diff --git a/module3/exo1/analyse-syndrome-varicelle_fr-Copy1.ipynb b/module3/exo1/analyse-syndrome-varicelle_fr-Copy1.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a540eecb2d6fbb9f28f9d0355abd01f50f19971c
--- /dev/null
+++ b/module3/exo1/analyse-syndrome-varicelle_fr-Copy1.ipynb
@@ -0,0 +1,2487 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "hideCode": true
+ },
+ "source": [
+ "# Incidence de la varicelle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données ont été téléchargées sur le site du réseau sentinelles à l'[adresse suivante](http://www.sentiweb.fr/datasets/incidence-PAY-3.csv) et stockée sur le dossier gitlab disponible via ce [lien](https://app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module3/exo1/incidence-PAY-3.csv)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"https://app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/raw/master/module3/exo1/incidence-PAY-7.csv?inline=false\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202013 \n",
+ " 7 \n",
+ " 8030 \n",
+ " 5638 \n",
+ " 10422 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202012 \n",
+ " 7 \n",
+ " 8192 \n",
+ " 5822 \n",
+ " 10562 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202011 \n",
+ " 7 \n",
+ " 10198 \n",
+ " 7568 \n",
+ " 12828 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202010 \n",
+ " 7 \n",
+ " 9011 \n",
+ " 6691 \n",
+ " 11331 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202009 \n",
+ " 7 \n",
+ " 13631 \n",
+ " 10544 \n",
+ " 16718 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202008 \n",
+ " 7 \n",
+ " 10424 \n",
+ " 7708 \n",
+ " 13140 \n",
+ " 16 \n",
+ " 12 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202007 \n",
+ " 7 \n",
+ " 8959 \n",
+ " 6574 \n",
+ " 11344 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202006 \n",
+ " 7 \n",
+ " 9264 \n",
+ " 6925 \n",
+ " 11603 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202005 \n",
+ " 7 \n",
+ " 8505 \n",
+ " 6314 \n",
+ " 10696 \n",
+ " 13 \n",
+ " 10 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202004 \n",
+ " 7 \n",
+ " 7991 \n",
+ " 5831 \n",
+ " 10151 \n",
+ " 12 \n",
+ " 9 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202003 \n",
+ " 7 \n",
+ " 5968 \n",
+ " 4100 \n",
+ " 7836 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202002 \n",
+ " 7 \n",
+ " 6534 \n",
+ " 4530 \n",
+ " 8538 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202001 \n",
+ " 7 \n",
+ " 9835 \n",
+ " 7019 \n",
+ " 12651 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 201952 \n",
+ " 7 \n",
+ " 7941 \n",
+ " 5246 \n",
+ " 10636 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 201951 \n",
+ " 7 \n",
+ " 5823 \n",
+ " 3675 \n",
+ " 7971 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 201950 \n",
+ " 7 \n",
+ " 6424 \n",
+ " 4276 \n",
+ " 8572 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 201949 \n",
+ " 7 \n",
+ " 6621 \n",
+ " 4540 \n",
+ " 8702 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 201948 \n",
+ " 7 \n",
+ " 5542 \n",
+ " 3383 \n",
+ " 7701 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 201947 \n",
+ " 7 \n",
+ " 7536 \n",
+ " 5058 \n",
+ " 10014 \n",
+ " 11 \n",
+ " 7 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 201946 \n",
+ " 7 \n",
+ " 2638 \n",
+ " 1316 \n",
+ " 3960 \n",
+ " 4 \n",
+ " 2 \n",
+ " 6 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 201945 \n",
+ " 7 \n",
+ " 4492 \n",
+ " 2615 \n",
+ " 6369 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 201944 \n",
+ " 7 \n",
+ " 5728 \n",
+ " 3627 \n",
+ " 7829 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 201943 \n",
+ " 7 \n",
+ " 4834 \n",
+ " 2751 \n",
+ " 6917 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 201942 \n",
+ " 7 \n",
+ " 6279 \n",
+ " 3989 \n",
+ " 8569 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 201941 \n",
+ " 7 \n",
+ " 4130 \n",
+ " 2030 \n",
+ " 6230 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 201940 \n",
+ " 7 \n",
+ " 4211 \n",
+ " 2218 \n",
+ " 6204 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 201939 \n",
+ " 7 \n",
+ " 3137 \n",
+ " 1310 \n",
+ " 4964 \n",
+ " 5 \n",
+ " 2 \n",
+ " 8 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 201938 \n",
+ " 7 \n",
+ " 3078 \n",
+ " 1416 \n",
+ " 4740 \n",
+ " 5 \n",
+ " 2 \n",
+ " 8 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 201937 \n",
+ " 7 \n",
+ " 970 \n",
+ " 162 \n",
+ " 1778 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 201936 \n",
+ " 7 \n",
+ " 1277 \n",
+ " 263 \n",
+ " 2291 \n",
+ " 2 \n",
+ " 0 \n",
+ " 4 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1500 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1501 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1502 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1503 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1504 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1505 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1506 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1507 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1508 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1509 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1510 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1511 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1512 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1513 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1514 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1515 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1516 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1517 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1518 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1519 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1520 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1521 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1522 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1523 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1524 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1525 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1526 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1527 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1528 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1529 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1530 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202013 7 8030 5638 10422 12 8 \n",
+ "1 202012 7 8192 5822 10562 12 8 \n",
+ "2 202011 7 10198 7568 12828 15 11 \n",
+ "3 202010 7 9011 6691 11331 14 10 \n",
+ "4 202009 7 13631 10544 16718 21 16 \n",
+ "5 202008 7 10424 7708 13140 16 12 \n",
+ "6 202007 7 8959 6574 11344 14 10 \n",
+ "7 202006 7 9264 6925 11603 14 10 \n",
+ "8 202005 7 8505 6314 10696 13 10 \n",
+ "9 202004 7 7991 5831 10151 12 9 \n",
+ "10 202003 7 5968 4100 7836 9 6 \n",
+ "11 202002 7 6534 4530 8538 10 7 \n",
+ "12 202001 7 9835 7019 12651 15 11 \n",
+ "13 201952 7 7941 5246 10636 12 8 \n",
+ "14 201951 7 5823 3675 7971 9 6 \n",
+ "15 201950 7 6424 4276 8572 10 7 \n",
+ "16 201949 7 6621 4540 8702 10 7 \n",
+ "17 201948 7 5542 3383 7701 8 5 \n",
+ "18 201947 7 7536 5058 10014 11 7 \n",
+ "19 201946 7 2638 1316 3960 4 2 \n",
+ "20 201945 7 4492 2615 6369 7 4 \n",
+ "21 201944 7 5728 3627 7829 9 6 \n",
+ "22 201943 7 4834 2751 6917 7 4 \n",
+ "23 201942 7 6279 3989 8569 10 7 \n",
+ "24 201941 7 4130 2030 6230 6 3 \n",
+ "25 201940 7 4211 2218 6204 6 3 \n",
+ "26 201939 7 3137 1310 4964 5 2 \n",
+ "27 201938 7 3078 1416 4740 5 2 \n",
+ "28 201937 7 970 162 1778 1 0 \n",
+ "29 201936 7 1277 263 2291 2 0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1500 199126 7 17608 11304 23912 31 20 \n",
+ "1501 199125 7 16169 10700 21638 28 18 \n",
+ "1502 199124 7 16171 10071 22271 28 17 \n",
+ "1503 199123 7 11947 7671 16223 21 13 \n",
+ "1504 199122 7 15452 9953 20951 27 17 \n",
+ "1505 199121 7 14903 8975 20831 26 16 \n",
+ "1506 199120 7 19053 12742 25364 34 23 \n",
+ "1507 199119 7 16739 11246 22232 29 19 \n",
+ "1508 199118 7 21385 13882 28888 38 25 \n",
+ "1509 199117 7 13462 8877 18047 24 16 \n",
+ "1510 199116 7 14857 10068 19646 26 18 \n",
+ "1511 199115 7 13975 9781 18169 25 18 \n",
+ "1512 199114 7 12265 7684 16846 22 14 \n",
+ "1513 199113 7 9567 6041 13093 17 11 \n",
+ "1514 199112 7 10864 7331 14397 19 13 \n",
+ "1515 199111 7 15574 11184 19964 27 19 \n",
+ "1516 199110 7 16643 11372 21914 29 20 \n",
+ "1517 199109 7 13741 8780 18702 24 15 \n",
+ "1518 199108 7 13289 8813 17765 23 15 \n",
+ "1519 199107 7 12337 8077 16597 22 15 \n",
+ "1520 199106 7 10877 7013 14741 19 12 \n",
+ "1521 199105 7 10442 6544 14340 18 11 \n",
+ "1522 199104 7 7913 4563 11263 14 8 \n",
+ "1523 199103 7 15387 10484 20290 27 18 \n",
+ "1524 199102 7 16277 11046 21508 29 20 \n",
+ "1525 199101 7 15565 10271 20859 27 18 \n",
+ "1526 199052 7 19375 13295 25455 34 23 \n",
+ "1527 199051 7 19080 13807 24353 34 25 \n",
+ "1528 199050 7 11079 6660 15498 20 12 \n",
+ "1529 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 16 FR France \n",
+ "1 16 FR France \n",
+ "2 19 FR France \n",
+ "3 18 FR France \n",
+ "4 26 FR France \n",
+ "5 20 FR France \n",
+ "6 18 FR France \n",
+ "7 18 FR France \n",
+ "8 16 FR France \n",
+ "9 15 FR France \n",
+ "10 12 FR France \n",
+ "11 13 FR France \n",
+ "12 19 FR France \n",
+ "13 16 FR France \n",
+ "14 12 FR France \n",
+ "15 13 FR France \n",
+ "16 13 FR France \n",
+ "17 11 FR France \n",
+ "18 15 FR France \n",
+ "19 6 FR France \n",
+ "20 10 FR France \n",
+ "21 12 FR France \n",
+ "22 10 FR France \n",
+ "23 13 FR France \n",
+ "24 9 FR France \n",
+ "25 9 FR France \n",
+ "26 8 FR France \n",
+ "27 8 FR France \n",
+ "28 2 FR France \n",
+ "29 4 FR France \n",
+ "... ... ... ... \n",
+ "1500 42 FR France \n",
+ "1501 38 FR France \n",
+ "1502 39 FR France \n",
+ "1503 29 FR France \n",
+ "1504 37 FR France \n",
+ "1505 36 FR France \n",
+ "1506 45 FR France \n",
+ "1507 39 FR France \n",
+ "1508 51 FR France \n",
+ "1509 32 FR France \n",
+ "1510 34 FR France \n",
+ "1511 32 FR France \n",
+ "1512 30 FR France \n",
+ "1513 23 FR France \n",
+ "1514 25 FR France \n",
+ "1515 35 FR France \n",
+ "1516 38 FR France \n",
+ "1517 33 FR France \n",
+ "1518 31 FR France \n",
+ "1519 29 FR France \n",
+ "1520 26 FR France \n",
+ "1521 25 FR France \n",
+ "1522 20 FR France \n",
+ "1523 36 FR France \n",
+ "1524 38 FR France \n",
+ "1525 36 FR France \n",
+ "1526 45 FR France \n",
+ "1527 43 FR France \n",
+ "1528 28 FR France \n",
+ "1529 5 FR France \n",
+ "\n",
+ "[1530 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202013 \n",
+ " 7 \n",
+ " 8030 \n",
+ " 5638 \n",
+ " 10422 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202012 \n",
+ " 7 \n",
+ " 8192 \n",
+ " 5822 \n",
+ " 10562 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202011 \n",
+ " 7 \n",
+ " 10198 \n",
+ " 7568 \n",
+ " 12828 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202010 \n",
+ " 7 \n",
+ " 9011 \n",
+ " 6691 \n",
+ " 11331 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202009 \n",
+ " 7 \n",
+ " 13631 \n",
+ " 10544 \n",
+ " 16718 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202008 \n",
+ " 7 \n",
+ " 10424 \n",
+ " 7708 \n",
+ " 13140 \n",
+ " 16 \n",
+ " 12 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202007 \n",
+ " 7 \n",
+ " 8959 \n",
+ " 6574 \n",
+ " 11344 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202006 \n",
+ " 7 \n",
+ " 9264 \n",
+ " 6925 \n",
+ " 11603 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202005 \n",
+ " 7 \n",
+ " 8505 \n",
+ " 6314 \n",
+ " 10696 \n",
+ " 13 \n",
+ " 10 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202004 \n",
+ " 7 \n",
+ " 7991 \n",
+ " 5831 \n",
+ " 10151 \n",
+ " 12 \n",
+ " 9 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202003 \n",
+ " 7 \n",
+ " 5968 \n",
+ " 4100 \n",
+ " 7836 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202002 \n",
+ " 7 \n",
+ " 6534 \n",
+ " 4530 \n",
+ " 8538 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202001 \n",
+ " 7 \n",
+ " 9835 \n",
+ " 7019 \n",
+ " 12651 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 201952 \n",
+ " 7 \n",
+ " 7941 \n",
+ " 5246 \n",
+ " 10636 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 201951 \n",
+ " 7 \n",
+ " 5823 \n",
+ " 3675 \n",
+ " 7971 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 201950 \n",
+ " 7 \n",
+ " 6424 \n",
+ " 4276 \n",
+ " 8572 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 201949 \n",
+ " 7 \n",
+ " 6621 \n",
+ " 4540 \n",
+ " 8702 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 201948 \n",
+ " 7 \n",
+ " 5542 \n",
+ " 3383 \n",
+ " 7701 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 201947 \n",
+ " 7 \n",
+ " 7536 \n",
+ " 5058 \n",
+ " 10014 \n",
+ " 11 \n",
+ " 7 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 201946 \n",
+ " 7 \n",
+ " 2638 \n",
+ " 1316 \n",
+ " 3960 \n",
+ " 4 \n",
+ " 2 \n",
+ " 6 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 201945 \n",
+ " 7 \n",
+ " 4492 \n",
+ " 2615 \n",
+ " 6369 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 201944 \n",
+ " 7 \n",
+ " 5728 \n",
+ " 3627 \n",
+ " 7829 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 201943 \n",
