From a9aed58f595ed60317d906eb82eb2a696832237e Mon Sep 17 00:00:00 2001 From: b2c48a7ab4afbff5f4d26650b09eb6b4 Date: Sat, 4 Apr 2020 15:42:48 +0000 Subject: [PATCH] Ajout de la version allant chercher le fichier dans le dossier local Gtllab --- module3/exo1/analyse-syndrome-grippal.ipynb | 2218 ++++++++++++++++++- 1 file changed, 2180 insertions(+), 38 deletions(-) diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5..983cd28 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -26,15 +26,20 @@ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les données ont été téléchargées sur le site du réseau sentinelle à l'[adresse suivante](http://www.sentiweb.fr/datasets/incidence-PAY-3.csv) et stockée sur le dossier gitlab disponible via ce [lien](https://app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module3/exo1/incidence-PAY-3.csv)." + ] + }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 37, + "metadata": {}, "outputs": [], "source": [ - "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" + "data_url = \"https://app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/raw/46bda5dd717ec3c48bb3cdaba503734e158195cb/module3/exo1/incidence-PAY-3.csv?inline=false\"" ] }, { @@ -61,9 +66,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202013300.00.000.00.0FRFrance
1202012383325881.010783.0139.017.0FRFrance
2202011310170493652.0109756.0154142.0166.0FRFrance
3202010310497796650.0113304.0159146.0172.0FRFrance
42020093110696102066.0119326.0168155.0181.0FRFrance
52020083143753133984.0153522.0218203.0233.0FRFrance
62020073183610172812.0194408.0279263.0295.0FRFrance
72020063206669195481.0217857.0314297.0331.0FRFrance
82020053187957177445.0198469.0285269.0301.0FRFrance
92020043122331113492.0131170.0186173.0199.0FRFrance
1020200337841371330.085496.0119108.0130.0FRFrance
1120200235361447654.059574.08172.090.0FRFrance
1220200133685031608.042092.05648.064.0FRFrance
1320195232813523220.033050.04336.050.0FRFrance
1420195132978625042.034530.04538.052.0FRFrance
1520195033422329156.039290.05244.060.0FRFrance
1620194932566221414.029910.03933.045.0FRFrance
1720194832236718055.026679.03427.041.0FRFrance
1820194731866914759.022579.02822.034.0FRFrance
1920194631603012567.019493.02419.029.0FRFrance
202019453101387160.013116.01510.020.0FRFrance
21201944378225010.010634.0128.016.0FRFrance
22201943394876448.012526.0149.019.0FRFrance
23201942377475243.010251.0128.016.0FRFrance
24201941371224720.09524.0117.015.0FRFrance
25201940385055784.011226.0139.017.0FRFrance
26201939370914462.09720.0117.015.0FRFrance
27201938348972891.06903.074.010.0FRFrance
28201937331721367.04977.052.08.0FRFrance
2920193632295728.03862.031.05.0FRFrance
.................................
181819852132609619621.032571.04735.059.0FRFrance
181919852032789620885.034907.05138.064.0FRFrance
182019851934315432821.053487.07859.097.0FRFrance
182119851834055529935.051175.07455.093.0FRFrance
182219851733405324366.043740.06244.080.0FRFrance
182319851635036236451.064273.09166.0116.0FRFrance
182419851536388145538.082224.011683.0149.0FRFrance
18251985143134545114400.0154690.0244207.0281.0FRFrance
18261985133197206176080.0218332.0357319.0395.0FRFrance
18271985123245240223304.0267176.0445405.0485.0FRFrance
18281985113276205252399.0300011.0501458.0544.0FRFrance
18291985103353231326279.0380183.0640591.0689.0FRFrance
18301985093369895341109.0398681.0670618.0722.0FRFrance
18311985083389886359529.0420243.0707652.0762.0FRFrance
18321985073471852432599.0511105.0855784.0926.0FRFrance
18331985063565825518011.0613639.01026939.01113.0FRFrance
18341985053637302592795.0681809.011551074.01236.0FRFrance
18351985043424937390794.0459080.0770708.0832.0FRFrance
18361985033213901174689.0253113.0388317.0459.0FRFrance
183719850239758680949.0114223.0177147.0207.0FRFrance
183819850138548965918.0105060.0155120.0190.0FRFrance
183919845238483060602.0109058.0154110.0198.0FRFrance
1840198451310172680242.0123210.0185146.0224.0FRFrance
18411984503123680101401.0145959.0225184.0266.0FRFrance
1842198449310107381684.0120462.0184149.0219.0FRFrance
184319844837862060634.096606.0143110.0176.0FRFrance
184419844737202954274.089784.013199.0163.0FRFrance
184519844638733067686.0106974.0159123.0195.0FRFrance
18461984453135223101414.0169032.0246184.0308.0FRFrance
