7sbIwl0aAAANK0lEQVQEKYdDSO3YjNSOzZg0rBt7cgr5bPNBPt18kA/X7WP2iiwAurWOY8A5iQw4J5H0Ts1ItLA3WLgbEzLaNo1mdEYHRmd0oLxCWZudy5Kth1i67TCzMnfx8pc7ATivVSxp3heF8uMVqKqdxmmELNyNCUFOh9CnfVP6tG/KXUPOo7isnLVZuSzfeYTMHUf4YO1eZmXuBuAvKz+id3JTerdvSu/kBHomJ9AqLirAPTD1zcLdmDAQ6XKS1qk5aZ2aw2CoqFC2HcznjQVfURiTxOrdOTz38RZODFrZKi6SHu0S6N4mnu5t4zm/TTwdmsfY8AhhxMLdmDDkcAgpSXH8uL2bwYN7AVBQUsb6PcdYk5XL+j25rMvO5dPNByn3Jn6U20FKqzi6JMXRJSmWlKRYzmsZR7tm0Rb6IcjC3ZhGIibCRXqn5qR3an5yXlFpOVsP5LNh7zE27ctj0748Pt9ykH9/nXWyTaTLQecWTejcogmdWjShc2ITOibG0KlFE1rGRuKw4A9KFu7GNGJRbic92iXQo13CKfNzCkrYeiCfbQfz2Xognx2HjrNpfx4fbdhPWaUbkkS6HLRvHkNys2jaN4uhXbNo2jWNPvm9RWykHfUHiIW7MeYHmsZEfH8Ov5Ky8gr25BSx4/Bxdh0pYPeRAr47fJyso4Ws2pVDbmHpKe1dDiEpPorWCVG0jo8iKT6KpPhIWsVH0iouilZxkbSIjaRpjNuu6PEzC3djjM9cTgcdEmPokFj9kMV5RaVk5xSSfbSQPblF7M0pZF9uEfuOFbFx7zE+2XSAgmruUuV2ColNIkmMjSAxNpLEJhE0r/TVLCaC746U02ZfHs1i3MRHu23snRpYuBtj/CYuyk231m66tY4/bZv84jL2HyviwLFiDuQVcSi/hEP5xRzMK+bIcc/j7QfzOXK85AcvBH9e/tnJx1FuBwnRbuKj3J7v0W7io1zERbmJ836PjXIRF+miSaSLWO9Xk0gnsZEuYiJdxLidYfuegU/hLiLDgacBJzBdVf9S5flI4FUgFTgMjFLVnf4t1ZjwNXdVNlPmb2JPTiFtm0YzaVhX/rViF0u2HTnZZtC5zbkhrcMP2gE/mLfiuyO8uWw39/UoZfzkDxjTvz2PX9PTp+1Wt75r+rbzue4T2y5XxSnyg23HRrqIbRnL2qzcGrf96FUp/KhLC44cL+HTpSvokHI+RwtK+WrbYT7dfJD9x4q9p4JiKCwtZ+uBMo4VlZJXVHbyKqCaRLudxEQ4iY448d1FtNtBTISLaLeTSLeDaLeTKLeTKLeDKNf3jyNdnucjXd7HLgeRbgcRTicRLsf3X87vv7udgmr930i9xnAXESfwPHAZkAVkisg8Vd1Qqdl44Kiqnicio4G/AqPqo2Bjws3cVdlMfmcthaWeo9TsnELue2v1D9ot2XbklLDPzilk0tvfgEKpN8iycwq5/63VVFRarlyV17/aBXBKyFa33Un/+gYESsu/X9/kd9YC/CDgq1ve39t+ZN56/nxdT67p246DiU4G92rL3FXZfPztgZPLFpVWkHW08GQ7AFWlqLSCvOJS8ovKyC/2fhWVUVBSzvGSMo4Xl3G8uJzjxWUUlJZTWFJOQUkZhaUVFJaUcTCvmELv/KLScgpLPd99fM04o3HdIxhS99WckS9H7hnAVlXdDiAis4CrgcrhfjXwqPfx28BzIiLaEC9PxoS4KfM3nQyqs3UiCCurqKYdwJvLdp8SsNVtt7Sa5CosLWfK/E0/CPfqlm+IbVe3bNV2IkK092i8VdxpiqoFVaW0XCkqK6e4tIKi0nJKyisoLq2guKyckrIKissqKCmr8MwvK6e0TCku98wrLa+gtKyCuPxd/ivqNKSm/BWRkcBwVZ3gnR4H9FfVuyu1Wedtk+Wd3uZtc6jKuiYCE72TXYFNtay7BXCoxlahwfoSfBq0HxGtz0utr3WXF+TijPn+MseSfVtX1na7lZet6/K1XLYFcOhMy1atMYjV5Xeso6q2rKmRL0fu1b3bUPUVwZc2qOo0YJoP2zxzQSIrVDWtrusJBtaX4BMu/QBPX8pyD4RNX8Jpv9R3Xxw+tMkC2leaTgb2nK6NiLiABOAIxhhjAsKXcM8EUkSks4hEAKOBeVXazANu9T4eCXxs59uNMSZwajwto6plInI3MB/PpZAzVXW9iDwGrFDVecAM4DUR2YrniH10fRaNH07tBBHrS/AJl36A9SVY1XtfanxD1RhjTOjx5bSMMcaYEGPhbowxYSjow11EokRkuYh8IyLrReQP3vmdRWSZiGwRkbe8b/YGPRFxisgqEXnfOx2q/dgpImtFZLWIrPDOay4iH3n78pGINAt0nb4QkaYi8raIfCsiG0VkYCj2RUS6evfHia9jInJfiPblV96/93Ui8qY3B0L1b+WX3n6sF5H7vPPqfZ8EfbgDxcAlqtob6AMMF5EBeIY4eFJVU4CjeIZACAW/BDZWmg7VfgAMUdU+la7XfRBY5O3LIu90KHga+FBVuwG98eyfkOuLqm7y7o8+eMZ5KgDmEGJ9EZF2wL1Amqr2wHMhx4lhTULqb0VEegB34Pmkf2/gShFJoSH2iaqGzBcQA3wN9Mfz6S6Xd/5AYH6g6/Oh/mTvjrwEeB/Ph79Crh/eWncCLarM2wS08T5uA2wKdJ0+9CMe2IH34oJQ7kuV+ocCS0KxL0A7YDfQHM8Vfe8Dw0LxbwW4Ac9giyemfw/8piH2SSgcuZ84lbEaOAB8BGwDclS1zNskC88vRLB7Cs+OPTEERyKh2Q/wfAJ5gYis9A4rAZCkqnsBvN9bBaw6350DHARe8p4umy4iTQjNvlQ2GnjT+zik+qKq2cDfgF3AXiAXWElo/q2sAy4WkUQRiQGuwPOBz3rfJyER7qparp5/NZPx/HtzfnXNGraqsyMiVwIHVLXy2Bc+DdsQpAapaj/gcuAuEbk40AXVkgvoB7ygqn2B4wT5aYuaeM9FjwD+FehaasN7/vlqoDPQFmiC5/esqqD/W1HVjXhOJ30EfAh8A5SdcSE/CYlwP0FVc4DFwACgqXeoA6h+SIRgMwgYISI7gVl4Ts08Rej1AwBV3eP9fgDPed0MYL+ItAHwfj8QuAp9lgVkqeoy7/TbeMI+FPtywuXA16q63zsdan25FNihqgdVtRR4B7iQ0P1bmaGq/VT1Yjwf8txCA+yToA93EWkpIk29j6Px7PiNwCd4hjoAz9AH7wamQt+o6mRVTVbVTnj+Zf5YVccSYv0AEJEmIhJ34jGe87vrOHUYipDoi6ruA3aLSFfvrJ/gGc465PpSyRi+PyUDodeXXcAAEYkREeH7fRJyfysAItLK+70DcB2efVPv+yToP6EqIr2AV/C8Y+4AZqvqYyJyDp4j4ObAKuBmVS0OXKW+E5HBwAOqemUo9sNb8xzvpAt4Q1WfEJFEYDbQAc8f6A2qGvQDyIlIH2A6EAFsB27H+7tG6PUlBs+bkeeoaq53XsjtF+8lz6PwnMJYBUzAc449pP5WAETkczzvr5UC96vqoobYJ0Ef7sYYY85e0J+WMcYYc/Ys3I0xJgxZuBtjTBiycDfGmDBk4W6MMWHIlxtkG9OgvJeJLfJOtgbK8QwRAJChqiUBKewMRORnwAfe6+aNCTi7FNIENRF5FMhX1b8FQS1OVS0/zXNfAHer6uqzWJ+r0lgpxviVnZYxIUVEbhXP+P6rReTvIuIQEZeI5IjIFBH5WkTmi0h/EflURLaLyBXeZSeIyBzv85tE5CEf1/u4iCwHMkTkDyKS6R2f+0XxGIVnOOq3vMtHiEhWpU9WDxCRhd7Hj4vIVBH5CM9gZS4R+X/eba8RkQkN/1M14cjC3YQM79jY1wIXegeSc/H9zdgTgAXewcxKgEfxfGz9BuCxSqvJ8C7TD7hJRPr4sN6vVTVDVZcCT6tqOtDT+9xwVX0LWA2MUs946jWdNuoLXKWq44CJeAaUywDS8QzC1qE2Px9jKrNz7iaUXIonAFd4hhwhGs9H7QEKVfUj7+O1QK6qlonIWqBTpXXMV9WjACIyF7gIz9/B6dZbwvdDLQD8REQmAVFACzxD0f7fWfbjXVUt8j4eCpwvIpVfTFLwfCTdmFqzcDehRICZqvr7U2Z6RgqsfLRcgecOXiceV/49r/omk9aw3kL1vjHlHbflOaCfqmaLyON4Qr46ZXz/n3HVNser9OkXqroIY/zITsuYULIQuFFEWoDnqppanMIYKp57psbgGTN8yVmsNxrPi8Uh76iY11d6Lg+IqzS9E8+t7qjSrqr5wC9ODGUrnvugRp9ln4z5ATtyNyFDVdd6RwtcKCIOPKPs/ZyzG9f7C+AN4FzgtRNXt/iyXlU9LCKv4Bne+DtgWaWnXwKmi0ghnvP6jwL/EJF9wPIz1DMVz8iAq72nhA7gedExpk7sUkjTaHivROmhqvcFuhZj6pudljHGmDBkR+7GGBOG7MjdGGPCkIW7McaEIQt3Y4wJQxbuxhgThizcjTEmDP1/pGenSMj5bcYAAAAASUVORK5CYII=\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
......@@ -728,9 +738,17 @@
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VPW9+P/XObNkmewhC0vYA4RFXBAQV6LIvrhVkSoWUWsv9ddqq3bzWnurtbetxfZ+Vdy3LooLQhSXoFAVURSJ7GsgAbJvk8w+5/z+mGRISIBJyGSWvJ+Ppsk5c+bk8zHMvOezvT+Krus6QgghxAnUUBdACCFEeJIAIYQQokMSIIQQQnRIAoQQQogOSYAQQgjRIQkQQgghOhS0APGLX/yCCy64gDlz5nT4uK7r/M///A/Tpk1j7ty5bN++PVhFEUII0QVBCxBXX301zzzzzEkf37BhA8XFxXzwwQf87ne/48EHHwxWUYQQQnRB0ALE+eefT3Jy8kkfLywsZMGCBSiKwtlnn01DQwMVFRXBKo4QQohOMobqF5eXl5Odne0/zs7Opry8nMzMzFM+z2pzoQAoCoDv5+OHzT+3ekzxHbe9TkFVfAfN3/zPEUII4ROyANFRho9A3qQbbW6qqhu7vTz+YNJcDkUBVVH8P7c+pzYfq4qCqoKqKv5rz1RGRiKVldYzvk+4iub6RXPdQOoX6TIyEjv9nJAFiOzsbMrKyvzHZWVlp209BJPe/H++73rrswFTFDAoii9gNH8ZmoOHQVUwGBQMqkwcE0JEhpAFiPz8fF555RVmz57N1q1bSUxMDGmA6A66Dh5dB+3kgUWB5mChYlAVjAYVg0HBZFBRVenmEkKEj6AFiLvvvpsvv/yS2tpaLrnkEn784x/j8XgAWLhwIZdeeinr169n2rRpxMXF8fDDDwerKGFFBzyajkfztntMVUAxGWmwuTAZVMwmVVocQoiQUSIt3fexqqagjEGEi7Q0CzU1Tf5jVVWIMaqYTQZiTIaIb2VEcz9vNNcNpH6RLqLGIERgNE3H7vJid/laHGajSqzZQKzZGPHBQggR3iRARBiXR8Pl0bDa3JhNBuJjjMSYDaEulhAiCkmAiFA64HR7cbq9GFSF+FgjcTFGVFnPIYToJjICGgW8mo7V5qaqzo7N4Ql1cYQQUUICRBTRdGiwuaiqs+N0t58lJYQQnSEBIgp5NJ1aq5P6JhdaZE1SE0KEEQkQUczu9FBV75DWhBCiSyRARDmtuTVhtblCXRQhRISRANFLNDk81DQ40E6RBkQIIVqTANGLuDwaVQ0O3B7pchJCnJ4EiF5G03RqGpzYnTIdVghxahIgeiEdqG9y0dDk6nBfDiGEAAkQvZrN6aHW6pSpsEKIDkmA6OVcHo2aegdeTQt1UYQQYUYChMCj6VQ3OHF7JEgIIY6TACGA5sFrq8xwEkIcJwFC+Ok61FqdeLzSkhBCSIAQJ9B0qJOBayEEEiBEBzyaTp3VKVNghejlJECIDrXsWieE6L0kQIiTsjk9OFyy4lqI3koChDilhiaXrJEQopeSACFOSdOhvlFShQvRG0mAEKfl8mg02mU8QojeRgKECEiT3S3rI4ToZSRAiIDoILOahOhlJECIgDndXpwuScUhRG8hAUJ0itUme0gI0VtIgBCd4tF0bLIbnRC9QsQFiD+89BV7SupCXYxerdHuRtOkFSFEtDOGugCddeBIPQeO1HP28D7MumAQCXGmUBep19F1aHK4SYw3h7ooQoggirgWhNL8/dt9Vfz1ta18u7dK+sRDwOb0SMZXIaJcxAWI+24+n+y0eMD3JvXax/t45YM9WG2y2rcn6TrYHDIWIUQ0i7gAMbR/Mv919VimTcjBoPraEzsP1fLX17fy7T5pTfQkm8MtrQgholjEBQgAg6oy9dz+LLt6HP0zLADYnV5eW7ePfxXulU+2PUTTwS4zmoSIWkENEBs2bGD69OlMmzaNFStWtHv86NGj3HTTTSxYsIC5c+eyfv36Tt0/Ky2eH84fy/SJx1sT3x2o4fGVW9lbKjOdekKTwyOtNiGiVNAChNfr5aGHHuKZZ56hoKCANWvWsG/fvjbXPPHEE8ycOZO3336bxx57jN/+9red/j0GVeHSs/vzo6vG+scmGmxunn93FwUbiyV/UJBpmo7dKaurhYhGQQsQRUVFDBo0iJycHMxmM7Nnz6awsLDNNYqi0NjYCIDVaiUzM7PLv69vuoUfXTWWi8/q65/p9Nl3ZTy5ajtVdfYu31ecns0hOZqEiEZBWwdRXl5Odna2/zgrK4uioqI21yxbtoxbb72VV155BbvdzvPPPx/QvdPSLCd9bNGs0UwYk81zq3dQ3+jkaFUT//fWNhZOH8nksX27Vpkedqr6havE5FhizYH9c8rISAxyaUInmusGUr/eJmgBoqN+aUVR2hwXFBRw1VVXsWTJErZs2cK9997LmjVrUNVTN2xqappO+XhGYgzLrh7Lm+sPsPNQLU63lxfW7GDb3krmXjgEkzF8x+bT0iynrV84arI6SE2MOe11GRmJVFZae6BEPS+a6wZSv0jXleAXtHfK7OxsysrK/Mfl5eXtupBWrlzJzJkzATjnnHNwOp3U1tZ2y++3xJr4/pUjmDtlsH8Ae/PuSp54e5t0OQWB0+2VrUmFiDJBCxDjxo2juLiYkpISXC4XBQUF5Ofnt7mmb9++bNy4EYD9+/fjdDpJS0vrtjIoisIFY7P54fwx/k+3ZTU2/v7Wd2w7WNNtv0f4yPRiIaJL0AKE0WjkgQceYOnSpcyaNYuZM2eSm5vL8uXL/YPV999/P6+99hrz5s3j7rvv5g9/+EO7bqju0D8jgWVXj2P04FQAXG6Nf3y4h/e/PCxJ57qR3SlTXoWIJooeYa/oY1VNVFU3dum5uq7z6XfHeH/TYVriwvD+yVx/+XAsseGR9C9SxyBaJFvMxMWcfGgrmvt5o7luIPWLdGE1BhGOFEXh4rP68YPZeVhifW9i+47U8//e2kZZjS3EpYsOsrJaiOjRqwJEi2H9kvmvq8cxoDlNR63VyZNvb2NHsYxLnCmXR5PFiUJEiV4ZIABSEmK4be4YzsntA/je2F75YA/rvimVfvQz5JB9q4WICr02QACYjCrXXjaMmZMH0jI2/tHmUl77eB9uj3wK7irpZhIiOvTqAAHHxyUWzxhFjMkAwNZ91TxbsINGu6SQ6AqvpuNySytCiEjX6wNEixE5KfxwwfH1EofLG3ni7W1U1Mqiuq6wSzeTEBFPAkQrWanx3LlgLAOzEoDmwetV2zh4rCHEJYs8TpesiRAi0kmAOEFCnIlbZ4/mrGHpgG/A9bmCnWzdVxXikkUWTfel3xBCRC4JEB0wGVW+lz+cS8/uB/j61P+9bh//2Xo0xCWLLLJPhBCRTQLESaiKwvSJA5l/0RD/DKf3Nh3m3S8OyT7MAXK5vZLKRIgIJgHiNCaNzuL7V47EZPD9p/q06BgrP94vmUsDoAMOl0x5FSJSSYAIQN6gVJbMziMuxjcN9tt9Vby0drdM5QyATdZECBGxJEAEaFB2IrfPG0OyxQzA3tJ6nnt3pywKOw2PV8ftkUAqRCSSANEJWanx3DF/DBkpsYBvrcTTq3dgtblCXLLwJvtECBGZJEB0UkpCDLfPG0P/Pr5Ef2U1Nla8s4NaqzPEJQtfDpdXBvaFiEASILrAEmvi1jl5DOnry69e3eBgxTvbqaqXVdcd0QGHdMUJEXEkQHRRrNnILTPzGDUwBYD6JhdPv7ODctlXokMyWC1E5JEAcQZMRpUbp41g7FDfPtpWu5unV+/gaFXk7ggXLDJYLUTkkQBxhowGlevzc/37SticHp5Zs4PSiq5tixrNbLKyWoiIIgGiGxhUhWsuG8bEvEzANyj7bMFODpdH7/62XSEJ/ISILBIguomqKMy/aAgXjMkGfInqnn93F4fKJEi0kAR+QkQWCRDdSFEU5kwZxIVjWwWJ93ZKkGhFFhYKETkkQHQzRVGYdcEgLj6rLwAutyZBohWHjEMIETEkQASBoijMmDSQS8YfDxIvvLdLxiQATdelm0mICCEBIkiU5nThLS2JljGJkgoJEg7ZjlSIiCABIohaWhIXjWsbJI708nUSTkkBLkREkAARZIqiMHPyQKY0D1y3bGFa1otXXGs6kipdiAggAaIHKIrC7AsGMWl0FuCbyfPsmh1U1Pbe3E3SzSRE+JMA0UMURWHuhYM5b2QGAE0OD88W7KC63hHikoWGQ1oQQoQ9CRA9SFUUrrp4KGcP96XlsNrcPFuwg7rG3pcqXNN06WYSIsxJgOhhanNajjFDfAn+6hpdPFuws1duOiStCCHCmwSIEDCoCtfnD2dEji9VeHW9g+cKdmJzuENcsp4l4xBChDcJECFiNKgsmjaCIX2TACivtfPCe7t61cY60s0kRHiTABFCJqPKzdNHkpOZAEBpZRNPvFmE26OFuGQ9R7qZhAhfAQWIW2+9lY8//rjTqZo3bNjA9OnTmTZtGitWrOjwmnfffZdZs2Yxe/Zs7rnnnk7dPxrEmA0snjGKrNQ4AHYfquVfhXvxar0jSEg3kxDhK6AAcf311/Piiy9yxRVXsGLFCmpra0/7HK/Xy0MPPcQzzzxDQUEBa9asYd++fW2uKS4uZsWKFfzzn/+koKCAX/7yl12rRYSLjzXyg9l5pCXFALDzUC1vrj+A1gv2TtA02WlOiHAVUIC48soreeGFF3j66aepqKhgzpw53HvvvWzbtu2kzykqKmLQoEHk5ORgNpuZPXs2hYWFba557bXXWLRoEcnJyQCkp6efQVUiW1K8mVtn55Gc4AsSW/ZW8e7GQ71igx27tCKECEvGrjzJZDIRExPDfffdx8UXX8z999/f7pry8nKys7P9x1lZWRQVFbW5pri4GIAbbrgBTdNYtmwZl1xyyWl/f1qapSvFDntpaRb+vxvO5s+vfE2Tw8Pn28rokxbPrClDQl20bnXi38+gKmSkR8ffNCMjMdRFCCqpX+8SUID44IMPeOWVV6iurubGG2+koKAAi8WCx+Phyiuv7DBAdPTJV1GUNsder5dDhw7x8ssvU1ZWxqJFi1izZg1JSUmnLE9NTfQmu+vXJ4GbZ4zk2TU7cXk03tlwADSNyaOzT//kCJCWZunw76e53JiMhhCUqPtkZCRSWRm92XqlfpGtK8EvoACxcuVKbrvtNi6++OK2TzYa+fWvf93hc7KzsykrK/Mfl5eXk5mZ2eaarKwszj77bEwmEzk5OQwZMoTi4mLOOuusztYjquRkJrLoyhG8tHY3Xk1n9afFxMeYOGtY9HbB2V3eiA8QQkSbgMYgnnrqqXbBoUV+fn6H58eNG0dxcTElJSW4XC4KCgraXXvFFVewadMmAGpqaiguLiYnJ6cz5Y9auQNS+F7+cBRAB17/eB/7jtSHulhBI7OZhAg/AQWIG2+8kfr6429OdXV1LFq06JTPMRqNPPDAAyxdupRZs2Yxc+ZMcnNzWb58uX+w+uKLLyYlJYVZs2axePFi7r33XlJTU8+gOtFl3NB05l40GACvpvPKB7s5UtkY2kIFiabJTnNChBtFD2CazPz581m1atVpz/WEY1VNVFVH55skdNxHX/h1KYVflwJgiTVyx/wx9EmOC0XxztjJxiAA4mKMJFvMPVyi7tMb+rClfpGrK2MQAbUgNE3DZju+wU1TUxNer3za6yn55/b37yXR5PDw/Lu7ojK5n9Pl6RXTeoWIFAEFiDlz5rBkyRJWrVrFqlWruPXWW5k3b16wyyaaKYrC3CmDGducAbbW6vTlbYqyrTs1HelmEiKMBDSL6Y477iAzM5N169ah6zo33HADCxYsCHbZRCuqqnDd1OE0OXZx8FgDx6ptvPLBHm6ZOQqjIXpSajlcXmLNXVqeI4ToZgGNQYST3jgG0ZrD5eHp1Ts4Vu3r8hs3NI3rL89FPWGNSbg6Xf0UICM1LmLq01pv6MOW+kWuoK2DqK6u5uWXX6akpASP53i3xvLlyzv9C8WZiTUbWTxzFE++vY26RhffHaghMf4Qsy8Y1G4hYiTSAafLS1yMtCKECLWAXoU//vGPGTZsGBdccAEGgyxmCrWkeDNLZuXx5Krt2Jy+lBxJFjOXjO8X6qJ1C4cECCHCQkCvwoaGBn73u98FuyyiE/qkxLF45kieWb0Tt1dj7abDJMabOCc3I9RFO2NOtxevpmFQo2dsRYhIFNArMDc3l/Ly8mCXRXRSTmYiC6/IRW3uWXrjkwPsLa0LbaG6id0ps5mECLWAWxDz5s3jnHPOISYmxn9exiBCb9SgVBZcPJQ3N/j2j3j1wz3cPncM/fpEdnZUm9NDQpwp1MUQolcLKEDMmTOHOXPmBLssoosmjMqkwebio82luNwaL763izvmjyEtKTbUResyTdNxurzEmGXMS4hQCShAXHXVVcEuhzhDU8/pT32ji692VWC1u3mhOUhYYiP3U7jN6ZEAIUQIBTQGUVxczMKFC/3ZWLdv387f/va3oBZMdI6iKMy7aAh5g3zJDqvqHby0djeuCN7Os2WwWggRGgEFiAcffJA777yTxETfQou8vDzWrl0b1IKJzjOoCtdfPpyBWQkAlFQ08u/CfXi1iFoL2YYMVgsROgEFCKvVyiWXXOJfiKWqKiZT5HZdRDOz0cBN00eSnuwbf9h5qJbVnx2M2CR4Nmd05ZsSIpIEFCAMBgNut9sfIMrLy1FljnrYssSa+MHMUViaZwF9ubOCT7YcDXGpukbT9KhLSihEpAh4w6Bly5ZRW1vL3/72N2688UaWLFkS7LKJM5CWFMstM0ZiNvr+xB9uLuGbPZUhLlXX2BwSIIQIhYBmMS1YsIABAwbw8ccfY7fbefTRR5kwYUKwyybOUP+MBG6cNoKX1u5C0+HN9QdIjDeROyAl1EXrFJdHw+3RMBml1SpETwo44c2ECRMkKESgETkpXHXJUN5Yf3wh3W1zx9A/whbS2Zweko2Ru9ucEJEooABxzTXXdJgpdOXKld1eINH9zhuZSX3T8YV0L0XgQjqH00NinAlVjfyMtUJEioACxH333ef/2el0UlBQQGZmZtAKJbpfpC+k05H0G0L0tIACxMSJE9scX3TRRTJIHWFaFtJZbW52Ha6lqt7By+/vZsnsPMzGyFitLAFCiJ7VpVG/xsZGSkpKurssIsgMqsINVwwnJ9O3kO5weWQtpJMpr0L0rE6PQWiaRmlpKT/4wQ+CWjARHGajgZtnjOTJVduprnf4F9LNv2hIROxIZ3N4ZM9qIXpIp8cgDAYDAwYMICsrK2iFEsHVspDuyVXbabS7+XJnBUkWM/nnDgh10U7L5dHweDWMBpnyKkSwdWkMQkS+tKRYFs8cxdOrt+Nya3y0uZSkeDMTRoX/5AObw0OSRaa8ChFsAQWIyZMnd9j9oOs6iqKwcePGbi+YCL7+fSwsmjaCF9/bjabrvP2fAyTEmxg1MDXURTslu8tDQrwJNQK6xISIZAEFiIULF1JXV8f111+Pruu88cYbZGVlMWvWrGCXTwRZ7oAUrrlsKK9/vB9Nh39+tJelc/LIyUwMddFOStfB4fQSHytjEUIEU0AduV999RX//d//zahRo8jLy+PXv/4169evp3///vTv3z/YZRRBdk5uBjMmDgTA7dF48b3dVNbZQ1yqU7M53aEughBRL6AAUVFRQU1Njf+4pqaGysrITPwmOnbx+L5MGZsN+NYbPP/uThqaXCEu1cl5vDout+wVIUQwBdRGX7x4MfPnz2fq1KkArF+/njvuuCOoBRM9S1EUZl0wCKvNzXcHqqlrdPHi2l3cNnd02E4rtTk9mE2RschPiEgU0Ct/0aJFnHfeeXz11Vfous6iRYsYOXJksMsmepiqKFw3dRhNDjcHjjZwrNrGy+/v4ZaZo8Iyk6rT5duS1CB7kwgRFAG/sgYMGMC5557LzTffLMEhihkNKt+/cgR90+MBOHisgdfW7UMLw9XWOrIlqRDBFFCAWL9+PbNnz+bHP/4xAN999x0//OEPg1owETqxZiO3zBxFWmIMANuLa3gnTLcttTncYVkuIaJBQAHi8ccfZ+XKlSQlJQEwbtw4Dh8+HNSCidBKjDfzg9l5bbYtLfy6NMSlak/TweGSVoQQwRBwF1NGRkabY7NZVrJGu/SkWH4wcxQxzQPB6745wsZtZSEuVXuyJakQwRFQgLBYLFRVVflXU2/atInExNMvpNqwYQPTp09n2rRprFix4qTXrV27lpEjR/Ldd98FWGzRU/r1sfD96SMwNG/Us/rzYr7dVxXiUrXl9moy5VWIIAhoFtM999zDbbfdRmlpKTfddBPFxcU88cQTp3yO1+vloYce4vnnnycrK4trr72W/Px8hg8f3ua6xsZGXn75ZcaPH9/1WoigGtYvmesvz+WfH+1B12Hlx/uJMxsYGUYpOWTKqxDdL6AWxPjx43nppZf405/+xNKlSykoKGDs2LGnfE5RURGDBg0iJycHs9nM7NmzKSwsbHfd8uXLWbp0KTExMV2rgegRY4ekseDioQBous4/PtzLoTJriEt1XMuUVyFE9zltC8Lr9fK9732PN954g0svvTTgG5eXl5Odne0/zsrKoqioqM01O3bsoKysjKlTp/Lcc88FfO+0NEvA10aicK3f9ClDQFV465P9uL0aL72/m3tuPJcBWZ3L2xSs+sXFmUhOCO0HjYyM8M1h1R2kfr3LaQOEwWAgNTUVp9PZqU/5HU09bJ0RVtM0HnnkER555JGA79mipqap08+JFGlplrCu34TcPlTV2PhP0THsTg+P/WsLd8wbTZ/kuICeH8z61QL2lNiQLZzLyEiksjJ8WlXdTeoX2boS/AIagxg8eDCLFi1i+vTpxMfH+88vWrTopM/Jzs6mrOz4jJfy8nIyM4/vNdDU1MSePXu4+eabAaisrOTOO+/kiSeeYNy4cZ2uiOgZiqIwY9JA7C4vm3dV0GR381zBTu6YNybkn951oMkue0UI0V0CChBNTU3k5uZy4MCBgG88btw4iouLKSkpISsri4KCAv785z/7H09MTGTTpk3+45tuuol7771XgkMEUBSFBRcNweHysO1ADXWNLp4t2Mnt88aQ0LxuIlTsTg+WOKOk3xCiG5wyQPzhD3/g/vvv55FHHuGzzz7jwgsvDPzGRiMPPPAAS5cuxev1cs0115Cbm8vy5csZO3Ysl19++RkXXoSOqip8b+pwnK7d7C2tp6rewfPv7mTpnNHExYQuuZ8ONNo9JEsrQogzpuinyFNw1VVX8dZbb7X7OZSOVTVRVd0Y6mIETbiPQZzI5fHywru7KG6e0ZSTmcCSWXnEmDuectoT9VOA9OTYHt+3ujf0YUv9IldXxiBO+QpqHTsk343oiNlo4OYZI+mf4ZuZVFLRyMsf7MbtCd2UU99YhGwoJMSZOmWAcLlc7N+/n3379rX5ueVLCPAl9/vBzFFkpfpmMh042sCrH+7G4w1dkLC7vLg9srpaiDNxyi6m/Pz8kz9RUTpc+BZs0sUUvqw2FytW76C63gFA3qBUbpyW22bAuCfrZzKopCfH9sjvgt7RRSH1i1zdPs113bp1XS6M6H0S483cOjuPp1fvoNbqZOehWv69bh/X5+f6czn1JLdXw+bwEB8bnjviCRHuZC6g6FYpCTHcOjvPP4to24EaVn4Sug2HGu2usNzsSIhIIB+tRLdLS4rl1jl5PP3ODqx2N1v3VaMqCtdcOqzL99xbWsfmXRXUWp2kJsYwYVQmuQNSTvs8TQer3S3TXiPItoPVfFp0jMo6OxkpcVx0Vl/GDkkPdbF6JWlBiKDokxzHrXNG+xfObdlbxZsbDqB1YTbc3tI63v+yhOoGJ5oO1Q1O3v+yhL2ldQE93+70hHRWlQjctoPVvLH+AOW1djQdymvtvLH+ANsOVoe6aL2SBAgRNJmpcdw6Jw9L8xjAN3sqeeW9nZ0OEpt3VXTqfEdsTtlUKBJ8WnSsU+dFcEmAEEGVlRrPrXNG+weKPy86xpvrD3RqXKDW6uzU+Y44nB4Zi4gAlXX2k5x39HBJBEiAED0gOy2epa2CxDd7Knlj/f6A37BTEztOAniy8x3RkVZEJMhI6TgrcEZKz01XFsdJgBA9oiVIJMYfH5NY+cl+vAEEiQmjMjt1/mRsTo9kBAhzF53Vt1PnRXBJgBA9Jjstnp8uPBdL88D1t/uq+Pe6vafdCS53QArTJ+aQnhSDqkB6UgzTJ+YENIupNU3TcbhkdXU4GzsknWsuHUpWahyqopCVGsc1lw6VWUwhItNcRY/ql5HAbXNG8+wa3xTYbQdq8Hj2svCKXEzGk39eyR2Q0umA0BGbwxPSbLPi9MYOSZeAECakBSF6XGZqHLfNG+1fm7DrcC2vfLAbVw/kTnJ7NcnRJESAJECIkOiTHMft80b7B5r3ltbzwru7cLiCP5Bsc8hgtRCBkAAhQiY1MZbb542hT3NCveIyK8+s2UljkFN1O1zeLi3YE6K3kQAhQirZYua2uaPpm+7b6/xoVRNPr95OfWPgaxw6S8e3LkIIcWoSIETIJcabWTpnNAOzEgDfoqin3tlO1UkWTXUHWRMhxOlJgBBhIS7GyJJZeeQOSAagrtHFk+9sp7QiOHt/eLw6LrcMVgtxKhIgRNgwmwzcNH0k44amAb7B5GfW7Ag4KV9n2aUVIcQpSYAQYcVoULk+P5fJo7MAcHk0Xlq7m2/3VXX773K4vJKfSYhTkAAhwo6qKsy9cDBXTBgAgFfTeW3dPtZ/e6RbU2Xo0CPTaoWIVBIgRFhSFIX8cwdw1cVDaNmt9P0vS3jns+Ju/dQvayKEODkJECKsnZ+Xxfenj/Sn4di0o5xXPtiDs5sGmD2aTpMjuOsuhIhUEiBE2Bs1MJXb5o72J/nbdbiWFe9031qJRpsbj1d2nBPiRBIgREQYkJHAnfPH+PcLOFZt44m3t3G0qumM760DDU2uM76PENFGAoSIGGlJsfxw/hiG9/etlWiwuXnqne1sO1hzxvd2eTSZ9irECSRAiIgSF2Nk8cyRnN+8WZDbo/GPD/dQ+HXpGedXstpcMu1ViFYkQIiIY1BVFlw8hFmTB6E0z3Aq/LqUf32bgCyaAAAfmklEQVS094xWR2s61Fgdp93ASIjeQgKEiEiKonDRWX1ZPGMUsWYDANsO1vDkqu1UN3R9g3uPV6emwSmD1kIgAUJEuBE5KfxowVh/yvCyGhv/9+Z37CnpenoOr6ZTY3Xi9kiQEL2bBAgR8fqkxHHngrGMGpgK+FJovPjeLtZ90/VxCU3TqbU6JEiIXk0ChIgKcTFGvj99BJefNwAF39TVjzaX8vLa3di6uBBO05EgIXo1CRAiaqiKwuXnDeCmGSP94xK7S+r4+5vfUVJh7dI9JUiI3iyoAWLDhg1Mnz6dadOmsWLFinaPP//888yaNYu5c+eyePFijhw5EsziiF5i1MBUll09jv59LIBvb4kV7+zgP0VHu9TldDxIyP4RoncJWoDwer089NBDPPPMMxQUFLBmzRr27dvX5pq8vDzeeOMNVq9ezfTp0/nf//3fYBVH9DJpSb79ric1pw33ajrvfXGYl9bu6tKe15oONQ3OLndXCRGJghYgioqKGDRoEDk5OZjNZmbPnk1hYWGbayZPnkxcnC91wtlnn01ZWVmwiiN6IZNRZf5FQ7g+fzgxJl+X056Sev62sqhLmxDp+FZv1zU6z3hRnhCRwBisG5eXl5Odne0/zsrKoqio6KTXr1y5kksuuSSge6elWc64fOFM6te9pk60MHZEJs+u2kbxsQasdjfPv7uL/Ak5XHXZMExGQ+dvalBJS47FYGj7GSsjI7GbSh2epH69S9ACREcbuygty15PsGrVKrZt28Yrr7wS0L1ras48QVu4SkuzSP2CwAAsmTWKjzaX8J+tx9CBdZtL2La/iuvzh9M3vfNBq6q6kdSEGH8q8oyMRCoruzYYHgmkfpGtK8EvaF1M2dnZbbqMysvLyczMbHfd559/zpNPPskTTzyB2WwOVnGEwGhQmTFpEEvm5JFs8f1bq6i18//e2sbH3xzB28k8TJqmU2N1dNveFEKEm6AFiHHjxlFcXExJSQkul4uCggLy8/PbXLNjxw4eeOABnnjiCdLT04NVFCHaGNYvmbuuPYuzhvn+zXk1nQ83l/Dkqm2U19g6dS9dhzqrU3amE1FJ0btzk98TrF+/nocffhiv18s111zDnXfeyfLlyxk7diyXX345t9xyC3v27CEjIwOAvn378uSTT57ynseqmqiqbgxWkUNOuph61tZ9VbzzWbE/1bdBVZh6bn8uGd8Po6Fzn59y+qXgsjtP2pUa6XpDF0y016+zghoggkECRGQLx/pt3V/FexsP0WA7PoU1NTGGtMQYnG4vqYkxTBiVSe6AlFPeJy3NQmODneQEMwa1c8Fl28FqPi06RmWdnYyUOC46qy9jh4RHq3rNxmI+2XKEJocHS6yRy87pz5wLBoe6WN1OAkR7QRukFiIS7C2t4z9bj2GJM6GqKg1NzuaFcU5qrU4ssUY8Xp33vywBOG2QcHk0quocxJoNxMea/APYp7LtYDVvrD/gPy6vtfuPQx0k1mwsZs1nxYBvkkmjze0/jsYgIdqSVBuiV9u8qwLwvfnFxxrJSI1HVY93ETU5PFTU2bE7PXy1szyge+qA3eWlusFBTYMDu9PT4ay+Fp8WHevU+Z70yZaOsxuc7LyILtKCEL1ardXZ5tigKhhU8IUIBa+mN2d29Q1EV9TZyWzeFzsQLo+Gy+PCaleIjzESF2No1/1UWWfv8LmVdV3f16K7nGzVeVMXVqOLyCMtCNGrpSbGtDtnUFVMRgMZqXEkxJn8551uL4+/XsS7XxzC4ercrCVN02m0u6mqc1DX6Gyz813GSQJORkpsp35HMLSuf2uWk5wX0UUChOjVJoxqvzYnPtaIJdaIqigkWcxkpMRhNvleKpqu82nRMf787618tbO803tY6/j2q6ixOqmqt2NzeLhwXHaH1150Vt9O16e7XXZO/06dF9HF8OCDDz4Y6kJ0RqPNjc3uCnUxgiYuzow9ipvv4Va/9KRYUhNjqLM6cbq8pCXFkH/uAEYOTPWfy0iJZfrEHEYPTqOkohGHy4vbo7HrcB3bD9aQlhRLenJsp+um6b5WSWKciczUOOqsThwuL5mpccyYNDDkA9Tg27EPBY5WN+HxaljiTFw5cWBUDlBbLDHYbNH73mKxtG8tn45Mcw0z4TgNtDtFev3cHo0NW4+yYevRNntEDO+fzHVXjCAxpgt5nVoxqAoxZgOxJgNm05ndq7v1hmmg0V6/zpIAEWYi/Q30dKKlfg1NLj7aXMLXuytp/QIaMySNaefndGog+2QMqkKs2UCs2RjQdNlg6w1voNFev86SWUxCdEGSxczVlw7jgrHZvP/lYfaU1AOw/WANO4prOHt4H6ae058+ZxAovJpOk8NDk8ODUVWIjTESYzKERbAQvYMECCHOQN90C7fMzOPgsQYKvznCgSP16Dps2