+ " 7 \n",
+ " 4834 \n",
+ " 2751 \n",
+ " 6917 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 201942 \n",
+ " 7 \n",
+ " 6279 \n",
+ " 3989 \n",
+ " 8569 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 201941 \n",
+ " 7 \n",
+ " 4130 \n",
+ " 2030 \n",
+ " 6230 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 201940 \n",
+ " 7 \n",
+ " 4211 \n",
+ " 2218 \n",
+ " 6204 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 201939 \n",
+ " 7 \n",
+ " 3137 \n",
+ " 1310 \n",
+ " 4964 \n",
+ " 5 \n",
+ " 2 \n",
+ " 8 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 201938 \n",
+ " 7 \n",
+ " 3078 \n",
+ " 1416 \n",
+ " 4740 \n",
+ " 5 \n",
+ " 2 \n",
+ " 8 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 201937 \n",
+ " 7 \n",
+ " 970 \n",
+ " 162 \n",
+ " 1778 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 201936 \n",
+ " 7 \n",
+ " 1277 \n",
+ " 263 \n",
+ " 2291 \n",
+ " 2 \n",
+ " 0 \n",
+ " 4 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1500 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1501 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1502 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1503 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1504 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1505 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1506 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1507 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1508 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1509 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1510 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1511 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1512 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1513 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1514 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1515 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1516 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1517 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1518 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1519 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1520 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1521 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1522 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1523 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1524 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1525 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1526 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1527 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1528 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1529 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1530 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202013 7 8030 5638 10422 12 8 \n",
+ "1 202012 7 8192 5822 10562 12 8 \n",
+ "2 202011 7 10198 7568 12828 15 11 \n",
+ "3 202010 7 9011 6691 11331 14 10 \n",
+ "4 202009 7 13631 10544 16718 21 16 \n",
+ "5 202008 7 10424 7708 13140 16 12 \n",
+ "6 202007 7 8959 6574 11344 14 10 \n",
+ "7 202006 7 9264 6925 11603 14 10 \n",
+ "8 202005 7 8505 6314 10696 13 10 \n",
+ "9 202004 7 7991 5831 10151 12 9 \n",
+ "10 202003 7 5968 4100 7836 9 6 \n",
+ "11 202002 7 6534 4530 8538 10 7 \n",
+ "12 202001 7 9835 7019 12651 15 11 \n",
+ "13 201952 7 7941 5246 10636 12 8 \n",
+ "14 201951 7 5823 3675 7971 9 6 \n",
+ "15 201950 7 6424 4276 8572 10 7 \n",
+ "16 201949 7 6621 4540 8702 10 7 \n",
+ "17 201948 7 5542 3383 7701 8 5 \n",
+ "18 201947 7 7536 5058 10014 11 7 \n",
+ "19 201946 7 2638 1316 3960 4 2 \n",
+ "20 201945 7 4492 2615 6369 7 4 \n",
+ "21 201944 7 5728 3627 7829 9 6 \n",
+ "22 201943 7 4834 2751 6917 7 4 \n",
+ "23 201942 7 6279 3989 8569 10 7 \n",
+ "24 201941 7 4130 2030 6230 6 3 \n",
+ "25 201940 7 4211 2218 6204 6 3 \n",
+ "26 201939 7 3137 1310 4964 5 2 \n",
+ "27 201938 7 3078 1416 4740 5 2 \n",
+ "28 201937 7 970 162 1778 1 0 \n",
+ "29 201936 7 1277 263 2291 2 0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1500 199126 7 17608 11304 23912 31 20 \n",
+ "1501 199125 7 16169 10700 21638 28 18 \n",
+ "1502 199124 7 16171 10071 22271 28 17 \n",
+ "1503 199123 7 11947 7671 16223 21 13 \n",
+ "1504 199122 7 15452 9953 20951 27 17 \n",
+ "1505 199121 7 14903 8975 20831 26 16 \n",
+ "1506 199120 7 19053 12742 25364 34 23 \n",
+ "1507 199119 7 16739 11246 22232 29 19 \n",
+ "1508 199118 7 21385 13882 28888 38 25 \n",
+ "1509 199117 7 13462 8877 18047 24 16 \n",
+ "1510 199116 7 14857 10068 19646 26 18 \n",
+ "1511 199115 7 13975 9781 18169 25 18 \n",
+ "1512 199114 7 12265 7684 16846 22 14 \n",
+ "1513 199113 7 9567 6041 13093 17 11 \n",
+ "1514 199112 7 10864 7331 14397 19 13 \n",
+ "1515 199111 7 15574 11184 19964 27 19 \n",
+ "1516 199110 7 16643 11372 21914 29 20 \n",
+ "1517 199109 7 13741 8780 18702 24 15 \n",
+ "1518 199108 7 13289 8813 17765 23 15 \n",
+ "1519 199107 7 12337 8077 16597 22 15 \n",
+ "1520 199106 7 10877 7013 14741 19 12 \n",
+ "1521 199105 7 10442 6544 14340 18 11 \n",
+ "1522 199104 7 7913 4563 11263 14 8 \n",
+ "1523 199103 7 15387 10484 20290 27 18 \n",
+ "1524 199102 7 16277 11046 21508 29 20 \n",
+ "1525 199101 7 15565 10271 20859 27 18 \n",
+ "1526 199052 7 19375 13295 25455 34 23 \n",
+ "1527 199051 7 19080 13807 24353 34 25 \n",
+ "1528 199050 7 11079 6660 15498 20 12 \n",
+ "1529 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 16 FR France \n",
+ "1 16 FR France \n",
+ "2 19 FR France \n",
+ "3 18 FR France \n",
+ "4 26 FR France \n",
+ "5 20 FR France \n",
+ "6 18 FR France \n",
+ "7 18 FR France \n",
+ "8 16 FR France \n",
+ "9 15 FR France \n",
+ "10 12 FR France \n",
+ "11 13 FR France \n",
+ "12 19 FR France \n",
+ "13 16 FR France \n",
+ "14 12 FR France \n",
+ "15 13 FR France \n",
+ "16 13 FR France \n",
+ "17 11 FR France \n",
+ "18 15 FR France \n",
+ "19 6 FR France \n",
+ "20 10 FR France \n",
+ "21 12 FR France \n",
+ "22 10 FR France \n",
+ "23 13 FR France \n",
+ "24 9 FR France \n",
+ "25 9 FR France \n",
+ "26 8 FR France \n",
+ "27 8 FR France \n",
+ "28 2 FR France \n",
+ "29 4 FR France \n",
+ "... ... ... ... \n",
+ "1500 42 FR France \n",
+ "1501 38 FR France \n",
+ "1502 39 FR France \n",
+ "1503 29 FR France \n",
+ "1504 37 FR France \n",
+ "1505 36 FR France \n",
+ "1506 45 FR France \n",
+ "1507 39 FR France \n",
+ "1508 51 FR France \n",
+ "1509 32 FR France \n",
+ "1510 34 FR France \n",
+ "1511 32 FR France \n",
+ "1512 30 FR France \n",
+ "1513 23 FR France \n",
+ "1514 25 FR France \n",
+ "1515 35 FR France \n",
+ "1516 38 FR France \n",
+ "1517 33 FR France \n",
+ "1518 31 FR France \n",
+ "1519 29 FR France \n",
+ "1520 26 FR France \n",
+ "1521 25 FR France \n",
+ "1522 20 FR France \n",
+ "1523 36 FR France \n",
+ "1524 38 FR France \n",
+ "1525 36 FR France \n",
+ "1526 45 FR France \n",
+ "1527 43 FR France \n",
+ "1528 28 FR France \n",
+ "1529 5 FR France \n",
+ "\n",
+ "[1530 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXeYHMWZP/55Z3a1yjkiARJIBIkgkBAimmiE8R3YhrMcCDY+2Rif49dncASfdcaHbfzjDrCxybYJJhhsco5CQkQFJCRQREI5rMKudnfq90d3dVdXV+rZnp2Vpj7Ps8/0VldXVVdX1VtvLGKMwcPDw8PDQ0Sh2g3w8PDw8Oh88MTBw8PDwyMFTxw8PDw8PFLwxMHDw8PDIwVPHDw8PDw8UvDEwcPDw8MjBU8cPDw8PDxS8MTBw8PDwyMFTxw8PDw8PFKoq3YDysXAgQPZyJEjq90MDw8Pj90Kr7/++nrG2CBbvt2WOIwcORKzZ8+udjM8PDw8disQ0TKXfF6s5OHh4eGRgicOHh4eHh4peOLg4eHh4ZGCJw4eHh4eHil44uDh4eHhkYInDh4eHh4eKXji4OHh4eGRgicOHjWDRWsaMWvJxmo3w8Njt8Bu6wTn4ZEVp1/zAgBg6VVnVbklHh6dH55z8PDw8PBIwRMHDw8PD48UPHHw8PDw8EjBShyIqCsRzSKit4loHhFdGaZfQUQfEtFb4d8nhGcuJ6LFRLSQiM4Q0icQ0Zzw3rVERGF6AxHdHabPJKKR+b+qh4eHh4crXDiHZgCnMMYOBzAewBQimhzeu4YxNj78ewQAiGgsgKkAxgGYAuB6IiqG+W8AMA3AmPBvSph+MYBNjLHRAK4B8Kv2v5qHh4eHR7mwEgcWYFv4b334xwyPnA3gLsZYM2NsCYDFACYR0TAAvRljMxhjDMDtAM4RnrktvL4XwKmcq/Dw8PDw6Hg46RyIqEhEbwFYC+BJxtjM8NY3iOgdIrqZiPqFacMBrBAeXxmmDQ+v5fTEM4yxVgBbAAxQtGMaEc0motnr1q1zekEPDw8Pj+xwIg6MsTbG2HgAIxBwAYcgEBHtj0DUtBrAb8Lsqh0/M6SbnpHbcSNjbCJjbOKgQdaDjDw8csPj8z7Czl1t1W6Gh0eHIZO1EmNsM4DnAExhjK0JiUYJwB8BTAqzrQSwt/DYCACrwvQRivTEM0RUB6APAO/K6tEpMPfDLfjqHa/jpw/OrXZTPDw6DC7WSoOIqG943Q3AaQAWhDoEjk8B4DPnIQBTQwukUQgUz7MYY6sBNBLR5FCfcAGAB4VnLgyvzwXwTKiX8PCoOrY2tQAAVmzaUeWWeHh0HFzCZwwDcFtocVQAcA9j7J9EdAcRjUcg/lkK4KsAwBibR0T3AJgPoBXApYwxzo9fAuBWAN0APBr+AcBNAO4gosUIOIapObybh0eu8NsVj1qClTgwxt4BcIQi/XzDM9MBTFekzwZwiCK9CcB5trZ4eFQDFKrEPG3wqCV4D2mPmsSzC9fivN+/glLJvuRHRtWeOnjUEHxUVo+axDf/+iYam1uxbVcrenetN+b1DjcetQjPOXjUJDwT4OFhhicOHh6OYJ6keNQQPHHwqElkERV1dCSXuR9uweX3vwNvze1RTXji4FGTKGfZ7ai1+qJbZuHOWSuwftuujqnQw0MBTxw8PCzwISA9ahGeOHh4eHh4pOCJg0dNw4Up6Gg3B69q8OgM8MTBw8MCLlbyCmKPWoInDh4enQxex+HRGeCJw26GBR9txdqtTdVuRk3C8w0etQQfPmM3w5TfvYj6ImHR9E9Uuyk1hI7dynvplUdngOccdkO0tPnVo70oR3/gF22PWoInDh4eFnS0DsDrHDw6Azxx8PDw8ADQ1NKGP7+6LDr5r9bhiYNHTSNL3CTv57Bn44n5a/Djv8/F7597v9pN6RTwxMGjpuGie4jIh1+192hsa2oFAGza4WNaAQ7EgYi6EtEsInqbiOYR0ZVhen8iepKIFoW//YRnLieixUS0kIjOENInENGc8N61FG7biKiBiO4O02cS0cj8X9XDozxw7qKjSEM1dQ5H//dTOO/3r1SvAZ0Afg8QwIVzaAZwCmPscADjAUwhoskALgPwNGNsDICnw/9BRGMBTAUwDsAUANcTUTEs6wYA0wCMCf+mhOkXA9jEGBsN4BoAv8rh3XLHE/M+wgfrtlW7GR45IMv87+i1upqL05qtzXht6abqNaCKiD3hq9uOzgIrcWAB+IpYH/4xAGcDuC1Mvw3AOeH12QDuYow1M8aWAFgMYBIRDQPQmzE2gwW8/O3SM7ysewGcSlmEwR2EaXe8jlN+83y1m+GRI/w64MERx9DyowJw1DkQUZGI3gKwFsCTjLGZAIYwxlYDQPg7OMw+HMAK4fGVYdrw8FpOTzzDGGsFsAXAgHJeyMOjUujoHaVfpDoWnnNIwok4MMbaGGPjAYxAwAUcYsiu2vEzQ7rpmWTBRNOIaDYRzV63bp2t2R4eSohKaJeFoGp+Dn6R6lAQOla31NmRyVqJMbYZwHMIdAVrQlERwt+1YbaVAPYWHhsBYFWYPkKRnniGiOoA9AGwUVH/jYyxiYyxiYMGDcrSdI/dCFt2tmDLzsrZmnf2nWGl2scYw0Nvr0JTS1tlKtjd4TmHBFyslQYRUd/wuhuA0wAsAPAQgAvDbBcCeDC8fgjA1NACaRQCxfOsUPTUSESTQ33CBdIzvKxzATzDOnF85Cv/MQ8fbfHB7yqFw698Aodf+YRzfsYYvnzra3j+PTdustyB1dFinrxrm/HBBnzzzjdx1aMLci55z4DXOSThEnhvGIDbQoujAoB7GGP/JKIZAO4hoosBLAdwHgAwxuYR0T0A5gNoBXApY4xvVS4BcCuAbgAeDf8A4CYAdxDRYgQcw9Q8Xq5SuOXlpXh/3Xbc/uVJuZS3fMMOdO1SwOBeXXMpr9awq62EZxasxUuL1uO96Wda8yf2HS5ipQ63VwqQ1/Zo2YbtAIDtzcE0XLFxRz4F72GIbGA8bQDgQBwYY+8AOEKRvgHAqZpnpgOYrkifDSClr2CMNSEkLrsLWttKuZV14tXPAgCWXnVWbmV66NEYOjtlRUfxsvEalU+FH7v6OQDALV86CgDQWvKrnwqdzjyyyvAe0mWi8wq9aheui+mfX11WVrkd9c0rVU9dIVj+Wkv5bWz2RPipHcAThzJR8tRht0VDfTzsXQhKtT513vXWFYL3bvUh35Xwx8Em4YlDmfDDZ/dF1/qiPZMCHf3N866vrsg5B/eSb3tlKR5+Z3XOLemcKHRwmJTODn8SXLnwI2i3Rde6YqZdeUd/6krtYGOxUrrc1rYSVmzamUr/2UPzAABnHbbn68N4v3uVTABPHMqEN3fbfdG7WzzsMxGJDhI3VE7nEAgK2hQ6h6ufWIg/PP9BZSr22C3hxUplolCF0E9rG71vhQpZF9MeDdn2RNWSQeddLR+yKp3Dqx+kfE5rDry/vc4hgCcOZaK+2PFdd/2z/hASE1zndEY3hz2OR2zJ0Qx7T0JklVbldnQWeOJQJuqL3ip6d0WtT34vU1cj2jT4/gHgiUPZqKsC5+ChBp/UrpK+rGbIe4opqxebmOG7JQm/wpUJzzl0PrhO7jZB5u62ULo5wa3avBMjL3sYLy9enyj/n++sKkuUk7fRAy/Pcw5qxIyD7yDAE4eyUQ2dg4caWSfzV26fXZF6XlsaKHXvnLU8Snt83hp8469v4v+eWZy9PsfXuue1FXhn5WblvX/535dS5XkHTjN89wTwpqxlgpsFeuye2JkhbLXrYqE6vJAfVr9ma+Uszf7zvncAqGNzzflwS3R9y8tLAPjFTwfORXriGcCvcGWiGmKlWpYVz/1wC+5+bbnyXnu6Rffoy4vXR+cevLx4Q/vrKePZvL/2S6G4SzmOanhscURiJd8VADxxKBvVOOG6lmXFn/zfl/CD++Z0SF1L1m/HF/40Ez98IKjvmqfeK7us9gwTxhj+9OIHeHbBWntmp/KCX5dxtGNXeZFrd2vU8PxSwROHMlGN3cWepii7fcZSvLl8U7vLybtX+MI4f9VW7GotR5GcDxiAXzz8Lr5062u5lQe4iU3G/vRxrN/WnEu9uwu8n0MSnjg4QmbFq0Ic9rBR+9MH5+FT17+SW3nldI+qT7uExga72krYHOoMXMrv7PZrsUzdLf+5N+T3bXYHxKa+wH2vr8RcQV9Ti/AK6TKxp+3id2fkHqAuJA4tbSU0Z+Ac8h4Rufs5KK5MWLqhtk6ME/vne397G0BtH8DlOQdHyBO1OmIlj7yhIvKc2OxqLSUimHa0QcCsJfnGO8qic6hl7GkcermwEgci2puIniWid4loHhF9K0y/gog+JKK3wr9PCM9cTkSLiWghEZ0hpE8gojnhvWsptP0jogYiujtMn0lEI/N/1fZBHi/VGD+1bK1kgpMbW4a+4zL5ljaWiGDaUWIlXg9XiOcF3gfVHEdrG5uwanM6NHhnQCRWqm4zOg1cOIdWAN9jjB0MYDKAS4lobHjvGsbY+PDvEQAI700FMA7AFADXExE/XeUGANMAjAn/poTpFwPYxBgbDeAaAL9q/6vli86gc/CnO6rh8i2yHHDDs7ZInENnxN/f/NA5b6yQrkxbXDBp+tM49qpnqtcAA+LjYDv3N+8oWIkDY2w1Y+yN8LoRwLsAhhseORvAXYyxZsbYEgCLAUwiomEAejPGZrCg928HcI7wzG3h9b0ATiWVR1EVkeYcOn4AeT1H+dAejalI5pxDc1sJbeJK6tr9KjeCDN8uy8B/SQjVYcVu4iF9/k0z8cCbKzu8Xs85JJFJ5xCKe44AMDNM+gYRvUNENxNRvzBtOIAVwmMrw7Th4bWcnniGMdYKYAuAAVnaVmmk5pMfQZ0HTpyDG9v1zsrNeCV0emuRiYMFqu1Mpbc45Zxo18lpA15ctB7fufvtDq93d+mfjoIzcSCingDuA/BtxthWBCKi/QGMB7AawG94VsXjzJBuekZuwzQimk1Es9etW+fa9Fwg7/yqo3OoQqUWvLViM56Y91G1m2GF6xr/r//3Mn7+z/kAgv6uhlipUjVyccm25lY8OqdzngtdqqbMqzNOsCrCiTgQUT0CwvAXxtj9AMAYW8MYa2OMlQD8EcCkMPtKAHsLj48AsCpMH6FITzxDRHUA+gBImWowxm5kjE1kjE0cNGiQ2xtWCNWQS3bGoXvOdS9j2h2vV7UNTiIbd6lSAhu2ufs5GKuv0MfLpmiPry/5yxsVaE37sUuIXnvry0s6dJ4x6bfW4WKtRABuAvAuY+y3QvowIdunAMwNrx8CMDW0QBqFQPE8izG2GkAjEU0Oy7wAwIPCMxeG1+cCeIZ1Mq1QypS1Cm2opqx44/Zd+MKfXsXMDzZUrQ02mIZMufqa797zVvZ2tHN0bNy+y54pRGfXH2SFSByu+Md8vLlCHW02b1x0yyzc+EJwhnYnW3qqBhcnuOMAnA9gDhHxmfJDAJ8jovEI1smlAL4KAIyxeUR0D4D5CCydLmWM8RCYlwC4FUA3AI+Gf0BAfO4gosUIOIap7Xut7GhtK+HJ+Wsw5ZChyuiaMmrNQ3rB6q14efEGdKuvw9H7dSp1kFO/lNt3jU1xjCHbokEGVXKldA9ZXmt3MGiQw5UUO8gu5bmFHSum3h1gJQ6MsZeg1gk8YnhmOoDpivTZAA5RpDcBOM/WlkrithnL8F//nI9rPns4PnXEiNT9zsA5VBXhCGhsaqluO8qE7nvt7pvETAppQ97O0g0ycejRUNTkjPMvWb8dBw7tlVsbdvcxkRe8h3SIrTuDRW/Juu3K+ymFdAVGUKvltLBqsrumXbGMxWsb8UYOAfVUUPVB3k5w7UVHRsTOIlbKEgqkWki30TzurvzHPJzxuxdydazbHTisjoAnDiH6dKsHAGzZqd4ZdwTnsMtGHCpQpyuyRKw87bcv4NM5BtRLtKPMTtByDhl61eohrTJlrXA4vrzGRGdxKmqTTI5tRP31ZcEmZNMOdz2NDZ5zCOCJQ4gudWGwNcGk45kFazDysoexeG1j+oEKDCBbeOhhfbrlX6krOokph6p6F64gjwnfGReNvDiizvJq8uvYLFuLBVI+l2cbahWeOITgk6wgbKEemRPY77+xfHOHeEjbiEP3LoH8dczgnrnXbQOfpHm89/bmVvzh+ffLbEeZYqUc2t0ZxQ17WkgVuYdtYrNCyK5lcVa0t6HzfedqwBOHEHxsFVSyAVaZ2ErLN+yI2GLALhPmE6CjA4t8sG4bvnhT4BSfx3v/z2ML8MtHF5T1bNn16/wcKrAOKHUO+VcTltt5FrJ/vL0KmzKY4aqQNfpxIdzN7WkmvZ0B/jyHEHxwiesuv25ubcOarclTsfIYiyde/Wzif6vOoUoT4Kl318RtMORbv60ZXevN1iUAsLWp/CMo1SG2XZ6rPJQ0u7MI8yuMVZt34j/ufBPH7DcAd06bXHY58ve1cw48