184719844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1848 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202013 3 0 0.0 0.0 0 0.0 \n", + "1 202012 3 8332 5881.0 10783.0 13 9.0 \n", + "2 202011 3 101704 93652.0 109756.0 154 142.0 \n", + "3 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "4 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "5 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "6 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "7 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "8 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "9 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "10 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "11 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "12 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "13 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "14 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "15 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "16 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "17 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "18 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "19 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "20 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "21 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "22 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "23 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "24 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "25 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "26 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "27 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "28 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "29 201936 3 2295 728.0 3862.0 3 1.0 \n", + "... ... ... ... ... ... ... ... \n", + "1818 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1819 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1820 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1821 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1822 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1823 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1824 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1825 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1826 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1827 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1828 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1829 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1830 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1831 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1832 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1833 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1834 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1835 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1836 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1837 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1838 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1839 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1840 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1841 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1842 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1843 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1844 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1845 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1846 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1847 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 0.0 FR France \n", + "1 17.0 FR France \n", + "2 166.0 FR France \n", + "3 172.0 FR France \n", + "4 181.0 FR France \n", + "5 233.0 FR France \n", + "6 295.0 FR France \n", + "7 331.0 FR France \n", + "8 301.0 FR France \n", + "9 199.0 FR France \n", + "10 130.0 FR France \n", + "11 90.0 FR France \n", + "12 64.0 FR France \n", + "13 50.0 FR France \n", + "14 52.0 FR France \n", + "15 60.0 FR France \n", + "16 45.0 FR France \n", + "17 41.0 FR France \n", + "18 34.0 FR France \n", + "19 29.0 FR France \n", + "20 20.0 FR France \n", + "21 16.0 FR France \n", + "22 19.0 FR France \n", + "23 16.0 FR France \n", + "24 15.0 FR France \n", + "25 17.0 FR France \n", + "26 15.0 FR France \n", + "27 10.0 FR