VvFt/uqOHt4Hy47p/9JZyoFytM8C6rR7kZVwGT0BQqTQcVsUqM2vYcIrYjrYrI53JRXWNF0HV33TR/Udd9cdQ3QNZ2IqtAJoqUL5mSiuX6pqfFs/PYIH31dytGq43VUgDFD07js7P7069P9e2EogNlkIMakYjYZOp1DKlC9oQsm2uvXWRHXgoiPNZ10bnYLrTlg6Hrbn0GnZVairjcHEp3m78cDi64f389C03R/MIrkwCOCT1EURg1KZeTAFHYdqqXw61KOVtvQgW0Hath2oIYROclcdFY/hvVL6rZP/Tq+2VC+tONuVFUhxqhiMqoYDSpGo4oqLQzRBREXIAKhKgqqoftfELquNwec4z+3BKE2rZnmABMtrRrROYqikDc4jVGDUtldUscnW45wuNw3sWJPST17Surpmx7PRWf1ZdzQ9G7/xK9pOnaXF7vr+GI8o6pgMhkwtwocQpxOxHUxARHZDGwTULTWgcUXUDRdR9d0UtMsVFU1tgs+0SKau5hOVjdd1zl4zMr6b4+wt7S+zWOJcSYmjs5iYl4mifE9t2GWquBvXZgMKkaDgsFw6pZGb+iCifb6dVZUtiDCkaIoGFpefKeY3p6eHIfWQRqH1l1lHbZemgOMt/lLk1ZL2FAUhaH9khjaL4myGhufFh1j674qvJqO1e6m8OtSPtlyhLFD05iYl8Xg7MSgDzprekueKK3NeV8uKl+wMKgKJoOvxdE6gaHoPaQFEWa681OMV9Pwen0BQ9eh5T2n9diM/7um4+2B1kpvbEF0pKHJxaad5Xy5s6Jd4ruMlDgm5mVydm4fLLHhkfPIoCpkZyVRX2fDoCq+1odBiarZU9KCaE8CRJgJ9T9STdPxahoeb6uWSOtxlVY/n+5fTstbR+vLJEC05fFqfLe/mi92lFNS0XYBqEH1DXpPGJnB8AEpGEL8Kb6j+rUEC4OqoCi+1pKqKBgMiv+xSBHq116wSReTOGOqqqCqBkwB/stoGUdRUGj+H0CbT5atWzKJ8WZsjQ48Xg1NP359i+MzyaJr7OVkjAaVc0ZkcM6IDI5WNfHlznK+3VeFy63h1XS2H6xh+8EaEuJMjB+Wztm5fejXxxI2n9x9XZrekz6ugL/LymhoaXm0bX20fPBQUKQrK8xICyLM9IZPMYHW7/isMd/MMa318YlrYPTjU5hDpbtaR063l20Hqvl6dyXFZe3/W/VJjuWsYemMG5ZOVmr8Gf++QHV3609VlXYfBBSlZRzEN+6hNh+3tExU1fe8zm7pGoje8NrrLGlBiLDVMrDfmV6K1uMq/rGWDoLKic/xhtGgfozJwHkjMzlvZCZVdXb/quyWzY2q6h2s++YI6745QnZaPGOGpDFmSBpZqXFh07IIREep0nUdPF4dj/fkrRLwtUzU5gF1RfG1PFqCi6oo/haKqhzv+hKdJy2IMNMbPsWEa/1axl80zdd1ounNs8K8Gpqm4zlNEyWY4yuarnO43Mq3e6vYdrAGm6P9TLf0pFjyBqeSNyiVgVmJ3T5mEcnjR0rz/yn4goVC+4Wv6ekJ1NQ0+rpLOT6pQ2kJMs0/t7mPAgqK/1q1+XG1+RcqSvO6rDDoOpNB6igQzm+g3SGS6+fxajQ5PDicng5bGz31BurVNA4cbaBofzU7imuxO9sHi7gYIyNzUhiRk0JuTnK3zIaK5AARiGDWTwEU1dci9o3zKc2tneaWsnq8FdQScDrT6mm9iPd4l+vxljPA8MGd319EupiECJDRoJJsMZMQZ8Tm8GBzekIykG5QVXIHpJA7IIUFF2scPGb1Z5G12nxTZu1OD9/u83VNKUD/DAvDB6QwvH8SA7MSI2p2UTTQ8WVU0NDh1L1nfv5WT3OLp3Xw8K+HIrBMDV1tTUqAEKKTDKpKYrwZS5wJh9OXjtsbohFyg6oyvH8yw/snM/fCwRytamLXoVp2HarlaLUN8L05lVY2UVrZxCdbjmAyqgzOTvQv3uvXJyHkU2hFe/5ccW0+hfTsvzMJEEJ0kaooxMeaiI814dU0UpJj8ThcuD0aTo/W6f2qu6M8AzISGJCRwBUTcmiwudhbUseekjr2HanH7vR9dHV7NPaW1vvTfpiNKgOzEhmUncjgvonkZCSE3W52IjQkQAjRDQyqSqzZSHyrvn6PV/NlWW3ew7qn2xhJ8Wb/bChN0zla3cS+0nr2HanncLkVj9dXIpdHY98R33nwDbBmpcUzMCuRnMwEBmQm0Cc5todLL8KBBAghgqRlUZgl1oSm6TjdXmwOD26vdvondzNVPd66uOyc/ni8GiUVjRw42kBxWQOHyxv9e2xrOhyrtnGs2samHeWAb+rt4L5JZKbE0q+PhX59LKQnx0oa8SgnAUKIHqCqCnExRuJijDjdXprs7naJ8nqS0aAypG8SQ/omAb6ZUceqbBSXWTlcYaWkvJH6Jpf/eqfby+7Dtew+fPweJqNKdlo8fdPjyU6LJystnqzUeOJj5W0lWshfUogeFmMyEGMy4PZo2F0eHC5vj49XnMigqgxo7k6CvgDUNzqbB7cbKa1s5GiVrc2UWrfH1wo5MYdUYryJzNQ4MlLiyEzxfe+TEkdSvEkWrEUYCRBChIjJqGIymkmKB5fbi8PlxeHyhDxlSIvkhBiSE2IYMyQN8G2puv9QDUeqmjha1URZtY1jNTYaWrU0AKw2N1abm/1HGtqcN5tU+iTHkZ4UQ3pSLOnJsaQlxZKWGEOixSzdVWFIAoQQYcBsMmA2GUiymP0D2w536FsWrSmK4ntDT4pl3NDji66aHG7Ka2yU19gpq7FRUWunos7mnzXVwuXWONocXE5kNCikJMSQmhjT5ntygpmUhBiSLKag5F8SpyYBQogw09IFlYSvG8fp9uJyh2YmVCAssSaG9ktmaL9k/zld12m0u6mss1NZ56Cq3k5VnYOqBge1DU60E1YYerw6VfUOquodHf4OBUiIM5GUYCYp3kySxfc9Md7U/OX72RJrCou0FtFCAoQQYczUvIc0cSY0Xcft1nB5fMHC7dXCNiW6oijNb9rmNoEDfHmu6hqdVNc7qLU6qWlwUNPgpK7RSa3Via2D1CE6YLW7sdrdHOHk6TAUID7WSEKcCUucyfc91oQlzogl1kR8rJH4WN/PcTFG4mOMvv++okMSIISIEKqiEGM2EGM+vojN49VwuX3Bwu32hlVW2pMxqIpvDCKp47UVTpeX2kYn9Y1O6hpd1Dc6qW9y+b8amlz+Kbkn0oEmh291O7X2gMpjMqrExRhJjDdjMirEmY3ExRiIMxuJMRuINRuJNRuav1rOGfwtPZPp1Ht5RzIJEEJEsJa1Fq15vC0bNGn+XQEjaa/yGLOB7DTf1NmO6LpvTUmDzY21yYXV7qbR5sZqc9Fod7f5arJ72nVnncjt0XB7XO0G2zvDbFKJMRowmw3EGFX/mJLZqGI2qZiMLT/7vptafxlUjCf+3LwXeEcbLPWkoAaIDRs28Pvf/x5N07juuuu4/fbb2zzucrm499572b59OykpKTz22GMMGDAgmEUSImptO1jNp0XHqKyzk5ESx0Vn9WXskHSeLdjBVzsrcHs1TAaVCaMymDAqk8++O0ZlnYP0pFgm5mUyIieVnYdq+HJnBTUNDlITY5gwKpPSyka+3FGOzeUl3mxg4ugspp7T8et0b2kdm3dVUGt1+p+fOyDlpOc7c4+Pt5T6yuH0EB9jDKgcNQ0Oki1mRg1KxeH2sv1ADQ1NLmLMBjJS4og1+xIv2l0e3B4Nq82F3enF6Q4wo14zl9vXkuOE/cW7U8uOfAaDirFlq1fD8f3BW2//alBV/7avBoOKyaAwOjez078zaOm+vV4v06dP5/nnnycrK4trr72Wv/zlLwwfPtx/zauvvsru3bt56KGHKCgo4MMPP+Svf/3rae8dqemiAxHJ6bADEc31C2Xdth2s5o31B9qdt8Qa2Vlc2+acjq+fPiMlrs3580Zm8PXuyuPX6b6xgia7u3njHcWfOG7axBwuPzfHn2Za12F3SS1rN5W0K8OYIalsP1jb7vz0iTntgsTe0jre/7L9PbLT4vhuf3W785ed279dkOjoHg6XBwWIMbf9TNy6DK3Tfe8uqeX9TSX+LXVbdjQcOzSNFEsMDpcviLRMIHA0p1NpOdd6ckFLSpNQW/3n+Z1+TtBaEEVFRQwaNIicnBwAZs+eTWFhYZsAsW7dOpYtWwbA9OnTeeihh3z7G0dpf54QwfJp0bEOz+861P6NGcDewYZDn2w5QmK82X+sKApNdl9Kc0Vt28XxxfZyrr10eJvnv7F+v3/At/Xnzs27Kvz39Z/VoWh/FRNGHv9Uq+uwdV9Vh7OQOgoOAF/trGDW5MG0Hq3fsreSE99CWga+Y2PavuVt2VPJ2CG+KbuxZl/3D8DWvVW+T+An7JpubXIx/8IhHZblZHxpVjTcHi8uj2+syOXRfD/7v7y+caRW57ya7p+M4PF/6Xg8zT9rvp+9mt7mca3luLlL8UwELUCUl5eTnZ3tP87KyqKoqKjdNX37+lZtGo1GEhMTqa2tJS0t7ZT37srOSJFE6he5QlW32kZXh7NxNJ12b5bovjfqE69vcnhIO2HguKX/viU4tHy3OTzt6nqyMticXtKT22eHtdo9DByQ2u5crLn9tR5Nx2xsf97h8rbbCKfJ4SXuhECga4BCu/M2l5cRQ/v4j9OTfa2qJueOdte2XD9yWEa789EqaAGio56rE1sGgVwjhDi9v/zk0lAXoVvKEE33iAZBmwCcnZ1NWVmZ/7i8vJzMzMx21xw75msaezwerFYrKSkdD1wJIYToWUELEOPGjaO4uJiSkhJcLhcFBQXk5+e3uSY/P5+33noLgPfff5/JkydLC0IIIcJE0GYxAaxfv56HH34Yr9fLNddcw5133sny5csZO3Ysl19+OU6nk5///Ofs3LmT5ORkHnvsMf+gthBCiNAKaoAQQggRuSQJiRBCiA5JgBBCCNGhsM7F5HQ6WbRoES6Xy78y+6677qKkpIS7776b+vp6Ro8ezR//+EfMZvPpbxiGWsZnsrKyeOqpp6Kqbvn5+VgsFlRVxWAw8Oabb1JXV8dPf/pTjhw5Qv/+/fnrX/9KcnLy6W8WhhoaGvj1r3/Nnj17UBSFhx9+mCFDhkRF/Q4cOMBPf/pT/3FJSQl33XUXCxYsiIr6vfDCC7z++usoisKIESN45JFHqKioiJrX3osvvsjrr7+Orutcd9113HLLLV177elhTNM0vbGxUdd1XXe5XPq1116rb9myRb/rrrv0NWvW6Lqu67/5zW/0V199NZTFPCPPPfecfvfdd+u33367rut6VNVt6tSpenV1dZtzjz76qP7UU0/puq7rTz31lP7HP/4xFEXrFvfee6/+2muv6bqu606nU6+vr4+q+rXweDz6lClT9NLS0qioX1lZmT516lTdbrfruu57zb3xxhtR89rbvXu3Pnv2bN1ms+lut1tfvHixfvDgwS797cK6i0lRFCwWC+BbJ+HxeFAUhS+++ILp06cDcNVVV1FYWBjKYnZZWVkZn3zyCddeey3gWzgYLXU7mcLCQhYsWADAggUL+Oijj0Jcoq5pbGzkq6++8v/tzGYzSUlJUVO/1jZu3EhOTg79+/ePmvp5vV4cDgcejweHw0FGRkbUvPb279/P+PHjiYuLw2g0cv755/Phhx926W8X1gECfH/I+fPnM2XKFKZMmUJOTg5JSUkYjb7esezsbMrLy0Ncyq55+OGH+fnPf47avJVibW1t1NStxa233srVV1/Nv//9bwCqq6v9CyYzMzOpqakJZfG6rKSkhLS0NH7xi1+wYMECfvWrX2Gz2aKmfq0VFBQwZ84cIDr+fllZWSxZsoSpU6dy0UUXkZCQwJgxY6LmtTdixAg2b95MbW0tdrudDRs2UFZW1qW/XdgHCIPBwKpVq1i/fj1FRUUcONA+Y2UkLq77+OOPSUtLY+zYsae8LhLr1uKf//wnb731Fk8//TSvvvoqX331VaiL1G08Hg87duxg4