X9lVptDJYy12GDxxCMHHoMrH4ScPzkvnr4JYKRLtdNLBO/EXT2GvPl0rWke55phV0zlU+FsdNqIvHp+3piqiRhGc6129pX1WQ1k4h23NrVjXGGzaTETkhffW4ddPLMT9lxwbHeRkQk2en62AFyuF4EPLVWTT3sXmJ3+fm0qzEweW+O0oiNXZuJdVW5oyl58lno5aZGN//kmB+0k+mz86UtTDv8c+/bt3WJ0mlPvmq7fsBGNMoZDWl/iZ61/Byk0BMTKNocvuewfvrNyCNY1uZ2LP/XCrU749HZ44hIgV0m7Uob3T/45Xl6XSbGKlWClcPeRRt9zDuoVbXX/2Fry2dKOSGJswYd9+9kwSlEOnwmKlXz/xXlj37iu/Wrx2G4755TO48YUPrAEuT/ifZ/CZ8GzrhWtiK8I2AxHhos6mljbl/aoG++vE8MQhRCkiDm75K7F5t3EO0a69g8dypavTTVoVl6Kcx5YGfv6Pr2ZukypsQ2cV5wEdb6TAsa6xOeG8WU4zVmwKzqp++f0NVs5hxcadCSMODtO34Wbqp/7meTw2Nx2N1kRYahmeOITgi477Dqz8AaUTzdjERdxaqaOHclKslEOB7SDAxuB6mlumjaG2vN1sI16N9a2xqQVHTX8K/xWGOC8Xpq52NcIwmbKKRhJX/iPd1jzNYPckeOIQQmmtZBi17ZmMujMCbGM0VkhXbzB3ZM2uTIKtTbmd7ezY7x0ZPkOoIfsT7WzUtuZAcfv4PDdrtgUf2WX5WU1ZOUwLfH0xHgGquefNYNXwxCGEyVpJhacXrC27Lt1gtE1W/lxVh3IFJpJ+x68wW1VI3qy28IZvmi/jkH6qoxgQxoAN29wUrhwdHWtpe7PdCihtyupWtkkXZTOoyMo4tJUY/uexBZn7e3eDJw4SXHUO7YFuQbItcnxgd/RGp1qOVmpv6DLaUsY33R30u9uExfbpBWsx4RdPYe6HW5yfb27Jhzh8tLUpCnzXnm5jjKUWatddvclTXCxDxWFkFSu9sGgdrn/uffw4o5GDDcs37EBzq1r/Vg3UPHF4b00jRv/wESzfECjFxF1mpYKmZdkpJ++75csbiZ1XJcrXlKp6TdU8rgTxUn1711qY5jpvTJr+VCptkSoOmAY7NYYAMooOO6Yv3/oagOT7LvwoGZ1Xy6UJc07e2buOdVMu8Z6KEGS1VuL58+S8GptacOLVz+Ly++bkVmZ7UfPE4a5ZK9BaYngktGLoEM4hw2IoolQlzkFElrp1IchdiW5WhXSe2B04hx272rfLtFnHcegO3BG/o2qhPON3yei8CaKpE61aE9QwERHxlooOlGut9ObyTfhjeHpce8EJ9QuL1udSXh6oeeLAx300PjpgVWgv59CRWLO1CX96MZ4AWXbp0x95t111uwbZs87tnPrNdRerCsHiChe5PAC8sli9iGThdl3fp2t9PsuEbpEmTR45n2vZqXvCtZJzyEgc+BKxaUdLu8d4Z4YnDuGvylrJhnJ3sbrBaLVW4qaslnoZY7jhufcx8rKH8YN73zHmXdvYhPUGxdrX//IGNu2Iz7jI4j36ouMuSKuDUaR1lEhNtUdobWu/iMOGW19Zai+fMXz+TzPbUUtYTqJMfb5RA3tonk8/5Dp/tmtDVJQpVjJSB0HnoFJI72GRbfOCJw7haC4n4mm565SBATY+52qt9PqyTfjVY0HU07tnrzDmnTT9aUz8RVp2zbFVc/gRUD5xdO1j5cLgliTddxM5iFDtwFssHuxG02cHkjF/1Van2EQ8ZETWNshorzxfrf8xlCPUd94NMxT3VZxDvjqHXa2l1LjNKlaq7AFOVbVFTMBKHIhobyJ6lojeJaJ5RPStML0/ET1JRIvC337CM5cT0WIiWkhEZwjpE4hoTnjvWgo1UUTUQER3h+kziWhk/q+qfT8A5S305e5iy3HWEu/bqtX5UeSFC2+eBQD42+srjfmc3QkzWG+V82blfCYl52Dp12cV5s1Zwlp84toX8edXl1vzuSiIXSAukuX49GRV5CaU1WHoix27WhO6E7lE1xpcdQ4AMG9Vkvttb/iMPMJvVPrEwHLgwjm0AvgeY+xgAJMBXEpEYwFcBuBpxtgYAE+H/yO8NxXAOABTAFxPRNxF8QYA0wCMCf+mhOkXA9jEGBsN4BoAv8rh3TKB7x7EgWSb1+WOiXI9pPlztnx5LR6Aug+ef28dAGDlxh2ZnwWyEA03+bCNg/m3o/Z2rNEMG+dw12tmLi0v5OXRKxZTDgHNQ8J36BVP4Gt/fj0oD+nAe+1xPIzuSSRmnRSAz0xYFPekAZzHZiw6hrfzMA524sAYW80YeyO8bgTwLoDhAM4GcFuY7TYA54TXZwO4izHWzBhbAmAxgElENAxAb8bYDBb0+O3SM7ysewGcSlm2XO0Ar6Sc0BR5cw7O1kqW8vMkDiaUO47dd4OKZ8uodGhvfRjxLAr2FledgyLb8wvXOddjg8lcNcu0ce1LXR/lof+RCV3KlFVDj+Xduqklsq5IrtNEbFX35B5uzUNp0YmIAkcmnUMo7jkCwEwAQxhjq4GAgAAYHGYbDkDcQq0M04aH13J64hnGWCuALQAGKOqfRkSziWj2unU5TTb5S2cY8OXODb1C2qZzcKtXZ3pYSah2WO1llVVlql7d7jyYve689yYb2nlCmogv3zpbey9Lq8XxVpZYKWPHumSXs+jq+N3Ti6Sy9YV/sH574n95MTe9h4puyGMjD86hM0RcluFMHIioJ4D7AHybMWYyWVENM2ZINz2TTGDsRsbYRMbYxEGDBtma7AR5AUuY2FnFSmVyDrp0S3Gx4sycMc91zbTAJ8MSuLcjRY815avmXDny3fIU0rsnylVIl6dzy5bfhUtLiZU0+a5NEQd9mbI4UPbJMEkLXea4qxWbCZ3puFcOJ+JARPUICMNfGGP3h8lrQlERwl+ujVsJQBTyjgCwKkwfoUhPPENEdQD6ANiY9WXKgTyZsnwk28AZednD+OWjaTtovemmm87BSkQ6yCFCfP/2iBi0DlFVFMC2j8B2vomugkv3nnbwYIMYNF/OgbH0HHCtI8v4k53/TM+q5pLcpjzESp0xMKyLtRIBuAnAu4yx3wq3HgJwYXh9IYAHhfSpoQXSKASK51mh6KmRiCaHZV4gPcPLOhfAM6yCK8Nn/zAD/99Twc6jHVIl4wflO9w/PJ/2oNQqpC1jjN+3NTEPWXDW7ndhv+N0xzYo61FNVks5OY2k/Qep7f07E7KI8tz6hTJxdia4bFqWbUgaOeThBCf3iHyoltiuAT264Gsf2z++52AUkQfnwNeLppY2LPzIPQRKJeHCORwH4HwApxDRW+HfJwBcBeB0IloE4PTwfzDG5gG4B8B8AI8BuJQxxm3VLgHwJwRK6vcBPBqm3wRgABEtBvBdhJZPlQBjDDOXbMQ1T72nvp+xLB1Mp7rpJ5u5di7btC3cLoN17damyOoo1Y4Sw6jLH8FVjy4wliHW8rTiNLf2imbKIQQqmB7R3VO1fYhJse3QsIUfNWLkZQ/jxUX5Kadl5O3nYCov6ybE5k/AGHD5/XNSaS4wtUXepJg4h3rpjGmVGFOe2nlw6rwJO3a14YzfvYDGJr1/UUehzpaBMfYS9PP8VM0z0wFMV6TPBnCIIr0JwHm2tuSBbVJ4gpRYyfKdLz5+FG56aQkA/a6mta2Et1Zs1pahDdltrhptIetgG4suTj2nX/MCtmgc3LaF3qt/fnUZhvftZi0LgPF9y4Wrk5VVFCj0x7+fMAp/fHGJtW4iwkkHDsJzgpWRqVt130QcXve/EdhjPDJnNU4Yk4/OrD1or/dxdoV09kU0Dyc4GSZrpboiJcaTSxRXm4mzC+Qx7GoZV0nUnIe0LLqR2XDbAD5keO+4LJYcRHzQ/M/jCzH1Rv3RlOXKcF05B5edjI4wAMC2poA49GgoOluxzFGEitYrpKU+15ZvZ+lljLzsYZxxzQva8ifs2x9fOm6ksYygjUBdQW6nSbFtV+7+IQzStqu1chM/C7e23OKnYisv61pfzhqaR/gM+R3k+SH+W18sJN7LRaxkmm5nXfsiHnzrQ30GTRlfu+N16zOVRs0RB3mCpxXSZhSI8ItzAuZHHCQTfvEkjv/VMwCAt5abd9HlynBdfTHay+Y2hsShZ4OZsRQn5Cvvb0jdl1n0rFDNd5e0hWsasVXDlhMliZNuUSFK+4uosk753Qu4Y8bSTPL3PHaaeeBbd71lzZOnWGnzDrM5r4r4OvtimHQO0jvIC774HnUFSowJlR4wTVx0OkSGeau2OvWzXMaspR1ij2NE7REH6TumFdLMcDcgDvzMB3HgbN7RgtVbmoIybDGSNCuJbSJEugRLvvYqpJvC8MHi2bvloKGufcPrkTmrcf8bK6P2BHB7txZBrix2R5adtQtxWPBRI37y4LxMVm65OE1pUAkXF72fQ7ZyTDGhtHU79qupLSlzdaNYqZAoS8U5yKJp3XxrS3CTNn1L9cVIMmqPONjuWzIUCxSd+VBudFUd7ArpYFGxFX/t04vLa4DUDttCY2tHgyNxeWelmtP65aML8N173o6CCAZtc2tHIjSEkIOIHBdQSikyXf0lxCNkVXW1tDHc8eoyfPce+46y2iCQ9r2zbkKaLKecqYou7zTeAAAgAElEQVRzpaNGImIJdyESiy5FSppoKwbcUsmpTsepi+Xc94ZZtNQJaUMNEocU6+Am/+ZIcA7lOsE56hx2tZZw4v88G1kCtTnoHLY1t7ZbOcxLb++A7e5IHGzB5tYKsXCcxQzCl5Q5h8T5AZrnidKe5qa69d80ndbSVsJP/j4X91sWjM4As87J7WN85bbXcN2zi5Vm3TY4HxNqyCZHk5EXfPHfZRt3JL6Zqv6UWEkb4iO+/mDdNn0DUf6GspKoPeIg/S+PfVtIgQIpDgiS67AMaFdrpTVbm7B84w787KF5AASFtKFsHjG1PXCX85ozdm9QEwdbGHEZ4tGtarm0WVadEBSSm+iFkF5UxHLWNjbh5/+Yb2yXDnnYxetQiUWmvWKlp95di6sfX2jNN3NJWs7uvEExZJTFo7KoSPx/846krkrpBCf97yJW6tu9Xts+UxnVRO0RBzPjYA0JUSxQJIsuV6yku/33N9U7SV4NX1RMA+n1ZZu099zhNlA7yvmsKHwj1S5NVY2ubvl73zVLzbUQAaePHZpIE/t90vSncfPLSzLXB7RfIT2wZxf0Co0Fjt0/GYJMNzY+edgwHD96oLZMOVIpB5HBgKIDtrt56BxkyN2f5iSY8lqXpjMdFwlLsWBeaj1x6ATIssNT7UiTYqXy2qAbCG9YrJwinUOFx1FCDGPYZtuakdeAJwvnoIJerJTUJZh8Hs46bFjif5MV2GaDabCM9hIHxoBCuEGRleamMXnZmQdp7320tSmVJlt2ycgraq4J7h7SbvqgoMxkgnwWd9JE3aE8rYEJU167tLEzoOaIg7y2mEIGqxxRCoVYoVmuM1u5A6GcsOIcd7y6DHMVvggq8C4hyjbpst53hUifXM1bdQppkJvFkvokOP0LyZ69JpTj4NTcmjwQh/tgpHwxDJ1+yPA+uNxAIGQ8eOlx2jLXNjbhb69X/vyKPHQOtnAXstlzws/BgTrpsojP2l5DtoDqDKg54iB/I9lygSXupbcNxYQpq1bpkLEVasib9hZHU1YVfvL3ufjk/76EFRt3WK1k8jKrc53YZx06zHhfVAyXpQ8Rn3F8Xn2GdOihrvjuog1/765m/5ByOIdPX/9KdF1izMA5mDcsrmd9fOHofXDYiL6ARqz0pVteUyrU8zal1YlaZRg/q4VzkB1Cxc/rcriUjoAkTFkNLXzwrQ+NTrPVgjV8xp6GlHdjinOIr1Vx2gsE1IdCcL5Yi4Pl+397G7ssO8Os4qimljZsa24VOIfyF+9fPvouHpnzkTGPa+nWKLKO5dj8KWwKaVVNOtrQ0lZyYh3kRa5Hl2LU/y2KTcNHW2KxjFifarEsZ5coHm3JWPwKKeJgoTtZz6nQ5V6r0VHkjdeWuunQTBualI5AmoBJPxpA/ILtUUiL30LXvC07W/ArSwyzaqH2OAeLWOmOV5fF9zRiJW6/z+22xTL+9vpKvLs6nsiquZh1Y75h+y4c8rPHhfAZ2Z4X0aeb2WpCLl838Ddsa8byDfrwC/VFyo0DEfuwvVE6W0vMKXKpnOfj44ZGREEO3AZIi6WljbKMW4VvnDxae48xFvVDnaTotHFrKsbB+p0soryrPn2oMt2Ew0f0cctowa1fOsparzxmZAVyWoegz6vM72CtJJ9bDQCzl27E4Vc+gVVb0vqezoDaIw7C9Sm/fg5/CoPoqaDmHCjy/G1usQfCUy1D7vFikv/HgffKX3R1ITHEhV5cLHQs8+RfPp1w9pJRVyg4LxQz3l9vvJ9QSDtMVkBWSIt6pFJZoo+6AkWyapvOICHFUmTdq68+uivH547eR7mQy+Wn7uluhukFxcubvhORPmQ3x4R9+2HcXr0tuWKMHtwTw/u5BXS0YdxeAZExngMtvYHpiNGRA7pbneDk8rROcEL6Q2+vwsuLk+N84ZrOEZpbh9ojDsKHl48PlDFWMeCLhVgMwjmHLOGCgzao8w7r09WYjy9O+ezHkzjx6mfjesNfAmkJn22BrJM8TU1YtaUJmwzHaIqLpOu7i+0WLZJUu34lpM9WVyxE72wrw7YTb2qxtyHws1BTB8aA3t0CIp9Splp6SMk5WNphQ12x4By9l5eZl7ECV8ibihPHwl59uqYXc8ZABDz0jeNw17RjEqHZVQu/nMT9kNL5khm/8KeZif/7de9iaHX1UYPEwT1vvWImFYjQtS4gDs0tabGSDNXk0k1gG7sqipXet3hc6uDy/jwPAys7iF+9FKPGhjWNetb6LzNjXwT3c6XVlbe0MUdrpSTqixQZKNgUyjbOIS3jTkM0mU6Vzxj2GxgcPHTgkF6Je1obibBV5ZyNbSN2dQXXkCQI25CjD0zRIVqBcKtQoMSY3trUgmufWQzGgMNG9MXQPl3xzVPH4HOT9g7LVRQnpckHFHHY5k7vrnYRbzVRc8TBBaVI8ZtGgQhd64Nua2qxi3my6BxS7K+UcaewqMz8IO1NusTCCQV12GGLZ++CYoEyLQCu9biWqed43MRK8iJaLFCkg8pyoLwqp4u1EslxPqQyRw7ogYe/eTz+c8pBGD24Z3TPrnNQcbLm8avZykRXXeoKkY7GxVjCFK8pKyLOwahziG8WKMnRfvmW11L5u9QVcM744alnY7i13fYtKhEkMU/UHHFwWVz4R1XlFT2k+YKWNchmexc4ABGBEnHyr59LpR0wpGdmxbCLQtqG+kI2hbR7gDVFmiLxrzPVns8tbSVHhXQS9cVCpJBur0OTS7cQqUVA/HmiQN7epa6Ae756THRPHDOijJu/c0XESqLvj8N3zJVziIiDSecQoyARuzeWq62h5DmeKM+x7bY9QGd0fBNRe8TBgeqz6DedN5i0STmn6eQ11ULkKla67ll9dFXXcNp9u3exhgSRwQnC3A+3YoNBF2BCsWhXZIr42UNzAdgXXhcFIYBEaAsR5Z6wVRTEEbYSdMpwDhfGg2AQK4El7vXvEcuuxfpEGTdvk6rMZRvMHKdtzNQVC5l3wXmtiy7RCtKcg3hPUy4nDo4GECr8deYy4/3OGDJDhJU4ENHNRLSWiOYKaVcQ0YfSmdL83uVEtJiIFhLRGUL6BCKaE967lkK+nYgaiOjuMH0mEY3M9xWTMH2Pvft3S+RRDRzxjAL+cY0fWTFp9HLhJB4wOAC5npXAWHLp1C2aunY4K3Al1BcKmQY/Dx1ShlVlJowe3NNRrBT8/vnio/HC908OdpxcF5OBc5BzfvKwYVi/ze4jIG5CZJQYtFt6W7wjVZGn/faFdGKU3y4CahDESm7nUmcTOZpQp9nh72otRZFQGQO+ftL+WPBfU0Dk1kbueOm6GZHR3NqG22bs4cQBwK0ApijSr2GMjQ//HgEAIhoLYCqAceEz1xMR3+LeAGAagDHhHy/zYgCbGGOjAVwD4FdlvosTTJ+Ds8QMDDPe34Brn16UyrPfwJ7RroIXZprsu1pLqcVkkcaEzWWsDOwZ7BK7OXIOjJUxCA3ZTzt4CA4a2kufIURdsbwFwPaI2mPVreynv/cxnD52SCaF9PFjBmKfAd0TsupM7yXl7d5F/91EUWGBCF10GwCmj3lk40pkgmMjdC591VBXiDI6EYegZoeS7SAKxLxyNIMfPjAHp/zm+cgKrktdAV3riyiQm7gzq1jpNenkNl04dtEqr5PTBjtxYIy9AMD1zLqzAdzFGGtmjC0BsBjAJCIaBqA3Y2wGC77M7QDOEZ65Lby+F8CpVI5JhSNsyrcgD/DAmyuVeQqFeFryifAZIbSBCvL5yvrIqfbRMmZwsDCbRFkiSoxlJg6mnVGdo6K5LiPnwGF9ph0Tav9BoeLWYXjJQ5AEcYRdrBRDDmhnis4pvjoBuGvaZE35TPsK2vAZjNeffNDFEMD2SYjEOWEtzqhzcNl4yKgvUipeEte3cG903kIiN72I6cwW1Tue9/sZif83aY5E/c2TcejyvJTylUJ7dA7fIKJ3QrFTvzBtOAAxGtfKMG14eC2nJ55hjLUC2AIgGYc4R7h+DnFn9u7Pk4yTrHPYbvF4lQdTSxvD8L7dcPNFE5Ntc1l0I9M9e16eb8VGt+MZIystk5TMkS0vl3Owla26W4kdmLz2RswiY9b6RFHEb598L3FPDpQnQiy2QIQDhvTCd08/IJ2P6Xf0urZxXYvtPOUUHJXHnJi67MpNYcD3H9QTX5y8j71CAfWFAnZJ2l+5GbzbZWslHWLOIX1PtajLRHfrTnWIFJEYV/C02FxQLnG4AcD+AMYDWA3gN2G62qxfn256JgUimkZEs4lo9rp167K1mBfsMNC5NQhHN0kUYIvKKkMVObNQAA4d3jeZ7lCWNeifBMYYfvSAW8RQvlCYT9VyUzTXFcozV7QuvDlQgnLYUlHxaXsvk6mrMfCd+BglfhIoMWbQR6jrfio8TVDmiKyxmBx7i+dyIiQwiHbIvU6O+rpCinPg34hXw1/bxeMbCJxdATXxfPid1am0XlKwxUbBOfGMcUOia7Gde4LOIQXG2BrGWBtjrATgjwAmhbdWAthbyDoCwKowfYQiPfEMEdUB6AONGIsxdiNjbCJjbOKgQYPKaTpMS3AkVjKw7Yl8jt9Wnsh8cqdOGnPZkVsOGpLBADQ5KpVdjiGFq0KvQGXtjMoxA81KhJyEllIe8dzw9sxpE3FQvYfuzGzdO9iatrcUtsJVPJmqJ3yMj8csGyYT5wCmN+HVoa5AKd8R3oyf/3N+WGdsyusyz3SbsNeXbUKzYj7JOsCtTTHnMHJAj+g6wTl0btpQHnEIdQgcnwLALZkeAjA1tEAahUDxPIsxthpAIxFNDvUJFwB4UHjmwvD6XADPsLwitilgXvdih5p1jXoTzjifu9w/+X8w+NIH2NtRiIiDU9UoMYYmh0BvgGCNY8hDtgw8n4OViwrliJUqAXn3SoIM2nV0qsaHTBySB8Kky9Ap4HXrp63/jtinH/5w/oTof1VwSRGqMz0em7s6MnHmi2gmnQNsosts1GFtYzPuem1FIpQIL55zTIWIOOhDwojg+WWdjC6irrwBbBYcVuuEowyTxLhzUwdryG4iuhPASQAGEtFKAD8DcBIRjUfwdksBfBUAGGPziOgeAPMBtAK4lDHGe+kSBJZP3QA8Gv4BwE0A7iCixQg4hql5vJgOLp/j/jc/jAYVx2PfPiFiCSVjJfTtXp86e1aEPMDaGFM6ObkpevVWFCqUSknPahP4wDW1w1WsRChvZ6Q6kUxEe6yVOJyc4FKcQ7xxaM/RlWlrIZFjBS46diSmHDI0ip6rF79ofCAcmnbo8Dgiqo1zkJ3GAOBrf35DaAdvTgaO1rL460RmNixZtx2H7x2IauV+i8VK7pwvkM4rztmXfnAypt74KlZu2pl6JXETIL5P627EOViJA2Psc4rkmwz5pwOYrkifDeAQRXoTgPNs7cgLNmUrAMz8YEPq3kFD4yB8Msu5/6CexrObUwcKMYaignNwAeccsnAtLrF8ADexkuvkKhCVFXrjxw/MNWfIYUI5+TlI/5cjVlIfM5v8v8QYCgIn2rOhDpP3i+0x0uGlkxsUGTpd1ADBUU5crGwOcEHwRf0L83ZEJbr2jeFesUxN6PZd8a5ebjJvHzlyDvVhI2RFt7ixGNGve3QtE7SC8IHEO6UEcejc1MF7SFugsksXd3qA/SO3SgOsVOJiJaltGXQOWWTFzkctOngAF0IHJptcWEdEdAfZc9gISh7mf+1VSNvAnSlVeeWzHGQhgzwm5DKiI1wz+jl87+MHRtdiHZ+ymGEXCnZOMmxQWL+DzgHmsV7nSB3+Hh5jyvHK4nhTJ5fOnUZddQ5R1FvJ6kjH7cviQvH0QnETuMfrHHZnuAx0MYvK2YykhcL2keUFrxSJlfQ6hx271LLNYhk6B13ekw9MKvVdxEoE3n67aEBVzH/c+YYiNcaspWaXmucXJq3UWtpKmQLhuUJ+PVHhajdlDX5VhOze15P+M+JiqtIlyHXxhS2rn4O43mZjWM077Vjn4D4ubfXL0ZDfXhF4z8tc0fi9k9Z+okhSJgDc4pBvbmzoVl9El2IhdYSobmchv5NooSjeS54rnX3cvrRofeT5XWl44iBA9d1VMYxiayW7GAZIi5W4Qjq1+xay6XbYfEfiLlbSLxgnjEkSh5hzMHeSXBwPb5zIpuEcXlVEk80COSTBmB89inOuezlTGW5iJUlMwPu9ZO6fwb0aomtVt9sWf7lx8iaaZ9e9gm5ciBuRLDL9gsUCIRbXBL82zuH40QOtCmmZc+BiUVnEI0MUncnF83lccBSLEhF6dq3DtuYkcVBZHgJJToE/H10LX6slQRzS9X7zFP0JgADwxZtm4pTfPG9ufE6oPeKQUSyhin4qKicBB7FSSTazC/wcxEFzwTH7JlqmCxDHLR/cQ1wzrRz6/GP2TfzvqpDm5XJ89qi005KrbLcacNH1pBXSwa+Nc/jYAYPMYTY0YomII5Cyf+1j+wMITlsT88vte/zbJ4btS5bHUdTIwHU4Yp9+UT3id5RFpJJUyTi7enetw61fOspoybZ6y85I3s/Bx7zKhFSEWKJsIMKJg02HIkJFxHTE3URwxU2g2H+qdowa1COVVi3UHnHIuGBd94UjU2nxRAgKm/th+nxYEfJCz/0cxPFUXywkJrRMUDiyipUY07+zPJy5NZbxfAqkRVXyrgkIJ0Q7FG4qotyR+MfbqxL/FwTrFRedDKDeiKSZxSQhkbuyV9d6TNy3XyQz599GJnAHDu2FuoI+/pPOekaFl35wMj5z5PAorzge5N077xeZm1ahW5diEMFV0T6ON5ZvRn0x2T5+TnZzq9mwwlg3Jw7kPndU/hgFid2PD1GCMl1+piVBHNJ1njN+OI4e1R9dytXK54jqt6AzQTFneCwjEaJyUg64pcJ2yTa6xILJXSft5sSxInt8cpiiRapQYkyrvJYXCdcTyuR8qrUmICJOTQSQJgblmjPmBTkkiqhncrXmcnl/OV6TStFMClGeqntEPY9cdRbiMKJfd8FpLCmjb5aOOOU7dBedgxjfyChWkpW74f/241n192KxkmLF18Kun+DvqzJRHtizAbN+dGoiXdwoqsYREeHIfft1irhLNUccnDazQh6VVY7oIb3F4N/A8fi8jxL/B5xDIFudNLJ/VKbYNt1CPTI8HtLZAsmgc5DXCH6ync3cV56kKq/fgkJ0YFpUj9t/YLIeTb5/mzhCc8cd5dCdRGwlY9nCAq2Z/CLinb56BxqXKXEYGiKiCyOfsJ7JOOvFsnSiHRedQ2z2anaQlHUOrmIlE2HiVoeFgvvcIYW+Rd6URWIlWTfEGLp3KWJwr66JbypKBHTNKFiIZ0fB6uewp8EmMkmlKWarOBFcFprH5yUd6kqMRZP1zmmTUWIMVz++MDFhxAX42f93Evbq2xXvrNyCffp3x5X/mO9sysqgt1aS342z7aaJq2LLVcSBKB235+aXlyrLPGhoL4Wzkbpju3dp/5A1Bb/j+OWnD1W2p2QQ0wX54oVe1e9p82Vo80bPQOQw9EQkIdKSyhvWNw6bkYU2yjvt9zTh5sUNkw672iLKZswni5U4IbRxDm2GeC2itVJ7dA7peceicuVUkRhyiBKB/7zvncQzXJSUpY2VRO1xDoZ7rk5p4scuR/zB/RyAYGGtV8hhRQunUQN7oKGuiKNG9hcIk3tdriKo6ExswxwkotQEUXNXaVPWNzVHMjbUF9Pvo+nWPCKruHwzmeCJCmmj9U5IPNc2NinPA5HB3+f+NwIT1ztnpY83JUHm+FZo1qnq8wLpLc5Es88sY1a2Orvg5lm6nIn/VN+Jn3sii1BlyArpEmOYv2qr3UfGYD0omqSLY61ng36zoRJ/6f5PWzHF64l4y2Rx9eoPTw3zdw5jjtojDi6Li2XuRAtFiSXyHjgkqZ8Y1qcrzjxkaOp5Jcch/a+zRnI1Zb3wmH1x3oQRgbWS44LKRVnPvRf7Epw7ISnGIUXbVIuNytmoqUU9MVTmhcZT0DoAcv2q2EpfODptpcUPk7n8vjm46aUl1nJ5WWvDhW/1lnT4EFEMc+lf3gjboW5zbK0Up0/ct18qnytU4TNU0HFE2rwmnYOCOHzi2hcNhCkAH5cq8VP3hJ9DXPnIgd1TeaN2Kiyb5LHP/1MF0eR9krRW0r84P+6VZ69giDkn1B5xyKGMKHY9khPt8e+cmKyLBXbvfbvXp9JVE1Rsm86xSxcQTEZLiUW72P49Gox5OZpCsZJoqSO3UhUWQylWUkwsnbWJyjFJt365Ejqu4H5s7kepe+XsD5KxlZJp8nMlpv9+8hP8feqK+gVb9FLeFOq4ZJNSQO9bIpedhdklRxGH7r3UefU6h2+eMloR4j6db3jfbqk0Pi5VdYt+DizxjLaZSsKYDqKpESsJ+8ZEbCWLr4aYv9qSpdojDooOP2pksLM6TAhIZoIoYjDNs11tpWByCQtFU0sbZi3dmIgDA4SiKqFtOvmpLirrZunkqS07WyKl8Li94rhQ3z/jQOig2tmnd9CKNqk4B0XYBZ2SPW/OoUtdAWceEgQOfl/hTeoUG0qaGSo/B604LVRGuoC3pN5wQpyK0Kr8YAqFeFcs5pfFNNmIg3mReuDrxyrLNOpQDGXuP7hnNKe47kHO+x+njMa9lxyTerY1Ig7pcuPwGcm+NFuepTct8neYEPqD9BMc8ACEYf/THe0WEVZdV0dzEjVHHFS8wycP2wuv//g0HDWqvy5LAiRQdhOLvnMXV/DGuC+ULb+zMnl0aKD3i3PqOYfgV9YjXPXogsT/vbvWRbJLcZCZZKyqxfvfjkp6P8tv26uhLmX7HeSzs+QAcN8lxyoVcJxgyxAnyOvL1GbEw/t2iz1XFW3TKfNFLkPnIS2ask4alT6wkC98qrArA3p0USyids5BZX2p6suCoA8SX1HeiZvG7KUn75/Ka1qTImc5Wedg0cvo7opt4/NM9vn55GF7YVifNOcQn2SYLj2W/yfPGbGHiJc4BWn/dPV5hwNIH/YT6BWTdbvUB+g3gB2th6g54qD6NsUCYUDPhkxWHERJuaIKO1vaUtYeOpmjrJDW6hw0oYRlRdePzhobyf3FOuXFcvTgntG1ijhM2LcfHv7m8XE7FS+scoKTF4DXlm5UciYT9u2XkJVzXHqyOoyAaPr5mRtmKPOIFlWq3b1OQf+Nv8Zxn+RXEi3U+NP9eiTFhUF9gSK+q4Jz+Pi4IalTBXlhtmBz8rhVbR6KhVjkJ95NRQzVDNpzJ4zA9884KJEWiMkcxEpZdA4IOByVGXiCOIS/8lzoUqfuKxPnILZTfB+TeFalG5E3Fv17dMGIft0S+Zpa2vDYvI8iEaDYNVmskFw2V5VE7REHRRpfMDOx22FZpmeG9+2WGoy6/PJiyhf0q889LJFPjg66dP12bN6xC/e/8WEiX8+GumiRFAeVvIt84OvH4unvfQyA3o58v4E9ozaqFOkqiYjIkt8zewXO+/0MzF+t9iQPRFAMd8xYGqXpTkxTKVxlbN3Zgn+8vQprG5uUC6FujiXCLGsWVPEMaaWvAZKmyiKO3X8gbvjChEQab0vPhoBoDOqV1g+pghiqZNf1BYrETeLuWV5kdENWlS7WrbM2Uz1r1DmEY/3vb32YulcsxGOM/8qLYoOGOLiEnJd9CGyKc/m2mitJ5rv+ufcBxPHRxKEsvsqJB6hPs8x6BGylUHN+Dqr+ldk/F+9ELgrRhU6+5aKjcNCwXrjpxSVu1h5IWlHwgX7caMk5TJJHnvTr55QLCm8jY0kPaXmH2qtrfSRqatboBHidRSLlwNWFz+Dv85/3vpO6L7ezrcTwkwfnxXVqQ1Knd8Yy1m8L9C83vbQEQ3p1Td23WYIF9afbGNRv8TUoBERRde9fDt8rtVvm79OrIeBCrp16ROo5ovSipOIc6oqFiGiIt+Wcpg2KKo230RTeO3WqoXHRDThFWe8GAIN7d8XaMLoq73P5XXWcQ0wc9HXLzplWxXlq927PJ5swi5uO/QbGsZO6aESJ9YLTnxj403MOFYb6AJaQc8hQDpct6/ypTj5oMIb16YZCISlP1+7aZM4hHAipUAJ8kRIGis7+m4trxMmlkl7wUB7WU8EK6SWboDNldbfVVtl162JL8Sa6WdAoIt9Cv7M0ne+cUBJGnIOqzjh2lrIcTZRV3vey7JqXmRYrpfunrkhR1M/5q2IubYR0bnSWQ6ZUSll1vuT/Nk9p3Tc4cp9Y18SLlImDjnPgucx1J8eaacwrdT3K9UMf8BBIjhNxjOnmR++uwUZBPpK0ozmH2iMOhnuiotkGvqD937OLE+nyLl6e2PxyyrihxnzcWintjBX87+ohXWIsYfmkXbQMiznfsQSn16Xv853cZyfGymtXWXVQd3pSHTq8D677/JF47NsnJNKNEU8BTOJGBQh2+Ff8Y34qj+49TcQh8nMoxd9Q7T1PRnFjyllKEoWovc3Tpp8q3VVdgaIzoT/3x1cBAEeP6o8fnzVW3RhL24Dybe5NG4NiyCnaiuT9K1vuyZzD7V+elGijq86hubUNLa0mziE9zloUolfR4VNV95mHDouuxTmhmx98g7BVOkvC5JxaCViJAxHdTERriWiukNafiJ4kokXhbz/h3uVEtJiIFhLRGUL6BCKaE967lsIvT0QNRHR3mD6TiEbm+4pJqL5HLEN2R6BzYHhx0fpE+pPfORFPCP4OsqcwD1z26387XCowWXvMOUgB6Ryisj70jeCELG5pIrLCugVQ1o0AwHWfDyLSdu9SxLkTRuCOiycpncN6NNTh5ctOwfRPHYKvnrgfrvns4c47Tt5O+X2ICGcdNgz79E86KfF8uol15b+Oi651ca90hFXsGzmHypRVJ4ZhJs5BK0/W3xfl5PxsadmKDAjGisxRHLP/AOWZJCooxWSOG6YUT+kgVtJhSO9AFHjwsMCpVBblyBFLTzxgEA4Z3jsVYkQF0frqwB8/ZjyzXOXlr/JwDohIkFPF0Q3sGW8YxffW9QL1I8MAACAASURBVEEvDeeQ5fTHPODCOdwKYIqUdhmApxljYwA8Hf4PIhoLYCqAceEz1xMRH5k3AJgGYEz4x8u8GMAmxthoANcA+FW5L+MC1cDhnS4rwkzQmfj17d4FBwie0rK8eGco1+8q7X7kHVq0W1fIJcUwCTIOHNILh43oG+VjEuegk+Xz93llcUzsThs7OHwHwq/POxwTR/bXUtDhfbuhrljA5Z84GJ86YoRSTq6D6QAW2STUxjmoTCFljBqgjplvjskfL5KRzkHK8/0zDowWch0TohO/xM5UyqeihWT/QT1wwpiBCfELR32RUv4Pay0hJ+R6dO21cYFZxErFQjB+dd19xD79cN8lx+A7px0AIKl8b6grKL+r6PlsUzJni62UzNuiVjrE4kGLLNXlJDjOGcmxpDqdzoEx9gIA2aD8bAC3hde3AThHSL+LMdbMGFsCYDGASUQ0DEBvxtgMFvTI7dIzvKx7AZxKulmdBxT9yzs9k7WS4+Ins6ZrG5tQXySr6aJO5wCkHXnkdnGs2rIT23e1RQTJ2M6Q4IhOY6qY8q6hF1zDLgR163eSaUVnuABoShe90cXvM7Bn7KR03sQRCfETh6iQl78tZ+BkzuFLx42M8owa2CM2VND0U0NdASceMAjnjN8rrIeXy8tUL9CiyERX9opNO/H8e+uw8KM4OJ5ujHIOxIYoGq0ln9wiU/5iqIcTm/bYt0/AI9+MRYgT9u0fzRFR56BTRotjyKZzcN6AK8awKvgfAVFG2wLuIlaKiINEiJIRXStPKMrVOQxhjK0GgPB3cJg+HMAKId/KMG14eC2nJ55hjLUC2AIg7V2UE1RdGh2gkkGw5DrIRFPAt1Zsxp9fXa70buXznUmDTBkOu6BfTMXFe16olFyxcadzO8XBrVyoNO1O53OPLFmktFWIDnx+bGtKW7o8872PRSIJIOlF/H+fjw9tIiKlk11js/rcbv4MkPRzAAg/+5dx+PjYIQCChTTQtST76aJjR2LR9DOjcm7/8iScdODgqDwgnuwqzqFNINqByErdxo3bAyut599bm3hWhU8eNgw9Ur4YqnEZv7cJsofw524MdB4nHzgIz/6/k1JlyiKSg4b2xljBkz/IF/yK76DcuSOp48qTcxC7ZGtTC7Y3BxuI64TxJFpAZSIOwqtcdOzI6JpbK8n6DZEwVeLcdBl5K6RVw5YZ0k3PpAsnmkZEs4lo9rp161RZrFCNi3I5B3GA//enDtXm4wNizsrN+vLCbuAlcoWjzkxUN8BFFcX3Pp4OlWEyY5RPeNPlc4EqfIaIM8YNiXw4bDH2J+8X7/J5PjncMQDsN6hn4n+TZ3jWjVdBWCTvfi2InBoR9DAPEcUEVegnIn0IC/6sLkYPADyzYC1a2hha2kooMTv3JoY114XyCb63sZhkOy15p524HwDg1IMCorcwDO198fH7YeSApN6o6LyxCn7FBdcUvDFoJzOe+6Db1PWXiBuQNgQ47IoncM1T7wFAIqBmwHUH17ZFW/weiWi3x+wbXXOOXdzczP1wC64UjCs6QsRULnFYE4qKEP7yrcpKAKKmbASAVWH6CEV64hkiqgPQB2kxFgCAMXYjY2wiY2zioEFqBxIblDoHqaNdpFp1hWTMpP01Z79ysdLNLy3BvW+knX7iOsP2RTqHEgoEZWiKIpFW5zBZCOmgEgvp3oxPGtuuKqWQ1uSzKR2v+/yROC+0bpLz/u6z47XP8XxL1m83thNITlQXcdghw+Odq9wN/DO8sWwzHpkThNmQ9UTy0a+6sgDRMi4UF5X07fzXwwMRVGsbQ8nAOXz7tDEAkrtrHUem4uxUWU0KaX6+NRAQv3HSzh8AhvXtqnAodFvcdOEzVODivOufex8n//o5Q770GL/o2JF44yenp+uH+r3ri5R0mBQCCdrC44vfQyxb/O58I7GrLRZzfvqGV/DMgpgj1HFQeaJc4vAQgAvD6wsBPCikTw0tkEYhUDzPCkVPjUQ0OdQnXCA9w8s6F8AzrIICNVXJnJ3lg1G1W5dRLBScWDte5s//OR9vrzBxDmH7wt/WEktZKnGIMXRk/OeUOPyB7hCeH0w5CA9eepxUJucczO/kylyplHnJ+ihxLdZrsq7hZS7bsMPahoQiXmq4qmWjJc5DhMohSzw6NMgTn7dwy0tLo3yqPo13usk8qqF32Ig+Yd0ltJX0+ozPTwpCiLdYDrHn9WSJtqrKe9mZyVAbKl8Z1beUfX9sdbvNs4DA3jN7hTmfgiiauGlZzAsADXVFbT4756DWOYhtqA91DqKZbdoZr/Kcg9VDmojuBHASgIFEtBLAzwBcBeAeIroYwHIA5wEAY2weEd0DYD6AVgCXMsY4+bsEgeVTNwCPhn8AcBOAO4hoMQKOYWoub6aB2KU9uhTx7PdPwuDQi5Z/H5O9O0ddIRm6WvepXMUwIvt+92vL8dzCddp2cC9cFUSFnc7y5ZKT9k+l8gXatiGRFybdQqUK+ZB8TszrLuZpY8xZPyH6AqSIg6IIlrhWLyCiAxYvko+DAhFWbQ70O7sSu/d0XXIYFJ5HxSmKYdrNllChrFp4b93xAQS3BSbiHKT04yXPfSBou1ymbJUX1E1YuWmndfcb9ZHjJoxB7Tvx6LdiRbdK3KnbDHKOYNGaRjwvnHGyQ+HZzYvU9enfvnYMzvv9DCxauw2NTS3o1bVeSyC5zmFXgsgn86j0lnnDShwYY5/T3DpVlcgYmw5guiJ9NoBDFOlNCIlLR0BcWAoFiggDEC8ALsShWKDELsHFtNIEMXTHD+6bAyCIeKouU4jmKbRjSO+kA55qoTHVX3IQK2Uhdub4OknOwXUnVGLqvv7K8aNSaW0ZxUoi0mKlkKtMxF8KfvlkLhYIRQW3p+oHeUduMmXlEVvbSgFnp900hMmi4lK3sJqMGhLtDMuUgzLKx6gCsXObiAYF58AjE//uKfNJeQUFsdPn1etQDh4Wi7v4OJfXARU4R/Dx372QGA8qnxwVhyHiqJGx3mxdY3NIHIQyBJ481jnoOUAXUVt7UXuxlYTrtPw8i1hJ5hx0st2M7RPlkNpFgJRK9G+HduFiPldwnwjbLs3dlNXdZFAmJKYqdCfbqRbMhAhILifjsU8qEQcfL//96UMx6oUPcNzogUrTY1VNsje+2QkuSRxM3BqQXFR0i5WynQbdiO4sjkT9jpyDK1TWStq8IDBWsn7XaJyLC7NpvMHO1QZdGWRyEYFx7l7HAdcriIOc1XSiXF6oOeIgjh15fvBB4iIPrZM4B92YzCpWkutQQdz1iU2VF0hdKG1d/aWS3QtTftz0eqp+nPXDUxMeo0A2QqKzqFIRUqNZrmohFG/LnEOBL9BpPcbgXl3xozBEhepcBl0kTyDNOZjGQSBSM4dAAdx0DjM+2KBMT7Uz/HVZjIpE0Y72oKG90FBftPrzGOsOK3dZcAsFgNnpVyQ+FXfeWrGS47gULb8WrWk0Zw7x3MK1eFs400Vsgs4JTsTuaMra6SHuLOTFNGb17eUUJWslvc7BUazETVkNiz2H6CEt1isPcuVJZZr6ua12bqasRMpOGdy7a2ohN5nmAsk+KZXMCl4RoszWpd2mVy84LlSuO/L0gfRMmQ7EhMlmrUThbE6IlTT9umm7OrRIup3Br4t1TF0xyTkM0UQLdoVoPuySV3asU4EQzG/R3FVHbNXaFuD5758k5Yv9dN5bkz55UEZbieGiW15LpDXUx0sxH0O7DATZ5bjR9qL2iEOCnVQrV10GY6BzMCsdgzLd2pWFcyiGE+GtFZsTkzEVpC+DzoHHN7KJldJ9psvn7mzEPWajZw15dQuAavcnikLSYqVsiILAWXbQKoIu+ziI7Yk4h5KeOPBxwLkmG+ewWQjY1l6rFv4+sn+BqgmiuLO1xIyn24k4dn+1z6uKEzJBp48SwY9x/eH9c4R6dHnV5cne5eI+aGCvtL8EB9cJyt/kzn+fLOk+CV2KBeN7e86hAhD7VF5QMomViq46h4yKUKGcVVvUQcG4h+k5172cSE/vyFViJb3yzcmU1ZlzcOPAeJvWbI1jAJke0/liqN6LH9MatEfNJQLxwpwQK0llqUxZVQuvTAgm79cf35+SdkbkemtZ56AicnyBnvvhVizfuMPglR5g/ba4L7OIplVjmJttykHg+PkTcju5WLKtxJTKeRmHDO+NW780SXkvi85BZR3Xrb6Ib54yOp2PAf98Z3WcZlJIK9LlEB4E4Tsa2spFj/L4PUZBHOuLpIwAy9GZ/Rx2WySsFGSdQ/jrJlYqOForubWLZ3PZbOu8j9stVmLpIISqfC4lyoeqmODaRyZfDBWXtV1Y0ORmf104hpSLn9zESuYQBnL//PUrk6P4/CL4pkHWOai6kxOHS8NjTG2cw9ad8Xt/WYj9lMirmPmqMcXFHdsl4tCnu/qIVL5mtZZKqHf4sH27ddHGS1J5SOugCvt+zWfH47tSlACVCFMvVlKHdUk5lwqEydRWPj9d1vX6OjXnwPtqqYOfT3tRcwpp8dOddNDgxL0sYiXZz0GHrGIlscThfdOHqAOxWCmVLo3ZbGKlcOE1iDeADNZXIedgUqrFdSdLlU14x+7VGzOXbMSAng1ahbRsfcJYMlaSXIcoGlD1ZSrwnoJzUMl95W4zid2AtH28isjJabaIr3xReeZ7H0uFFInyOn5JzjmoTm2TwaOtAoF+xMUk3DQ/4vMcXOZZMCc+3BzHEVNVrzLhNer2FFXLSnaRMImcmni+SVBP8Cu+z4/POlhZd32xoNQ5jB/RF4N6N2CgItxH3qg94hD29x8vmIiTDkyG4Ig4B4fBWCxQwoJD94Szn0OkkI5L+tiB+jNmVRPG9SB5XZmBnwNS7RAhRvwEDBZVIU/Og8HZ6hYhs9mXn3kwzjp0GK59ZjG27mxRtk0UpXAPcnm3q0Obg1gpEnGIDmaKbyA3zWZ2Gp8DEBIHZYj2ZJpOXCPL6M2HF2lvJdA15BxksZIKdYVCxHm66hxcwqS7+jnofFNEENKbAW0TFKIqZTakxUpzrvh4dC6D3B6xftlyj6NLsRBtrJpbY/Fol7pCIuhfJVFzYiU+7Yf37aYNhuakkJYW6PZG/FBxDqrYSAC0HtIupqy60BRc5xCdw6tp58NzYlntocP74I6LNfJiBOWJnMN9lxyrrZtjzOCeqQW1S10BE0f2V9qoczQoPMNdbdm5pMgsVkpzDi0q4mAoQwRJbeT9VK9Y+OVFtl6z6MaWRUGhRuKgSFO1PeIcHIiD6OfQZgj/wmNFiW02tVE+CU6XO+2cpsilWPBNXLI8r1UBNsUAfZw4qvqep4nrhk6xXFeMDV5O/+0LQl3K7BVBzRGHSLSrHDjBr4tMsK5IyRAJmnxZj6YQx6J+V67etcpiJLHq75x2AH581sE4brTaMoRbcXDCKEadFCGaAF525kEYIxxslGxj4AeyeWfMOfRVyKl5XtW1jCLpvbhF/wyTI5kKd4ZRVhNdqtmFviCEUVAtWuJiYvr0ckC71lIJxQIZw2dw6MUgIQFz4hwcxUqRziHevXZPhfoO2yWMy5a2UqL+I/bpi++fEcj/f352fFqfqR1ZjsRV6Rz0p+rJ+dRlqpp21mHDUml1BYpOeBRDqaTqLqTfZ/MONWctno64fGOsX6jkUTepNnRYTZ0E/LOoTUf54SJ26lAsUNJrtJ0K6chcUVihFq1V20zrDvuROQVxcvbrUY+vnLCfQcwR7KD5TuYaTWTUb506Rlm+jA/WB22/4qF5UZruYHixGJsMWqeQFvvtiH36Kp7Vl3vVowuwY1erkWPkbfxAiAbbr3ta7pswldZXGdV1y8tLAAQyeq3psgNHCMTvuKtMzuHEA9JiTF6XuCm46cKjlGXKnIPI4Tzw9eNwaWgEILbLyDmE91wc8JSOlCqdA6U5jAffWpXOiKS4iEM+mRAA9u7fPVrA+ThUcg6UnuONinNJgna6+/NUCrVHHCKjEIXijx+y4eLwU6CEyKS94TP4ov3YvI+iNDHYlwjVAAcUfg6OO3J+n4GhpbWEvfp0TUWe5PjUEcOja9PisyDUTYgKQp1IKxH+2LiTDHb3N724JHVPjJ9z9bmHp+7b3n/sTx/HW8vjqLkullZHKI7qFJ8z1bkjNLN9dG7wvVvamNIfQlWOTiUWnCcRb26MYWAUt0Rxj1y3KPdWnX3A6+MLWqvBlFV8T+P35s5/joYfLlZIqkVXd5SqfJ4DoBbp9e5ajx272tDaVsJvngzOezCZJItc/8mSUYzYdqVnvTJ3ZVB7Cml+/q+il6M46g4WNsUCJXZTx+6fjlIZ1OP2Ofnku1xwztFBdzhOWvwQX+t2pRwUmiFu2rHLGPKgPiHb15fJd0Q9utQBCCafjnMQTT1NreQT5g8vfJBIv/H8CTg9PI0NUIs9XL6CSMjk7jUdICMi6WSpzyeX11oqGXQJyXSTDL5AsX28TuYPuC8yvIikR7E6L/f9ef69ddjVWnLihNx0Do6cQypNVWiaw9CVL3MOvRrqlPO5WAjKeHL+mrhug3iwjTH079EFZx06DOP3TnO5PK+L0UklUXvEIeIc0nBxW4/zFqIF/Yp/GavfFVfgW+pNWWWdA2nvySgQ8NS7weCWT00TISrJTWVyBaaoTNVxI8P6xN6hJr8pHVEcu1fvVJTXFNr5HcSdMxAQJBWSYiV9pc1SILuWtpKWKMvdbNpJFyhWlJv6ckS/7nh/nf3AJP6NmwUPad36xBe0C2+eBUBteQUkd9Uu1kquJuOixRqg7n/VkP3RJ9TmpNwkmmOIME5FFAuFIJy6pY28L0ul4J1MU1IXNdfrHCoIk86Bcw7yxFVB5ByKpuBijh9TJe5WsflBkepdhdyMYibiEN83mS0miIPh3TiB4X163OgB2p2xSFhNC6rudLk0UdQW4Yx9pKMte0gEc1gftQ9KyVHp0CRxDi1tTOs0Ju9CTYslgSKFtIlz+MU5qej5SsQ6B7c5ISpbTYEj+S0zcQh+RR3g58IDjWTMXLIRm3ck40Upz19X1HeGxvhCPOFNbI+MYiHgBmxzLPJzCPVmJj8krjjfJJmCd0So7qgNHVZTJ0Esx9PrHJZv3IGeDXV466fpowOjvIKFgklko7qlOqdBNd2/Ibn+cxQ1pqwmPwcXzsEFojerqcw7Lj4aQNw3P/3kOH3oDsd26BTxaZNkRSEZLY1lMeFBQ5NHYOrWNLEaU5fKY6A1J86BSAj/bZjdJu4wUTfnphPETC/+EgnXTsMmKyJcpk7ixEH0J9IYDaxT6A3UxCF5/7IzD9L3hcQ56AgZN2vXmZ7Lz5dK5ui6PG9biWHSfz+VSN/R7BB6NifUHHHgMFkr7djVhlEDe6CvwhqFo1iITVlNxEG1E37g0rS9v2rMZzVl3S4NnEJC52D+1K7sqitx2DfcefOAbboQCXLdNoW0qp8CvYZYXjpP+7xQAhwomO3qJvZVwiE4psnPucLTDg4Uks2tJYM1V7IcU0ROMa9R5+C4GVBZK+meLRYoYX0zb9VWfbnh2HERK4kbgizuRKq1WhxfBw/rlTgHO5UXErHXWfqF72LnHGIxmVWsFBJ52QHQxVM9L9QccTDpHESxh+uHBvSyVUC9Ex49WO0bIEM3uYkIW5tahP+DX9mPIMk5mOty5RzE9zaVyevmu0fdwgckFxubb4CKc+haX0jlk9FOH0UAye+sW3f3G9QTXz1xPwCWdykQDhraK1pwmltLBr1VsqB129TWNUFe9bUM180A/96i5ZzuyTVbk4EiZTGPCN6XNk4RSHJKWQ5psvm7dNXowDhIog5asZKjP4aokA5CrxvWjYJ6rP9Qox+pBGpPIR1ZK6nESumY6jokF0n9wieLCnp3de/yokGhJ8oiv3j0vvj3E/ZLycld2wiUp+hykRdzXxAT5+BqcqsyVwzSJZ2D4tmsJ7+pII4J28TWtSORT7CcaWppc+Ycvnt6OsqrnLdYICsX5oIs8blkf4QvaYL+AXFfOukchHKzRKpWba7EDWBDvWVOgMBgP/eB91Fzi1kfECukQ7GSURydFh3/4fwJOE5xdnel0C7OgYiWEtEcInqLiGaHaf2J6EkiWhT+9hPyX05Ei4loIRGdIaRPCMtZTETXUgVV8kbOIbGYmpsgLhQmQiIOxvF798X9X1eHkFAtXnqFXlKey8BShAFI7lyzcA4uAdNs+WTOwShW0lyrynTRx6kmsU0e7IKi4/jgt2zDOIiuG3x3I+cgNP20gwdjwr5p/woO3t+2o25dTSJV5Whl70KfnDBmIM4eP1yZL8gbvJTZFYNzDvZzUw5XmISq9kPiOHThHEoOnAOfpzalfSRWYuZDm3hdsuhYjgVXaeQhVjqZMTaeMTYx/P8yAE8zxsYAeDr8H0Q0FsBUAOMATAFwPRHxr3MDgGkAxoR/U3JolxKm8BmFDMRB3Imb8oq7l/84ZbRWpKQa9LpSC0RJ4qD1zi6Pc1B5gargEtiN76ZMi7PYNPGgmlQ+Siskl/zyE6l84gLwr4fvhb/++9EYoAlwlgXitzQtvvyebfklBKKDpeu34/Vlm7BikzoMs/gdbQTHFMAvUbcz5+D+rCvxBOIF1WidFtb96gcbozQdB/ib8w4ztodDNF6wcg4UOysC+p0+r8fmHyWa5rbZxEoKEarOFLxSqITO4WwAt4XXtwE4R0i/izHWzBhbAmAxgElENAxAb8bYDBbM/NuFZ3JHbKtk3hFZB7cw+UycQ1JOnQ9D9MG67YmTuXSstriA2cRk4u1umtg5qfKNxCHw1t3VVkKXuoJZ5yB8i8WakCFBG5OmrJ+btLfGKYkwenAQqrpv93qtg2JWvL0y9qA2cg6O37lAwXjkwQyXaWL0J8al46pu/97lcw4uddqeixXS+jyqNsrGB6a8qjaImxQr5wDCjl36sO9y+i5LZAVRIe1irZSHnqw9aC9xYACeIKLXiWhamDaEMbYaAMJf7h8+HMAK4dmVYdrw8FpOT4GIphHRbCKavW6dOrSEtcGGw2zEgZpF52CaB65+ASoTPTnkL4foyQsA/3J4OhgY4C7LB4BVm2NlYg9X4uAouhg1oIdxx+u6/pC0m1LFNuJwkWlnhVi3i0jNOrdDYmcPbSJcW2Yst4IyifHCqp2gek/dbj8L511ftH8f+c6njxyOy848yLmdSs5B6JfBvdVObVH9Mudg4ZhueXmpsTw+JrkOxay3cgs4WEm0lzgcxxg7EsCZAC4lohMNeVU9wQzp6UTGbmSMTWSMTRw0qDz5m6m7s3gUi8TD9A3rHC2gThPCPwDA0qvOctrB3/nvk7U744Qpq0XMIEZ+PNIg006W77aoydZE6XzuO+0SA8btFfgcfOu0MYa8QZkmIs/NSEX079EFD156nDK/KG4zlcu/sy2MOxeTWfVBiY2Iua90EVPTdTv2ueI9e2qMKsSctvEWcQ4OFm8cXz9pdMoZUZdXrEOEuFkb1MsuahTNhrXi27AezvXy6LO6fC2hDqUcn56ORLuIA2NsVfi7FsADACYBWBOKihD+rg2zrwQgHo00AsCqMH2EIr0yMOkchLQspqwmiHJq04Q8aGjvKBzwaQcP0eYDkkHmehmsn7KIyUSoYtarYOMc+EJmitUU5HNrF58wbSWG08cOMcpg+fvqLL4A4OLj90ulXXryaKVyEwC6CyINF87BZlnDRQcuQRFV1ypwpfb6beZDluRSJmo2BPI3fvb/naQNvJelnXWRQtqdozRGzVU6vCmIQ12cpvPY5ygWksE1dfXLG4VzjlAr4nlf8thXNmulEjObgFcaZddMRD2IqBe/BvBxAHMBPATgwjDbhQAeDK8fAjCViBqIaBQCxfOsUPTUSESTQyulC4RncofJlFUcTK8t3WQsxyZ24hAHoO2RLaFduC7GO8dnjowH34CeZke96DqDeEVnNZMq3za5HHbvQAb5d2j73dKmD1IXl5lsg648GSZiK+7KXayVbOazhGDB+cXD7xrzufouAO76IrHPr//CkbhXcxCT/J6jBvbQl5kh0GM5OgeTwtcUBVVEl2LcP7Zx16VYSBh+mDykRZisDIHYodA0hgsUmLxm2dTljfb4OQwB8EC4yNYB+Ctj7DEieg3APUR0MYDlAM4DAMbYPCK6B8B8AK0ALmWM8Z6/BMCtALoBeDT8qwhMpqzix7cdb+mqdKxzDFQHAC8tXg8AmL3MnTAN6KFnjZOmrPkPMptCj1epC0XNIbbs1+elw21H+cIJ01rSh7eO89oJk6oI006tmyNx4Pds5zS7Kh0T1kqWvLr4TDLEsWF6wtbPyTKFjZCjQYc5llbyf1NkXJV4SnkedwZH1y51BafTBOV31UajDQvgxiSmvi1QcF6MqPPoaJRNHBhjHwBIzWTG2AYAp2qemQ5guiJ9NgC3SGDtBP/Wql1AFt2lGBrANMHrK2CtJA5qk+IxS+C9cmDfvXOxkpv4CQAOGqr3HuesdnAwjtuiZTLhVY0BE9fkyjnw97F1eWBHHw8enThLHDdPCGGhVbCZLMttlK/T5bmPGzGnTRzCvaezcA77Knx5OJT+GEpTVnduWp5bun6S8+nGZhThNvSHMIlbCwVyOn+9kqi58Bklo7WS+0TYYggNIKLe0VopC/gCYLMqKlfn4AqbcpTftsd1iq8PGd5Hm68QLqYuYiW+5JoIk6pPTIuaqOMwcg7E22vvH3Fjce1U9el7YlW2nWQ5n9m2kHOzYBvE97XZ5HMDCPPuOb6++tzDMNDgq6Lq65JC6SMST5vYT34HXT/J6TpxKydW1z/3PgBz9OcCmQMXdgRqjjiYxUru5bgrpPNfoHmZNvmyuHOqhmKLh/62WV3wib3fIL08G0AUb6a1xKzcCLcUcgnsJsK0qLnuOiOxkuVz89P3OLJY4uhQjn2Lzez1u6cf4FSOOL5tDmYcpt2zuPmQA9DJUHEJKsW5OB9tZYpzZr+BPXDVZ9KOdkCag7aJlTg2GDiDAlFVAt5O0AAAEDVJREFURUpALRIHftFOzkEcAKZwBskjEZ2LNyKK3ZOhwI72rgRia51nFqw15stkrVQKD8axcCOcHrmYnIowKaTrHfVH/LvY9AmBWEldvohyfDW+qQn3roKNOJSzp7HpozhcXy2L31H0jKI/s2zQxH75xTmHYHhf9Rkesu+b61ngpqb01vg4dSRqjjjwGatShIkD1TaGxA/dT2PaB2RTgLmCD75sFkj5fepffeZQXHTsyNzKc+0WLlZqbWNWsRLnVsyhTdL3uA+FCt8+Ld5BmwjzcwsDB81Gw6FJAFdIx9RBd65AFtpQjmm86zkENoj5bM3IOn64mbcO5XiO29oo6phM+kI5BpJuzGUh8kN6tz/cS3tRg1FZA6i+kzjhRw4wizhcF/osOodiQX3Cm67uLLTG1TzVBZ89Sn0aV7lwDh9NXKykPxiHg3ejMZy61IEXHTvS2JaxBsIhwhZGgUM+2U43pkye4DKYyZFHA5sIiC9qtojCJxwwEDe/vMSpThcHNBE6kRuHM/eZcF41z7W9BE7BxLnI4ivdGJI3NKZh0rub5xw6HCadg4jrvnCk8b6r92K96ARnY40z2PsD2cRKeUQlLRdWq50on02BS9EBKDaTTRedg9zfupP3RPzX2eOsCtrLpqhDPMgguI2jxNkh1veOy3aFlXMIb9sWrJMPjD3OXceyS65TD0p7sstwHd+DBaJk63qRKJs2g5NG9XfaqBFRgmPau79aTAVU1/mNo/ot6GDEsZXMX9PkXAbEx0ieMc7szVyXwXSOT0JbCITI+zcD65CXGW056K4JlsbBF3BbExOnnFkWA37YfBadg8uCdv4xI/HUdz9mzNOnu9uur0CxY5fq6FgVbIp4znlmEWHY4zDx75NBJ2dppyve/MnpuOGLE6z5XMd3r671+OLkgPO1EeYsh3+JhNEEsZzPa87DBqqjI5RRu2IlSz7bQnHBMfvijHFDMbSPOXhXIiqrpcx+3btg9ZYm3HHxJHOZZYiVXPH2zz6ee5k2qyreLbb+EemBbfHh4SPWKs4W5pAXlLwMBmz6kLi++KhZF64FAH732SOM97mFmC7+kQq6SKccrsRbhI3D4VEAdMElOUz6PBMOG6E3iebGDDbOQeRGbGPTdK53su6gnOF9uxk3qLKo74QxHXfID0ftEQdHkaxtp0BEVsIAyGIla3YAwLA+enYTgNHeW8Y7V3zc2XIEcF/YssB2PgQ3DrBNQHEy1zt2pmkBkDcAeZ0x5do2kXOwcUJ1BUJriRkt4wCBODS4f3Mb8eb9lIX7/PSRI4z3z588EvNXb8XUo/Y25isHD156HA41+Mtw2JZzMYKrzliAY96qLQAczJfDPhw5UO/QByQJ0/v//YlMYsK8UHtipfDXFtogL8uiLGGMXXHg0F44cEgvfOm4Uda8vbvWW8UGIlw9j7PAJj/lSlRb1S2CBs9VbGFac1skjWBunINjfxPFgd26OB7OY9uRnz95X3QpFpzFHID9+7jEqZJhUzjvM6A7/vKVyWVzBiY01BesQe0Au0JaNCYZaYgpBcSc6hljhxrz8T60bQBFzqFYoKqIhWuQc3DT2FXCo9i2++C6Btsc7FpfxOPfMUVHLx+V4By+OHlf433OkdsWn+YEcWg/EZMtuPI6+8E1KCMhtmyyRq4FAWDWReLwvfvivelnOtUfle1gCADk1z+VhqtH/v/f3rkHW1VWAfy37uVRgIr3gigPL1dEphvykNtVBEKbIcFRqUHNhpFXUzJDaTaTr3KsSWfUzPLRDDEFYWX2ntAsB5vQKEi4CgoSz5rEmETxgYgiuvpjf/ve7T2Pvc9l77P3vmf9Zs6cfT++s863zjqctb/1fd9aYWEl//9CJdvAr5tZur43dN4sDgxZ3M/CmkPNzRx8opxejZsw5/DjhW189YIxnBxShCRJkijfPT9kT7u/iBr23sEC7lETzJULBQ8+ru8HYrlxaR41WV1dYOYQnkjQe47qeOLEf8s0NzVUQvi5De85LH2GLycsygBwsSuydNrgkFQjziOFrQnZbqUUiLrVL86ZwzcubmHK6Y2hP34jGvqx5PzTE/mBzjIa4cAafDArZ9SZQ9i5kdGBmt5x3RD4epQ7UAfeD36U9M1+3+BzNek4kV/9t+4WvXuVH2lbcyMAZw4rnuiwQ04Fs9N7PjOB7bfODO33rvs+hsnOwsyh9sJKZeo5BIkrSR7AginNLIiwPlCr+L/fYf7Yz2YJ0cNfYdsVg3ePcf7wPvKlqYxoKL/oWCedhx7DQiF3XTae767eUdHmgjD+et35kdZu/A0FXddoskrYZzmjZQhP3zyjZNEin8YBfaivE266MPzcSl2d0Lcu3DZ+MsCwG6GouamSpPacQ8SZQ16m0D2BqHvzg8Veoi6chzmH1qaGjtq/cTqHctllfYLvdyCkwNNF44Zy0bihxzqsDxDmvHz8PD9pJ4KLSrn8WD5hjsGT05tdt82KdSZ/tONmIMQ5WFip+pRLn1HLPPj5s7k+4sneuOk8mFi+XzCsFLYDq625AQjfUhnM2VPtBdf1e17puH7jcLQU8GnQ322LfTtCCum25obQtbWkiTNVTNwh3vcizhwq2WGYFDU3c5g19mTOGDIgEzG9LHHuqEEdp77j4tGrp3Xsuy9HZ1gp+ppD2A/QL6+aHD5Ax9TTB7F218tVj6kH6zyHnV9Ik4b+fZg/uYk5k8o7Wqjsc4+bWy5uYd3uV8I7psjR973vcJhzqGS9Iylqzjk0NfanKSSp3rmjGqs0mp5N1ER1fnw1bG/8kcCaw8RTyy8mVsKyeZN44cDhWLbHdpdzTsvud05E+ObsqhRqPCYWTmmOdPYnTfyb0sMhIbpBA/py55xxfMzNgNMgM85BRGYC9wD1wA9V9fY0xrHj1lmpFvWuRVqbTuS2T4/lkvHlY+qLp49i/Z4DQLyhg359ejGmTHnSpGlL8QfAqC6jXdLGKGGjyxM4PV4JmXAOIlIPfB+YAewFNojIKlV9vtpjyUKsr9YQEeaeXf6gHMB5FZz6zQN96us48t77fPvS4hXGjJ7H5a0j6F1fxyUT4t1ckASZcA5AG7BLVfcAiMhDwGyg6s7ByDaPf2V6qunH42R4w4fZs/+Q3ZDUEHV1EmntJgtkxTkMA14I/L0XODulsRgZJmqx+zywcmEbv27fm+qJeMMoRVZuWYoF+Qs2qIvIF0Rko4hs3L9/fxWGZRjJMaKhH9fOOKPmTsQb+SArzmEvEFx9GQ78t2snVV2mqq2q2jp48OCqDc4wDKPWyIpz2ACMFpFmEekDXAGsSnlMhmEYNUsm1hxU9aiIfBF4DG8r63JV3ZrysAzDMGqWTDgHAFV9FHg07XEYhmEY2QkrGYZhGBnCnINhGIZRgDkHwzAMowBzDoZhGEYBomFVtjOKiBwEthf5p1OB/0QQcQLweoz9kpAZVZck3jsJmaZPfP2SkGn6xNcvCZlx6TNGVcMzTapqLh/AxhLt+yO+flmc/ZKQGVUX08f0MX1Mn6gyS/12dn30xLDSaxH7PRxzvyRkRtUlifdOQqbpE1+/JGSaPvH1S0JmEvqUJM9hpY2q2hq1PY/0JF3A9Mk6pk+2iUufqHLyPHNYVmF7HulJuoDpk3VMn2wTlz6R5OR25mAYhmEkR55nDoZhGEZCZN45iMhyEXlJRLYE2saLyDoReU5EHhaR4117HxFZ4do3i8h5gddMcu27ROReSSmJfoz6rBGR7SKyyT2qXkNTREaIyF9EZJuIbBWRa1x7g4isFpGd7vnEwGtudDbYLiIXBNpTt0/M+uTOPiLS6Pq/KSL3d5GVO/uE6JNH+8wQkXZnh3YR+URAVvz2ibo1Kq0H8HHgLGBLoG0DMN1dLwK+5a6XACvc9UlAO1Dn/n4KmIxXWOiPwKyc67MGaE3ZNqcAZ7nr44AdQAtwJ3CDa78BuMNdtwCbgb5AM7AbqM+KfWLWJ4/26Q9MBRYD93eRlUf7lNMnj/aZCAx112OBF5O0T+ZnDqr6JHCgS/MY4El3vRqY465bgD+7172Et/WrVUROAY5X1XXqfZIPAJ9KeuzFiEOfKgwzEqq6T1WfdtcHgW14JV9nAytdt5V0ftazgYdU9R1V/RewC2jLin3i0qe6oy5Npfqo6iFVXQu8HZSTV/uU0icrdEOfZ1TVL4K2FfiQiPRNyj6Zdw4l2AJc4q4vo7OK3GZgtoj0EpFmYJL7t2F41eZ89rq2rFCpPj4r3JT45jSm+UFEZCTenc0/gCGqug+8/wB4sx4oXit8GBm0zzHq45M3+5Qir/YJI8/2mQM8o6rvkJB98uocFgFLRKQdbzp2xLUvx/tgNgLfA/4OHCVijeoUqVQfgLmqeiYwzT2urOqIA4jIAOA3wJdV9Y1yXYu0aZn2VIhBH8infUqKKNKWB/uUI7f2EZGPAncAV/lNRbods31y6RxU9Z+q+klVnQT8HC/Wi6oeVdVrVXWCqs4GBgI78X5ghwdEFK1RnRbd0AdVfdE9HwQeJKVwhoj0xvti/0xVf+ua/+emun5I4iXXXqpWeGbsE5M+ebVPKfJqn5Lk1T4iMhz4HTBPVXe75kTsk0vn4O8sEJE64OvAUvd3PxHp765nAEdV9Xk3NTsoIue46eM84PfpjL6QSvVxYaZBrr03cBFeaKra4xbgR8A2Vb078E+rgPnuej6dn/Uq4AoXJ20GRgNPZcU+cemTY/sUJcf2KSUnl/YRkYHAH4AbVfVvfufE7HOsK9pJP/DupPcB7+J5yM8B1+Ct7O8AbqfzMN9IvEyt24DHgaaAnFa8L8Bu4H7/NXnUB28XRjvwLN7C1D24XTJV1mUq3vT1WWCTe1wINOItpO90zw2B13zN2WA7gR0VWbBPXPrk3D7/xtsw8ab7frbk3D4F+uTVPng3jocCfTcBJyVlHzshbRiGYRSQy7CSYRiGkSzmHAzDMIwCzDkYhmEYBZhzMAzDMAow52AYhmEUYM7BMBJARBaLyLwK+o+UQKZew0ibXmkPwDB6GiLSS1WXpj0OwzgWzDkYRhFcIrQ/4SVCm4h3QHEe8BHgbmAA8DKwQFX3icgavNxXU4BVInIc8Kaq3iUiE/BOvffDO6S0SFVfFZFJePmz3gLWVk87wwjHwkqGUZoxwDJVHQe8gVdf4z7gUvXyYC0Hbgv0H6iq01X1O13kPABc7+Q8B9zi2lcAV6vq5CSVMIzuYDMHwyjNC9qZw+anwE14RVZWuwzP9XipUHx+0VWAiJyA5zSecE0rgV8Vaf8JMCt+FQyje5hzMIzSdM0tcxDYWuZO/1AFsqWIfMPIDBZWMozSnCoiviP4LLAeGOy3iUhvl1u/JKr6OvCqiExzTVcCT6jqa8DrIjLVtc+Nf/iG0X1s5mAYpdkGzBeRH+BlyLwPeAy414WFeuEVYdoaImc+sFRE+gF7gIWufSGwXETecnINIzNYVlbDKILbrfSIqo5NeSiGkQoWVjIMwzAKsJmDYRiGUYDNHAzDMIwCzDkYhmEYBZhzMAzDMAow52AYhmEUYM7BMAzDKMCcg2EYhlHA/wGt7/i2bDn6fwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYHFd97/09tfbes49GM5JGkm1ZsrwQyws2YIMDNr4JkFycGBLsJE58Q8ybjTcJZCPc9zoJ2eDlCXAvxKwBjDGLWc1is8SbbNmWtdsarbNp9pneu6q6z/2j6lRX7z3TPd013efzPPOoVV3VU13TXd/z2wmlFBwOh8PhOBFafQIcDofDcR9cHDgcDodTBBcHDofD4RTBxYHD4XA4RXBx4HA4HE4RXBw4HA6HUwQXBw6Hw+EUwcWBw+FwOEVwceBwOBxOEVKrT2Ct9PX10dHR0VafBofD4Wwonn/++XlKaX+1/TasOIyOjuLAgQOtPg0Oh8PZUBBCztWyH3crcTgcDqcILg4cDofDKYKLA4fD4XCK4OLA4XA4nCK4OHA4HA6nCC4OHA6HwymCiwOHw+FwiuDiYJHUMnj4+QnwsakcDofDxcHmsRMz+H+/+hJOXIi2+lQ4HA6n5XBxsEhoGQDAXDTd4jPhcDic1sPFwSJtZAEAC3EuDhwOh8PFwUJj4hDTWnwmHA6H03q4OFgwcZjn4sDhcDjVxYEQsoUQ8hNCyHFCyFFCyB9Z2/+OEDJJCDlo/dzuOOb9hJAxQsjLhJBbHduvJoQctp77KCGEWNtVQshXrO37CSGjjX+rlUkbZsxhIcbdShwOh1OL5WAAeC+ldDeA6wHcRwjZYz33YUrpVdbP9wDAeu5OAJcBuA3AxwkhorX/JwDcC+Bi6+c2a/s9AJYopRcB+DCAD9X/1laH7VaKc8uBw+FwqooDpXSaUvqC9TgK4DiA4QqHvBXAg5TSNKX0DIAxANcSQoYAhCilT1OzmODzAN7mOOZz1uOHAdzCrIpmYQekueXA4XA4q4s5WO6eVwHYb216DyHkECHk04SQbmvbMIBxx2ET1rZh63Hh9rxjKKUGgBUAvas5t3rhMQcOh8PJUbM4EEICAL4G4I8ppRGYLqKdAK4CMA3gX9muJQ6nFbZXOqbwHO4lhBwghByYm5ur9dRrQnOksvIqaQ6H0+nUJA6EEBmmMHyRUvp1AKCUzlBKM5TSLIBPAbjW2n0CwBbH4SMApqztIyW25x1DCJEAhAEsFp4HpfSTlNJ9lNJ9/f1VR6CuChaQTulZuyCOw+FwOpVaspUIgAcAHKeU/ptj+5Bjt18BcMR6/C0Ad1oZSNthBp6fpZROA4gSQq63XvMuAI84jrnbevx2AI/TJi/ftUzWfsxrHTgcTqcj1bDPjQDeBeAwIeSgte0vAbyDEHIVTPfPWQD/AwAopUcJIQ8BOAYz0+k+Silbir8bwGcBeAF83/oBTPH5AiFkDKbFcGd9b2v1pPWcOMzH09ja62v2KXA4HI5rqCoOlNInUDom8L0Kx9wP4P4S2w8A2FtiewrAHdXOZT3RMlkoogAtk+WWA4fD6Xh4hbRF2shiU9gDgKezcjgcDhcHizxx4IVwHA6nw+HiYKEZWYQ8MgKqhHluOXA4nA6Hi4NF2shAlQT0BhReCMfhcDoeLg4WmpGFKgno8sqIJPVWnw6Hw+G0FC4OFpqRhSIJ8KsS4mmj1afD4XA4LYWLg0XashwCqoQYFwcOh9PhcHGwYJYDFwcOh8Ph4mCjZbhbicPhcBi1tM9oe4xMFpkshSqJ8KtAPM0b73E4nM6GiwNyTfcUSYAoEGiZrJXaKlY5ksPhcNoTLg7INd1TJcFuIhVPc3HgcDidC485IN9y8KumXvK4A4fD6WS4OCA3BU4RzWwlADxjicPhdDRcHJCbAqfKIgIeLg4cDofDxQFmARxgWg5+bjlwOBwOFwcgJw6qnHMr8ZgDh8PpZDpOHDQji6dOzRdtAwBV5AFpDofDATpQHP7/x17BXQ88ixfPL9nbtBKWQ4wXwnE4nA6m48Th3tftxGDIgz988EVEUmZr7lzMQYRfMWsbYqn2thyeP7eEn7482+rT4HA4LqXjxCHslfHRd1yFyaUk/uO/zgBwpLJKAiRRgEcWENfaWxz+/fGTuP+7x1t9GhwOx6V0nDgAwNXbetAXUDEXTQFwpLJK5uXohM6sK0kdy3yoEafFHJ+O4KsHxlt9GpwSdKQ4AIBXEZHUTFFwWg6AKQ7tHpCOpAysJHRQSlt9KpwO5kv7z+PvvnW01afBKUHnioMsIqlb4pDJ9VYCAL8qtX3MIZLUoWWy9jWoRjxt4AVHEJ/DaQRJPYOEnkE2yxcpbqNjxcEji0haDfdY4z3FKQ5tbzmYLqXlRG2upS/uP4c7/vfT9nEcTiNI6hlQCqQMnh3oNjpYHASktELLwcxUCqhSWwek00YGKUsQaxWHcwsJZLIUs5H0ep4ap8NIW5ZrQuPi4DY6Vhy8smivVlgqqyyaDbvNmEP7flijDpfZclKr6ZjpFTN4P2sF8TmcRsDcmok2/r5tVDpXHBwB6bSRgSIJIMQUB78q5d1A242II0tppYLl8MjBSbzl358ApRRTy0kAwFyUWw6cxsEs2Ha21DcqHSsOHmdA2sjawWgACKhiW2crRfIsh/LicGwqgkMTK7gQSdmWAxcHTiNhC7QEFwfX0dHikNJzbiWnOPhVCUk9g0ybZlA4LYdKMQfmbjs6GcGKdcwsFwdOA2GuXR5zcB9VxYEQsoUQ8hNCyHFCyFFCyB9Z23sIIT8ihJy0/u12HPN+QsgYIeRlQsitju1XE0IOW899lFh+HEKISgj5irV9PyFktPFvNR+vLNomrWk55EaC2p1Z23Q148w4qhRzYMWBTzoaFXLLgdNIWFJIO8f4Niq1WA4GgPdSSncDuB7AfYSQPQDeB+AxSunFAB6z/g/ruTsBXAbgNgAfJ4SwO+8nANwL4GLr5zZr+z0AliilFwH4MIAPNeC9VYTVOVBKoRlZO40VyIlDu9Y6RJLm+xJI5ZgDS/F9cswUB1EgPCDNaSgpyzrlbiX3UVUcKKXTlNIXrMdRAMcBDAN4K4DPWbt9DsDbrMdvBfAgpTRNKT0DYAzAtYSQIQAhSunT1CzL/XzBMey1HgZwC7Mq1guvIiKTpdAz1AxIi/luJaB923Yzy2Fzl7cmt9IrMzEAwCWDQW45cBpKLubALQe3saqYg+XueRWA/QAGKaXTgCkgAAas3YYBOJulTFjbhq3HhdvzjqGUGgBWAPSW+P33EkIOEEIOzM3NrebUi2AxhqSeMd1KcgnLoV3FIalDEgiGwp6KbqVUQfX0FcNhHnPgNAxKqSPm0J7ftY1MzeJACAkA+BqAP6aURirtWmIbrbC90jH5Gyj9JKV0H6V0X39/f7VTrojXas2d0jNIG9mSlkO7rmYiKR0hr4wun1KT5QAAfQEVw92mpZHm1aycBpA2smCtvXjMwX3UJA6EEBmmMHyRUvp1a/OM5SqC9S8bDjABYIvj8BEAU9b2kRLb844hhEgAwgAWV/tmVoNXzolDoeXgs4Sjbd1KSQMhj4Qur2xnIZXCKQKbuzzoD6oAgPlYbYVzHE4lWEwLQM09vjjNo5ZsJQLgAQDHKaX/5njqWwDuth7fDeARx/Y7rQyk7TADz89arqcoIeR66zXvKjiGvdbbATxO17ldKBOHpJ6BlulUy0Guajn0+BUAwFDYgwFLHGYjPCjNqR+nILTrQmwjI9Wwz40A3gXgMCHkoLXtLwH8I4CHCCH3ADgP4A4AoJQeJYQ8BOAYzEyn+yil7FPwbgCfBeAF8H3rBzDF5wuEkDGYFsOddb6vqniYOGgZpPX8VFY2Da5tU1mTOkIe062U1DNI6Rn7ejhJ61nsHgriybEFDIW9GAh6APB0Vk5jcMa02nUhtpGpKg6U0idQOiYAALeUOeZ+APeX2H4AwN4S21OwxKVZeAotB0cqq49ZDm3qB42kDGwKexD2yub/k3ppcTAy6Auo+Kvbd+M1F/eh22daETwozWkEyTxxqG0hNh9L42M/GcNf3r4bstixNbxNoWOvrjMgndAM280E5FxO7W85mOJQroUGqxz/vdftwO6hEHoDCgjhlgOnMazFcvjJiVl85smzOGmlV3PWj84VB9utlMVSQkeXX7afEwUCryy2ralrxxy8piVQLu6Q0jN57jZZFNDtU7AQ5+LAqR9mOUgCqTnmsBg3kyF4xtz607Hi4LGyk5YSGjQja98oGf42bb7HZjmEPJJtOSwlSmcfFfacAoCgp7071lYjmtKxFOfZWo2AZSv1+JWaF2JMHFKOTKeD48s4OL7c+BPscDpWHJjlcMHqNspulAyfIrWl5cBu7CxbCSjfQiNdkOILmAWC7dpWpBY+8MhR/I8vPN/q02gLmOXQG1Br/q4tMHGwLIdsluK+L76A//ltPoe60dSSrdSWeKyYA2tF3eUtFIf2tBxYR9aQR7bTVBdKrISNTBaZLM1zKwHccphYTuLcYrzVp9EWsJhDr1/BXI09u2y3kmU5PHt2EZPLSQgdu8xdPzr2ktqWQ8QcYhMusBz8antaDo+fMGsVu3wyvLIIVRJKupVYdXShWymgyoi2oWjWSjRlYDGuYZ3LcDoCZjn0+JWaK6QXCmIOX3/B7MgzH+WuvkbTseIgiwJEgdhuJZamyfApYttlK332yTP4X989jpsu6cerd/aCEIJev2KvxpyUEwfTcqht7nQ7Ek3p0DO0qO/WKzNRfPulqTJHcUqRcsQcknoG2RrmpyxayRApqz7ne4cvQBIIklbWIadxdKw4AKb1MF0m5uBXpLarc/jOoWnsHgrhP+7eZ7uLuv1KyQArW5kV1j8EPVLbNiSsBeZScwoqpRR//OBB/NnDL3GLYhU43UpAbS00FmPMcsjihXNLiKUN3Lp3EwBuPTSajhYHjyNdtTBbyae2n+WgZ7IYCKp5xUM9fqVkzIGt6koFpKMpoyNvgpTmLAbnNfvRsRkcm44gpWc7WjhXS0rPgJDcwqza9y2lZxC3vq8pPWOPu90zFAIAzPMU64bS0eLgVcy3r0iCndrK8LdhtpKWoUVVpT1+pUzMwXzvxQFpGZkszUsl7BQSWm50LLO2KKX4yI9P2vvwpoS1k9Qy8Mqi3cssWeX75rTW0nrWtjy29PgAAPO8OLOhdLY4WC6TLq+MwtlCvjasc9AzxXUL3b4yMQe9TEDaY36ROzHu4MzSYpbD1EoKx6YjuHmX2UJ+PsZvULWSMsyeXj6FDdeqXRxSRsZ2Q410ewGUzrrjrJ2OFgfmTy+MNwCm5ZA2sjAy7bNC1jNZyGK+CPb4FURTBjQj/33mAtL5lkOIiUObCWctOAWR3aiWLavripEuAHz1uhqSWhZeWbRb5FcLKDtv/ik9a1v2TBz4tW8sHVvnADjEoSDeAORmOiT0DEJt0uBLN7Il3UqAeZMbCHkwF01jeiWZcyuViDkA7TtfuxKREuLACgh39vsBcMthNaSMDFRZgF9lvcxKWw5z0TS+8eIEev2qvc2s9M/FC4MeiVsODaY97nprhLmVCmscAMdMhzbKWNIyWchSaXFYtFbAH/vJGH77M8+VdSsFPea16sRCuIjjPdviYBUV7ugLmE0JecyhZlJWzIG5lZJlLIdvvjiJv//eCfz4+AwAs6V+Ss8iqWUgCgSySNAfUDHHhbmhdLTl4Iw5FOJrw5kOWsE4VCBX38FudnPRNBbiGhJ66VTW3Hztzo05eGShSBx6Agp6fAq3HGogpZszVHIxBzZ5sfRC7OyCWZH+2PFZSALBQMiDtJFFUjfFhRCC3oCCBX7tG0pHWw4sQ6nbX+xW8ivtZznoGZo3twIAegP54sD+Zf7bUkVwQP4qulNgMYdtPX7bhcHanXd5ZfQFVO73hnnz//fHT0IvE6/70KMncMf/ecrOVmKWQ7mYw7mFBADT8u32K1AlwWq1nxtS1RdQeaZYg+locWAzHcKlLAe1/SyHUgFpZjmw1EyW1jpri0NxERzQmTEHZjls7fXZ12slqUMSCHyKiL4gtxwA4JnTC/iXH76C588tlXx+fDGJV2ZimI9p8MiibY2WW3Ccmc/1sur1K/DIol0hzawObjk0no4Wh2rZSkDtE6rcTjZLYWSL6xzYe1+MmytgJg5zZSwHFovpxJhDNKVDFAiGu7yObCUdXT4zFbodV69rKXZkNTDlPiMssH9+MQGPLMCriOgLqDi3UNzQMG1kMLWSxE2XmKnCPX4FHlkw3UqW5QGYlsNSQm+r7MJW09Hi4K2QrcQyKGJt4lbSrC9NoTjIooCwV8ZiPA1KKZas7JtZq0tmYbaSLArwymLHxhwCqoS+gIJY2kDayJhT9SzL0xSH9lm96pksrv+Hx/DVA+OrOo591srVwkQckwfZd3Bnvx+n5orFYXwxCUqBt1y5Gd0+GYMhD1RJRFo36xw8tuVgZjKVqtnhrI2OFodKloPtB22TfH7m/y0MSAPmamwxoSOhZex6B2Y5lNo/0KFtu6MpAyGvhB5/7ka0ktRtt2SfNZcgnjZgZLJ428eexCMHJ1t5ynURSxmYiaTx1QMTqzqOfYbKtRJxfnbYd3DnQABjszHbUllJ6nji5LxtTezo9+ML91yH977pkgLLwfx89luxs3az3FpJR4uDncpaIubA3Erlcq83GnrG/NIVBqQBoNsnYymu5a265qJpSAKBVEIcgh4J0bRRUxfNdiKa0hFUZfT4mStOw3JSs7Pd+uwbVBr7zyzi4PgyXjxfekLZfCyNDzxypGzQ1g2wgTrPnVtclUXEamTKupWcloPCLIcAVpK6/Rn86oFx/OYD+/Hdw9MAgNFeP/YOhzHS7YMqmTGHpJ6xF3HMcuAjbBtHR4sDawXBMnacsA9tu1kOhW4lAOjxq+aNzjERbiGuFcUbGEGr+d6dn3oGv/PZ5/IGxbczkaSBoKeC5RA0t8/H0vZNrdwN8smxeXzu6XM4ORNrwpmvDdbriFLgx8dmaj6OWQ6REm6lTJbmVdd7rM8YKyJkriVmAXz9hcm8kbaAmWWY0nOprIBjMdcmbmA30NHi8EtXDOETv/ELGAp7i55TJAGKKLSN5cC+sIXZSgDQH1QxE0nZhXCMwhoHRtAj4/xCHM+eWcTjJ2bxh19+sSO6tEZSOoIe2bYQZiNpLCdy4tBvrV5nImn84MgFAOX97qw9CVuduxFnc8UfHL1Q83G2W6mEMLLrsdVqludxWA4AcGrOFMuVZO6zONrnz+t9pkoi0kYGSUcqK0tL75SFSjPoaHEIemS8+fKhss/7VLFtspVYkLCUW2lrjw8LcQ0TS4m87eUsh4Aq4ayVe/6GSwfww2MzGJt17wq4UURTBkIeCcPdXgjETLGMpgyErXTgfstyeOCJM1iIaxBI6dUzkLuBply8+GCN7S4ZDOCJsXmcuBCp6Tj23kpZTZGkue2a0R4AgMdKlR7u8kKVBPtztJzQ7RTX0V5/3mvkWQ5WZ2Vm6XNxaBwdLQ7V8CtS25ipldxK23rNVdxL46Z/nK2E1bKWg2S9FsGv7RsB0BmN+KIpHUGPBFUSMdLtw0sT+derL6Diqi1deP7cEsJeGddt7827QWaz1M7F1zaA5ZC2brR//IuXIOyV8ccPHrTjCZVgC5FSAWkmlq/e2Yu+gIIdljtJEAh29Adsy2E5oWP3UBB/cdul+I3rtua9hkcWkTLMyW8s5sBEhotD4+DiUAGf0j6Wg25YAekS4sBM/IPjyyAk9/+yloMlDpdtDttFdO1USV4KNuiHpa1u7/PbYsoC0qJA8M37bsTRD96Kn//Z6zEQUvPE4YfHZnDDPz6OlaRu30CTmnsD0sxyGO7y4kP//QqcuBDFF585X/W4tFE+lZUFo0e6vXjur34RN+8asJ8z01ktcUjqCHsVvPvmnbhuR2/ea6iSAEpNt1fOrSRa5+ze67nR4OJQAZ8qtU/MgVkOJW74zHI4ORtD2Cvbwb+yAWmr+d6+bd25BoVtIqKleP7cEn768hyyNGc1be/z2xW9hdluflVC2Ccj5JHzbpBmt9ssVhJ6znJw8UqXxRw8sohbdg8ioEqYWEpWPa6iW8m6HiFP8QyVHX1+TCwloWeyWEloJVPM2fkwWECafVbdfD03Gh3deK8aXV65bVLjcm6l4oB00CObtQ5xDT0+xV4dF7bOsPe3BOHqbd2OXvzt+6X8x+8fxwtWSioTxu19OT94qa6+5r4SItZIVUKIvRJPG7l6klrmJrcKdm52RlCNA7DSNcQcQt7iW89AyANKgYVYfhZYIc5FC6tzEARi91ziNAZuOVRguNuLyRpWShsBdjMq5VYCctZDt19xxBxK77u9zw+/IuKa7T25KV5tYDk8dWredms4WYhp9nhQp+XAKNXV19zXHKnKbrIs+Jw2srbv3s03s5Tdmdf8HPhVCbEa/s5aJbcSsxxKXDMW0J9cTiKuZcpeV2csjH3+ADMo7ebrudGoKg6EkE8TQmYJIUcc2/6OEDJJCDlo/dzueO79hJAxQsjLhJBbHduvJoQctp77KLFsSkKISgj5irV9PyFktLFvce2MdHuxlNDbwmVSKSANANusOEO35Q4ByruVbtk9gOf/5o3oC6h2g8JS83/LVci6kdloCr/1mefy5kEzFhMaLhoIQBKIHY/JsxzK3MTY6pitoEtZDuxm5sabmi0OSq6WoDbLwTwuljaKUpxXkjoEAgSUEpaDJQ5js1EApTsXAPluJXZugBmUdrMlttGoxXL4LIDbSmz/MKX0KuvnewBACNkD4E4Al1nHfJwQwv56nwBwL4CLrR/2mvcAWKKUXgTgwwA+tMb30nCGu8z6h3awHvQKqawAsNVKF+z2KVWzlQgh9hfUJ5fuxf/S+DKu/OAPcWRypf6TbwIPPHEGmpHFzEoqb7uRyWIlqeP2y4dw+O9utceBbu7y2tey1CoYyLmgWBDWFgc9mwtI6xkcm4pg7wd+4Lp0YCb4LBOoVrcSE74sLXY3RpJmrYgglK63AWAXBrIU4ULy3UqO+IM1BIjTGKqKA6X05wAWa3y9twJ4kFKappSeATAG4FpCyBCAEKX0aWouJT4P4G2OYz5nPX4YwC2kMFLVIths2lqCcG5Hs9pnVLMcepxupTJC4kQSBSiSUGRdPXRgHJksxXTBzdaNrCR0/OfT5wDkGg7azyV1UAr0+GQ7lx4wM5O29fjgkYUKxYL5rahZZlI6k7X98kkti/OLcRhZikMTpVtttIqUkZu0Bpj1LbU0otQcLUEKrceI1Z+qFLY4WCJZzq1UKiANmJ9Xbjk0jnpiDu8hhByy3E7d1rZhAM4WjhPWtmHrceH2vGMopQaAFQD5uWstYrjLvGFOLG98cdBrjDl0+RT7y1suIF2IXxHzVoiakbXbR7i5dxDjwefOI65lcMPOXnuOBYN1qS01EGp7n79kR19GyB6par5Gymk5OOoc2A3XObfADSS1LDySYGcV+VWpJhcre29AcdwhktTt61KIKokIe2XbgqopIO10K8k85tBI1ioOnwCwE8BVAKYB/Ku1vdSKn1bYXumYIggh9xJCDhBCDszNza3ujNfAQFCFLJK2cCvlUllLG2UXDwQRVCVcMhhYleUAmEFBZ0D6v07O2X2a3C4OlFJ85cA49m3rxusu6be7qjLYfIueEuLwJ2+8BP/wq5eXfe1QoeXgiDmkHRXS7IbrNnFIGZm8m69frTXmkPubFw7wiaTKiwNgfucmrcXYalJZ2WMuDo1jTeJAKZ2hlGYopVkAnwJwrfXUBIAtjl1HAExZ20dKbM87hhAiAQijjBuLUvpJSuk+Sum+/v7+tZz6qhAEgs1dXvvDupFIahk8dGDcDghWC0iHfTJe+Ns34g2XDuQC0mWylQrxKWJeQPrbL01BsnzKzhuFG3nh/BJOz8Xxa/u22L2RnNYD6xLaXcL/vXsohNdfOlC0nREssBySjmylfMvBpeKgZfKsR78i1pRkoBnZshMDI8nybiUg51oCSs9ZAXLZU0Ch5SDwmEMDWZM4WDEExq8AYJlM3wJwp5WBtB1m4PlZSuk0gCgh5HornnAXgEccx9xtPX47gMepi7q4DXd5MVnQc2gj8KPjM/jzhw/h5Rkz88NOZa1gDcii6UIIV6lzKKSwWPD0fByXDAYBuN9yeOi5CfgUEbdfMYSBkCUOkVzcgY0DLWU5VKN8tlJOHJJaxq4uPzMfd1UDw1KWQ0rPVp22phlZ9FlCW1jrUIvlAACE5GI2hTg/l8UBaW45NIpaUlm/DOBpALsIIROEkHsA/JOVlnoIwOsB/AkAUEqPAngIwDEAjwK4j1LK/lrvBvAfMIPUpwB839r+AIBeQsgYgD8F8L5GvblGMNzl3ZABaZYhMx81b272PIcyloOT1bqV/IqY19p8KaHZN1rd5ZbDYydm8cY9ZvXvQNADoMBySJS3HKrhlUWIAikRc8jkZSux1XhCy9hDltyA2fU09xlgjfCqdQ3QMln0WmJaODFwxTE5rxTMcgiVyWgCKlgOPJW1oVStkKaUvqPE5gcq7H8/gPtLbD8AYG+J7SkAd1Q7j1Yx0u3DbDSNtJGpeSXtBtgNh93cqrmVnHT5ZPz+TTvxxj2DNf0unyLmzYJYTui2i0ZzueUQTxv2apX96xSHpbgGryzm3YRqhRBiVkkny1sOKT2bF+Q9PR/HQMiztjfTYFJ6Nm9lzlqlxNNG2WAxYFoObEaK03LQM1kktEwVy8F87+XiDUB5y8HDU1kbCq+QrsKwlc46vez+lEwnLHC4aHUB1TNZCMRMwawGIQTve/OltmuoGj4ll8ViZLKIpoyc5ZBxj5ukFFoma99sunwyZJHkrd4X4/qaXEoMZ38lFnPQ8sQhg3g6N7TmrIviDkk9kxf8rbWPVtrI2NfMGZBmQlFLzKFcGiuQsxycabaAaTlwt1Lj4OJQBVbrUKqtgpthX8RFa0WvGdmarIa14FNE29WwYrmzmM9Zc7FbychkkclSOw5DCEF/QM2rdVhKaOj2l79RVSPomLfttBxYFXFSzyCuGdg54IciCa4KSqcKxCFgVcNXq3VIG6bgBlQJkaSOHx+bsYsJAdQUcyhXAAfkLAevLOYmNyM+AAAgAElEQVQ17/MqvLdSI+HiUIWrtnQh6JHwnUPTrT6VVcHcSiygqmWyFYPR9eBTJHtVvGzdAHr8CmSRuNqtxDKpnLGV/pCnwHLQ1hRvYJjN9wpiDgXtM+JpA0FVxrYeH067TBy8JfoYVUtn1YwsVElA0CPha89P4Hc/fwA/fXkO01bW31C4vNusFsuBWQyFrj6PJMLIUtcnQWwUuDhUwSOL+OUrN+P7R6bLjnx0I7ZbKZ6LOdQSjF4LflVEXDP76LDYQ9grQxEFVwektRLiMBBUMRtxxBwSWgPcSgb0TNZ2saUNR/sMzXQr+VURW3t8rkp+MOclFAekK6WzUkrthUhAlewhUKfnYzi3aGb9bbGq8UvBYg6VYhqAKQTegsp0ZuVw66ExcHGogbdfPYKUnsX3D9c+R7fVxArFwaDr5lbyKiIoNW96bPZvl0+BLAmuXsXZloPjJjMQzHcr1W85mOLgvGGl9axjhnQWcc2AX5UwGPZgJuKe2FaywHJwBqTLoWcoKIVtOUgCgVcWcXYhgfOLCUhW7VA5Ql4Jw11eXLKpcrxLlYVicVDYwB8uDo2Ai0MNvGpLF3b0+/Gtl6aq7+wSisQhky1bHV0vfoe7YSlutZvwmZaDu91K5k3EaVENBD1Ysobx6FZwvR7LwcxW0vNuWE63kmaYv8OnSNgU8mAxrtU0irMZFMYc/CprslhaHLJZmjer/O4bRvG/3rYXuzYFcW4hjvOLCYx0eysmRRBC8F9//nr8ZsFo0EJUSczryAoAHssCTLdBxtLkchJ7P/CDmud2rwdcHGqAEIJLBoKuykGvRiyVn8qazqxvQBow8/RZzKHLq0AWBWiGe7OVbLeSw3XCfN5f3H8O5xZMN0ipvkq1EvLKiGlG3hhVMyCdtd1ZSwkNAVXEJiuF1enWahXZLEXayBYEpMvXOTw1No/LPvADu9WMIgp461XDuPParRjt9eHsfALji4mKLiWGIJCiKXGFqLJgdwRmeNvIcjgzF0csbeDMXOtiUFwcakQSiatdJIXEHQFpSil0Y/1iDixQmdAyWElodnWrIrndcmAxh9xN5trtPdjS48UHv30Mv/rxJwEAPXW4lUIeCZTm106wvw3zq1NqXsNBK1B7wQWuJXZtCvsYEVLacvj2oWkk9QxOW1l9iuOabuv1Y2oliTNzcXseRr10+5SiLDLWWrwdYg4siaGVExb5mNAaUUQBeta9N7pComkDAgGMLEXECoiuW7YSczdoBpYS5nhHQSCuD0jbbiXHdbloIICf/9nrsf/MIt7zpRcBGOiuUJBVDeaSml7JBZpz+f6yLRoBVbIthwsuaHOeGxGauzaEEPgVqSggTSnFz18xG2HOW3U1zms62ucDpeZnknX/rZcP/9pVRZ9nZjm0QyEc63CQaKHQcXGoEVkUoLvYReKEUop42sBQ2GwauBTXoGfWLyDNYg6JtOlWYgFcWXK3tVUqlRUwb4LX7+jFN/7gBvznM+dw1dauNf8O5pJiWUiymGun4czI8TncSm4Qh9yI0HzXTamBP6fm4nZzyvmY6cZ0XtNtvbmpeY2yHLaWEBmWWdUObqWIXTjZummK3K1UI5JIYGwQyyGpZ5CluS/iQlyDlsnmVZM2klzMwcByQrNverLrA9KlxYGxpceH99++O29O8WphLqkp6+YZ9iq25eAUh4AqIeSV4JVFV7iVbMtBKRQHqWjq389eybXPL2k5OMShlpjDWlHbyK3EPiOtdCtxcagRM7jq3hudExaMZuKwFNfWvUIasGIOSd3ui6O4/JqxrJb1crcBObfSlGNGQSlx8CsSCCHYFPa4QhzYDbawn5g5DS5/NfuzV+aw2YqXlBKHbp9sd1htlOVQipxbaeOLgz1alouD+1EkwfV9ghjsy8tM78W4Bj2TrbnL6mrJ9dzJYCmh2dWtisvrHJhVs54NFXPiYN7wu7yy/XtDjpbULG4zGFKL5lg3m8MTK7aAFVkOSv40uEyW4vmzi7hl9yBEgWCBuZXE/FjFaK8fPX7FnnGxHrRTEVyEWw4bB0nYOG4lJg6sL9RiwhSH9SyCA5hbSUcXizm43a1kr47X72vgU0QoklByulmhWwkANoVaazksxjW89WNP4PNPnwWQqx1g+FUxr7fS6bkY4loGV1ptZpjlUDgo6uZd/bh51/oO6GJFca1cbTcKOyDNs5XcjywKVvUnrZqD3WqYOPQHVaiSsO4BaZZvHkkZiKaMPLeSm4P41WIOjYAQgh6fYt/ww47pZs65BiyuMRj2YDaSbtnnbDmhIUuBZ8+YwxhLxxxylsNLEysAgCtHwgh6JNtyUMT84977pl3redoAcgHplItdmbWSa9bIA9Kuh/lQN4JricUcQh4ZvX7FDEivY8xBEgUokmA3VmNuJbe3z9BK1DmsB84iOqe1UM5y0DJZu7K92bCVKss6Ks5WyheHQxPL8CsidvQHzD5S1nPrGccpB6tzaAvLwQV1DlwcaoTNRN4IrqW45RP2qxJ6AgoWYmmrGdr6rUT9ioipFeY6YW4l4uoZ0ukSFdLrQY+fZW8RuwUFUJzKCsBOZ51uUdyh8GZU2L+oMCD90sQK9g6HIQokb6xnK8RBEAgUSUDKJe1H6sENbiUuDjXCVt1udpMwmOUQUCVrPkF6XbuyAqZbhLWbYG4l1eWWQ6neSusBq/vwyGKeCytUkK0EwJ4CNxdrTQuNwkE+hcLpVySkDXOOtGZkcXw6giu3mHUgzmDzerrqKuGVRaTawnKw3EpcHNwPqxFwc4CVwQKGbC7ybDQNfR3dSoAZeJ1YSkISiJ2u6PaAtOlqI2VnFTcKNk/ZK4t5LixmOXhkwW5GF7ampDnHazaTwptRoeWQa76XwSszUWhGFpcPhwHkD/FpheUAmNdyo1dIZ7LUMVe8dTEHHpCuEXZj3QhupVhahygQeGQBAyEVC7E0BEIgr+MX9rdv3I5zC3H85vXb7EIn97fPyDZlLjiLOXgVMW8l7pFFKKJgxxsAIKCaN9hYi8Sh0I1RGHNgAhBJ6Tg2bXYM3WuJQ6vdSoB5vhvdreT827fScuDiUCMbya0UT2fgV8wRigNBFVkKZOn6ZSsBwDtLtFiWXV4bkjYyTbmJ9TgsB6cLS5EEeGQhrwI74GEDdVozWIr18ukLqFhOaEWfGSYA0ZRhTxlknWyddRvr7aorh1cWN3xAmgWjvbLY0t5K3K1UI9IGcitFU4bt/+0P5kYyKuvUPqMczK1EqTsEIpLScdhKvQRy4yzXm7yYg8NyUCUBHlm0iwgBMy2YkNZZDqyXz75t3XbluxP2uYqmdERTZnNHv7WfG2IOqixu+FRWNmt7U9jDA9IbAWWDuZWYq2IgpNrbm23qqy5L//3zrx7Cr3z8SXvaWrpJ4tBTJuagSAK8ioiAI4NJEAgCSm68ZrNhN6O/ePOl+MidVxU9H/TkRoVGUjqCHtmuxwhZ8RJFFFpWC+SVhQ0fkGbxpsGQCs3IIpNtzfeHi0ONbDi3knXDGQjmxGE93UqlYEH8ZmcszcfSOGXNFWDsP72AR49egJGl+OqBcQBmb6VmCCazHLxKfraSIpqjLgsb+wU8UktjDqokYHufH2+4dLDoeadbKZoybEEwn8u1TWkVHlnc8F1ZmVtp0Mpca9X74eJQIxvKrZQ2ELDdSq0UB/P3Nbv53j8/+jLe9R/77f9TSnH/945jKOzBNaPd+PKz4/ZIy2YEpHsDZSwHUcCfvvES/P5NO/P2L9XcrlkkNKOkO4kRsMVBRySp52UoMeFopTiMdHtxai62ofsrsRoHVvPSqowlLg41YruVNoA4xNOG7apQJdFOmWx2kDBXVd7cazYdSWFqJWVXGa8kdRyaWMFdrx7F3TeMYnI5iZ+fnEPayDTFrcTqPpwxB5ZC+6bLNuHVO3vz9g94WikOmYotynPZSsytJBU916pgNADcdtkQEloGP315tmXnUC+sxoHVvLQqwM7FoUZkl/nPy0EpxWwkZfu5gZxrSV7HCulS2JZDk8WBZdGw4eyRZK7X1Jv2bIIiCnj69ELT3EqqJCLokeBXc9lKlW6gAVVqaZ1DJctBlQRrYJHlViphOax3xXklrt/Rgx6/gu8evtCyc6gXZjmw722rgtJcHGqEtc9w+6jQpYSOSMrIG7DCgtKFzdDWG6VFbiVmMbx8IQogl/0R9spQJAEhr4xIUrfcSs35Cvz7O38B97xmu33jVOXyf4tgyy2H8udGCEHQI+fcSl6nOLTecpBEAbdetgmPHZ/ZsK6laMpAQJVsFx4XB5eTC0i7WxzOzMcBANv7HOJgpbOu1yS4crSqWeFSIl8cWICP5eGHvRJWkjrSenNiDgBw0yX92Nbrt39fNcuhdamsmaJOrIUEPaZlE0kZeW4lN8QcAOC/XW66lp4cm2/peayVSEpHyCPZ3Y65W8nlbJSurGctcRjNEwfmVmpNQLqZMYeUnrFXWicKLQfL9x/2yqY4GJmmu0CYpVLpBhpQ5dZZDrpRdSxq0CNhOakjls53K3lkc3ZFq8Xhss0hAMBZq9fXRiOSNFOE2d/BtQFpQsinCSGzhJAjjm09hJAfEUJOWv92O557PyFkjBDyMiHkVsf2qwkhh63nPkqsRGhCiEoI+Yq1fT8hZLSxb7ExbJSurGcX4hAIsKU7N46RZSy1KiDdzM6szGoIqBJemYkim6W2D5fdyJg4aMb6NiMsRS3iwNxK2RbktydqsRxUGResDrxOtxJgWmetKoBjdPlkeGTBPseNxnJCR9gr238HN6eyfhbAbQXb3gfgMUrpxQAes/4PQsgeAHcCuMw65uOEEPZJ+wSAewFcbP2w17wHwBKl9CIAHwbwobW+mfWkVWmZq+XMfBwj3b68mw/LeuiEOgcWb7hmtBsJLYPxpURezIH9a1oO2eZbDnJ1txJzz8RbsGJMpDO2O6McQY+EyaWk/dhJyCNDaZKrrhyEEAyFvS1re14vE0sJjHR782azP3JwsunuparfDErpzwEsFmx+K4DPWY8/B+Btju0PUkrTlNIzAMYAXEsIGQIQopQ+Tc1eCp8vOIa91sMAbiGtKq+swIZxKy3E81xKgHmjvGFnLy4eCDT1XFoRkF6Km0LA0kNPXIgikjIbEbIvW9grYyWhN63xnhM7W6miWylXhdxsqtU5AGbgOW7dqEIFM6Ffe3Efrh3tLnVYU9kU8mxIcUgbGUxHUtjS47P/Ds+dWcQfPXgQ3z8y3dRzWWvjvUFK6TQAUEqnCSED1vZhAM849puwtunW48Lt7Jhx67UMQsgKgF4AroomtdKt9MpMFNv7/FVX/pRSnJ1P4Oqt+V/OobAXX/q969fzFEvSijqHRcutdPU28xqMLyYQSRoIe3NtHsJec2KZSEjT/eOySEBI5d5DdvO9lAGEm3VmJkk9A59aPebAcFZIA8AH37p3Xc5rtQx1ebD/dOGa1v1MLCVBKbCt12e7lQ6OLwNo/gCoRn8zSq34aYXtlY4pfnFC7iWEHCCEHJibm1vjKa4NFsxttltpcjmJ2z7yc3z7pamq+87HNMTSRpHl0CpaEZBmNQ7bev1QJAGz0TRWknpex9CQVwalgJGlTfePE0KgVgnaMsuh2f2V9EwWeoZWdSuFShS+uY2hsAczkVTL+hIVcmY+jo/8+JWqTSjPW0H0rT0+KKI55+O0lWQyF23uAKi1fjNmLFcRrH9ZOeIEgC2O/UYATFnbR0pszzuGECLBXCuVlHxK6Scppfsopfv6+/vXeOprQxFb41Z6aXwZWQqML1YPrp1dKM5UaiVMHJoZkF6MayDEnGM9EFQxG0mZqYGOwKnzcbPdSux3VhKloNNyaCIsy6t6KqvjWrpUHDaFvTCyFPMtmqhXyCMHJ/GRH5/EUqJyK/bzi5Y49PpACMkT6tnoxrAcvgXgbuvx3QAecWy/08pA2g4z8Pys5YKKEkKut+IJdxUcw17r7QAep27p8ezAdis1udr3yKTZYnohXv1DPjZrNpvb3usOcWhFV9alhIawV4YkCqY4WJaDc16z83Er0i6rWw7WwJ8mWw4s4FlLKiuj0K3kFjaHWzuLuxDWCTiaqiwO5xYS8Moi+gNmhqFTqGcizRW6qn9ZQsiXAdwMoI8QMgHgAwD+EcBDhJB7AJwHcAcAUEqPEkIeAnAMgAHgPkopC7G/G2bmkxfA960fAHgAwBcIIWMwLYY7G/LOGowomL7iZvcJOmyJQy0roP2nF9AXUOwxna2mFW6lxbiGHqsL6kDQg7G5GCil2Bz22vuEva2dO9DtUxD2KmWfD7TMcjB/Xy0BaUagSnyiVWyyxOHCShKwZly3kguWSLFWLuU4v5jA1h6fHR9z/i2abTlU/ctSSt9R5qlbyux/P4D7S2w/AKAoWkUpTcESFzdDCLGG19S3CqaUYmIpaY/SrLbv0SmzP9B8TKu67xNjC7jxor51n4lcK/bc7SbXObCxnP1BFU+fXoAsCnmupFaLwyfvurriTZU9N72Swu9+7gD++r/tboqrsHa3knl+fkWE1MJWGZVgi4GpZbdYDubirpzlMB9LQxYEnF+MY5vD8vdaVtzWHh9mIilQSps2K8Odf1mXIgukbrfST16exU3//BNMLVePIUw7OouWsxy+/dIU3vhvP8OzZxYxH0vjxov66jq/RtKSbKW4bs9PGAiqWEnqWE5oee6PVruVtvX60RtQyz7PxOHRoxfw4+MzePZMc7JumDj4q7iVmGVTWADnJrp8MlRJwIWIW8TBshzKWIO/9Zln8euffNq2HBjMcrjxol6kjWzZ49cDLg6rwJyJXN+N7vRcHFlaW+YBcyldPhzGgsNyuLCSwqNHLiCbpfjwj17BydkY3vPlFwHAVeLQiq6sS3ENPX7zpsUaDhpZmicIrQ5IV4PVZByfNq1GVvW93jC3UjXLgWUruTUYDbBCOHfUOqSNDBasRV6khOUwF03jyGQEJy5EkdKz2NabLw6KKOCa0R5r3+a9Hy4Oq0ASBOh1psaxFUQtnRaPTq5AIMBrLu6z2z0AwKf+6zR+/z+fx588dBCn5+O4eCCAuWgaO/r8GO7yVnnV5tHsIjhKKRYdbqUBx/xs543Mr4gQLddbK9tLV8LpdqqW4dIocgHp2mIOhdXRbmMo7MV0DRb6ejPrCCSXasX+1CmzpIv1hHK6nIfCHlw+EsaQ5SZrZlDand8Ml6KIpO6urOyPW0szrSNTEVw0EMBIt/nBYC6mV2bMhnKPHJzCcJdZ4NbjV/CGSwfKvlYrEAQCSSBNcSsltQzOLSSgGVk7IO2cgue0HAgh9v9Vl/rMA44b70qyWZZDreLgfrcSYBbCTbpBHByr/VIxh6dPLSDkkfD537kWf/iGi/DqHbnhTx98y1585revsa3gZgal3S39LqMRbqXVWA6HJ1fw2ov70Gf5p+djaWwKe3BqNobX7+pH2sjiHdduRX9QxePvvalqCmIrkEWhKZbDX33zML7+wiQAOCyHnDgU3sjCXhmLcc21lkPQaTnEG2M5jC8m8O4vPo9P3bXPXokCZkzoX3/4ih1/qeZW8sqm5RVyueWwo8+Pr78wabUEad25XljJrfZLZSs9eWoe1+/oRW9AxZ++aVfec15FhBciBCsIPdtEy8Hdf12XIQmkbrcSizVUsxxmIynMRdPYuzmMPmsG8XwsjXjawNRKCu+8bive84aL7f27fOVTI1uJIglNqXOYWEpic9iDfaM9eI0Vd+kNqBAIkKX5lgOQEws3xhwA03IQBYJLNwWx3CDL4dh0BEcmI/ivk/P4tX25WtWjUxH875+dsgWp2o2U+fOHXOTCLMXOfrOX2Om5OPYON7kPiQMWFPcpYpHlML6YwPhiEvfcuL3iawRUCT5FxGwTq6S5OKwCWRQa4FaqzXJgwei9w2GH5aDh1JxZ6HbRQLCu82gWZvrv+lsOkaSOvcNhfPQdr7K3iQJBb0DFXDRdtMq152q3uL10OXYNhiCLAhRRsKtm64UtSA5NLOeJA+uwytp1eKu0zwCAh3//BtfHHHZajSZPzcVaKg6zkRQUScBIt7co5vCjYzMAgNdcXL3jw0BQte8fzcDdf12XodTpVoqlDbubZTVxODIZASHAHitIBQALsTTGrBTni5rcYXWtKCJpiltppWBkJWMgaIpDoeVgxxxcKg5/+8t7QCnFX3ztEA5NNMatFE+bn7lDEyt52yeXc+LjkQU7WF8JVmTmZrb1+iAQ4NRcvKXncSGSwmBIRcgj52UrUUrx0IFxXDESrun7PBD0NNVycOc3w6VIAoFRh1tp1qH61dxKR6ZWsL3Pj4Aqwa+YvXjmY2mMzcYgCSQv3c3N1CuotRIpaJHBYHGHUkNpAPe6lQDTfdPtUxqWyhq3LIPj0xGkjdziZHIpCa8sQhaJK+NWa0WVRGzt8dnWdqu4sJLCppDHHq/KYOmrd+zbUuHoHAMhFWOzMYw3yJKsBheHVVBvcNWZhsZWceU4MrmCvZtNU5gQgr6AioWYhpOzMYzW0L7bLcji+ouDnskirmVK5t0PBD3wKWLR9XK7W4kR9slIG1mkGjANjFmteobixHTU3j65nMS2Xh9ev2sAPX53xq7Wys7+AE7NtlYcZiIpDIY8CHrkvJjDVw6chyoJeMuVm2t6nd++cTuMTBZv/diT2H96Yb1O18bd3wyXUe8q2JmGVmmq03wsjemVFC53+En7AgrmYmmcmo3hov6N4VICmpOtFLEnvRWveu++YRT/s8SMgZFuH7yyWDVts9Wwau9GWA9xRyO/QxPL9uOJpSRGur340H+/Ag/cva/u3+MmdvT7cWY+3rLW3ZRSzETSGAx5EPLmWw4/fXkOb7h0oKTFW4qrt3Xjm/fdiL6AglQTXLXtY0M2gXrdSiyY1BdQK46AZP2ULhvOxRv6AioOTa5gMa7h9suH1nwOzUaR6u9HVQ3WUiDsK/6S7dkcyovbMO7YN4KbdvXDU0PwtZV0WTeO5YSel366FhKagf6gikyW4qWJFbzL2j65nMR123vQ7VfsNOB2YWd/AGkji6nl2vqZNZq4lkFSz2AwpGIpoSOS0u2ZDrORNLZesbpz2tEfwPf+8LVN6WnFLYdVUO8qeDaShlcWMRhSKwakWZvuyzbnLIfegIK5aBqjvT78+jW1+SjdgNKADK9qsBnRq2nnIIuCq6rJy9HVQMshls4goEp4zUV9+PZLU3hlJoqVpI5oysBwt/uvxVpgGUtjLYo7sNT1voCKoEeCnqFIG1ksJ3RomWxeFX+tNKvZIReHVVBvEdxMNI3BkAq/IlUMSB+ZXMG2Xl+euXnXq0fxvjdfiu/8P69tyQporcgSWfdU1hXbreTuit210OXLWQ71kkib86H/+pd2I+iR8J4vvWAHa4e7Ns5najVss74rE+sYxP3a8xP4u28dLfkcE4f+oGovXiIp3c46chZqug0uDqtAboBbaSDogU8VK1sOU7lgNGPvcBi/f9POqtWrbkMRhbzMmPUg0sbiwGIOjRCHuGbAr0oYCHrwL3dciVdmYviXH7wMAG1rOdizMaokgNTDz16Zw9demCj5nFMcWF1IJGnY8UcuDm1CvUVwM5EU+kMqfEp5cVhOaBhfTLa0aKeRXDQQwNGpiF3ssx7YbqU2FAdmOTQmIJ2B31pc3LxrANeMduOpU2bWy0Zwsa0FryxCILX1MlsrCS2DaMoomWTCuqj2B3KWQzSl220wBkLurRfh4rAK5DqCq5ksNYNi3T74FAmJMiMgWTB673BxEHUj8t437cLlw2H80YMv4tzC+hQjtbNbySOL8MiC/R7rIa4Z8Dl6Nt3zmh0AzEJA1qKl3SCEwK9I6zpylaUZl2qKNxdLQxTMehU2UySaMrhbqd0w3UprsxymlpPQMxTben2m5VAmb91um7G5PSwHjyzin99+JRJaZt2G1kRSOhRJcH3m0Vrp8ipYijcmlTXgKHJ7455BbOv1YaTb27TpYq3Ap4p5abyNJml9l0u1056LptEXUCAIxG51bsYcUvArIvwuHbMK8FTWVVGPW4lVNW7t8eHcQgKJAh/oUlzDfV96AYcmVjDc5W2rlMJNlunciNXvPz16Aj1+Bb/72h32tkhSd/