France \n", + "28 8.0 FR France \n", + "29 5.0 FR France \n", + "... ... ... ... \n", + "1818 59.0 FR France \n", + "1819 64.0 FR France \n", + "1820 97.0 FR France \n", + "1821 93.0 FR France \n", + "1822 80.0 FR France \n", + "1823 116.0 FR France \n", + "1824 149.0 FR France \n", + "1825 281.0 FR France \n", + "1826 395.0 FR France \n", + "1827 485.0 FR France \n", + "1828 544.0 FR France \n", + "1829 689.0 FR France \n", + "1830 722.0 FR France \n", + "1831 762.0 FR France \n", + "1832 926.0 FR France \n", + "1833 1113.0 FR France \n", + "1834 1236.0 FR France \n", + "1835 832.0 FR France \n", + "1836 459.0 FR France \n", + "1837 207.0 FR France \n", + "1838 190.0 FR France \n", + "1839 198.0 FR France \n", + "1840 224.0 FR France \n", + "1841 266.0 FR France \n", + "1842 219.0 FR France \n", + "1843 176.0 FR France \n", + "1844 163.0 FR France \n", + "1845 195.0 FR France \n", + "1846 308.0 FR France \n", + "1847 213.0 FR France \n", + "\n", + "[1848 rows x 10 columns]" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" @@ -78,9 +1050,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
161119891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1611 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1611 FR France " + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +1130,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202013300.00.000.00.0FRFrance
1202012383325881.010783.0139.017.0FRFrance
2202011310170493652.0109756.0154142.0166.0FRFrance
3202010310497796650.0113304.0159146.0172.0FRFrance
42020093110696102066.0119326.0168155.0181.0FRFrance
52020083143753133984.0153522.0218203.0233.0FRFrance
62020073183610172812.0194408.0279263.0295.0FRFrance
72020063206669195481.0217857.0314297.0331.0FRFrance
82020053187957177445.0198469.0285269.0301.0FRFrance
92020043122331113492.0131170.0186173.0199.0FRFrance
1020200337841371330.085496.0119108.0130.0FRFrance
1120200235361447654.059574.08172.090.0FRFrance
1220200133685031608.042092.05648.064.0FRFrance
1320195232813523220.033050.04336.050.0FRFrance
1420195132978625042.034530.04538.052.0FRFrance
1520195033422329156.039290.05244.060.0FRFrance
1620194932566221414.029910.03933.045.0FRFrance
1720194832236718055.026679.03427.041.0FRFrance
1820194731866914759.022579.02822.034.0FRFrance
1920194631603012567.019493.02419.029.0FRFrance
202019453101387160.013116.01510.020.0FRFrance
21201944378225010.010634.0128.016.0FRFrance
22201943394876448.012526.0149.019.0FRFrance
23201942377475243.010251.0128.016.0FRFrance
24201941371224720.09524.0117.015.0FRFrance
25201940385055784.011226.0139.017.0FRFrance
26201939370914462.09720.0117.015.0FRFrance
27201938348972891.06903.074.010.0FRFrance
28201937331721367.04977.052.08.0FRFrance
2920193632295728.03862.031.05.0FRFrance
.................................
181819852132609619621.032571.04735.059.0FRFrance
181919852032789620885.034907.05138.064.0FRFrance
182019851934315432821.053487.07859.097.0FRFrance
182119851834055529935.051175.07455.093.0FRFrance
182219851733405324366.043740.06244.080.0FRFrance
182319851635036236451.064273.09166.0116.0FRFrance
182419851536388145538.082224.011683.0149.0FRFrance
18251985143134545114400.0154690.0244207.0281.0FRFrance
18261985133197206176080.0218332.0357319.0395.0FRFrance
18271985123245240223304.0267176.0445405.0485.0FRFrance
18281985113276205252399.0300011.0501458.0544.0FRFrance
18291985103353231326279.0380183.0640591.0689.0FRFrance
18301985093369895341109.0398681.0670618.0722.0FRFrance
18311985083389886359529.0420243.0707652.0762.0FRFrance
18321985073471852432599.0511105.0855784.0926.0FRFrance
18331985063565825518011.0613639.01026939.01113.0FRFrance
18341985053637302592795.0681809.011551074.01236.0FRFrance
18351985043424937390794.0459080.0770708.0832.0FRFrance
18361985033213901174689.0253113.0388317.0459.0FRFrance
183719850239758680949.0114223.0177147.0207.0FRFrance
183819850138548965918.0105060.0155120.0190.0FRFrance
183919845238483060602.0109058.0154110.0198.0FRFrance
1840198451310172680242.0123210.0185146.0224.0FRFrance
18411984503123680101401.0145959.0225184.0266.0FRFrance
1842198449310107381684.0120462.0184149.0219.0FRFrance
184319844837862060634.096606.0143110.0176.0FRFrance
184419844737202954274.089784.013199.0163.0FRFrance
184519844638733067686.0106974.0159123.0195.0FRFrance
18461984453135223101414.0169032.0246184.0308.0FRFrance
184719844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1847 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202013 3 0 0.0 0.0 0 0.0 \n", + "1 202012 3 8332 5881.0 10783.0 13 9.0 \n", + "2 202011 3 101704 93652.0 109756.0 154 142.0 \n", + "3 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "4 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "5 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "6 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "7 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "8 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "9 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "10 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "11 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "12 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "13 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "14 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "15 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "16 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "17 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "18 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "19 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "20 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "21 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "22 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "23 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "24 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "25 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "26 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "27 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "28 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "29 201936 3 2295 728.0 3862.0 3 1.0 \n", + "... ... ... ... ... ... ... ... \n", + "1818 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1819 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1820 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1821 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1822 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1823 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1824 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1825 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1826 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1827 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1828 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1829 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1830 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1831 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1832 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1833 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1834 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1835 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1836 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1837 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1838 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1839 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1840 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1841 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1842 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1843 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1844 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1845 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1846 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1847 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 0.0 FR France \n", + "1 17.0 FR France \n", + "2 166.0 FR France \n", + "3 172.0 FR France \n", + "4 181.0 FR France \n", + "5 233.0 FR France \n", + "6 295.0 FR France \n", + "7 331.0 FR France \n", + "8 301.0 FR France \n", + "9 199.0 FR France \n", + "10 130.0 FR France \n", + "11 90.0 FR France \n", + "12 64.0 FR France \n", + "13 50.0 FR France \n", + "14 52.0 FR France \n", + "15 60.0 FR France \n", + "16 45.0 FR France \n", + "17 41.0 FR France \n", + "18 34.0 FR France \n", + "19 29.0 FR France \n", + "20 20.0 FR France \n", + "21 16.0 FR France \n", + "22 19.0 FR France \n", + "23 16.0 FR France \n", + "24 