cKFvP3228TFxbFixYpQF6vbuVwu1q1bx4wZM0JdlG5TX19PYWEhhYWF/Oc///G/iZ4oUl97w4YNY+nSpSxZsoSlS5cycuRIDIb2eawCEfYBokVSUhKTJk3i22+/paGhAY/Hl52xrKysXQqPSPDNN9+wbt068vPzufvuu/niiy/4/e9/HxV1a5GVlQVAeno606ZNo6ioiPT0dCoqKgCoqKg4bWLGcJWdnU12djbjx48HYMaMGezYsSNq6tdiw4YNjBkzhj59fAntoqF+n3/+OQMGDCAtLQ2TycSVV17Jli1bouq1d9111/HWW2/x6quvkpKSwqBBg7r0twvrAFFTU0NDQwMADoeDzz//nGHDhjFp0iTef/99AN566612KTwiwT333MOGDRtYt24df/nLX5g8eTJ//vOfo6JuADabjcbGRv/Pn332Gbm5ueTn5/P2228D8Pbbb3P55ZeHsphdlpGRQXZ2tr9Fu3HjRoYNGxY19WtRUFDA7Nmz/cfRUL9+/fqxdetW7HY7uq6zceNGhg8fHjWvPfB1BQIcPXqUDz74gDlz5nTpbxfWK6l37drF/fffj9frRdd1ZsyYwbJlyygpKeGnP/0p9fX15OXl8ac//Slip6MBbNq0ieeee84/zTUa6lZSUsJ//dd/Ab5xpDlz5nDnnXdSW1vLT37yE44dO0bfvn1Zvnx5xCZo3LlzJ7/61a9wu93k5OTwyCOPoGla1NTPbrdz2WWX8dFHH5GY6EvtHS1/v8cff5x3330Xo9FIXl4ev//97ykvL4+K1x7AjTfeSF1dHUajkV/84hdccMEFXfrbhXWAEEIIETph3cUkhBAidCRACCGE6JAECCGEEB2SACGEEKJDEiCEEEJ0KKyzuQpxKtdddx0ulwu3201xcTG5ubkAjB49mkceeSTEpQvM9u3bKSkpiaqVyiJ6yDRXEfFKS0u55ppr2LRpU6iL0o7H4/Hn9+nI66+/zueff85jjz3W7fcW4kzJvy4RlVauXMm//vUvvF4vSUlJ/Pa3v2Xw4MG8/vrrrF27FovFwp49e+jbty+//OUvefTRRykpKWH8+PE8+uijKIrCz372M+Li4jh8+DBlZWVMmjSJ3/zmN5hMJqxWKw8//DB79+7F6XQyZcoU7rvvPlRVZeHChUycOJEtW7YQHx/P448/7l8k6HQ6GT9+PL/97W9paGjg//7v/2hqamL+/PlMmjSJRYsWceONN/LZZ58BcOjQIf/xoUOHWLhwIddffz1ffPEFV199NfPnz+cvf/kLmzdvxuVykZeXx4MPPkhcXFyI/wIiKgQpJbkQPaakpESfOHGi//iLL77Q77jjDt3pdOq6ruuFhYX6okWLdF3X9ddee02fOHGiXlZWpuu6ri9ZskRfsGCBbrVadZfLpc+aNUv/4osvdF3X9XvuuUefP3++3tTUpLtcLv3mm2/W//GPf+i6ruv33Xefvnr1al3Xdd3r9ep33XWXvnLlSl3Xdf2GG27Qf/SjH+kej8f/eF1dnf/nu+++27+PxGuvvab/5Cc/8Ze9uLhYnzJlSofHxcXF+ogRI/S1a9f6H3/88cf9Of51XdcfeeQRffny5Wf2H1SIZtKCEFFn3bp17Nixg+uuuw7w7bPR1NTkf/y8887zJxIcPXo0DoeDhIQEAEaOHMnhw4eZNGkSALNmzSI+Ph7w5dD/5JNPWLhwIR9//DHbt2/n6aefBny5wgYOHOj/HXPnzvVn0NQ0jRUrVvDpp5+iaRp1dXVd3oUtPj7ev2dBS13tdjsFBQWAL/vqmDFjunRvIU4kAUJEHV3X+d73vseyZcs6fDwmJsb/s6qq7Y5bMnp2dN+WFNCapvHUU0/Rr1+/Dq9tCSoAq1atoqioiH/84x9YLBb+/ve/c+zYsQ6fZzAY0DTNf+x0Ok9635Yy/e53v+P888/v8H5CnAmZ5iqiTkvWypYNX7xeL9u2bevSvd577z3sdjtut5vVq1f7Wxb5+fmsWLECr9cL+DIPl5SUdHgPq9VKamoqFouF+vp6/6d9AIvFgtVq9R9nZmbicDj891qzZs1p6/rcc8/5A0ljYyP79+/vUl2FOJEECBF1Jk+ezLJly7jjjjuYN28ec+fO5ZNPPunSvc477zzuvPNO5syZQ05Ojn+L0d/85jdomsb8+fOZO3cut912G5WVlR3e46qrrqKuro45c+Zw9913t/m0f+GFF2K1Wpk3bx4PP/wwZrOZ+++/n8WLF3PTTTdhMplOWb4f/vCHDBs2jGuvvZa5c+eyaNEiDh482KW6CnEimeYqxEn87Gc/47zzzmPhwoWhLooQISEtCCGEEB2SFoQQQogOSQtCCCFEhyRACCGE6JAECCGEEB2SACGEEKJDEiCEEEJ06P8H8uC1Bmw5yFwAAAAASUVORK5CYII=\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VPW9+P/XmS2ZTBKykAVIWA07ogVRVERRFtkVqQJVq2LVVvttrfeqt9ar9qr1/nrtrW1vK1rrWlrBhSWKVlBwQ3GNBMIeCEsmIXsms53l98ckAyEBMiGTWfJ+Ph4hc07OnHw+JJP3fLb3RzEMw0AIIYQ4gSnSBRBCCBGdJEAIIYRolwQIIYQQ7ZIAIYQQol0SIIQQQrRLAoQQQoh2hS1A3H///UycOJHZs2e3+3XDMPiv//ovpk6dypw5cyguLg5XUYQQQnRC2ALE1VdfzbPPPnvSr2/atInS0lLeffddfv3rX/PQQw+FqyhCCCE6IWwB4rzzzqNXr14n/fr69euZP38+iqJwzjnnUF9fT0VFRbiKI4QQIkSWSH1jp9NJbm5u8Dg3Nxen00l2dvYpn+fxqQAoihL4DAQeKihK4BhFCZ5vuU4IIURoIhYg2svw0ZE/5vWNPpyVDSF9r5bAoQQDhxIMHiblxOPAY5Mp8Nhkovlc9wSarKwUKkOsXyyR+sWueK4b9Iz6hSpiASI3N5fy8vLgcXl5+WlbD51lGGC0PAicCfkeigJmRQkEDpOCOfhhwmRSsJi7L4gIIUR3iFiAmDJlCi+//DKzZs3i22+/JSUlJWwBoisYBqiGAfrJg4vJpGAxKVjMpuYPBYvFhEkChxAiBoUtQNx99918/vnn1NTUcMkll3DXXXehqoHxg0WLFjF58mQ2btzI1KlTsdvtPPbYY+EqSrfRdQOfbuBT9VbnLSYFq8WE1WLGZg0EDyGEiHZKrKX7rqhuCnkMItqYTAo2i4kEq5kEqxmT6VgLoyf0g0r9YlM81w16Rv1CFbEupp5M1w08Pg2PTwPAajaRYAsECyGEiBYSIKKAX9Pxu3Ua3X5MNguNLh9JCWasFgkYQojIkQARZTTdwO1VcXtVLGaFpAQLiQkWGegWQnQ7CRBRTNUM6pv8NLj9JCVYcCRaW41XCCFEOEmAiAGGAS6PSpNHxZ5gIdkugUIIEX4SIGKIATR5Vdw+FUeiFUeiRRbnCSHCRibkxyDDgEa3n8o6TzA3lRBCdDUJEDFM1w1qG33UNHjRdP30TxBCiBBIgIgDXr/G0ToPLo8/0kURQsQRCRBxwjCgocnP0To3flWLdHGEEHFAAkScUTWDqnov9S4femxlURFCRBkJEHGqyatSXeeR1oQQotMkQMQxVTeorvfS6JaxCSFE6CRAxDmDwJTY6noP+in2shBCiBNJgOghfKpOVb0HvyrTYYUQHSMBogfRdIPqeg9uryyuE0KcngSIHsYA6lw+CRJCiNOSANFDSZAQQpyOBIgeTIKEEOJUJED0cPUun6yVEEK0SwJED2cAdY0+DFl1LYQ4gQQIgaoHdq4TQojjSYAQALi9Kl6fdDUJIY6RACGC6lxeWW0thAiSACGCdAMamnyRLoYQIkpIgBCtuH0aPr90NQkhJECIdtQ3yawmIYQECNEOVTNokgV0QvR4EiBEuxrdfjRdMr8K0ZPFXIB4+NnNfLPrqHSBhFnLHtdCiJ7LEukChOqAs4EDzga+3lXJ/EmDSE9JjHSR4pbHp+FXNawWc6SLIoSIgJhrQVjMCgC7DtbxvyuK+Pi7I+jSmgibepe0IoToqWIuQDy0dCIDc1MA8Ks6hZ/u55k12zha545wyeKTX9Ml46sQPVTMBYg+vR0snTOS+ZMGkWANdH3sL2/gDyu/k9ZEmDS4/TLmI0QPFHMBAsCkKEwYkcP/W3g2BXm9gMA73cJP9/Nc4XZqG70RLmF80XUDl0daEUL0NGENEJs2bWL69OlMnTqVZcuWtfl6Q0MDt99+O3PnzmXWrFm89tprId0/LTmBH145nKsvGRxsTew9XM9TK4v4ZrfMdOpKLo9f8jQJ0cOELUBomsYjjzzCs88+S2FhIWvXrmX37t2trnnllVcYMmQIq1ev5qWXXuKJJ57A5wstF5CiKIwfns1PrzmbgX0CYxMen8arG3bz6vu78fjknW9XMIxAkBBC9BxhCxBFRUUMGDCA/Px8bDYbs2bNYv369a2uURQFl8uFYRi4XC569eqFxdK5mbfpKQksnTWSK8/vj9kUmOn07e4q/vjad5RVNJ5xfQQ0eVVpRQjRg4RtHYTT6SQ3Nzd4nJOTQ1FRUatrlixZwh133MGkSZNwuVz87ne/w2Q6fczKyHCc9GvzLitg3Mhcnl29lfKqJqobvDy9upj5k4dwxYT+mBSl85XqJqeqX6TZk2ykOmxndI+srJQuKk10iuf6xXPdIP7rF6qwBYj2+v+VE/44f/TRR4wYMYIXX3yRAwcOcNNNNzF+/HiSk5NPee/qatcpv55kNXH73FEUfrqfLSUV6LrB6+/vZtueo1xz6VkkJUbv+sCMDMdp6xdJtTUueqfZOx1os7JSqKxs6OJSRY94rl881w16Rv1CFbYuptzcXMrLy4PHTqeT7OzsVte8/vrrTJs2DUVRGDBgAHl5eezdu7dLvr/NauaqSwaz6IqC4AB2yYFa/vh6EWUV8ftLEG66AU0yo0mIHiFsAWLMmDGUlpZSVlaGz+ejsLCQKVOmtLqmT58+fPrppwAcPXqUffv2kZeX17XlGJzJnQvG0DczCYDaRh/LVm9jc3G5zHLqpCaPrIsQoicIW1+LxWLhwQcfZOnSpWiaxoIFCygoKGD58uUALFq0iB//+Mfcf//9zJkzB8MwuOeee8jIyOjysmSmJnLbvNG8tXk/n21zoukGqz8upayikfmTBmO1xORykIjRjcAe1kmJ1kgXRQgRRooRY28FK6qbcJ5BP+E3u47yxqa9+LVAKuu+mUksmTY0apL+RfsYRAuTSSGrV2KbcaXT6Qn9vPFav3iuG/SM+oWqx711PqegN7fPH0VGSgIAh6ua+NPrW9l7uC7CJYstum7g8cnWpELEsx4XIAD6ZDr4ydVjGJqfBgTm9z9XWMLmbeWneaY4nsstC+eEiGc9MkAA2BMs3DB9GJeM7QuAbhis/qiUNz/cKzupdZCqG7JSXYg41mMDBAT60Wec35/vTzkruM/E59sreP7tEklx3UEut/w/CRGvenSAaHHOWb350dxRpCYFZuXsOVTPn9/cSlW9J8Ili35+Tcfrl7EIIeKRBIhmeVnJ3HHVsfUSR+s8/PmNrZSW10e4ZNFPFs4JEZ8kQBynl8PGj+aOYuTAdKBl8Ho73+2tinDJopvXr6FqMm4jRLyRAHECm9XM4qlDmXR2HwBUzeAf7+3io6Ijsnr4FKQVIUT8kQDRDpOicOUFA5hz0UAUBQzgrc37Kfx0v2xpehJunyr/N0LEGQkQpzBxVC5Lpg7Fag78N32ytZxXN+yW7pR2GAZ4ZOaXEHFFAsRpjByYwdI5I0hKCKStKtpTxYvrduCVVcRtSDeTEPFFAkQH5GencNu8UaQlBzbK2X2ojmfWbqNRVhK3ouqGBE4h4ogEiA7KSrNz27zR5KTbATh81MWy1cXUNnojXLLo0iTdTELEDQkQIWiZBjsgN5AV8Widh6dXFXO01h3hkkUPmfIqRPyQABEie4KFm2YODyb6q3P5eHp1MYePRn+K7u4iWV6FiA8SIDrBZjHzg2lDGTM4EwCXR+XZtdtkK9NmMptJiPggAaKTLGYT1045i/OGB/bZ9vg0/lq4nb2HJTWHqhv4VWlFCBHrJECcAZNJYf6kQVw0OhcAn1/nhbdL2FlWG+GSRZ7bKwFCiFgnAeIMKYrCzIkDuPTcfkAgu+lL7+yg5EBNhEsWWR6fKqlJhIhxEiC6gKIoTDsvn2nn5QOg6QavvLuT7aXVES5Z5OgGkgZciBgnAaILXXpuP648vz/QHCT+tYvifT03SEg3kxCxTQJEF5s0ti+zJg4AAtuYLn9vF1t7aLpwn19D16WbSYhYJQEiDC4a04c5Fw4EAkHiH+t398iWhAGyZ7UQMUwCRJhMHJ3L3IsGAsdaEtt64JiEpN4QInZJgAijC0bltmpJLH9vV48buFY1WRMhRKySABFmE0fnMvvCwJiEphv8/b1dPW6dRJMMVgsRkyRAdIMLR/cJDlxrusHL7+5g96G6CJeq+3hktzkhYpIEiG5y0Zg+TJ8QWCehagYvvbODfUd6RlqOwG5z0ooQItZIgOhGk8/px+Xj8gDwqzovrCvpMQn+mryyuZIQsUYCRDeb8r1+TD6nLxDI3fS3t0o4UhX/qcJlsFqI2CMBopu1pOVoSfDn8Wk8V7idih6w6ZAMVgsRWyRAREBLgr/xzanCXR6V5wq3U13viXDJwksS+AkRWyRARIiiKMy/eBBnDwlsOlTv8vFc4Xbq4niPa8MAr+w2J0TMkAARQSaTwsLLhjBiQDoA1Q1efv/Pr2nyxO/qY7esrBYiZnQoQNxyyy28//77IXcPbNq0ienTpzN16lSWLVvW7jWfffYZ8+bNY9asWfzgBz8I6f7xwGwycd3lBQzumwrA4UoXz7+9PW7faXt8mnQzCREjOhQgrr32Wl544QWuuOIKli1bRk3N6TfD0TSNRx55hGeffZbCwkLWrl3L7t27W11TX1/Pww8/zJ///GcKCwv5/e9/37laxDirxcT104aRn50MwMFKFy+9uwO/qke4ZF1PNwx8/virlxDxqEMBYtq0aTz//PM888wzVFRUMHv2bP793/+drVu3nvQ5RUVFDBgwgPz8fGw2G7NmzWL9+vWtrlmzZg1Tp06lb9/AtM/MzMwzqEpsS7CZuXHGcPpmOQDYe7ieVzfsjst02ZLhVYjYYOnMk6xWKwkJCdx7771MmjSJ++67r801TqeT3Nzc4HFOTg5FRUWtriktLUVVVa6//npcLhc33HAD8+fPP+33z8hwdKbYUS8D+H/Xnsv/9/KXHK11U1xazdtbyvjBjOEoihLp4nUZR4qd3plJcVWn42VlpUS6CGETz3WD+K9fqDoUIN59911efvllqqqqWLx4MYWFhTgcDlRVZdq0ae0GiPb6mU/8g6BpGsXFxTz//PN4PB6uu+46xo4dy6BBg05Znurq+F1YlpHh4MYZw3h6VTGNbj8ff3sYMzCjeae6WJeR4eBoVSOa10+CzRzp4nS5rKwUKivjc3V8PNcNekb9QtWhALFy5UpuvfVWJk2a1PrJFgsPPPBAu8/Jzc2lvLw8eOx0OsnOzm5zTXp6OklJSSQlJTF+/HhKSkpOGyDiXWZqIjfNHM4za7bh8Wls+vYwDruFSWf3jXTRuozHr8VlgBAinnRoDOLpp59uExxaTJkypd3zY8aMobS0lLKyMnw+H4WFhW2uvfzyy/niiy9QVRW3201RURFDhgwJsQrxqU+mgxtmDMNiDrS63t58gK92Vka4VF3HK4vmhIh6HQoQixcvpq7uWHrq2tpalixZcsrnWCwWHnzwQZYuXcrMmTO58sorKSgoYPny5SxfvhyAIUOGMGnSJObOncvChQu55pprGDp06BlUJ74MzE1l0RVDMTX3zL2+cQ87Dpx+Blks0A1kNpMQUU4xOvA2bt68eaxateq057pDRXUTzjjuJ8zIcLQZY/lyRwWvbdwLgNVs4pbZI+ifE5uDacfXL9FmJi05IcIl6lrx3I8dz3WDnlG/UHWoBaHrOk1NTcFjl8uFpsXnQq5oNG5YNjMmBAap/ZrOC+t2UFET+8n9vD5NNhISIop1KEDMnj2bm2++mVWrVrFq1SpuueUW5s6dG+6yieNMGtuHi8f0AQLpKv72VuznbTKQjYSEiGYdmsV02223kZ2dzYYNGzAMg+uuu65D6xVE11EUhRkX9KfR7eeb3Uepc/n429sl3DZ3FPaETi1niQoen0pSYuyWX4h41uFX5lVXXcVVV10VzrKI0zApCldPHozL42fXwToqaty8+M4Obp45AqslNvMu+lQdVdOxmGOz/ELEsw4FiKqqKl566SXKyspQ1WNpEnpq7qRIsphNLL5iKM+u3cahoy72lzfwzw27WHzFUEym2FyZ7PFpJNslQAgRbToUIO666y6GDBnCxIkTMZtlcVOkJdjM3HjlcP6yaivV9V62ldaw5pNS5l40MCbTV7i9Ksl2a6SLIYQ4QYcCRH19Pb/+9a/DXRYRgmS7lZtmjuAvb27F5VH5bJuTXg4bl57bL9JFC5mmG3j9GglWefMhRDTpULu+oKAAp9MZ7rKIEGWmJnLjlcOxNY8/vLuljC93VES4VJ0jGwkJEX063IKYO3cu5557LgkJxxY2yRhE5OVlJbN46lBeXLcD3TB4Y9Neku1WhvVPj3TRQuL1aTJYLUSU6VCAmD17NrNnzw53WUQnDc1P4+rJg1n5wR50A5a/t4ulc0aSl5Uc6aJ1mAE0eVRSHbZIF0UI0axDAUKmt0a/7w3Not7l490tZfjUwGrr2+eNIjM1MdJF67CWwepYnY0lRLzpUHu+tLSURYsWBbOxFhcX84c//CGsBROhm3xOXy4YmQOAy+3n+bdKaHT7I1yqjjMAlyd2yitEvOtQgHjooYe44447SEkJJHsaMWIE69atC2vBROgURWH2hQMZOTAw/lBV7+HFdSX4/LGTzqLJq0p+JiGiRIcCRENDA5dccklwjr3JZMJqlXnr0chkUrh2SgEDmrO9Hqx0sXz9LrQY2dvaMAJjEUKIyOtQgDCbzfj9/mCAcDqdmEwy2yRaWS0mrp8+lN69AuMPOw7UsvqjfTGzQU+Txx8zZRUinnV4w6A777yTmpoa/vCHP7B48WJuvvnmcJdNnIGkRCs3zRxOSvMK5S0lFWz46lCES9UxuhHoahJCRFaHZjHNnz+fvLw83n//fdxuN0888QTjx48Pd9nEGUpPCSykW7amGJ9fZ/2XB+nlsDF+ePbpnxxhLo9KUoIlJlOHCBEvOpzNdfz48RIUYlDf3g6WTB3KC28HFtK9+eFeUpKifyGdrhs0eVUciTLWJUSkdChALFiwoN13citXruzyAomuV5CXxoLJg1kRYwvppBUhRGR1KEDce++9wcder5fCwkKys6O/m0Icc+7QLOpibCGdrhu4vSpJ0ooQIiI6FCAmTJjQ6vjiiy+WQeoYNPmcvtS5fHy2zRlcSHfbvFFRnWq70aNil1aEEBHRqbmqjY2NlJWVdXVZRJgpisKcGFtI19KKEEJ0v5DHIHRd5+DBg9x0001hLZgIj5aFdH8t3MYBZ2NwId0Ppg3DHKU5kKQVIURkhDwGYTabycvLIycnJ2yFEuFltZi4Yfownl5dTGWthx0Haln14V6uumRwVP4RlrEIISKjU2MQIvYlJVr54ZUj+MuqrTQ0+fliRyWpDhtXjM+PdNHaJa0IIbpfhwLEBRdc0O4L0zAMFEXh008/7fKCifBLT0ngh1cOZ9nqbXj9Ghu+OkRKko3zR0Zf61DWRQjR/ToUIBYtWkRtbS3XXnsthmHw2muvkZOTw8yZM8NdPhFmfTId/GDaUJ5/uwRNN1j98T5SkqyMHJgR6aK1IesihOheHZrFtGXLFv7zP/+T4cOHM2LECB544AE2btxIv3796NevX7jLKMJsSL9eXHPpECCQTfUf63exv7whwqVqq6UVIYToHh0KEBUVFVRXVwePq6urqaysDFuhRPcbe1ZvZk0cAICqGbywrgRndVOES9WWy6NKplchukmHuphuvPFG5s2bx2WXXQbAxo0bue2228JaMNH9LhrTh3qXjw+LjuDxaTz/dmAhXVpyQqSLFqTrBl6/RqKtw2nEhBCd1KFX2ZIlSxg3bhxbtmzBMAyWLFnCsGHDwl02EQHTz+9Po9vP17uOUufy8fzbJfxoziiSEqPnD3KTR5UAIUQ36PCrLC8vD03TGDVqVDjLIyLMpChcPXkwjW4/uw7WUVHj5sV3Srh51ghsFnOkiweAT9VRNR2LWTatEiKcOvQK27hxI7NmzeKuu+4C4LvvvuP2228Pa8FE5JhNJhZPHUpelgOAA85Glr+3C03XI1yyY2RbUiHCr0MB4qmnnmLlypWkpqYCMGbMGA4cOBDWgonISrCaufHK4a22LX1j096oGSB2+1T0KCmLEPGqw230rKysVsc2m63LCyOiiyPRyk0zR5DqCPysv9p5lLc/OxAVQcIwwCNTXoUIqw4FCIfDwdGjR4MLlD777DNSUlJO+7xNmzYxffp0pk6dyrJly056XVFRESNGjGDdunUdLLboLi2rre0JgfGHj4qOsOnbwxEuVYB0MwkRXh0KEL/4xS+49dZbOXjwINdffz333HNPqwR+7dE0jUceeYRnn32WwsJC1q5dy+7du9u97re//S0XX3xx52ogwi43I4kbpg/H2jwo/M7nZWwpqYhwqUDVjahOVS5ErOvQLKaxY8fy4osv8tVXXwFw7rnnBscjTqaoqIgBAwaQnx9I/jZr1izWr1/PWWed1eq6l156ienTp/Pdd991pvyimwzITWHx1AJeemdncG9ru83M6MGZES2X26dhs0bH7Coh4s1pA4SmaXz/+9/ntddeY/LkyR2+sdPpJDc3N3ick5NDUVFRm2vee+89XnjhhZACREaGo8PXxqJord/EDAcWm4XnVhdjGPDq+7vpnelg5KDQgkRX1k9RoHemI6ryM2Vlnb77NVbFc90g/usXqtMGCLPZTHp6Ol6vl4SEjq+obW8g88QX8aOPPso999yD2RzaO8DqaldI18eSjAxHVNdvSG4Ksy8ayJqPS1E1gz+/VsQts0bQP6djL6xw1E/1+LEnRMfCuaysFCoroy+PVVeI57pBz6hfqDr0qho4cCBLlixh+vTpJCUlBc8vWbLkpM/Jzc2lvLw8eOx0OsnOzm51zdatW7n77rsBqKmpYePGjVgsFq644oqQKiG618RRubi9Ku99cRC/qvP82yXcOmckfTIj0/Lx+LSoCRBCxJMOvapcLhcFBQXs3bu3wzceM2YMpaWllJWVkZOTQ2FhIf/zP//T6poNGzYEH993331ceumlEhxixGXn9sPj1fjou0Depr+9VcKP5oykd5q928vi9Wtouo7ZJCurhehKpwwQv/nNb7jvvvt4/PHH+fjjj7nooos6fmOLhQcffJClS5eiaRoLFiygoKCA5cuXA4E9JkTsUhSFKy/oj9un8uWOShrdfv5auJ0fzR1Fekr3J/dzezWS7RIghOhKinGKVU9XXXUVb7zxRpvHkVRR3YQzjvsJo30M4kS6bvDPDbv4bm8gHXxmaiK3zh1JalL7CynDVT+LSYlI6+VE8dyPHc91g55Rv1Cd8i3X8bEjGlbPiuhjMiksvOwshvVPA6Cq3sNzhdtxefzdWg5VN/CrsiZCiK50ygDh8/nYs2cPu3fvbvW45UMIAIvZxOIrhjK4b2BtTEWNm78VbsfdzakwZGW1EF3rlF1MU6ZMOfkTFYX169eHpVCnIl1M0cvr1/jbW9s54GwEID87mZtnjiDBdmwac7jrl5maiNUSubGIeO6miOe6Qc+oX6hOOUh9/CwjIU4nwWrmh1cO569rt3PoqIuyikZeWFfCD68c3m2rnRuafGSkJnbL9xIi3sm0D9GlEm0Wbpo5nNyMwHqZ0vIGXnxnB75uGh/wqTpen4xFCNEVZHWR6HJJiVZunjWCZ9Zso7LWzd