XgmXrp8slYbsC1S6Qz8Kk5ARUFgk/8xtVI6s2dVd1s/KpkFwCuB8xFXMpymI9pdut4FnNgloObXUoAF4dVIUtrH/ZzziEOPkWElslCz2Ttyt3Dkyt46tQC3rx304ZKVa2FoEcCIbnAcT18+9AUwl45TxxWknrJArh2odunYLnOmAOlFHHNKJpdXaoGpN0IqNK6Wg6pqpaD1cLFEXOYi6Tz5o24Ee5WWgWyNbiGFbGshnMLCcgiweYur12V6wxKsxnRf37bpbh5l7uG9tSLIBCEPI1Z/S7GNJyajSPrEOlI0mjLeAOjyyfXna2U0rPI0urtuNsRv7K+4sCC3bPRFB47PoM/++pLdnB6LppGvyUOPmsCYSRpYCaacnW8AeDisCpkUQClWFMp/vnFOEa6fdZ8YPMLmiwhDu0aGAx75brdSik9Y1ecTjuaGJbryNouNOLasYr8gNqecZlK+FVxXVNZbSGIpPHVAxP46vMT+J3PPod42sB8LGchEGIOSJqNpjAbSa+pAK6ZcHFYBawycS21DucWEthqFeT4rS+os4XGfEyDKglFZn+70Igb3KIjKDvmaKYWSZXuyNouFHbzXAts5dyRloNauei0Fio1PkzpZhxyJprC8QsRjHR78cyZBfzToydgZGme++jVO3vx6JELSOoZe/SnW+HisApk0czoWG3FL6UU5xcSdpttNkwlz3KwfJPtmjXSaHFwdtpcKdOuu10IemQk9Uxd1fmsC7C/Iy2H+txKRyZXsPcDP8DYbLToOSOTte8HZ+biOLeQwK/v24Lrtvfg4efNwjinOLzlymG7Fxh3K7URrL3zajOWlhM6omnDYTmYqzfnB3Yulkafyz8s9RD2yVip02++4CiHh7oAABg6SURBVLQcrLYP2Sxt+2wlluUSq8N6YFaqm1Mn1wu/ItZV53ByNgojS3FkMlL0XNJhUUytmK7OS4dCuP3yITtDisUcAODmXf32OFbuVmojJGFtbiVnphKAXEDa8cEyA1ftGW8AGmU5mHGZXr9iWw5xzSg5I7qdCNpZLnWIQ4e7lVJ6ds1tu1kLjHMLxf2ZmDgMOSbj7R4K4tbLNoE5AZyLPo8s4ta9mwCAu5XaCduttErLgVUGb+v1A8h9QZ21DvMxzU55a0eYOKwl04uxEDMth2tGe+yGce1cHc2we/Kk1i6uzK3UrjGtSrD3XKlNfiXmrc/ducXiCn/mGmYu45BHwnCXF4MhD/Zt6waAopTV33vtDrztqs0Yte4HboWLwyqw3Uqr9P0emliBIgkY7SuwHKwPayZLsRhPt704GFladXZ2JRbjGiSB4FVbuzAf07Cc0Bx9ldr3psfcEHVZDhqzHDov5sAWY2uNOzDL4fxCAnPRNH79/zxtF7Uyy4Hd6C8dCtlxw3tesx1vuHTA/vsxdm0K4iN3vsr1UwjdfXYuY61upefOLuKqLV32vOLCOoelhIYsbd80ViC3sq/HtbQY19DtV3DJpiAA4Ph0FCdnTAtipLs9W04DTrfS2q8d6+XViZaDnR24RnFgaebnFhP42Stz2H9mEU+MzQPIWQ5bLcthz1CuqPC2vUP49G9ds2GTTLg4rIK1uJViaQNHpyK4bnuPvc1fYObaNQ5tHJB2TjRbKwtxDb1+BVdv64ZAgKdPL2D/mQUEPRJ2D7Vvpa+z7cJaYcFRXwdmK9lupTXWOjDLYS6axlOWKLBUaiYOuwaD6PLJeM1FffWermuoSxwIIWcJIYcJIQcJIQesbT2EkB8RQk5a/3Y79n8/IWSMEPIyIeRWx/arrdcZI4R8lLhUauU1uJVeOLeETJbimtGcOKiSAEJyH6z5qOnTbHe3ElC/5dDjVxDyyLhySxeeHJvH/tOLuGa0B6Lgyo9MQ8iJQz0xBwOSQKA0aYqYm6jXrTQfSyNk/Q1+cPQCAIc4WG6lvoCKF//mjfjFPYP1nq5raMQn5fWU0qsopWwy+fsAPEYpvRjAY9b/QQjZA+BOAJcBuA3AxwkhbBnzCQD3ArjY+rmtAefVcOQ1uJWeO7sIgQC/sM3WSLuNMFvJ5Kqj21ccQg0UBwC4cWcfXjy/hNPz8TyrrB1pVLaSX5U2rIujHpjlsJZ0VjMeqOFq6/vLLLBCcfApYttd2/VYRrwVwOesx58D8DbH9gcppWlK6RkAYwCuJYQMAQhRSp+mZirL5x3HuArmVlpNncOzZxZx2eZwka/Xq4h2N0wmDv1tLA7Mcqin+d5CLI1eJg4X9YFp9HU7eus+PzejSAJUSUC0jlz9uJYb9NNpsJjDWpIhFuJpZClscQDMx5PLSSQ0w37NdmwXX684UAA/JIQ8Twi519o2SCmdBgDrX9ZFbhjAuOPYCWvbsPW4cLvrsN1Kq7Acjk1HcNWWrqLtfkW0LYe5WBqKKLR1xk2YzUJO1t5dNJY28OgR04zXM1lEUgZ6/KaA/sK2LnhkAX5FxN4O6Cwa9Mh1u5U6sQAOyMX41mI5MJfvzv6AvcB5+9UjAIDTc3G7rcZGG99bC/V+Wm6klE4RQgYA/IgQcqLCvqVsLlphe/ELmAJ0LwBs3bp1tedaN8ytVKvloBlZRFNGyTL5oEe2Rz/ORzX0BpS2M0udBFUJokBW5Vb6xouT+JtvHsFT73sDJCum0GNldKmSiNsvHwKQ63nVzoQ8kt12YS3EtUzeFLhOolRHglqZi+VmQI/2+hBNGbYVMTYbsy2HdkwRruvTQimdsv6dJYR8A8C1AGYIIUOU0mnLZTRr7T4BwDmoYATAlLV9pMT2Ur/vkwA+CQD79u1bezXVGpEly61UY0Ca9eDvKjG45+KBAJ48ZWY+zMfau8YByHWkXI04TC8nAZhZIiwnvNdxLf/t165q7Em6mHqb7yXSRse6lXzy2lNZ56M5cfjL23cjQylGe/0QBYKx2ZidCOGR2u/arnnJRQjxE0KC7DGANwE4AuBbAO62drsbwCPW428BuJMQohJCtsMMPD9ruZ6ihJDrrSyluxzHuIour3ljmq9xZOOSlbbZ4ysWh91DIcxE0liMa3j5QhSjfe6ulmwEZpV07V9QNmd3Ma7ZTfd62mhC3mqo16203Ob9pyohCMR0464h5jDnSBa5bkcvbtjZB0USsK3Hh7HZGFJ6BqokQGjDbLl6LIdBAN+wXCESgC9RSh8lhDwH4CFCyD0AzgO4AwAopUcJIQ8BOAbAAHAfpZT9td4N4LMAvAC+b/24jsGQCp8i4vRcrPrOyHUR7fYVfylZXv5jx2dwIZLC1VuL4xLtxmr7KzFxmI+Vthw6iaBHwoVI8RjKWqCUYno5idde3D45+KvFt8bOrPPRNHwlZj3v6A/gzHwc/UG1LV1KQB3iQCk9DeDKEtsXANxS5pj7AdxfYvsBAHvXei7NghCC7X1+nJ4r7rFSCuZWKjUPeveQWeX7n/vPAwCu3tbe6ZiAmc66sopxl7PWzXAxrtnmu9vn7q4XpltpbZZDJGkgrmUw3OVt8FltHAKqtOqAdErPmN2SS7h8N3d58OyZBST1jN2Cv93ozAhVHezoD+Dg+FJN+y4ycSjhVuoNqBgMqXhpfBleWcSllli0M10+pWRny3I43UoUZvEgK0bqNAKqvOaYw6QVu9ncweLgV8VVpbI+dWoe7/zUfqiSgL3D4aLnB0MeRFIGluIaPG1qObR/mkeD2dHnx8RSsuJkKMaS5VbqKuFWAnKupStGwpA7IONme68PE0uJmq6dZmRtt9xCXMNMJIXBkKetM7oqEfRISGiZNbWdnuLiAJ+yOsvhmdNm8eqmsAf7RruLnt9kWbBnFuJtazm0/x2pwezo94PS0r3dC1lK6PApYtkCGSYOzgKbdmbP5hCyFHj5QhRHJlfw4LPny+7LCgMBs/htNpLGoMv7368naxn48/KFKC6spDC1wsShM11ygOlWWk3M4fh0BNv7/PjZn70e73/z7qLn2fyG8wsJHnPgmOzsDwAATs/FsGtTZVfQUlwr6VJi7OkwcWBieHw6gh8fn8WPj8/g2u092GFdUyfMpSQQ060UTRvYvan9i93KwTKNPvbTMfzg6AX84u5B/MHNO9FbIQX6dz77HK4YCWNrrw+KKKDP37niutpRocemInhVhSSRQUscjCxty+pogFsOq2a7lXJ6er56UHopoaHbXz598E2XDeLvf+Vy3HRJf8POz81s6fYhoEo4PLmC/acXAABfeOZcyX1nrGD0jv4AFuIaZiNp10/OWk+Y5fDZp84iktTxwBNn8JUD42X3j6UNTC4nceDcEiaXkhjq8rRlumWtmKNCa4s5rCR1TC4nK3b63eRIjOBuJQ4AcwWyKeSxJ5FVYjGhV7QcVEnEO6/b2hEVvoCZb757KIhvvzSFaNpAX0DFwwcmSq7omOVg1oOkEEsbrp+5u56w5nuakcVf3HYpPLJgx7RKwdKt56JpPH9uCZvDnRtvAICLBgKYj6XxjLUoqcSJaXNW9J4K4uBXJVuw29Wt1Bl3pQazvc9vzzCuxHKislupE9k9FLLbQPzDr16OaNrAdw9NF+03F0lBIMAlAwHoGTMIy2MOgCQQ3LZ3U9WaEefiZXol1dHBaAD4jeu2YSjswf/3nWNVg/rHLXGoNiOEWQ/t2FcJ4OKwJm7Y2YuXJlbw+ImZivs5W0xzTNhqbPdQCL+4ewBeWcSJC9Gi/WajafQG1Lz5u51tOZji8NqL+9DlU9DlVSoOTjo9F4coEHhk8ys+3MHBaMC8gb/vzZfi6FQE3z1cvBhxcnw6im6fXHUxssmKO/CYA8fm3pt24NJNQfz5w4ex4MiqcaJnzKZ75dJYO5U9VgfVG3f2ghCCrT0+nF8szvyaiaQwEFTzxLWTLYdNYQ+Gu7z4zeu3ATC73FazHLb2+HDFsBlU7XTLAQB++YrN8Csinj+7WPL5lJ7B558+i5+8PIvdjlnQ5Ri0LAfuVuLYqJKIf7njSszH0viOwyXyjRcn8JZ/fwKakbVXddxyyGf3UAjvvG4r3nGd2VV3S48XE0vF4jAbTWMgqOZl43Sy5eBTJDz5vjfglt3mpLGqbqXZOHb2++2MGy4OZsxrR3+gbDLJIwcn8bePHIVflXDXq0ervh5LZ+UBaU4el20OwSuLeaveJ04u4NDECh49eiHXOoPHHPKQRQF//yuX2ynBI90+jC8mYM55MqGU4sJKCgNBj91LSZXae97FaunyymXdSpksxZn5OHb0B3DTrn6okoBLBtu/Ar8WdvaXjxdOr5gZcj/8k9fhtr2bqr4Wsxy4W4mTByEEI91ejDvE4dyCuSL5z2fOOZrucXGoxNYeH+Jaxr5eAHB+MYGFuIa9I2F7fkMnV0eXoquCW2liKQEtk8XOfj9u2NmHox+81faPdzo7+gOYWkkhoRVnyM1F0+jxKzV3K+ABaU5ZtvT4ML6UtP9/diEBjyzg2TOLePaM6desVOfAMa8hgLzr+NQpM93whp29CKoSZJGUHJjUyYS9MpJ6pmQrkpMz5sqYWWedkipdC7ki1mLX0lw0vapRvUxw/Up7WrT8U1MHW7q9mLBcIrG0gflYGu+6fhs8soCPPHYSALccqrGViYPDAntybB6DIRU7+vwghKA/oNoVqRyTsPW5KpzJPTYbw988cgRhr1y1gr8T2dFfvoh1LpbOy46rxp6hED7wy3twy+6B6jtvQNpT8prElh4fomnDrqgEgFdt7cYvXbEZH/jWUZxfTKA3wMWhEiPdZqD0/GICf/3Nw7hxZx+ePrWA113Sb7uR/uWOKzu6OroUXdY845Wkbrcx1zNZ3P3pZ6FnKL70e9fZhXOcHNv7/CAEJWeyzEXTGB2tfeiWIBD89o3bG3l6roKLQx2MdLNVbxLjVsbNtl4fLtscxjf+4AYYWdoR3Vbrwa9K6PUreOjAOM4tJPDF/edBKfDqnb32Pjdc1LlDasrBht0vOyyHn5yYxeRyEp+6ax8u21zcZppjBo+Hu7w4VeBWopSabiXuvrThd6462NJjrnrHlxJ2l9ZtvebKgxDChaFGtvT4cG4hgf6gil1WVs0NDnHgFMPqZ5wZSw8dGMdAUMXrd3VGr661srM/UGQ5RNMG0kZ2VTGHdodbDnWwxeEvP7cQR19AQUDll3S1bOnx4eD4Mt51/Tb85vXbcOJCxLbKOKVh88xZxtJsJIWfvDyHe1+3gwegq7Cj349nzywim6V2M8I5q5cXtxxy8E9RHYQ8MsJeGeNLCZxdiNtWA2d17BoMwCMLeMe1W9HjV3DDTu5GqobtVrLqab53eBqZLMUdV4+08rQ2BLsGg0jqmbwaJS4OxXBxqBOz1iGJcwsJbOvlq9218Luv3YHH3nsz/2KugqBHAiE5y+GV2Ri6fXLJ2RicfJxzRRhcHIrh4lAnW7p9eOb0AqZXUtjOLYc1wYKEnNoRBJLXQuPMXNyeNcKpzK5NQQikjDjwmIMNF4c6ed0l/RgKe3DPa7bjnVa/IA6nGYQdLTTOzMexvY9bDbXgkUVs7/Pj2HSuG/BcLA1ZJLa7jsMD0nXzzuu2clHgtIQuy3KIpw1ciKTsAi9OdXYPhfDi+WUkNANHpyKYi6bRF1A7elpeIVwcOJwNStinYDmp46zV04u7lWpn91AI3zk0jT/88ov48fFZ9AUU3rm2AO5W4nA2KGGvjJWEhjP/t737jZGrKuM4/v3ZLW3oP6Dd1tYWiwlYVorUriKKkoAktjHBBI3dELvgC8U/Ud5Z1ETf+IJGCYFqamNrQA1Ug4YWEQKoRPzf2oaybgotEig0thvb0hYUSB5f3DM47Oy2Ozv37r2z8/skNzNz5u4z5zy9nWfunTvnDrk4NKt20alHBg/R9RYxdOJVf98wjIuDWZuqHVb6Z/q171KfEDFmtTOW5s44g83XvxeJN6YhsYwPK5m1qfmzpnH0ldf4zd5DLJozfdJOHV2EBbOnsXr5W1m9fCFXXNDN5v7eN2ZstYz3HMzaVN+l5zJ7+lR2PXeU8/xldFMk8f3rVvKxixcBcOWyBf4R6zAuDmZtat7MaXx99YWADylZ/nxYyayNfbJ3MS8ee4Wrli0ouys2yVRmz0HSRyXtlbRP0rqy+2PWDiRx00cuYPliT9Ft+apEcZA0BfgesAroAfok9ZTbKzOzzlWJ4gC8D9gXEc9ExKvAPcA1JffJzKxjVaU4vA14vu7xgdT2JpI+K2mHpB2HDx+esM6ZmXWaqhSHkSY0iYaGiE0R0RsRvd3dvtqVmVlRqlIcDgBL6h4vBl4sqS9mZh2vKsXhb8D5ks6TdAawBthWcp/MzDpWJX7nEBGvS/oS8BAwBdgSEQMld8vMrGNVojgARMQDwANl98PMzEARDd/7tgVJx4G9wBzgWE5h84xVRLx5wFCO8ao+3rzjQb45rPK2V1TcTtoGJ1vuaq//9og4/Rk9EdGWC7Aj3W7KMWZusQqKt6Pi/at0vLxzWOVtr8B/k47ZBidb7pp9/ap8Id2K7RWNVUS8vFV9vJ2Uv6LG2kk5zDtep+XuTdr5sNKOiOgtux8TqRPHnDfnsDXO3/iVnbtmX7+d9xw2ld2BEnTimPPmHLbG+Ru/snPX1Ou37Z6DmZkVp533HMzMrCAuDiWStETSbyUNShqQ9JXUfo6khyU9nW7PTu1z0/onJG2oizNL0u66ZUjSbWWNayLllcP0XJ+kPZKekPSgpHlljGki5Zy/T6XcDUhaX8Z4JtI4cne1pJ1pG9sp6cq6WCtT+z5Jt0saab65iZXnqVVemj4VbSHwnnR/FvAU2fUs1gPrUvs64JZ0fwZwOXAjsOEUcXcCHy57fO2UQ7IfhB4C5qXH64FvlT2+NsrfXOA5oDs9vhO4quzxVSx3K4BF6f5FwAt1sf4KXEY2CemvgVVlj897DiWKiIMR8fd0/zgwSDZV+TVk/7lItx9P65yMiMeB/4wWU9L5wHzg9wV2vTJyzKHSMiN9aptNB0z+mGP+3gE8FRG1ufQfAa4tuPulGkfudkVEbZsaAKZLmiZpITA7Iv4UWaW4q/Y3ZXJxqAhJS8k+WfwFWBARByHbAMne7MeqD9iaNrKO0koOI+I14PPAHrKi0ANsLrC7ldPiNrgPWCZpqaQusje3Jaf5m0ljHLm7FtgVEf8lKygH6p4b8Xo2E83FoQIkzQTuBW6KiJdaDLcGuLv1XrWXVnMoaSpZcVgBLAKeAG7OtZMV1mr+IuIIWf62ku21Pgu8nmcfq6rZ3El6F3AL8Lla0wirlf7hzsWhZOlN6V7gpxHxi9T8r7SrSbo9NMZY7wa6ImJnIZ2tqJxyeAlAROxPe10/Az5QUJcrJa9tMCK2R8SlEXEZ2bxnTxfV56poNneSFgO/BNZGxP7UfIDsGjY1lbiejYtDidKx7c3AYETcWvfUNqA/3e8H7htjyD46bK8hxxy+APRIqk1IdjXZMeRJLc9tUNL8dHs28AXgh/n2tlqazZ2ks4BfATdHxB9qK6dDT8clvT/FXMvY/88Xp+xvxDt5ITvrI8gOYexOy2qyMz8eJfvk9ShwTt3fPAv8GzhB9omjp+65Z4BlZY+rXXNIdgbOYIq1HZhb9vjaLH93A/9Iy5qyx1a13AHfAE7WrbsbmJ+e6wWeBPYDG0g/UC5z8S+kzcysgQ8rmZlZAxcHMzNr4OJgZmYNXBzMzKyBi4OZmTVwcTArgKQbJa1tYv2lkp4ssk9mzegquwNmk42krojYWHY/zFrh4mA2gjSR2oNkE6mtIJuOeS1wIXArMBMYAq6PiIOSfgf8EfggsE3SLOBERHxH0iXARuBMsh85fSYijkhaCWwBXgYen7jRmZ2eDyuZje6dwKaIuBh4CfgicAfwiYiovbF/u279syLiioj47rA4dwFfTXH2AN9M7T8CvhzZXERmleI9B7PRPR//nwPnJ8DXyC7S8nC6UNcU4GDd+luHB5A0h6xoPJaa7gR+PkL7j4FV+Q/BbHxcHMxGN3xumePAwCk+6Z9sIrZGiG9WGT6sZDa6cyXVCkEf8Gegu9YmaWqam39UEXEMOCLpQ6np08BjEXEUOCbp8tR+Xf7dNxs/7zmYjW4Q6Jf0A7IZNu8AHgJuT4eFuoDbyC75eCr9wEZJZ5LNnHtDar8B2CLp5RTXrDI8K6vZCNLZSvdHxEUld8WsFD6sZGZmDbznYGZmDbznYGZmDVwczMysgYuDmZk1cHEwM7MGLg5mZtbAxcHMzBr8D7RjKAM82qI7AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
+ "1er août de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
+ "modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1991,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 49,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHgNJREFUeJzt3X+QVeWd5/H3B5uAOmLAgBEQYSLjBswOBqox4242LhPAZEuwRjM9OkplqMIxmElSW5Vo6RaW8sc4lawbytKVxETUiLJsKNmNRFvc1Li7TANGE0HC0BkJIkh3qolgtujY8N0/znPldNt03+57u++P/ryqTt3T33uew3k8Vn/7+XGeo4jAzMysFKMqfQFmZlb7nEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWckaKn0B5faxj30spk+fXunLMDOrKa+88spvI2LiYMvXXTKZPn06O3furPRlmJnVFEm/KaV8Ud1ckr4habekXZLWSxor6R5Jb0t6LW1fyB1/p6RWSXslLcrF50p6PX23RpJSfIykZ1K8RdL0XJllkvalbVkplTUzs6HRbzKRNAX4O2BeRFwOnAU0pa8fiIg5aXsuHT8rfT8bWAw8JOmsdPzDwApgZtoWp/hy4GhEXAo8ANyfzjUBWAXMBxqBVZLGl1ZlMzMrt2IH4BuAsyU1AOcAh/o4dgnwdER0RsSbQCvQKOkiYFxEbItsqeLHgaW5MuvS/kZgQWq1LAKaI6IjIo4CzZxOQGZmViX6TSYR8TbwbeAAcBh4NyJeSF/fLumXkn6QazFMAd7KneJgik1J+z3j3cpERBfwLnBBH+cyM7MqUkw313iylsMMYDJwrqS/Juuy+gQwhyzJfKdQpJfTRB/xwZbJX+MKSTsl7Wxvb++jNmZmNhSK6eb6c+DNiGiPiPeBHwN/FhFHIuJkRJwCvkc2pgFZ6+HiXPmpZN1iB9N+z3i3Mqkr7Xygo49zdRMRayNiXkTMmzhx0DPbzEastmMn+NIj22g7fqLSl2I1qphkcgC4UtI5aRxjAbAnjYEUXAfsSvubgaY0Q2sG2UD79og4DByXdGU6zy3As7kyhZla1wMvpXGV54GFksanFtLCFDOzMlqzdR879new5sV9lb4Uq1H9PmcSES2SNgI/B7qAV4G1wPclzSHrdtoP3JqO3y1pA/BGOn5lRJxMp7sNeAw4G9iSNoBHgScktZK1SJrSuTok3QfsSMfdGxEdpVTYzE677O4tdHad+uDnJ1sO8GTLAcY0jGLv6msqeGVWa1Rv74CfN29e+KFFs+K0HTvB6uf28MLudzjx/inGjh7Fotkf564vfpJJ542t9OXZMJL0SkTMG2x5r81lNoJNGjeW88Y00Nl1ijENo+jsOsV5YxqcSGzA6m45FTMbmN++18lN8y/hxsZpPLX9AO0ehLdBcDdXTtuxE9y+/lUevPEK/2VmZiOKu7nKyDNazMwGx91ceEaL2UC5FW89uWUCvPzNq7l2zmTGjs7+c4wdPYolcybz8reurvCVmVUnt+KtJ7dM8IwWs2K5FW9n4pZJUpjRsukrV3HT/Etof6+z0pdkVnXcirczccskeeTm05MYVi+9vIJXYla93Iq3M3EyMbMB8XMp1hs/Z2JmZn7OxMzMKs/JxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnEzMxKVlQykfQNSbsl7ZK0XtJYSRMkNUvalz7H546/U1KrpL2SFuXicyW9nr5bI0kpPkbSMyneIml6rsyy9G/sk7SsfFU3M7Ny6TeZSJoC/B0wLyIuB84CmoA7gK0RMRPYmn5G0qz0/WxgMfCQpLPS6R4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictMzOrDsV2czUAZ0tqAM4BDgFLgHXp+3XA0rS/BHg6Ijoj4k2gFWiUdBEwLiK2Rba65OM9yhTOtRFYkFoti4DmiOiIiKNAM6cTkJmZVYl+k0lEvA18GzgAHAbejYgXgAsj4nA65jAwKRWZAryVO8XBFJuS9nvGu5WJiC7gXeCCPs5lZmZVpJhurvFkLYcZwGTgXEl/3VeRXmLRR3ywZfLXuELSTkk729vb+7g0MzMbCsV0c/058GZEtEfE+8CPgT8DjqSuK9JnWzr+IHBxrvxUsm6xg2m/Z7xbmdSVdj7Q0ce5uomItRExLyLmTZw4sYgqmZlZORWTTA4AV0o6J41jLAD2AJuBwuyqZcCzaX8z0JRmaM0gG2jfnrrCjku6Mp3nlh5lCue6Hngpjas8DyyUND61kBammJmZVZF+X9sbES2SNgI/B7qAV4G1wB8BGyQtJ0s4N6Tjd0vaALyRjl8ZESfT6W4DHgPOBrakDeBR4AlJrWQtkqZ0rg5J9wE70nH3RkRHSTU2M7Oy82t7zczMr+01M7PKczIxM7OSOZmYmVnJnEzMzErQduwEX3pkG23HT1T6UirKycTMrARrtu5jx/4O1ry4r9KXUlH9Tg02M7MPu+zuLXR2nfrg5ydbDvBkywHGNIxi7+prKnhlleGWiVkR3JVhPb38zau5ds5kxo7Ofo2OHT2KJXMm8/K3rq7wlVWGk4lZEdyVYT1NGjeW88Y00Nl1ijENo+jsOsV5YxqYdN7YSl9aRbiby6wP7sqwvvz2vU5umn8JNzZO46ntB2gfwS1XPwFv1oe2YydY/dweXtj9DifeP8XY0aNYNPvj3PXFT47Yv0CtPvkJeLMh5K4Ms+K4m8usH+7KMOufu7nMzMzdXGZmVnlOJmZmVjInEzMzK5mTiZmZlczJxEYsL5FiVj5OJlYWtfiL2UukmJWPnzOxssj/Yl593acqfTl98hIpZuXn50ysJD1/MRdU8y9mL5Fi9mF+zsQqqhaX4fYSKWbl128ykXSZpNdy2zFJX5d0j6S3c/Ev5MrcKalV0l5Ji3LxuZJeT9+tkaQUHyPpmRRvkTQ9V2aZpH1pW1be6lupavUXc2GJlE1fuYqb5l9C+3udlb4ks5rW75hJROwF5gBIOgt4G9gEfBl4ICK+nT9e0iygCZgNTAZelPQnEXESeBhYAfwT8BywGNgCLAeORsSlkpqA+4G/lDQBWAXMAwJ4RdLmiDhacs2tbGpx7apHbj7dml+99PIKXsnQaTt2gtvXv8qDN15R9cndat9AB+AXAL+OiN+kRkVvlgBPR0Qn8KakVqBR0n5gXERsA5D0OLCULJksAe5J5TcCD6ZWyyKgOSI6UplmsgS0foDXbUNoJPxirkW1NCnCat9Ak0kT3X+R3y7pFmAn8B9Ti2EKWcuj4GCKvZ/2e8ZJn28BRESXpHeBC/LxXsp8QNIKshYP06ZNG2CVzOqLZ6tZJRQ9AC/pI8C1wH9LoYeBT5B1gR0GvlM4tJfi0Ud8sGVOByLWRsS8iJg3ceLEM9bBbCSoxUkRVvsGMpvrGuDnEXEEICKORMTJiDgFfA9oTMcdBC7OlZsKHErxqb3Eu5WR1ACcD3T0cS4zO4NanRRhtW0gyeSvyHVxSboo9911wK60vxloSjO0ZgAzge0RcRg4LunKNB5yC/Bsrkxhptb1wEuRPQDzPLBQ0nhJ44GFKWZmffBsNRtuRY2ZSDoH+Dxway78D5LmkHU77S98FxG7JW0A3gC6gJVpJhfAbcBjwNlkA+9bUvxR4Ik0WN9BNjZDRHRIug/YkY67tzAYb2Zn5kkRNtz8BLyZmfkJeDMzqzwnEzMzK5mTiZmZlczJxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnErIa0HTvBlx7ZRlsNvBrZRhYnE7Makn8Vr1k1Gehre82sAvwqXqt2bpmY1QC/iteqnZOJWQ3wq3it2rmby6xGFF7Fe2PjNJ7afoB2D8JbFfGbFs3MzG9aNDOzynMyMTOzkjmZmJlZyfpNJpIuk/Rabjsm6euSJkhqlrQvfY7PlblTUqukvZIW5eJzJb2evlsjSSk+RtIzKd4iaXquzLL0b+yTtKy81Tczs3LoN5lExN6ImBMRc4C5wP8DNgF3AFsjYiawNf2MpFlAEzAbWAw8JOmsdLqHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqsNAu7kWAL+OiN8AS4B1Kb4OWJr2lwBPR0RnRLwJtAKNki4CxkXEtsimkD3eo0zhXBuBBanVsghojoiOiDgKNHM6AZnZCOZ1yqrLQJNJE7A+7V8YEYcB0uekFJ8CvJUrczDFpqT9nvFuZSKiC3gXuKCPc5nZCOd1yqpL0Q8tSvoIcC1wZ3+H9hKLPuKDLZO/thVk3WdMmzatn8szs1rmdcqq00BaJtcAP4+II+nnI6nrivTZluIHgYtz5aYCh1J8ai/xbmUkNQDnAx19nKubiFgbEfMiYt7EiRMHUCUzqzVep6w6DSSZ/BWnu7gANgOF2VXLgGdz8aY0Q2sG2UD79tQVdlzSlWk85JYeZQrnuh54KY2rPA8slDQ+DbwvTDEzG6G8Tll1KqqbS9I5wOeBW3Phvwc2SFoOHABuAIiI3ZI2AG8AXcDKiDiZytwGPAacDWxJG8CjwBOSWslaJE3pXB2S7gN2pOPujYiOQdTTzOqI1ymrPl6by8zMvDaXmVkxPJV4aDmZmNmI4KnEQ8vvMxlB2o6d4Pb1r/LgjVd4sNJGDE8lHh5umYwg/svMRiJPJR4ebpmMAP7LzEYyTyUeHm6ZjACD+cvMg5VWTwpTiTd95Spumn8J7e91VvqS6o5bJiPAYP4yy3eJrb7uU8N4tWbl98jNp2e8rl56eQWvpH45mYwQxT7k5S4xMxsMP7Ro3bQdO8Hq5/bwwu53OPH+KcaOHsWi2R/nri9+0n3MZnXMDy1aWXmw0swGw91c9iFe98jMBsrdXGZm5m4uMzOrPCcTMzMrmZOJmZmVzMlkGPhpcjOrd04mw8ALLJpZvfPU4CHkp8nNbKRwy2QIeelrMxspnEyGkJ8mN7ORwslkiA106WsP1ptZLSoqmUj6qKSNkn4laY+kz0i6R9Lbkl5L2xdyx98pqVXSXkmLcvG5kl5P362RpBQfI+mZFG+RND1XZpmkfWlbVr6qD49Hbp7H6qWXM2vyOFYvvbzbUti98WC9mdWiopZTkbQOeDkivi/pI8A5wNeB9yLi2z2OnQWsBxqBycCLwJ9ExElJ24GvAf8EPAesiYgtkr4C/OuI+FtJTcB1EfGXkiYAO4F5QACvAHMj4uiZrrVWl1PpOVhf4MF6MxsOQ76ciqRxwGeBRwEi4g8R8bs+iiwBno6Izoh4E2gFGiVdBIyLiG2RZbDHgaW5MuvS/kZgQWq1LAKaI6IjJZBmYPGAa1kDPFhvZrWsmG6uPwbagR9KelXS9yWdm767XdIvJf1A0vgUmwK8lSt/MMWmpP2e8W5lIqILeBe4oI9z1R0P1ptZLSsmmTQAnwYejogrgN8DdwAPA58A5gCHge+k49XLOaKP+GDLfEDSCkk7Je1sb2/voyrVze+pNrNaVcxDiweBgxHRkn7eCNwREUcKB0j6HvA/c8dfnCs/FTiU4lN7iefLHJTUAJwPdKT453qU+VnPC4yItcBayMZMiqhTydqOneD29a/y4I1XlK314PdUm1mt6rdlEhHvAG9JuiyFFgBvpDGQguuAXWl/M9CUZmjNAGYC2yPiMHBc0pVpPOQW4NlcmcJMreuBl9K4yvPAQknjUzfawhSrOM+6MiuOp7uPDMUup/JV4EdpJte/AF8G1kiaQ9bttB+4FSAidkvaALwBdAErI+JkOs9twGPA2cCWtEE2uP+EpFayFklTOleHpPuAHem4eyOiY3BVLQ8vkWI2MPk/vFZf96lKX44NEb9pcYDajp1g9XN7eGH3O5x4/xRjR49i0eyPc9cXP+nBcrMcT3evLX7T4jDzrCuz4ni6+8jiVYMHoTDr6sbGaTy1/QDt7gs2+xD/4TWyOJkMgmddWbkMxazAauI/vEYOj5mYVdDdm17nR9sPcFPjNA9OW0WVOmbilolZBXhWoNUbD8CblVkxz1V4cNrqjZOJWZkV80CrB6et3riby6xMBtp15cHpD6v3CQn1zAPwZmXiB1pL5wkJleMBeLMq4a6rwfOEhNrnMROzMvJrBAbHExJqn1smVtVqrQ/dD7QOjlt1tc8tExt2A1mS3Ev9jxxu1dU2D8DbsCtmkNUrzpoNr1IH4J1MbNgMJEF4ZpTZ8PIS9FYzBjLI6j50s9riAXgbNgNNEH6oz6x2OJnYsBpIgvDMKLPa4TETMzPzmImZmVWek4mZWQ8DeRbKMk4mZmY9+GHZgSsqmUj6qKSNkn4laY+kz0iaIKlZ0r70OT53/J2SWiXtlbQoF58r6fX03RpJSvExkp5J8RZJ03NllqV/Y5+kZeWruplZd5fdvYXpd/yEJ1sOEJEtODn9jp9w2d1bKn1pVa/Ylsl3gZ9GxL8C/hTYA9wBbI2ImcDW9DOSZgFNwGxgMfCQpLPSeR4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictM7Ny8oKTg9dvMpE0Dvgs8ChARPwhIn4HLAHWpcPWAUvT/hLg6YjojIg3gVagUdJFwLiI2BbZFLLHe5QpnGsjsCC1WhYBzRHRERFHgWZOJyAzs7Lyw7KDV0zL5I+BduCHkl6V9H1J5wIXRsRhgPQ5KR0/BXgrV/5gik1J+z3j3cpERBfwLnBBH+fqRtIKSTsl7Wxvby+iSmZmvfOCk4NTzEOLDcCnga9GRIuk75K6tM5AvcSij/hgy5wORKwF1kL2nEkf12Zm1ic/LDs4xbRMDgIHI6Il/byRLLkcSV1XpM+23PEX58pPBQ6l+NRe4t3KSGoAzgc6+jiXmZlVkX6TSUS8A7wl6bIUWgC8AWwGCrOrlgHPpv3NQFOaoTWDbKB9e+oKOy7pyjQeckuPMoVzXQ+8lMZVngcWShqfBt4XppiZmVWRYtfm+irwI0kfAf4F+DJZItogaTlwALgBICJ2S9pAlnC6gJURcTKd5zbgMeBsYEvaIBvcf0JSK1mLpCmdq0PSfcCOdNy9EdExyLqamdkQ8dpcZmbmtbnMzKzynEzMzOpApdcTczIxM6sDlV5PzC/HMjOrYZfdvYXOrlMf/PxkywGebDnAmIZR7F19zbBdh1smZmY1rFrWE3MyMTOrYdWynpi7uczMalxhPbEbG6fx1PYDtFdgEN7PmZiZmZ8zMTOzynMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMieTGlfp9XjMzMDJpOZVej0eMzPwQ4s1q1rW4zEzA7dMala1rMdjZgZOJjWrWtbjMTMDd3PVtGpYj8fMDLw2l5mZ4bW5zMysChSVTCTtl/S6pNck7UyxeyS9nWKvSfpC7vg7JbVK2itpUS4+N52nVdIaSUrxMZKeSfEWSdNzZZZJ2pe2ZeWquJnZcKvn58IG0jK5OiLm9GgGPZBicyLiOQBJs4AmYDawGHhI0lnp+IeBFcDMtC1O8eXA0Yi4FHgAuD+dawKwCpgPNAKrJI0fRD3NzCqunp8LG4oB+CXA0xHRCbwpqRVolLQfGBcR2wAkPQ4sBbakMvek8huBB1OrZRHQHBEdqUwzWQJaPwTXbWY2JEbCc2HFtkwCeEHSK5JW5OK3S/qlpB/kWgxTgLdyxxxMsSlpv2e8W5mI6ALeBS7o41xmZjVjJDwXVmwyuSoiPg1cA6yU9FmyLqtPAHOAw8B30rHqpXz0ER9smQ9IWiFpp6Sd7e3tfVbEzGy4jYTnwopKJhFxKH22AZuAxog4EhEnI+IU8D2yMQ3IWg8X54pPBQ6l+NRe4t3KSGoAzgc6+jhXz+tbGxHzImLexIkTi6mSmdmwKjwXtukrV3HT/Etof6+z3zK1NGDfbzKRdK6k8wr7wEJgl6SLcoddB+xK+5uBpjRDawbZQPv2iDgMHJd0ZRoPuQV4NlemMFPreuClyB6AeR5YKGl86kZbmGJmZjXlkZvnsXrp5cyaPI7VSy/nkZv7f6SjlgbsixmAvxDYlGbxNgBPRcRPJT0haQ5Zt9N+4FaAiNgtaQPwBtAFrIyIk+lctwGPAWeTDbxvSfFHgSfSYH0H2WwwIqJD0n3AjnTcvYXBeDOzelWLA/Z+At7MrMq0HTvB6uf28MLudzjx/inGjh7Fotkf564vfnLIxln8BLyZWZ2pxQF7L/RoZlaFam0hV3dzmZmZu7nMzKzynEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWcmcTKxu1NK7H8zqjZOJ1Y1aeveDWb3xQo9W82rx3Q9m9cYtE6t5L3/zaq6dM5mxo7P/nceOHsWSOZN5+VtXV/jKzEYOJxOrebX47gezeuNuLqsLtfbuB7N64/eZmJmZ32diZmaV52RiZmYlKyqZSNov6XVJr0namWITJDVL2pc+x+eOv1NSq6S9khbl4nPTeVolrZGkFB8j6ZkUb5E0PVdmWfo39klaVq6Km5lZ+QykZXJ1RMzJ9andAWyNiJnA1vQzkmYBTcBsYDHwkKSzUpmHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqkMp3VxLgHVpfx2wNBd/OiI6I+JNoBVolHQRMC4itkU26v94jzKFc20EFqRWyyKgOSI6IuIo0MzpBGRmZlWi2GQSwAuSXpG0IsUujIjDAOlzUopPAd7KlT2YYlPSfs94tzIR0QW8C1zQx7nMzKyKFPucyVURcUjSJKBZ0q/6OFa9xKKP+GDLnP4HswRXSHLvSdrbx/XVgo8Bv630RQyxeq9jvdcP6r+OI61+l5RysqKSSUQcSp9tkjaRjV8ckXRRRBxOXVht6fCDwMW54lOBQyk+tZd4vsxBSQ3A+UBHin+uR5mf9XJ9a4G1xdSlFkjaWcp871pQ73Ws9/pB/dfR9RuYfru5JJ0r6bzCPrAQ2AVsBgqzq5YBz6b9zUBTmqE1g2ygfXvqCjsu6co0HnJLjzKFc10PvJTGVZ4HFkoanwbeF6aYmZlVkWJaJhcCm9Is3gbgqYj4qaQdwAZJy4EDwA0AEbFb0gbgDaALWBkRJ9O5bgMeA84GtqQN4FHgCUmtZC2SpnSuDkn3ATvScfdGREcJ9TUzsyFQd8up1ANJK1LXXd2q9zrWe/2g/uvo+g3wfE4mZmZWKi+nYmZmJXMyGSaSfiCpTdKuXOxPJW1LS8z8D0njUvwjkn6Y4r+Q9LlcmZ+lZWpeS9ukXv65YSfpYkn/S9IeSbslfS3Fy7bsTiWVuX51cQ8lXZCOf0/Sgz3OVfP3sJ/6Vd09HET9Pq/s2cHX0+e/z51r4PcvIrwNwwZ8Fvg0sCsX2wH8u7T/N8B9aX8l8MO0Pwl4BRiVfv4ZMK/S9emlfhcBn0775wH/DMwC/gG4I8XvAO5P+7OAXwBjgBnAr4Gz0nfbgc+QPWe0BbimzupXL/fwXODfAH8LPNjjXPVwD/uqX9Xdw0HU7wpgctq/HHi7lPvnlskwiYh/JJuplncZ8I9pvxn4i7Q/i2y9MyKiDfgdUNXz3SPicET8PO0fB/aQrVZQzmV3KqZc9Rveqx6YgdYxIn4fEf8b6PYmsnq5h2eqX7UaRP1ejfQMIbAbGKvskY5B3T8nk8raBVyb9m/g9MOevwCWSGpQ9qzOXLo/CPrD1LT+T9XQfdCTslWfrwBaKO+yO1WhxPoV1MM9PJN6uYf9qdp7OIj6/QXwakR0Msj752RSWX8DrJT0Clmz9A8p/gOyG7gT+C/A/yV7Zgfgpoj4FPBv03bzsF5xPyT9EfDfga9HxLG+Du0lVvQSOpVShvpB/dzDM56il1gt3sO+VO09HGj9JM0mW6n91kKol8P6vX9OJhUUEb+KiIURMRdYT9avTkR0RcQ3IlvyfwnwUWBf+u7t9HkceIoq6jqRNJrsf+IfRcSPU/hIajYXuj9KWXanospUv3q6h2dSL/fwjKr1Hg60fpKmApuAWyLi1yk8qPvnZFJBhRkgkkYBdwP/Nf18jrKla5D0eaArIt5I3V4fS/HRwH8g6yqruNTMfxTYExH/OfdVOZfdqZhy1a/O7mGv6ugenuk8VXkPB1o/SR8FfgLcGRH/p3DwoO9fpWYejLSNrOVxGHifLPMvB75GNuPin4G/5/RDpNOBvWQDaC8Cl6T4uWQzu35JNmD2XdIMoUpvZLNeIl3ba2n7AtmrBLaStay2AhNyZe4ia43tJTdbhGyywa703YOF/y71UL86vIf7ySaWvJf+v55VZ/fwQ/Wr1ns40PqR/QH7+9yxrwGTBnv//AS8mZmVzN1cZmZWMicTMzMrmZOJmZmVzMnEzMxK5mRiZmYlczIxM7OSOZmYmVnJnEzMzKxk/x+qftJYVEr3+gAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1996 564901\n",
+ "2019 584066\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
+ " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFGtJREFUeJzt3XuQJWV9h/Hnxy4oMLggDKgLukbIRGFVZL2gVTqDxhKXaGm8IZpotNYqFTFlyqCoaLytF7zESyobJZB4nShUkDUaDI6oUZQV4oI4amBVlighKjCI4Oovf3QvGadmdmZO95lzOu/zqdraPrfu73mn53v69Ok+E5mJJOn/v70GHUCStDIsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhVq/kwg488MA88sgjV3KRrbn11lvZf//9Bx1j2bqaG8w+KF3N3tXcsHj2bdu23ZiZo02Xs6KFf9hhh3HZZZet5CJbMzU1xfj4+KBjLFtXc4PZB6Wr2buaGxbPHhE/bGM57tKRpEJY+JJUCAtfkgph4UtSISx8SSpEo8KPiLGIuGLWv5sj4uVthZMktafRYZmZOQ08GCAiVgE7gfNbyCVJalmbu3QeC/xnZrZyvKgkqV3R1t+0jYizgW9l5vvnXL8J2AQwOjp63OTkZCvLW2kzMzOMjIwMOsay9Zp7+86b+pBmcevXrrlzuqtjDmYfhK7mhsWzT0xMbMvMDU2X00rhR8Q+wPXA0Zn504XuNzY2ltPT042XNwhdPYuv19zrTt/afpgl2LF5453TXR1zMPsgdDU3LOlM21YKv61dOidSbd0vWPaSpMFqq/BPBj7e0rwkSX3QuPAjYj/gD4HzmseRJPVL42/LzMxfAge3kEWS1EeeaStJhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUiMaFHxEHRsSnIuK7EXF1RBzfRjBJUrtWtzCP9wKfy8ynRcQ+wH4tzFOS1LJGhR8RdwMeDTwPIDPvAO5oHkuS1LbIzN4fHPFgYAvwHeBBwDbgtMy8ddZ9NgGbAEZHR4+bnJxsFHhQZmZmGBkZGXSMZes19/adN/UhzeLWr11z53RXxxzMPghdzQ2LZ5+YmNiWmRuaLqdp4W8Avg48KjMvjYj3Ajdn5mvnu//Y2FhOT0/3vLxBmpqaYnx8fNAxlq3X3OtO39p+mCXYsXnjndNdHXMw+yB0NTcsnj0iWin8ph/aXgdcl5mX1pc/BTyk4TwlSX3QqPAz8yfAjyNirL7qsVS7dyRJQ6aNo3ROBT5aH6FzDfD8FuYpSWpZ48LPzCuAxvuWJEn95Zm2klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqROM/Yh4RO4BbgN8AuzLTP2guSUOoceHXJjLzxpbmJUnqA3fpSFIhIjObzSDiWuDnQAJ/m5lb5ty+CdgEMDo6etzk5GSj5Q3KzMwMIyMjg46xbL3m3r7zpj6kWdz6tWvunO7qmIPZB6GruWHx7BMTE9va2F3eRuHfKzOvj4hDgYuAUzPzkvnuOzY2ltPT042WNyhTU1OMj48POsay9Zp73elb2w+zBDs2b7xzuqtjDmYfhK7mhsWzR0Qrhd94l05mXl//fwNwPvCwpvOUJLWvUeFHxP4RccDuaeDxwJVtBJMktavpUTqHAedHxO55fSwzP9c4lSSpdY0KPzOvAR7UUhZJUh95WKYkFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSIRoXfkSsiojLI+LCNgJJkvqjjS3804CrW5iPJKmPGhV+RBwObAQ+1E4cSVK/RGb2/uCITwFvBQ4A/iIzT5rnPpuATQCjo6PHTU5O9ry8QZqZmWFkZGTQMZat19zbd97UhzSLW792zZ3TXR1zMPsgdDU3LJ59YmJiW2ZuaLqc1b0+MCJOAm7IzG0RMb7Q/TJzC7AFYGxsLMfHF7zrUJuamqKL2XvN/bzTt7YfZgl2nDJ+53RXxxzMPghdzQ0rl73JLp1HAU+KiB3AJ4ATIuIjraSSJLWu58LPzFdl5uGZuQ54FnBxZj6ntWSSpFZ5HL4kFaLnffizZeYUMNXGvCRJ/eEWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCtGo8CPirhHxjYj4j4i4KiLe0FYwSVK7Vjd8/O3ACZk5ExF7A1+JiH/JzK+3kE2S1KJGhZ+ZCczUF/eu/2XTUJKk9jXehx8RqyLiCuAG4KLMvLR5LElS26LaSG9hRhEHAucDp2bmlbOu3wRsAhgdHT1ucnKyleWttJmZGUZGRgYdY9l6zb195019SLM8h+0LP71t0Cl6s5zs69eu6W+YPZjv57wS496P57yUdX2Q6/WenvNi2ScmJrZl5oamGVorfICIOBO4NTPfOd/tY2NjOT093dryVtLU1BTj4+ODjrFsveZed/rW9sMs0yvW7+Ks7U0/ZhqM5WTfsXljn9MsbL6f80qMez+e81LW9UGu13t6zotlj4hWCr/pUTqj9ZY9EbEv8Djgu01DSZLa1/Rl/J7AuRGxiurFYzIzL2weS5LUtqZH6XwbOLalLJKkPvJMW0kqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCNCr8iDgiIr4YEVdHxFURcVpbwSRJ7Vrd8PG7gFdk5rci4gBgW0RclJnfaSGbJKlFjbbwM/O/MvNb9fQtwNXA2jaCSZLaFZnZzowi1gGXAMdk5s2zrt8EbAIYHR09bnJysqf5b995U/OQDRy2L/z0toFG6ElXc0M52devXdPfMHsw3+9VV8d92HPv6ec8MzPDyMjIgrdPTExsy8wNTTO0UvgRMQJ8CXhzZp630P3GxsZyenq6p2WsO31rj+na8Yr1uzhre9M9YCuvq7mhnOw7Nm/sc5qFzfd71dVxH/bce/o5T01NMT4+vuDtEdFK4Tc+Sici9gY+DXx0T2UvSRqspkfpBPBh4OrMfFc7kSRJ/dB0C/9RwHOBEyLiivrfE1vIJUlqWaMdXpn5FSBayiJJ6iPPtJWkQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqRKPCj4izI+KGiLiyrUCSpP5ouoV/DvCEFnJIkvqsUeFn5iXAz1rKIknqo8jMZjOIWAdcmJnHLHD7JmATwOjo6HGTk5M9LWf7zpt6TNiOw/aFn9420Ag96WpuMPugdDX7sOdev3bNgrfNzMwwMjKy4O0TExPbMnND0wx9L/zZxsbGcnp6uqflrDt9a0+Pa8sr1u/irO2rB5qhF13NDWYflK5mH/bcOzZvXPC2qakpxsfHF7w9IlopfI/SkaRCWPiSVIimh2V+HPgaMBYR10XEC9qJJUlqW6MdXpl5cltBJEn95S4dSSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVonHhR8QTImI6In4QEae3EUqS1L5GhR8Rq4APACcCDwBOjogHtBFMktSuplv4DwN+kJnXZOYdwCeAJzePJUlqW2Rm7w+OeBrwhMx8YX35ucDDM/Ols+6zCdhUXzwGuLL3uAN1CHDjoEP0oKu5weyD0tXsXc0Ni2e/T2aONl3I6oaPj3mu+51XkMzcAmwBiIjLMnNDw2UORFezdzU3mH1Qupq9q7lh5bI33aVzHXDErMuHA9c3nKckqQ+aFv43gaMi4r4RsQ/wLOCC5rEkSW1rtEsnM3dFxEuBzwOrgLMz86o9PGRLk+UNWFezdzU3mH1Qupq9q7lhhbI3+tBWktQdnmkrSYWw8CWpEBa+JBVi6As/Ik6IiPsOOsdydTU3mH1Qupq9q7mhvOxD+6Ft/Z08nwB+AfwWODMzvzTYVIvram4w+6B0NXtXc0O52YdmCz8iDo+Iu8266pnApzPz0VRP7uSIOH4w6RbW1dxg9kHpavau5gaz7zbwwo+I+0fEZ4GvAH8VEbu/fO1XwH719CTV90w8IiLm+zqHFdfV3GD2Qelq9q7mBrPPNZDCj4j9Z118MHBdZq4DLgbeWV//M+D2iDggM38GfA84DFi3glF/R1dzg9kHpavZu5obzL4nK1b4EXFQRJwTEd8ENkfEaP2K9EDgqxERmXkB8IuI2Ej1JA4A1tez+D7VN8rdsVKZu5zb7GYvJbfZl559JbfwHw3sAp5I9S2brwbuVme4R/7fp8fnAs8GvgHcQvXHVcjMrwEnADevYGbobm4wu9mXp6u5wexLy56Zrf6j+k6dFwFfovoe/EPq6yeBl9XT9wU217c/lGof1ar6thHgv+v5rAWuBl4K/D3wQWC/tjN3ObfZzV5KbrM3z96PLfyTgCcBbwCOB95eX38R8Mh6+sfAl4ETM/ObVK9qEwCZOQNcCjw0M3cCz6XaP/UT4DWZ+cs2w876oOOPupR7jk6NOTjug8jumLuu9/RtmfU+pYyIh1K9xfgysDUzbwd+H7gmMy+OiGuBd0TE44FtwFMi4pDMvDEivg/cGhH3Bt4HPCciDqX6Tv3/oXrbQmZeBlzWS8495N8AvJDqbdE7gBuA3xv23HX2To55nd1xd11fSuZO90v9HIZy3Je9hR8Rd6t/GOPA2VSHCD0OeGt9l98C34uIfTPzWqq3HQ+sn/j1VMeQAvyG6q3JXsCnqb4e9BTgOGBLZv52udkWyT0SEXeNiHPr5V0LvDczb4iIvaheSYcud5394Pr/RwLn0JExrzMfFNVxxFuA8+jWuB8aEQfXv7zn0pFxj4hDIuIhEfF+4Hy6Neb71P3yGKpdFZ0Y8zr73hGxb0Scw7B2zBL3Pe0H/Cnwb1QH/AP8OfCSevog4NvAsXXozcC6+raT6sCH1NPbgTVUHzJ8Fthn1nL2arKPbA+5LwY+WV/3NuBFs+6zuv7/pcCbhiT37jOgn061D28KGANe3oExn539q8AXqFbqoR/3ep77A8+jept9E7CxI+O+O/cXqLYCn9qhMd8beDHwGeBvgCOB04Z9zOdkv5Bqa/zoOt9QjvuiW/gRsTdwFfA04B2Z+cf1Tcfuvk9m/hz4Z+BlVL8ohwL3r2++BHgMcEdmXgh8GPgU8AGqraZfz5pPa6+6c3K/PTN3v3puBx4QEW+tX4n/LCLuDnwOuMegc9fzy4hYAzwDeE9mjmfmNNUr/O77DN2Yz5P93Zn5uMz8Nh0Y94g4kmr3wWOB1wA7gR9RfZC2ql7m0I37nNxnUO3T/WGdZ/0wj3ntJVQl9x6qv4n91Pryb+plDt2Yz5P93VTryFOo1pmxiNg8dOO+xFex84BT5lz3TODSWZfvBVxfT7+E6pTfg4B9qV657z3rvoe0/Uq7jNz3rrN9EjiZaiX73DDlrpf1YuCN9fTureanDvuYz81eX94XuGedb3JYx53qF/Yusy6fTbXB8ORhHvd5cn+Iamv/0I6s658B/qSefgFwat0v3xjWMV8g+/OBV9Ud88lhHPelPqmTqA72P4tq98LrgPtQnfF16Kz7XQQ8vJ5+E/CvVG8v/3KlfgB7yP1F4PVUH3ysnXWfvevndEJ9+c2Dzl3neEad6xTgW1Sv+E+m2s1wyKz7DdWYz5N9G/ARqiMUZq/YQznus/IdTLUP+XFU+1J/RnVM9NCO+5zcj68vd2FdfzHV7uJ/ojpK5UNUu0Z+DowO85jPyf4jqo2E+wNHDOO4L+eJfZ7qhIAjqF65TgO+RlX+Ady9/kHde9aTPAa466B+GPPk/ijV6clHzbr9HlQfhD5wyHIfVY/vX1NtDTwbeBfVcbivrEtoWMd8bvanU23Znzjs4z7neVwOPLWe/gjwtnp6KMd9Tu4n1dN7zbp+aMec6oiWs6n2Z78eOBOYrn93h3Zdnyf7GcDfAY8YxnFfzlE6T8nMt2Tmj4G3UB0e9T6qtyUXUL3KrcrMHwFk5q8z88rM/NUyltEPs3O/lWrwD4yIB0XEGVS7fX6Z1X7mYcr9I6pTpVdntQ/zwvq6C6k+jB7mMZ+bfSvwHeDYiPiDIR936iMqoPrA/Mh6+s3VTfEZhnTcF8i9V33EzqsZ4jEHHgBMZeaNVO9QVgEfZ/j7BX43+7nAbcD9IuLoYVvXl3wcfv7uQf2/oCr812bmxyLiOcBVmXl52wGbmpP7FqoTFa6meiXem+pIgGHMfXtEbKZ66wrVVs7xwObMvHzIx3xu9n2o3ua+keqoqX0Y0nGH6gOyiNj9bYQ/qK+7GnhlRJwCfGcYs8/JvaO+bldEPItq/RnKMY+IVcB1VF8x8A/ArVRnmb44M68d5nV9nuy/onqH+3aq3T13YYjGfcl/ACUi7gI8gersrqOpDp/6YGbu6l+85ubJvSUz3z3YVEsXEW+mOmHjWKr9fmfWW81Db072LwCvzP6ehdmqiJgGXpeZn9x9MtCgMy3F7NyDzrJUEXE/qkMU76BaZ84H3pTV2aVDbZ7sFwBnZOaKfxHbYpb1F68i4kVUJz7845C8lVqSrubeLSLGgB+afWXMOtPzwVSH9u7qQtl3Nfdu9ZmlRwH/npm3DTrPcnQl+9D+iUNJUrsG/hevJEkrw8KXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhfhfHCg3qEW8+c0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}