15.0 FR France \n", + "25 17.0 FR France \n", + "26 15.0 FR France \n", + "27 10.0 FR France \n", + "28 8.0 FR France \n", + "29 5.0 FR France \n", + "... ... ... ... \n", + "1818 59.0 FR France \n", + "1819 64.0 FR France \n", + "1820 97.0 FR France \n", + "1821 93.0 FR France \n", + "1822 80.0 FR France \n", + "1823 116.0 FR France \n", + "1824 149.0 FR France \n", + "1825 281.0 FR France \n", + "1826 395.0 FR France \n", + "1827 485.0 FR France \n", + "1828 544.0 FR France \n", + "1829 689.0 FR France \n", + "1830 722.0 FR France \n", + "1831 762.0 FR France \n", + "1832 926.0 FR France \n", + "1833 1113.0 FR France \n", + "1834 1236.0 FR France \n", + "1835 832.0 FR France \n", + "1836 459.0 FR France \n", + "1837 207.0 FR France \n", + "1838 190.0 FR France \n", + "1839 198.0 FR France \n", + "1840 224.0 FR France \n", + "1841 266.0 FR France \n", + "1842 219.0 FR France \n", + "1843 176.0 FR France \n", + "1844 163.0 FR France \n", + "1845 195.0 FR France \n", + "1846 308.0 FR France \n", + "1847 213.0 FR France \n", + "\n", + "[1847 rows x 10 columns]" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +2125,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +2155,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 42, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +2180,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +2208,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXmcHGWd/z/fvubMJJOTnEwC4Qg3xAACoiKHiy7uCi7uClFxUZZ1jx+6wq4rKovHroq6rigKGPDgVlDkCMEAciQkECAHIQm5r5kwk8xkMld3P78/6nmqq7rreKqrurs6+b5fr3l1T/VTTz311FPP9/kez/OQEAIMwzAME5ZErQvAMAzDHBywQGEYhmEigQUKwzAMEwksUBiGYZhIYIHCMAzDRAILFIZhGCYSWKAwDMMwkcAChWEYhokEFigMwzBMJKRqXYBqMn78eNHR0VHrYjAMw9QVy5cv3yOEmOCX7pASKB0dHVi2bFmti8EwDFNXENFmnXRs8mIYhmEigQUKwzAMEwksUBiGYZhIYIHCMAzDRAILFIZhGCYSfAUKEd1BRJ1EtNJybCwRLSSidfKz3fLbDUS0nojWEtGFluOnEdEb8rcfEhHJ4w1EdK88voSIOiznzJfXWEdE8y3HZ8q06+S5mfBVwTAMw4RBR0P5BYCLio5dD2CREGI2gEXyfxDRHACXAzhOnvNjIkrKc24FcDWA2fJP5XkVgB4hxJEAbgHwbZnXWAA3AjgdwDwAN1oE17cB3CKv3yPzYBiGYWqIr0ARQjwLoLvo8CUAFsjvCwB8xHL8HiHEkBBiI4D1AOYR0WQAbUKIF4Wx5/BdReeovB4AcJ7UXi4EsFAI0S2E6AGwEMBF8rf3y7TF1z/oGcnlcd/LW5HP89bNDMPEi3J9KJOEEDsBQH5OlMenAthqSbdNHpsqvxcft50jhMgC2AdgnEde4wDslWmL8zroue3Zt/FvD76O3766vdZFYRiGsRG1U54cjgmP4+Wc45VXaYGIriaiZUS0rKuryy1Z3bBr3yAAYP9Q1iclwzBMdSlXoOyWZizIz055fBuA6ZZ00wDskMenORy3nUNEKQCjYZjY3PLaA2CMTFucVwlCiNuEEHOFEHMnTPBdiib2ZKWpK5V0kqsMwzC1o1yB8ggAFXU1H8DDluOXy8itmTCc70ulWayPiM6QPpAri85ReV0K4GnpZ3kCwAVE1C6d8RcAeEL+9ieZtvj6Bz25fB4AkEqwQGEYJl74Lg5JRL8B8F4A44loG4zIq28BuI+IrgKwBcBlACCEWEVE9wFYDSAL4FohRE5mdQ2MiLEmAI/JPwC4HcDdRLQehmZyucyrm4huAvCyTPd1IYQKDvgSgHuI6L8AvCrzOCTI5gwNJZngKUQMw8QLX4EihPi4y0/nuaS/GcDNDseXATje4fggpEBy+O0OAHc4HH8bRijxIYcyeaXZ5MUwTMzgYW6dkcsrDYUFCsMw8YIFSp2hBEqCWKAwDBMvWKAwDMMwkcACpc5QvnjBE+UZhokZLFDqDJLzOoX7XE6GYZiawAKl3pCuE9ZQGIaJGyxQ6gzlis+zRGEYJmawQKkziKO7GIaJKSxQ6gwWJwzDxBUWKHUGsQ+FYZiYwgKlzlAaCkd5MQwTN1ig1BnKhyIXHWYYhokNLFDqDPahMAwTV1ig1BvKh1LbUjAMw5TAAqXOUDPl62Eeyq+WbEbH9Y/iwDBvV8wwhwIsUOoMKnjlY8+tizcAAPb0Dde4JAzDVAMWKHVGPUV58RxMhjm0YIFSZ/A8FIZh4goLlDqjsNpw/VAP2hTDMOFhgVJn1JOGQhzkzDCHFCxQ6gz2SzAME1dYoDAVpx60KYZhwsMChakYrE0xzKEFCxSmYrBmwjCHFixQGIZhmEhggVKn1EMoLpu8GObQggUKU3HiL/oYhokCFih1Sj34J1hBYZhDCxYoDMMwTCSwQKlTvBSUO5/fiPd9Z3G1iuKLqAd1imGY0IQSKET0r0S0iohWEtFviKiRiMYS0UIiWic/2y3pbyCi9US0logutBw/jYjekL/9kOQ+t0TUQET3yuNLiKjDcs58eY11RDQ/zH3UJR6d9Nd+vxob9/RXsTDOEHvlGeaQomyBQkRTAfwTgLlCiOMBJAFcDuB6AIuEELMBLJL/g4jmyN+PA3ARgB8TUVJmdyuAqwHMln8XyeNXAegRQhwJ4BYA35Z5jQVwI4DTAcwDcKNVcDEMwzDVJ6zJKwWgiYhSAJoB7ABwCYAF8vcFAD4iv18C4B4hxJAQYiOA9QDmEdFkAG1CiBeFYRu5q+gcldcDAM6T2suFABYKIbqFED0AFqIghA4J6smIVE9lZRimfMoWKEKI7QC+A2ALgJ0A9gkhngQwSQixU6bZCWCiPGUqgK2WLLbJY1Pl9+LjtnOEEFkA+wCM88jrkKEe3BJs8GKYQ4swJq92GBrETABTALQQ0Se8TnE4JjyOl3tOcTmvJqJlRLSsq6vLo3gMwzBMGMKYvD4AYKMQoksIMQLgIQDvBrBbmrEgPztl+m0AplvOnwbDRLZNfi8+bjtHmtVGA+j2yKsEIcRtQoi5Qoi5EyZMKPNW40c9RU7VUVEZhglBGIGyBcAZRNQs/RrnAVgD4BEAKupqPoCH5fdHAFwuI7dmwnC+L5VmsT4iOkPmc2XROSqvSwE8Lf0sTwC4gIjapaZ0gTx2CFBHOzayzYthDilS5Z4ohFhCRA8AeAVAFsCrAG4D0ArgPiK6CobQuUymX0VE9wFYLdNfK4TIyeyuAfALAE0AHpN/AHA7gLuJaD0MzeRymVc3Ed0E4GWZ7utCiO5y76W+qAtRwjDMIUjZAgUAhBA3wgjftTIEQ1txSn8zgJsdji8DcLzD8UFIgeTw2x0A7ghY5IOG+jIj1VVhGYYpE54pX3fom7xq7WdhixfDHFqwQDmIiYsWE5dyMAxTWVig1Ck62kc+Jj15PErBMEylYYFyEFPrjlyt5RUTucYwTIVhgXIQE5eOPOzukv/v3