7D9bz8zk6un35m29TuOljLFyUV1DR4SU9JYPzwbAry0tpc1+D2kWCL/Iwm0Tlb91XxUdERKmvdZKXZufjsPowOMZ2L6BrSghBhkWy3csvsEcENh3YfquPld3d0eqbRroO1vPN5GVX1XnQDquq9vPN5GbsO1ra5VtWMbh8gF11j674qXtu4F2eNG90AZ42b1zbuZeu+qkgXrUeSACHCJjXJxtLZI8lsDhK7Dtbxl9e/w6+GvnXpFydJL36y8w1uv+w4F4M+KjoS0nkRXhIgRFilOgJBIiM1sLq6eG9Vc0sitCBR0+AN6byuGzS6u3cthjhzlbXuk5z3dHNJBEiAEN2g1wlBYtfBOl4KceD6ZOk7TpXWw+1RUbXQWysicrJOsho+K01mpkWCBAjRLdKSE7h19kiy0wN/AHYfquPFdTs6vCPc+OHZIZ0HMIB6ly/ksorIufjsPiGdF+ElAUJ0m17JCdy9eFxw4Hrv4Xqef7ukQ9NSC/LSmD4hn8zUBEwKZKYmMH1CfruzmI7nU3UZsI4howdlsmDyYHLS7ZgUhZx0OwsmD5ZZTBFyypXU0UhWUse2jAwHpQdr+OvabcF+5fzsZH545fCw7elgUqB3WuAPTrjF82rceK4b9Iz6hUpaEKLbpSbZuHXOqOBiurKKRp5duy1sg8q6IXmahOgMCRAiIpLtVpbOHkm/rMAudEeqmnhmzTbqwjRm0OSRaa9ChEoChIiYpERL837WyUBgiuOy1cVU1Xf9lEbdQMYihAiRBAgRUYHcTSM4q18vILCuYdmqYsqrm7r8e7k8quxrIkQIJECIiEuwmrlhxjBGDkwHAqugn1lTzAFn1w4Y6rqB2yuJ/IToKAkQIipYzCYWXTGU7w3tDQT2mP7r2u3sOFDTpd+nu3e6EyKWSYAQUcNsUrh68hAuGpMLgF/TeemdHXy9s7LLvoemSyI/ITpKAoSIKiZFYeYFA5g+IR8IDC6v+GAPm7453GXjB41uv4xFCNEBEiBE1FEUhcnn9GPB5MGYmte2rfv8AGs+LkXXz/wPuyaJ/IToEAkQImqNG5bND6YNC+4xvXmbk1f+tbNLdqdrkkR+QpyWBAgR1YYPSGfp7JE4EgNpOLbvr+Gva7fT0HRmC+okkZ8QpycBQkS9/Oxkbp8/OrjxUFlFI39ZVYzzDNdKSCI/IU5NAoSICZmpidw+bxQDcgIJx2oavPxlVXG7W46GoqHJh6ZLV5MQ7ZEAIWKGIzGwz/U5ZwXWSnj9Gi+8XcKnxeWdnpWkG1BT7+2SwW8h4o0ECBFTLGYTCy8bwuXj8oDAH/g1H5ey6qN9nR50VnWDmgavJPMT4gQSIETMURSFy8flcd3lZ2ExB+bBfr69gufe2t7p6at+TafI5GQKAAAeZElEQVS2wSvrI4Q4jgQIEbPOHtKb2+aOItVhA6D0SAP/98Z3HKps7NT9fKpObaNPgoQQzSRAiJjWLyuZn1w1mvzsQMrw2kYfT68u5qtOpufw+jWZ/ipEMwkQIualJNm4dc5IzhueDYCqGaz8YE+nxyXcPi1sGxcJEUskQIi4YDGbuOqSwVw1aRDm5vwcn21zsmx1MTUN3pDv5/aq1J/hYjwhYp0ECBFXzhuRw4/mjqRX87jEwUoXf3y9iJJOpA1v8qhU1Xnwq7JOQvRMYQ0QmzZtYvr06UydOpVly5a1+frq1auZM2cOc+bM4brrrqOkpCScxRE9RH52CncuGENBXmCXOrdX48V1O3h78/6Qu5z8mk51vYeGJhm8Fj1P2AKEpmk88sgjPPvssxQWFrJ27Vp2797d6pq8vDxefvll1qxZwx133MGvfvWrcBVH9DCORCs3zhjO5ePyaE4Iy4dFR1i2upjqEPe8NghsVyprJURPE7YAUVRUxIABA8jPz8dmszFr1izWr1/f6prvfe979OoVeJd3zjnnUF5eHq7iiB7IZAqsl7hp1ghS7FYg0OX0h9e+45vdR0O+n08NtCZk1bXoKSzhurHT6SQ3Nzd4nJOTQ1FR0UmvX7lyJZdcckmH7p2R4Tjj8kUzqV/XmpDhYPjg3rxQuI3ivVV4/RqvbtjNvvIGFk0bRlKiNaT7GSaF9DQ7FnP776+yslK6othRKZ7rBvFfv1CFLUC011+rKEo7V8LmzZtZuXIlf//73zt07+pq1xmVLZplZDikfmGy6PKz+CQ7mXc+P4CmG2zZ5mTn/hoWXjaEwX17hXSvqqpGUpJs2BNav4SyslKorGzoymJHjXiuG/SM+oUqbF1Mubm5rbqMnE4n2dnZba4rKSnhgQce4P/+7/9IT08PV3GEwKQoXHx2H3581Wiy0+0A1Ll8/HXtdtZ+UhrSRkS6EXhuTYNXssGKuBW2ADFmzBhKS0spKyvD5/NRWFjIlClTWl1z+PBh7rrrLv77v/+bQYMGhasoQrTSJ9PBT64aw4WjA12gBvDJ1nL+sPI79peH9g7S69eoqvPQ5JF9rkX8CVsXk8Vi4cEHH2Tp0qVomsaCBQsoKChg+fLlACxatIg//elP1NbW8vDDDwNgNpt5/fXXw1UkIYKsFhOzLxzI8AHpvL5xD7WNPqrqPSxbXczE0blMPS+fBKu5Q/fSDahv8tPkUUnplRTmkgvRfRQjxt72VFQ34YzjfkIZg+h+xfuqeHvzAaqPW3GdbLfQu1ciqmaQnpLA+OHZFOSlnfZeGRkOGuvdOOzWDgcYgK37qvio6AiVtW6y0uxcfHYfRg/K7FR9utraT0v54OtDuDwqjkQLl57bj9kTB0a6WF1OxiDaClsLQohYsOtgLe9/fZjEBAsZCtQ1+tB0g0a3SqO7EXuCGb9m8M7nZQAdChI+VcfX4MVmMZFst2I7TaDYuq+K1zbuDR47a9zB40gHibWflrL241IgMMmksckfPI7HICFak1Qbokf7oqQi+DjRZiEr3R7M5QSBVdgVNU243H62bHeGdG+fqlPd4KW63oPXf/IB8I+KjoR0vjt98PWhkM6L+CItCNGjnZjIz6QomEyAAgomVE3HaJ6x1FSmUlbRQH52aE3141sU9gQLCTYzpuOmfFfWutt9XmVtaCu+w+FkGzC5Orkxk4gt0oIQPVp6SkKbc2aTCavZTFZaIqkOGy1/y/2qzp/fLGblB3to6ESmV5+qU+fyUVnjpqbBi9cXaFVkpdnbvT4rLTHk79HVku3tLyJ0nOS8iC8SIESPNn5427U5SYkWHIkWFEUh2W4lO81Oou3YOMJXOyt58p/fsvGbQ53K9GoQmB5b0+ilzuXjojG57V538dl9Qr53V7v03H4hnRfxxfzQQw89FOlChMLl9uOK4zz9drsNdxw336OtfpmpiaSnJFDb/I4+IzWBKd/LY1j/9OC53r0SmT6hP+OGZXG40oXLo6LpBnsO1fPNrkocdivZ6XYURQm5fqqmk5pko2/vJGobvLi9Gtnpdmac3z/iA9QAQ/PTQIHDVS5UTcdhtzJtQv+4HKB2OBJoiuO/LQ5H29by6cg01ygTjdNAu1Ks10/TDT7f5uS9Lw/i9qrB8/2yHEw/rz8Tzu7b6folWM0kJVpCmh7bnXrCNNB4r1+oZJBaiBCYTQoTR+dyTkFvPvj6EJ9sLUfTDQ5Vunjure18XFzOlHP7BffIDoXXr+H1a1hMCvZEC3abBZOp/fxlQnQHCRBCdII9wcKVFwzg/JE5/OuLMr7dXQXAjv017Nhfw/D+6Vw+rh/9skIPFKpu0NDkp6HJf9KZT0J0BwkQQpyBjNRErp1SwCVj+/LuljJ2HKgFoORADSUHahgxIJ3LvtePvE4ECmieIqv6UFxgs5pJtJklWIhuIwFCiC7QJ9PBjTOGU93k5/UNu9h7uB6A7ftr2L6/hoK8Xkw+px+D+qScNO39qbTMfPL6NQkWottIgBCiC52Vl8bS2SPZd6Se9V8eDAaKXQfr2HWwjv45yUw6uy8jBqR3enyhvWCRYDWTYDNhNsnMddF1JEAIEQaD+qQGA8XGbw6zsyzQ9XTA2cgr/9pJZmoiF43J5XtDs06bq+lUjg8WNIHFrAQDhs1i6lRrRYgWEiCECKNBfVIZ1CeVw0ddbPzmEFv3VWMYUFXvYfXHpby7pYzxw7O5YGQOGalnvnJa1QxUTaXJo6IQSGueYDNjs5ixWqR1IUIjAUKIbtC3t4NFVwylut7Dx1vL+bKkAp+q4/FpfFR0hI+LjjCsfzoTRmYzNC+tS6a3GrQMcuuAH5NJIcFiwmY1Y7NKd5Q4PQkQQnSjjNRE5lw4kCvG5fFFSQWfFpdT2+jD4NjMp7RkG+OHZzNuaBa9kkNf/Xoyum7g9mm4m3NAmUwKNosJq8WExRz4LAPe4ngxt5La59dwVtRjGGAYBroBumEEjwFOVaP2qhu8F2DoBpH8D4n1lcanI/VrTdcNSg7UsLnYye5Dda2+pgBn5fVi3LBsRgxI75YuIotJwWoxYW3ukjr+e/aElcbxXr9QxVwLIjC9L7zFNpoDTiDwNAch/VjwMTCCQcgwAgHFaP6n5XHgeccCV+B5QrRmMimMHJjByIEZVNV5+Hy7ky93VtLkUTE4Nvsp0WZm9OBMzi3ozYDclLC901d1A/W4VoYCmM0KVrOJREcCXp+G2axgMUv3VE8Qcy0IIKajfEvQOb4FxHGtoMxMB5VHG1E1HVXVUfWY+/GckrQgTk/VdLbvr+HLHZXsOljbpkXcy2FjzJBMzh6SSb/ejm6bqXR83RQFLCYTFrOC2WzCajbFfOCQFkRbMdeCiHUmRYFTvKCTk2y4j8u1rxsGmmYca83ogRaMrrcOMie2eqTFErssZhNjBmcyZnAmdS4f3+yq5OtdR6moCWwsVOfy8VHRET4qOkJGSgKjBmUwenAG/bKSu20MwTDAr+kENso7tlteS4vD3Bw8LGYTZlPgs+SVij3SgogyXfkupnXQaHvcXmum1fFx9+gq0oLoHMMwOFLVxDe7jvLd3irqXG3TUqc6bIwYkM6IAekM7pva5e/mz7RuigJmRcFkUlAUBZMS6GIzm5Tmz6bg40iQFkRb0oKIY4qioChg4sxfcKcNJu0cQ9uxGEUJvMuMuXclEaYoCn17O+jb28GMC/pT5mykaE8VW/dV0dAU2H+i3uXjs21OPtvmxGYxcVZeL4blpzE0P61LZ0N1lmGAGnhncsrrFI4FjlbBw6wEurRkem63kQAhOuR0XWMdldU7GWtwtlnz5+A/ge6zwNcIfm4JMrpO82fj2OeWxz0o4pgUhQG5KQzITWHWhQM4WNFI8b5qivdVU928x7ZP1dlWWsO20hoActLtFOSlcVZeLwbmppzR6u1wMwjsu6Gd5IfaKoCYTZgUmlskSvBXVGk+p3DsjVLgzUnzO5TjvxmB3ztV01G1YzsEtvwOnvhrH2yNNz+/5Xe25d5K8zXHT3I5Xkt5jwU/JWpXvEuAEBHT8qJQgv+0ehCSdrvToE3gCVzb3vMDV7XMWGsJQFpzEIrW+GNSFPrnpNA/J4UZ5/enotZNSXOCwLKKxmBdnTVunDVuPvruCGaTQn5OMoP7pDK4byr52Skxtcq6VQDpxJavJ6OZzFTXebrsfqFQlMDP8viXQcuREgyAoLS0qpoDosl0fABUWr16uiLoSIAQcaEru9Paowff0R7rTlM1A03T8Ws6qhb5EKIoCjnpSeSkJzH5nH40eVR2H6plZ1ktu8rqaGjeClXTDUqPNFB6pIENXx3CYlbIy0pmQG4KA3MDwcaeIH8aupNhgNbmnUvX/k7JGIQQYWI6zeCppgfSZlijaJpnUqKFs4f05uwhvTEMA2eNmz2H6th9sI7S8oZAgj8C+ZtKyxsoLW9gY/Nzs9Ls9M9Jpn92MnnZyWSnJ0WuIiJiJEAI0QXMJhOORBNZGUloPj8+v45f1fCrOloUdFEpikJuRhK5GUlcNKYPmm5w+KiLvYfrKD3SwH5nAx7fsemqlbVuKmvdfLmjEgCr2UT/Pilkp9np1zxYnpVmxyxTV+OaBAghupjFbGqeYnrs5dUyruFvTtDn82sRDRpmk0J+djL52clMPicwduOsbmJ/eQMHnI0cqGigut4bvN6v6ew5WMeeg8fSgVjMCtnpSfTJSCI3M4mcjCRy0u0k261RO+gqQiMBQohuYDIpmAgsGLMnWNB1A49Pxe3V8GtdN9Da6fIpCn0yHfTJdHDBqMC5RrefQ5WNlFU0cqjSxeEqV3BKLQS6pg4fdXH4aOu1EUmJFrLT7WSn2ckKfiTSKzlBkgHGGAkQQkSAyaSQlGglKdGKquk0eVW8Pu2kUzsjIdluZVj/dIb1TwcgPT2J0rIaDh91ceioi/LqJo5UNVHT4G31vCaPGhwEP57FrNC7l53M1EQyeyWQmZpIRmoiGakJpDoSpLsqCkmAECLCLGYTqUk2SArkYfL5Nbx+PeLdUCdSFIVeyQn0Sk5gxMCM4HmPT8VZ7aa8uglnTRPO6sD4RaPb3+r5qmZQXt1EeXVTm3ubFIW0FBtpyQmkpyQEP/dKDpzr5bDFdJ6nWCUBQogo0jJ+kZQYGBfwNo9X+DUdTYv8YHd7Em2W4MK94zV51OBg99E6N5W1Ho7Weaiu97RpKemGQXW9t9W4x4kciRZ6OWykOmykJAU+pyZZSUmykdzy2W6RldZdSAKEEFHKpCjYEyyt1iS0rPb1q8c+ojFoQGAsor3AoesG9U0+jtZ5qGnwUl0fCBq1jT5qGrxtWh4tXB4Vl0flcFXbFsjx7AkWku1Wku1WHHYLjsTA46REC45ES6BrL8FCUmLgw2qWvbtPRgKEEDGkpYWRaAsctyzY86t6cysjEECiaCijDZNJIS050I3UHp+qUdvoo67RS12jj9pGL3UuH/UuH3UuH3WNvuAajva4vSpub6D10hEWcyAQJyfZsFlM2G0W7AmBfWcSE8wk2pof28zBjwSrhQTrsf2+4zVTrQQIIWKYoihYLUqbVBmargdXeqtac56h5rQh0c5mMZOdFpgFdTI+v0ZDk586l49Gt4+GJj8NTX4a3a0/XG7/aQf+Vc0IPr+zrBYTCc17fQc+m7G17P993GerxYTtuN36jv9o2fbV2vzZ0vzY0rzXRiRmgIU1QGzatIlHH30UXddZuHAhP/rRj1p93TAMHn30UTZu3EhiYiK/+c1vGDVqVDiLJETc2rqvio+KjlBZ6yYrzc7FZ/dh9KBM/lq4jS3bK/BrOhaTwvgR2Ywfls0n3x2hss5DZmoi543IpqBfGiUHqtlSUkF1vZf0lATGD8/mYGUjn29z0uTTSLKZmTAyh8vOzTtpOXYdrOWLkgpqGo7dA2hzriAvrcPPL8hL4/2vDwbK4VVJSrCcshwt96iu9wQG1Qekk5VmZ/ehOkr219DQ5MdmNZGRkojVYsLtU/GrBg1NPtzNM8pCCaUt3X10rNHSKS37agT32Wj+bGlOWmg2K1ias96aTcf25GhJajhmWE7I3zNs+0Fomsb06dP529/+Rk5ODtdccw1PPvkkZ511VvCajRs38tJLL/HMM8/w7bff8uijj7JixYrT3jvec7ZL/WJXpOq3dV8Vr23c2+a8I9HC9uaMri0MAuMDWSe8Qx83LCu4crrlz0JtoxeX29+cKVUJnp82oT9XjM9v3rjqWILEkrIa1n1W1uq+Hp+KAiScsFXw9An5bYLEroO1vPN56+cD5GbY+W5PVZvzl36vX5sgcbJ7jBqUTvG+mjbnW8px/H4XO5vrcXxGVkM3GD04g7TkBDw+Da+/+aP5sV/Vg8c+VQ98NJ+PBmv+Z17IzwlbC6KoqIgBAwaQn58PwKxZs1i/fn2rALF+/Xrmz5+Poiicc8451NfXU1FRQXZ2driKJURc+qjoSLvnS/a3/YMI4Paobc598PUhUpICgxstg7Yut4phBLKIHj+Q+2lxOQsmD2lzj60b9wS7u1qCidsb+F6O5p0SW96RFu2pYvywY691w4Bvdx9tpz/faDc4AGzZXsHMCwa2StH79c7KdjPTb9leESzD8b7eWcnoQZkk2gLdQADf7DoaeCd+QvLHOpePuRcNarcsJ6MbBv7macu+5paGTz32uM2HFggqLV2Dx8aXjh23dBm2dCFqzcdq83XBLsYz7FIMW4BwOp3k5uYGj3NycigqKjrlNbm5uTidztMGiM5kJYwlUr/YFon61TT62k3ZrRvtbOPRvB3tide7PCoZqYknPL95r4OW1OzNn5s8arv1bK8cug4otNmDosHtp39e+gnnVBJtbfeqUHUDm6XteY9P46yBma3r4dXazUZ7tM5D73bGNZp8GkMH9wYgs5e9+R7b2r2H26cxbEhWm/PxKmwBor2eqxOnknXkGiHE6T35s8mRLgJw5uXoinpEyz3iQdhWlOTm5lJeXh48bq9lcOI15eXl0r0khBBRImwBYsyYMZSWllJWVobP56OwsJApU6a0umbKlCm8+eabGIbBN998Q0pKigQIIYSIEmHrYrJYLDz44IMsXboUTdNYsGABBQUFLF++HIBFixYxefJkNm7cyNSpU7Hb7Tz22GPhKo4QQogQhW2aqxBCiNgmWa2EEEK0SwKEEEKIdkV1Liav18uSJUvw+XzBldk//elPqa2t5ec//zmHDh2iX79+/O///i+9evWKdHE7pWV8Jicnh6effjqu6jZlyhQcDgcmkwmz2czrr78eV/Wrr6/ngQceYOfOnSiKwmOPPcagQYPion579+7l5z//efC4rKyMn/70p8yfPz8u6vf888+zYsUKFEVh6NChPP7447jd7rioG8ALL7zAihUrMAyDhQsX8sMf/rBTr72obkHYbDZeeOEFVq9ezZtvvsmHH37IN998w7Jly5g4cSLvvvsuEydOZNmyZZEuaqe9+OKLDBlybEVqPNUNAr+oq1at4vXXXwfiq36PPvookyZNYt26daxatYohQ4bETf0GDx7MqlWrgj87u93O1KlT46J+TqeTF198kddee421a9eiaRqFhYVxUTeAnTt3smLFClasWMGqVav44IMPKC0t7VT9ojpAKIqCw+EAQFVVVFVFUZRgig6A+fPn895770WymJ1WXl7OBx98wDXXXBM8Fy91O5l4qV9jYyNbtmwJ/uxsNhupqalxU7/jffrpp+Tn59OvX7+4qZ+maXg8HlRVxePxkJ2dHTd127NnD2PHjsVut2OxWDjvvPP417/+1an6RXWAgMAPct68eVx44YVceOGFjB07lqqqquB6iezsbKqrqyNcys557LHH+Ld/+zdMx+2AFS91a3HLLbdw9dVX889//hOIn/qVlZWRkZHB/fffz/z58/nlL39JU1NT3NTveIWFhcyePRuIj59fTk4ON998M5dddhkXX3wxycnJXHzxxXFRN4ChQ4fyxRdfUFNTg9vtZtOmTZSXl3eqflEfIMxmM6tWrWLjxo0UFRWxc+fOSBepS7z//vtkZGQwevToSBclbJYvX84bb7zBM888wyuvvMKWLVsiXaQuo6oq27ZtY9GiRbz55pvY7faY7ZI4FZ/Px4YNG5gxY0aki9Jl6urqWL9+PevXr+fDDz/E7XazatWqSBerywwZMoSlS5dy8803s3TpUoYNG4bZ3DaPVUdEfYBokZqayvnnn8+HH35IZmYmFRUVAFRUVJCRkXGaZ0efr776ig0bNjBlyhTuvvtuNm/ezD333BMXdWuRkxPIP5+ZmcnUqVMpKiqKm/rl5uaSm5vL2LFjAZgxYwbbtm2Lm/q12LRpE6NGjaJ37+ZkdnFQv08++YS8vDwyMjKwWq1MmzaNr7/+Oi7q1mLhwoW88cYbvPLKK6SlpTFgwIBO1S+qA0R1dTX19fUAeDwePvnkEwYPHhxM0QHw5ptvcvnll0eymJ3yi1/8gk2bNrFhwwaefPJJLrjgAn7729/GRd0AmpqaaGxsDD7++OOPKSgoiJv6ZWVlkZuby969gT0YPv30U4YMGRI39WtRWFjIrFmzgsfxUL++ffvy7bff4na7MQwjLn92VVWB9OiHDx/m3XffZfbs2Z2qX1SvpC4pKeG+++5D0zQMw2DGjBnceeed1NTU8LOf/YwjR47Qp08ffv/735OW1v7uVLHgs88+47nnnuPpp5+Om7qVlZXxk5/8BAiMI82ePZs77rgjbuoHsH37dn75y1/i9/vJz8/n8ccfR9f1uKmf2+3m0ksv5b333iMlJZDaO15+fk899RRvvfUWFouFESNG8Oijj+JyueKibgCLFy+mtrYWi8XC/fffz8SJEzv1s4vqACGEECJyorqLSQghRORIgBBCCNEuCRBCCCHaJQFCCCFEuyRACCGEaFdUZ3MV4lQWLlyIz+fD7/dTWlpKQUEBACNHjuTxxx+PcOk6pri4mLKysrhaqSzih0xzFTHv4MGDLFiwgM8++yzSRWlDVVUslpO/D1uxYgWffPIJv/vd77r83kKcKfntEnFp5cqV/OMf/0DTNFJTU3n44YcZOHAgK1asYN26dTgcDnbu3EmfPn34j//4D5544gnKysoYO3YsTzzxBIqicM8992C32zlw4ADl5eWcf/75/OpXv8JqtdLQ0MBjjz3Grl278Hq9XHjhhdx7772YTCYWLVrEhAkT+Prrr0lKSuKpp54KLhL0er2MHTuWhx9+mPr6ev70pz/hcrmYN28e559/PkuWLGHx4sV8/PHHAOzfvz94vH//fhYtWsS1117L5s2bufrqq5k3bx5PPvkkX3zxBT6fjxEjRvDQQw9ht9sj/BMQccEQIsaVlZUZEyZMCB5v3rzZuO222wyv12sYhmGsX7/eWLJkiWEYhvHqq68aEyZMMMrLyw3DMIybb77ZmD9/vtHQ0GD4fD5j5syZxubNmw3DMIxf/OIXxrx58wyXy2X4fD7jhhtuMP7+978bhmEY9957r7FmzRrDMAxD0zTjpz/9qbFy5UrDMAzjuuuuM3784x8bqqoGv15bWxt8fPfddxuvvvpqsDw/+9nPgmUvLS01LrzwwnaPS0tLjaFDhxrr1q0Lfv2pp54ynn766eDx448/bvz+978/s/9QIZpJC0LEnQ0bNrBt2zYWLlwIgGEYuFyu4NfHjRsXTCQ4cuRIPB4PycnJAAwbNowDBw5w/vnnAzBz5kySkpKAQA79Dz74gEWLFvH+++9TXFzMM888AwRyhfXv3z/4PebMmRPMoKnrOsuWLeOjjz5C13Vqa2s7vVNZUlIS06dPb1VXt9tNYWEhEMi+OmrUqE7dW4gTSYAQcccwDL7//e9z5513tvv1hISE4GOTydTmWFXVk95XURQg8Ef/6aefpm/fvu1e2xJUAFatWkVRURF///vfcTgc/PGPf+TIkSPtPs9sNqPrevDY6/We9L4tZfr1r3/Neeed1+79hDgTMs1VxJ2WrJVOpxMIJAvcunVrp+719ttv43a78fv9rFmzJtiymDJlCsuWLUPTNCCQebisrKzdezQ0NJCeno7D4aCuri74bh/A4XDQ0NAQPM7Ozsbj8QTvtXbt2tPW9bnnngsGksbGRvbs2dOpugpxIgkQIu5ccMEF3Hnnndx2223MnTuXOXPm8MEHH3TqXuPGjeOOO+5g9uzZ5OfnB7cY/dWvfoWu68ybN485c+Zw6623UllZ2e49rrrqKmpra5k9ezZ33313q3f7F110EQ0NDcydO5fHHnsMm83Gfffdx4033sj111+P1Wo9Zfluv/12hgwZwjXXXMOcOXNYsmQJ+/bt61RdhTiRTHMV4iTuuecexo0bx6JFiyJdFCEiQloQQggh2iUtCCGEEO2SFoQQQoh2SYAQQgjRLgkQQggh2iUBQgghRLskQAghhGjX/w/VTvdCkDkrbgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
......@@ -772,7 +790,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
"version": "3.6.4"
}
},
"nbformat": 4,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment