diff --git a/module2/exo4/app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module2/exo4/temps_videos.csv b/module2/exo4/app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module2/exo4/temps_videos.csv
new file mode 100644
index 0000000000000000000000000000000000000000..39a8515c0354dbbc797681ff148cdb49976ba0b9
--- /dev/null
+++ b/module2/exo4/app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module2/exo4/temps_videos.csv
@@ -0,0 +1,570 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+module2/exo4/temps_videos.csv · master · b2c48a7ab4afbff5f4d26650b09eb6b4 / mooc-rr · GitLab
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/module2/exo4/exercice.ipynb b/module2/exo4/exercice.ipynb
index 912115f75360abbc909c11d036d7168db4fd3693..909347d3995f9b2de8063aa6d3a5400adda3f56e 100644
--- a/module2/exo4/exercice.ipynb
+++ b/module2/exo4/exercice.ipynb
@@ -64,47 +64,199 @@
"metadata": {},
"source": [
"### Exercie 4 : journal de bord et statistiques au choix\n",
- "En profite pour me familiariser avec les raccourcis clavier qui s'avèrent particulièrement pratiques ! Choix d'une organisation chronologique pas nécessairement optimale mais semblant adaptée à la situation. Récriture des informations essentielles. Le temps des vidéos (parcours Jupyter) est compilé dans un fichier csv qui sera utilisé pour la réponse à cet exercice (par manque d'originalité probablement). "
+ "En profite pour me familiariser avec les raccourcis clavier qui s'avèrent particulièrement pratiques ! Choix d'une organisation chronologique pas nécessairement optimale mais semblant adaptée à la situation. Récriture des informations essentielles. Le temps des vidéos (parcours Jupyter) est compilé dans un fichier [csv](https://app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module2/exo4/temps_videos.csv) qui sera utilisé pour la réponse à cet exercice (par manque d'originalité probablement). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "Import du fichier csv, calcul de staitistiques de base et affichage d'un histogramme"
+ "Import des données"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "data_set = np.mat('[1 0 118 ; 1 1 469 ; 1 1 468 ; 1 1 554 ; 1 1 560 ; 1 1 394 ; 1 2 560 ; 1 2 253 ; 1 3 366 ; 1 4 512 ; 1 4 701 ; 1 4 700 ; 1 4 602 ; 1 5 485 ; 1 5 345 ; 1 5 316 ; 2 0 251 ; 2 1 408 ; 2 2 702 ; 2 3 494 ; 2 4 553 ; 2 5 447 ; 2 6 676 ; 2 7 505 ; 2 7 584 ; 2 7 209 ; 2 7 189]')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Sur la série totale (Jupyter)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Statistiques de base"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
"metadata": {},
"outputs": [
{
- "ename": "OSError",
- "evalue": "temps_videos.csv not found.",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtemps_videos\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenfromtxt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'temps_videos.csv'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdelimiter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m';'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mskip_header\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/numpy/lib/npyio.py\u001b[0m in \u001b[0;36mgenfromtxt\u001b[0;34m(fname, dtype, comments, delimiter, skip_header, skip_footer, converters, missing_values, filling_values, usecols, names, excludelist, deletechars, replace_space, autostrip, case_sensitive, defaultfmt, unpack, usemask, loose, invalid_raise, max_rows, encoding)\u001b[0m\n\u001b[1;32m 1698\u001b[0m \u001b[0mfname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1699\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbasestring\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1700\u001b[0;31m \u001b[0mfhd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0miter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_datasource\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rt'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mencoding\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1701\u001b[0m \u001b[0mown_fhd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1702\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/numpy/lib/_datasource.py\u001b[0m in \u001b[0;36mopen\u001b[0;34m(path, mode, destpath, encoding, newline)\u001b[0m\n\u001b[1;32m 260\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 261\u001b[0m \u001b[0mds\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDataSource\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdestpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 262\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mencoding\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnewline\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnewline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 263\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 264\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/numpy/lib/_datasource.py\u001b[0m in \u001b[0;36mopen\u001b[0;34m(self, path, mode, encoding, newline)\u001b[0m\n\u001b[1;32m 616\u001b[0m encoding=encoding, newline=newline)\n\u001b[1;32m 617\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 618\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"%s not found.\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 619\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 620\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mOSError\u001b[0m: temps_videos.csv not found."
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temps_total = 12421 s\n",
+ "Min = 118 s\n",
+ "Max = 702 s\n",
+ "Moy = 460.037037037037 s\n"
]
}
],
"source": [
- "import numpy as np\n",
- "temps_videos = np.genfromtxt('\\temps_videos.csv', delimiter=';',skip_header=1)"
+ "Temps_total = np.sum(data_set[:,2])\n",
+ "print('Temps_total = {0} s'.format(Temps_total))\n",
+ "Min = np.min(data_set[:,2])\n",
+ "print('Min = {0} s'.format(Min))\n",
+ "Max = np.max(data_set[:,2])\n",
+ "print('Max = {0} s'.format(Max))\n",
+ "Moy = np.mean(data_set[:,2])\n",
+ "print('Moy = {0} s'.format(Moy))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Affichage d'un histogramme"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(array([1., 2., 2., 2., 3., 2., 5., 5., 1., 4.]),\n",
+ " array([118. , 176.4, 234.8, 293.2, 351.6, 410. , 468.4, 526.8, 585.2,\n",
+ " 643.6, 702. ]),\n",
+ " )"
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAC7JJREFUeJzt3G+o3Qd9x/H3Z0n813ZWl6sE27vbgRSKbG25dJMMcZlzrZXuaQuKDxz3yQYtG0iCMPBZ3QPxyRgE7SaolU3tJo2bhmkRx9YuaVOXmGY6l2FoNeuG1O7BttbvHpxf8BLPzflFz7nnfi/vF1zuub/767nfL0nePfmdc5KqQpLUx88tewBJ0tUx3JLUjOGWpGYMtyQ1Y7glqRnDLUnNGG5JasZwS1IzhluSmtm7iDvdv39/ra2tLeKuJWlXOnny5PNVtTLm3IWEe21tjRMnTiziriVpV0ry72PP9VKJJDVjuCWpGcMtSc0YbklqxnBLUjOjXlWS5DzwQ+Bl4KWqWl/kUJKkrV3NywF/o6qeX9gkkqRRvFQiSc2MDXcBX05yMsnGIgeSJF3Z2EslB6vq2SRvAI4neaaqvrb5hCHoGwCrq6tzHlPqbe3wsWWPsO3OP3j3skfYtUY94q6qZ4fPF4FHgDumnHO0qtaran1lZdTb7SVJP4WZ4U5yTZLrLt0G3gmcXvRgkqTpxlwqeSPwSJJL53+6qv52oVNJkrY0M9xV9R3gV7ZhFknSCL4cUJKaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUjOGWpGYMtyQ1Y7glqRnDLUnNGG5JasZwS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM6PDnWRPkqeSPLrIgSRJV3Y1j7jvB84uahBJ0jijwp3kBuBu4GOLHUeSNMvYR9wfBT4A/GiBs0iSRtg764Qk7wYuVtXJJG+/wnkbwAbA6urq3AaUpKu1dvjYUn7u+Qfv3pafM+YR90HgniTngc8Ah5J88vKTqupoVa1X1frKysqcx5QkXTIz3FV1pKpuqKo14F7gK1X1noVPJkmaytdxS1IzM69xb1ZVjwGPLWQSSdIoPuKWpGYMtyQ1Y7glqRnDLUnNGG5JasZwS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUjOGWpGYMtyQ1Y7glqRnDLUnNGG5JasZwS1IzhluSmjHcktSM4ZakZmaGO8mrkjyR5OkkZ5J8aDsGkyRNt3fEOf8DHKqqF5PsA76e5G+q6h8XPJskaYqZ4a6qAl4cvtw3fNQih5IkbW3UNe4ke5KcAi4Cx6vq8cWOJUnayphLJVTVy8CtSa4HHknylqo6vfmcJBvABsDq6urcB9Xusnb42FJ+7vkH717Kz5Xm6apeVVJVPwAeA+6c8r2jVbVeVesrKytzGk+SdLkxrypZGR5pk+TVwDuAZxY9mCRpujGXSg4An0iyh0no/6KqHl3sWJKkrYx5Vck3gNu2YRZJ0gi+c1KSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUjOGWpGYMtyQ1Y7glqRnDLUnNGG5JasZwS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjMzw53kxiRfTXI2yZkk92/HYJKk6faOOOcl4A+r6skk1wEnkxyvqm8ueDZJ0hQzH3FX1XNV9eRw+4fAWeBNix5MkjTdVV3jTrIG3AY8vohhJEmzjblUAkCSa4HPAQ9U1QtTvr8BbACsrq7ObcDtsnb42LJH0Dbw11m7wahH3En2MYn2p6rq89POqaqjVbVeVesrKyvznFGStMmYV5UE+Dhwtqo+sviRJElXMuYR90HgvcChJKeGj3cteC5J0hZmXuOuqq8D2YZZJEkj+M5JSWrGcEtSM4Zbkpox3JLUjOGWpGYMtyQ1Y7glqRnDLUnNGG5JasZwS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUjOGWpGYMtyQ1Y7glqRnDLUnNGG5JamZmuJM8lORiktPbMZAk6crGPOL+c+DOBc8hSRppZrir6mvAf23DLJKkEfbO646SbAAbAKurqz/1/awdPjavkSQtkX+WF2duT05W1dGqWq+q9ZWVlXndrSTpMr6qRJKaMdyS1MyYlwM+DPwDcHOSC0nev/ixJElbmfnkZFXdtx2DSJLG8VKJJDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUjOGWpGYMtyQ1Y7glqRnDLUnNGG5JasZwS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmRoU7yZ1JziX5dpLDix5KkrS1meFOsgf4E+Au4BbgviS3LHowSdJ0Yx5x3wF8u6q+U1X/C3wG+J3FjiVJ2sqYcL8J+O6mry8MxyRJS7B3xDmZcqx+4qRkA9gYvnwxybnLTtkPPH914+14u20n99nZ3Gdn258P/0z7/OLYE8eE+wJw46avbwCevfykqjoKHN3qTpKcqKr1sYN1sNt2cp+dzX12tu3cZ8ylkn8C3pzkpiSvAO4FvrDYsSRJW5n5iLuqXkry+8CXgD3AQ1V1ZuGTSZKmGnOphKr6IvDFn/FnbXkZpbHdtpP77Gzus7Nt2z6p+onnGSVJO5hveZekZuYW7iQPJbmY5PSmY69PcjzJt4bPr9v0vSPDW+jPJfntec0xL0luTPLVJGeTnEly/3C85U5JXpXkiSRPD/t8aDjecp9LkuxJ8lSSR4ev2+6T5HySf05yKsmJ4Vjnfa5P8tkkzwx/jt7adZ8kNw+/Lpc+XkjywNL2qaq5fABvA24HTm869sfA4eH2YeDDw+1bgKeBVwI3Af8K7JnXLHPa5wBw+3D7OuBfhrlb7sTk9fjXDrf3AY8Dv9Z1n017/QHwaeDRXfB77jyw/7Jjnff5BPC7w+1XANd33mfTXnuA7zF53fVS9pn3QmuXhfsccGC4fQA4N9w+AhzZdN6XgLcu+xdkxm5/DfzWbtgJeA3wJPCrnfdh8p6CvwMObQp3532mhbvlPsDPA//G8Dxa930u2+GdwN8vc59FX+N+Y1U9BzB8fsNwvNXb6JOsAbcxeZTadqfhssIp4CJwvKpa7wN8FPgA8KNNxzrvU8CXk5wc3okMfff5JeA/gD8bLmV9LMk19N1ns3uBh4fbS9lnWU9Ojnob/U6Q5Frgc8ADVfXClU6dcmxH7VRVL1fVrUweqd6R5C1XOH1H75Pk3cDFqjo59j+ZcmzH7DM4WFW3M/mXOH8vyduucO5O32cvk0unf1pVtwH/zeRSwlZ2+j4ADG9CvAf4y1mnTjk2t30WHe7vJzkAMHy+OBwf9Tb6ZUuyj0m0P1VVnx8Ot94JoKp+ADwG3EnffQ4C9yQ5z+RfrDyU5JP03Yeqenb4fBF4hMm/zNl1nwvAheFvdQCfZRLyrvtcchfwZFV9f/h6KfssOtxfAN433H4fk+vEl47fm+SVSW4C3gw8seBZrkqSAB8HzlbVRzZ9q+VOSVaSXD/cfjXwDuAZmu5TVUeq6oaqWmPyV9evVNV7aLpPkmuSXHfpNpPrqKdpuk9VfQ/4bpKbh0O/CXyTpvtsch8/vkwCy9pnjhfsHwaeA/6Pyf9t3g/8ApMnj741fH79pvM/yOSZ1nPAXct+wmHKPr/O5K823wBODR/v6roT8MvAU8M+p4E/Go633Oey3d7Oj5+cbLkPk2vCTw8fZ4APdt5nmO9W4MTwe+6vgNc13+c1wH8Cr910bCn7+M5JSWrGd05KUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrm/wHul9GNCcNnDgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "plt.hist(data_set[:,2])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Sur les modules 1 et 2 séparemment"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 62,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "Module_1 = np.mat('[1 0 118 ; 1 1 469 ; 1 1 468 ; 1 1 554 ; 1 1 560 ; 1 1 394 ; 1 2 560 ; 1 2 253 ; 1 3 366 ; 1 4 512 ; 1 4 701 ; 1 4 700 ; 1 4 602 ; 1 5 485 ; 1 5 345 ; 1 5 316]')\n",
+ "Module_2 = np.mat('[2 0 251 ; 2 1 408 ; 2 2 702 ; 2 3 494 ; 2 4 553 ; 2 5 447 ; 2 6 676 ; 2 7 505 ; 2 7 584 ; 2 7 209 ; 2 7 189]')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "hideCode": true,
+ "hideOutput": true
+ },
+ "source": [
+ "Pour le module 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temps_total_1 = 7403 s\n",
+ "Min_1 = 118 s\n",
+ "Max_1 = 701 s\n",
+ "Moy_1 = 462.6875 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "Temps_total_1 = np.sum(Module_1[:,2])\n",
+ "print('Temps_total_1 = {0} s'.format(Temps_total_1))\n",
+ "Min_1 = np.min(Module_1[:,2])\n",
+ "print('Min_1 = {0} s'.format(Min_1))\n",
+ "Max_1 = np.max(Module_1[:,2])\n",
+ "print('Max_1 = {0} s'.format(Max_1))\n",
+ "Moy_1 = np.mean(Module_1[:,2])\n",
+ "print('Moy_1 = {0} s'.format(Moy_1))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pour le module 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temps_total_2 = 5018 s\n",
+ "Min_2 = 189 s\n",
+ "Max_2 = 702 s\n",
+ "Moy_2 = 456.1818181818182 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "Temps_total_2 = np.sum(Module_2[:,2])\n",
+ "print('Temps_total_2 = {0} s'.format(Temps_total_2))\n",
+ "Min_2 = np.min(Module_2[:,2])\n",
+ "print('Min_2 = {0} s'.format(Min_2))\n",
+ "Max_2 = np.max(Module_2[:,2])\n",
+ "print('Max_2 = {0} s'.format(Max_2))\n",
+ "Moy_2 = np.mean(Module_2[:,2])\n",
+ "print('Moy_2 = {0} s'.format(Moy_2))"
+ ]
}
],
"metadata": {