hVYtGZ3RKVhGKZSsECpU3SERa23CVZO+bCC7aFXt+OqBctCl4dhmMrCAuUgJjYaSkzKwTBMZWGBUqfoaB9x6chrrSkxDFMdWKDUKXVh8pI2r7gINoZhKgsLlIMY7sgZhqkmLFDqFB1ZEZt5KPEoBsMwFYYFSp2iZ/KqLWQuE1PrkjAMUw1YoBzExEUzCFOOWq9HxjCMPixQ6hStUX9M+uIwxWB5wjD1AwuUOiNI5FStfSiFspZfDpYnDFM/sECpM4L0zbXujKOQZ2zyYpj6gQXKQUxcOuMwpcjH4xYYhtGABcpBTK374igmNnKEGMPUDyxQ6pR62g8ljGiLzS0wDOMLC5Q6I9CoPyadMQsFhjk0YIFSZ9STU17BYcMMc2jAAqVOOVSWXonLPTAM4w8LlDojiMkrLn0xz0NhmEMDFigHMbXujM095UPkEZfQZ4Zh/GGBUqfobbAVj844XNgwwzD1AguUOqUeTF7mnvIVDhvO5QV27Rss+xoMw0QDC5QArO/sw+9f21HrYmhTa4FiEsrm5Z/kloVv4YxvLsKOvQMhLsQwTFhStS5APfGB7z0LAPjwSVNqVgYlJPSmocRDooRbesX/7MVvdQIA9uwfwpQxTSGuxjBMGFhDqVc0OtpaayjRLL2ikUYmItPIxjBMLWCBUnfo985xmcMRzoeify6xPGGYmsICpc4IZvKKB9XSUBiGqS2hBAoRjSGiB4joTSJaQ0RnEtFYIlpIROvkZ7sl/Q1EtJ6I1hLRhZbjpxHRG/K3H5KcwEBEDUR0rzy+hIg6LOfMl9dYR0Tzw9zHwUqtO1rT5BUiD61othD5MwwTHWE1lB8AeFwIcQyAkwCsAXA9gEVCiNkAFsn/QURzAFwO4DgAFwH4MRElZT63ArgawGz5d5E8fhWAHiHEkQBuAfBtmddYADcCOB3APAA3WgVXpanl/A5TQ9EqQjy62lAz5bV8RUYaNnkxTG0pW6AQURuA9wC4HQCEEMNCiL0ALgGwQCZbAOAj8vslAO4RQgwJITYCWA9gHhFNBtAmhHhRGD3DXUXnqLweAHCe1F4uBLBQCNEthOgBsBAFIVRx4rDpk45fIg7lBCoeNWzCTnmGqS1hNJRZALoA3ElErxLRz4moBcAkIcROAJCfE2X6qQC2Ws7fJo9Nld+Lj9vOEUJkAewDMM4jr6qQq2FPHcTBXXOTF8LbvILcA2soDFNbwgiUFIBTAdwqhDgFQD+kecsFp9ddeBwv9xz7RYmuJqJlRLSsq6vLo3j61FSgBDB5xWceSpjFIeMfHs0wjEEYgbINwDYhxBL5/wMwBMxuacaC/Oy0pJ9uOX8agB3y+DSH47ZziCgFYDSAbo+8ShBC3CaEmCuEmDthwoQybrOUXAx6sHqKfgoV5RVAcLKGwjC1pWyBIoTYBWArER0tD50HYDWARwCoqKv5AB6W3x8BcLmM3JoJw/m+VJrF+ojoDOkfubLoHJXXpQCeln6WJwBcQETt0hl/gTxWFWpr8tKn1vNQeGIjwxxahF165fMAfkVEGQBvA/gUDCF1HxFdBWALgMsAQAixiojugyF0sgCuFULkZD7XAPgFgCYAj8k/wHD4301E62FoJpfLvLqJ6CYAL8t0XxdCdIe8F23yMfB218PikIpQS69o1LVpH2V5wjA1JZRAEUKsADDX4afzXNLfDOBmh+PLABzvcHwQUiA5/HYHgDuClDcqamnyKkxsjIm00KDSYdZm2HBFr8IwjB88U74MOMpLj8Ly9eUT5B7qR8RWhydW7ULH9Y+is5eX9meqAwuUMqilQDHRKEKtfSiKcD4UfZNXXO43Lvzypc0AgNU7e2tcEuZQgQVKGdRUoNTTWl4UXkcJ4is6VOTJrn2DWL65xzcdsVOJqTIsUMqgXkbCB8MWwDp1re4zJrdbcT7wvWfw0VtfqHUxGKYEFigBSMgBXxzChnWERRwsc0Dll14x66T2OllV2D+UDZS+1rXSP5TFc+uimVTMxBsWKAFISolS25nyQa5d43koqhRVWnql0hrKwHAO/3LPq+jsqw8nd1wMXtfd9xquuH0ptvMWzQc9LFACoGzSsZgpXwfzUKLRHPSXXqn0/f7+9R343Yod+PZjayt7IU20Bxc1bgerdu4DAGRz+doWhKk4LFACECuTV4C09UywsOHK3nFj2thtYTCb80lZHYZ9Oui4+OSHs0Y5M6mDo7v57pNr0XH9o7HxUcaJg+MJV4mEfEPzdTLQqvWM/ihMXjq3oARJFO/33gPD2Dcw4vhbo+wQh0biIVBGcno3XGvfkhIoB8vSOLcu3gAAGMrWSUdQRVigBCARA5NXsNWG40E4g1eAiZwhrqM4+esLcdLXnnT8rUFpKCPx6EiGfTq0uHTfquOttWCLiuaM0Q76BoMFRxwKsEAJQMHkVbsOJYhfIi4aebgdG6tzHR0apIbi15FXi6xmO6x1O1Am4rhEHYalpcFYsSpotN2hAAuUACTMKK8aF0STWo8Io7Dhx2nplZR8/rodeaXxK0bcJjYeLD4HFe3JQQalsEAJgGnyikHYcD1EeSkqvfRK4ToVXoRSfmZDPv/OvkGs2Lo3dHnqZYJtFNsYxJGDReOKEhYoAVAmr3p5keNSzFA7NsZoHorKP6vpDHfjL37wZ3zk/54PXR7dgU2ooIi8wIPLt4UajStnfL28N35QnfUD1YQFSgAoDhpKoLT1H+Vlbp6lYb2p9N2qDiSsyWvP/qEoiuPboUVh8Hro1e247v7X8LPnNobO62Drf1mglMICJQBJDYHywoY9eHjF9soVwozyqienfIhzY7Rcv6mhxMTWoa2hhLjG3gPDAMIJwTiN6K/99Sv4+u9XR5JXDG4ndoTdsfGQQmdi49/+bAkA4JKTp1a0LDptOQ4vMFDF/VBC3q/f+Uq4xWL7Avjb8KP0yUfRlOJQa4++vhMA8JUPzwmdV1zerzjBGkoA4rD0SrXnZYRB1VeosOEAacP28wM+Exaj8qEowk481e3QoghWCGM+LZg+a90io6HgE6pxQWIIC5QAmKp7DFqS1rtZ+2ICCKuhGGfrDLbD+oz85hUUJpVGU7FhTWf+mlJ4FSVhDgrKz0MNLNyKu3FPPwaG47H6QBBYQymFBUoA1MtVSxt6kDZc6wZvdmcRLL2iNaci5O36aR5RBzmEde5Xw4dSabPZUDaH931nMb5w/2vRXahKHCwaV5SwQAmAmtBUy47aHCXX00z5aq02HOIqgP9zzUd0HUXYgYnf841WGIQ3eTnV7869xlYAUczLCcJImDBoM8ggosIcRLBACQBpOOWrhdf7HaeoGqB+9kPxOz/qEWlYX0w1fHnhN3Eu4KyhGB17Q7q6XVEU70YcTN9xgwVKAGIxU76unPLGZ2X1E2vayjq5o953JezSHdWY2EgR+FDgMcDJR6VeBiSK1XNYnpTCAiUAcZop71WCuEXVRDKx0SNNVCYIv/PNZfIj6v3Cl1d3YmMIc1UEZjOvLNQ9VLulhnmH4/Z+xQkWKAEI4pSvVGPTGSX7RdVUm3BLrwTwoYSsc10NJSrCDkx0TS7RzCEJI5TcfY+16pOjGBTGYefWuMECJQCFDbZq5xDXyTaKJU+iQMXrR7HBVjWWXvETSHkNYR7oeiHP153YGGZgEUVb8ipH7QRKPPI42GCBEoCErC0d23XlzWLu+cfOKR/q3CBe+RAXgobJK2LzTFinrm7dhGoHyodSfg4mTgLbNHlVua2Gilrz0LgOdVigBKCwY6N/2kqpw/W4Y2PIxbwCJK2sySvqEWml+6MoVvmNIvK4EDZc+lvtfCjln8s+FHdYoASAYmDy0qFgaqq5zcsoR4gsgpwbNnLH/3w1mg53HfN6oeOcK3+daPcycfChRJFtGUQTNhxBQQ4yWKAEQEV56TjlK6cO63dqtZYnimiivPzHyuF9EvXllPejsFRQiDwimIniFSRSq0FPODNgBHkcpIQWKESUJKJXiegP8v+xRLSQiNbJz3ZL2huIaD0RrSWiCy3HTyOiN+RvPyTZAomogYjulceXEFGH5Zz58hrriGh+2PvQIRnAdloph53WTPmYNfgwnUa+IFEqeh29sphXiji/8tA9PYp2EEH/66jZRx3ooEsU12OnfClRaCj/DGCN5f/rASwSQswGsEj+DyKaA+ByAMcBuAjAj4koKc+5FcDVAGbLv4vk8asA9AghjgRwC4Bvy7zGArgRwOkA5gG40Sq4KkWQiY1x6MxrXYQoZlkHObfiGkrEJq/wy+17/x6FuSpKk5dTFkrIVHszuCgmJ9fcpBxDQgkUIpoG4GIAP7ccvgTAAvl9AYCPWI7fI4QYEkJsBLAewDwimgygTQjxojCe0F1F56i8HgBwntReLgSwUAjRLYToAbAQBSFUOQIsvVKpZRlUrp7zUFQZYtLgw5m89P1VYW/XP8orXP5BrxeWKJ3y4eahwLUc9ehD8QoyONQJq6F8H8C/AbBaaScJIXYCgPycKI9PBbDVkm6bPDZVfi8+bjtHCJEFsA/AOI+8qkItTV5BuOGhN0Iv7xEF1dJQwnZP/lFeEYcNh9VQtMOGy79GpE55ryivujR5xeAljxllCxQi+hCATiHEct1THI4Jj+PlnmO/KNHVRLSMiJZ1dXVpFdQVeYVaOuV15kKQJXjgje37KlIOHQqdUfiw4WosvVJtE0bFO6QIfGlmxGAEBfGa2FjtvjmSKK8aCxQhBG57dgN27B2oaTmshNFQzgLwl0S0CcA9AN5PRL8EsFuasSA/O2X6bQCmW86fBmCHPD7N4bjtHCJKARgNoNsjrxKEELcJIeYKIeZOmDChvDtVecnXSsecVTGBoj4PkcFRNfeU93usUU/CCx01rHl+qPJG6kNxcsrXKsqr/HMjWTAzArb1DOAbf3wTn1mwrLYFsVC2QBFC3CCEmCaE6IDhbH9aCPEJAI8AUFFX8wE8LL8/AuByGbk1E4bzfak0i/UR0RnSP3Jl0Tkqr0vlNQSAJwBcQETt0hl/gTxWUVQD0vOhVLgwHuiE2FaTUEuvyHr0WnpFK/JN61o+TnnzOtFQJQUlkkl8ocoRy6VX6l9DUf2Q306j1SRVgTy/BeA+IroKwBYAlwGAEGIVEd0HYDWALIBrhRBq389rAPwCQBOAx+QfANwO4G4iWg9DM7lc5tVNRDcBeFmm+7oQorsC92JDNR+dWfCVM3mpsrjnb+18tXY6dGDfwAieW9eFD504pazzAau5pPy6CBTlVXENxfiMSlyH96FU/jrmaNzjav1DWQxn82hvyTjn4VGOWnXKUWiZcfCTxo1IBIoQYjGAxfL7OwDOc0l3M4CbHY4vA3C8w/FBSIHk8NsdAO4ot8zloBphLU1ehcK4/xRFh/fF+1/Dk6t345jD2nDkxNYIciyPIC9+2Br3Xxwy2mcaWqD4nB/FqtM62zi/7zuL0dk3hE3futilHO55FHwo1fZfRZEHS5RieKZ8AFTz0Vu+vrJl8KJcrcTK7l5ja9a+wZHQeUWxlJeXGS8S5z/0F4eMimqNcMOUWxR9OtHZN+SZh1f4cu18KOHDhuMyDyXKrZ7DwgIlAKr9qG1LvajUro5BV7wtt62lk0bTGAm5TS0QMmxY4+To5qH4aSjh8i8m9MRGzXRhOk+zvVVotn2t+uQo3s9am7ziIc7ssEAJgHqA/S5OMKsprNIjL68XPIoBSyZlNI1hDeHpRxQTG/X2QwmroVTb5BVpdiVE4ZSPIhDBa2JjrVYbPpjmocRIQWGBEgjhHVVhddbXevQSloKGUr5AKewpXx9Oeb/zo36m9bDacJRLojgvXy+vU+X3JYoVmGv9jsfF5GaFBUoA1OMbHMk5/m5Voyv9sD1zj2DIojQUHfOeH+E0lOpcB9BZbThmTnmfzj6KWe5RdPhee9vXbrXh8HnUukOPi4ZkhQVKANTzc3PK52wmr8qWodJtKcjKypVEdZo6MjJsSX3DhiN+qNWq2jDljsbk5TFTPkS+YYhmP5TavhsxWFWpBBYoAVCdm5tDz2ryqphTXuMVVOYqoPwIkGhXqg3foekQtpOotx0b/c6PwocS5eoATlkUfCjV7ZxDbQHssZRMNVF9TBRRnVHBAiUApobiEvlUVae8x2+pRPgGltCY0KZLOJNLEJtX+dcB6m8eSjWuI4o+oy5HNX0o1ud7MMxDqfX1nWCBEgC/pVeyNh9KZcvgRSQDlggdj1FUhc4oLHyUl0/+MXPK+51uCoMIwoajeIhOWVTTD2F9vlGYq2rdn7NAqXPU48u6LNQVl7BhK+Wu62VqKBGYBurFKe9npoz6mVY6yEvdTjRhw+GjopzaUoTyypeoNBSvMOhqUimzehhYoARANUgdDUVnvS8v+oey6HWYpa7zAkbRzhMR+FAU4cKG9c/VSblxTz8+e/cyx0i9avtQqjXoiGZiY/nl0JmHUg1sGkoUTvmYaCjx8aCwQCkLnSivsKr86d9YhBO/+mTJcZ0ONhITU4Dr+RGFhqLz0uh0Ev/5u5V4YtVuvLypdC1R/3koUftQwp3v18bUz+Gc8va8wuDslI8ufz/yNg0lCoFSaw2lppd3hAVKAPx8KPmIVGpAY0lqj/yt7bz8KK/o9nwIk0XUJi+lmTSkkiW/+WooEUfVVLpDiiJCS50Z5pa9oqJ06+D2P2/E+76zODIzz0E1DyVGKgoLlACo0bqbhmI9XrE95bVs2uGvHcmyHaocIV68IC+NzlXURM2GVGnT112+PioqvZZXQUOJh8nL8X5FyRdHbvrDamzc0x9qsdLoNRTv3z/4g+ew4IVNoa/jev1a29wcYIESAF8NRWNioxACL2zYU9HRTRRZUwROeUUoDSVQYv/UQ1lDQ8k4ChQ9p3xUz67S/YEqbxRO+TAUVuct/S1oxx5mbTnrpaJ4hn7a0pqdvbjxkVVl5X33S5vxhftf874+R3nVN+rxZV2MlzYNxeVh/27Fdvztz5bgwVe2hyqDV1uKoplF4ZSPZFZ/EJOXRhqv1ZP9fRIiaJE8qVbYcJjrBDm3nHk8QX0owyEcBzYNJQL/QyUHhf/5u5V4YPk2zzTmxMaKlSI4LFAC4BflldMQKN39hsq+cvu+kGXx+i0Ck5fmwo5dfUN4ccM7nmmiiPLSWnpF4zLqGTk9Q12TV1SmhvCPSVMAhjJb6uNWLYVdH53yj1ZDeW5dF9Z37nf8LaooL51gh2qE9NY6KMAJFigBMDWUEE751gbDGey2BL52IcIl8UV3DsndL23GJ+9c6lyOCDSUIOfqvGDqRS/H/JKPoIMOcr2wROFD8TtXZxDl9bupofiUQ2nMfvvzXHH7Unzge884/2gTKD4X9KBgSnTPJMwq3drl4CivOsfHh6Jj8gpfBGH7dEwTwaUTsmX4vXiDIzkMZfOOo/ZCWcvH3MddZ6Z8AA3Fq3PzK4vfs/3Xe1fgqdW7XX+PYp00nfN1Or6w17BqDH7Rj44+ec2yqayfW9elld6rHEGu65WPV3sJY5rThX0odY5VQ3FqkDanfIVV3kqbvOCxbasVta7ZiMdwKZzJxf9k3ZnL2Vweu+TWxk5pdX0ofo/2t69ux2fuWuadyKUMUVLwoYTIw6eMVoHiltQrmCGfd//NyqiGFADgSQ9B7Yf1CmE6Y3WmV5lHItj2wY+ow9ijgAVKAPyWbrBrKM55mKakssugkcZ6vTLbWkK3k5aCxMkUoRfi7I3O/aplYtxMkYrvP7XO/O44J0Jz6ZWwgiCKkGzAvw0VHN6Vq/+hXGHFAbdOWo01nH0o7r9ZOeOIcQCAYw8b5ZPSnajmiemYEv1Mc8s2deOZt8rXtoB4aiipWhegnrCNcPICyaJVfSuxlpcQwnEEUummZI76fd481YmPZPNAg/03UfIlOOpUL8GoHoOfI9TqrA1j8opKO6x4lJcSgCEGywUfh/PFrBqK2/0UyhG8zs10MqHfoMEzjyqavPx8KJf+5EUAwKZvXRyiHGWfWjFYQwmAtQ06dV65iBqsLc+i62jlaklU7uKQ6jyfgRZyyuTl8QKFqgmNelQaip9ASSYLdeHcuYXXUIK85BXf1VNjJP3qlh6s2dnrnofP07MJFFcfiv3TXkZdH4qRLlT0lOXUaKK8vDSUaExeXvXDExsRNV//AAAgAElEQVTrHOvL5bTisG1xSLf2FNAhW6zW6oSCCtv38hpdQlNDUb6TEY/t+KJY+sML0tRQrPvEOHdu1u/uJjyvjkSnw/PawTAIfs9WZyT9Vz9+AR/8wXMeeXiXQceMVNhEy+M3v4GL/D2chmL5Hkpr8y+zl8kryORMr/bE81DqHD8Nxdr5uto3A74P7g3fPaNo5qHoOeVVPTg5Ic0oL43iDGfzOPvbT2PRGrvTNR/gpfHVUCwCxdFBbNMwS8/X6aCDjHyrFTacC9N7+txz3uedMNKoduAupLUDIiIyedVSQxnMlq507YaXAI2jD4UFSgCsz89pBKKzllfQEVaJhqJxjjVN2SYvNer3dcpHY/La3TuIbT0D+MrD9qUqtO5XdZw+ZU2St4biN/FNxwYfxCQTfrVhv/zVswmvIfpFcBlpvE1ezkJarxyqXr3eH1+hZEurd12v63gJFK+wYXtknN775UQhysszi6rCAqVMHDscy8N3XeLeVP/1WnSJD8Xj5SxOE+Q6xSi/hK9TXr44Ti+QTln9UOd6hUaq7H1NXlYfip/AcDjfLnCcrxFo1OiRduOefvzypc36eTllLz+jWK7EVVhYsnaN8vLogHU1Ba8VDorTuBFV0IyXT0jhFTZsD2TwvlbOYzAQdNmaasBRXgGwvlROAsP6Qrk6KAMOS4vT66wnFcUeJrqhrebI0SlsOILy6Gko/p0NYDd5OXV+1ufrOJou6pCSDtqfVwdQkp9H0r/56Yvo7BvCx+ZOd1zIEvCvG3U/YRzEfuYdLR9K3r3N6q6Ppi7jtlsqEEyYhzEX6SwS6qVZWJ9HNp9HMlG6lYL1dzfUPbCGUqcIFDolp47D2qG5NdiqmLyE8/dy8OukvUxeQZYqcVviXMcfpK2hJArN3dmHYv3uPZp262CDdFReo2S1NI/Xvji6G2yFESh+S6NYi+A2WFJHnSeTFiVyQdVrKA1FQ/jpYN6PR7Xqmrz83FthTHy1gAVKAIQoRAo5jRxsAsVPQ9FsC8Uvqc7oKMpm5mvjlYLV2+SlIRRckui8M7ohpVYNxelF9u+Q/Mulo4HqaH9NGWPUWrz/RznzXEayYTREZa7yvkbxd1sacza80/nqOt7o+FCCPb8QdaLhQ1EmLyftYShr11C8CHO/tYAFSgAEBNJJo8qcHmZWQ6AEVbVLw4ZVWTwLqsWufYN47I2dnln4O+WNF8LL5KVzz+aijSV56AsjP+3PHjZchskrYg3Fq1NT7WxgxB4RFKT5qOoI40PxGxRY79c9yss9D936isKHYt12Ily0mP3TCRUIkUqUShSdfsL83cOEelAJFCKaTkR/IqI1RLSKiP5ZHh9LRAuJaJ38bLeccwMRrSeitUR0oeX4aUT0hvzthyQ9sETUQET3yuNLiKjDcs58eY11RDS/3PsIghCFUa5T55XXEShBTV4uTnkvrJ2wV/qP/fRFXPOrVxzLZEZO+fRFZtiwo4biPbq15eNSUJ0QTTONz4USPvNQ/ExeNvOOy6X05qG4X8NMIz+LBXWQ1qPShtuUyl27sP4O+GsxjnVuai8+HWsEAsUa7RbK5KVhJVDvQ8JBRbGGcfsNgiq1Rl6lCKOhZAFcJ4Q4FsAZAK4lojkArgewSAgxG8Ai+T/kb5cDOA7ARQB+TETKG3UrgKsBzJZ/F8njVwHoEUIcCeAWAN+WeY0FcCOA0wHMA3CjVXBVCgF4aig5nRGsh4PSieL2pOOX0G1oW7oP2MpkywN6L/qIx0z5ICYvt2Xl1b869xREQ/Gbh1KuDyXIlA+dTq24Xv20KKe0Oj4UP+3C3Slv/e49KHD62fSNaAqUMCYgq3nJS5ifcOMTuPHhla6/+9UJADwl51MVL88E2AcJfoMgTwGq8VJs2tOPXy0JFy0YhLIFihBipxDiFfm9D8AaAFMBXAJggUy2AMBH5PdLANwjhBgSQmwEsB7APCKaDKBNCPGiMN6Au4rOUXk9AOA8qb1cCGChEKJbCNEDYCEKQqhiCCGQSbov86HjQwmsobi9pJrn65iMvDUUvQY/7GjykiNTjU62IGjt+ej4jHQXbbSOFp3q1S8s2GaDd7mnqJzy5LLgpa0MvhtsGZ86AsUtjd8ARicU1zNsOK+nxSph4NUefUf7lnv0ekx9Q1kseNG9E9aZ4PqH1w1TctJBQ7GW06/MTqbk4nJ4celPXsR//HZlVfZnASLyoUhT1CkAlgCYJITYCRhCB8BEmWwqgK2W07bJY1Pl9+LjtnOEEFkA+wCM88jLqWxXE9EyIlrW1RVudc+8ANIyhNMxbFgjyktHdXfLE9Ab9Vt/0enfvEJodSc2Om2LbAqlABpKMTpLdOv6UKzht05JrXXqvKOjvgaqg86zKZ7PECQEO8jERleBYnb4/hqKn9/QSyv03z7Y+AyjodhNXsEGdjY0NBSFU7MN4kPxctrr+IH2DQwDMPYtqgahBQoRtQJ4EMC/CCHcV5lzXj1DeBwv9xz7QSFuE0LMFULMnTBhgkfx/MkLYZpNfDUUl5dYJ/yx+JpO/3udHzSCxdnkpfLyPlcJEuewYfWpL1CKk+oMrAqakE+nZPndz+Tl9CILDYESaOkVjTZQvEaaNXt/k5fxqeOUdxsJF4SB2zWsdVr6ez4vPANJVNF0O1avOvN3ylufn2dST4KEwzekS+eYZHP6PpQhD/+XysZrNQxlchscqQMNhYjSMITJr4QQD8nDu6UZC/KzUx7fBmC65fRpAHbI49McjtvOIaIUgNEAuj3yqihCFHwovmHDrjZ24Xq+E26rDXsKFJfvutcA9ENxPU1eAV68wgoCzse9KIxevevUz95v/d2pg7VmH8Ypr/BKqUa2TpqfLuoedZzy7iYv49NNM/LTUPz8ijrmI6AwQAuzttWIpg/FD52B0lGTWgEAjenSLjaIhnJg2F2zKCy66Z5HWs69ir2GIn0ZtwNYI4T4nuWnRwDMl9/nA3jYcvxyGbk1E4bzfak0i/UR0RkyzyuLzlF5XQrgaelneQLABUTULp3xF8hjFSUv9MOG/dby0u0niq+j4y+wj2L1tQP7dYxPXxuvivLyHEmVVwbAYnLx1MhUHt7XsJmsHNJaf/czeYVZy4s0d8MESs1VQTQUhZZA8at/NwHqIzCs9eHolPfRGhWF96b8djaisdS+3kRa/3ewfygnr1P6m46vVTEw7D6xVUcYqy0bhgIsSBmGMEuvnAXgCgBvENEKeezfAXwLwH1EdBWALQAuAwAhxCoiug/AahgRYtcKIdRdXgPgFwCaADwm/wBDYN1NROthaCaXy7y6iegmAC/LdF8XQnSHuBctDA1FM2zY14eiJ1FKGq3ZeYbQ2f2uAUvIr68ZQc5DcbifIDscupq8tASoXp36+UCshxyfr+1852voPBe/yYJAQUMpifIqw4eio+W5DQh81/LyqRO/XUxzRecnXaw36jphfCiDGmto6fibChqKexo1IdWpnRUvveJF74COQHEviKrO4RCTW4NQtkARQvwZ7quKn+dyzs0AbnY4vgzA8Q7HByEFksNvdwC4Q7e8UWDVUJw6WvVypJPkOlrWeTFsebqZvFxOL1m6ROMazsLR+PSKg7ee67kFsEYh/NY+8+oUCx2nzzU0zS+As6kpl/c+36+chXONT53RcHGHY9NQNK+j46tx69hUNbhl4edXsmkgDiVevaPXltYpzNYonzDTuBFktO/2/HRM0TrzUFR5/erErcwTRjWgq28I67v2O/5unGt8ej1fFcxSV1FehwpWgeIW5UVkrBnlNlr2amhu13T6311l18rWnqfHaPzR151n0itMH4rjfij2NF4U6tOeNmfWl/u56jd/DcX5e+GYRaD4mTR9fGRe6CzdocxixYJax+xW/LuWhuIijYOsNuw4yPIxea3YurfkWk4oH0o4gVIw+7jdj85AT0dDyXq0W6t/zu16Sqz2e6zlpmPyUvmwQIkheVEweblFeaUShGTCQ0NRTnnNVWmL8yn4C1wESvH/GpdxNu8Yn0PZPLbvHXA9d8Qjykun41TkXF6OnI8AtV4n7PLlfg5me2fufA0d4anTIRWc8sE1TjOtRUP0n6DqY/JyOc/md/IZjfsJW68i6mgoWZvwKk03YIl0cl28VeO91GnXSsN1umcdX6vK29Mpr1Enqh2FWX4nCCxQgiDgq6EkiJAgD5OIRiNwSq/wi74qfZE0OnOHvGymDI1RoVN9qCx0btXP5KUThBB2tdmcz8gxqzGPwU8b0Ak9tlI6U97y3edc6++OAtJyzE1DyfnUv5+QtZu8vPHUUAL6UJySKcd0MkGubVInqs5vQJDPC89IMJ2lV9S9HPBwynvN7yngrOlWChYoAcgLYU5sdDKvKBuwoaH4CBQNJ7O6pv03eJ6vjs7rGOuafzF+/gQv1AvhZfLS8xU4vxzWl9fPMRx2tVnrKM6pY9FxyvuZ4G0CwUtDkZ8lmkOAfsHPhGdtQ24aip8fzC8EVne5k+LylPwW0IfidD9D2TzSSUIqQa4DGLdoN4XOQMtvwUxr5+7XT3hpKH59ge2aIdZzCwJvsBWAvBBIq8UhnfZDEUqgJHx3bPR6MfxML4C/D6Wwv4jrZUwc51xYDnmNCr32Qwliw3fbhMl6rhDOM49VCt05M25praGV5fpQ/OL98xodkts1gSLHts/pfkEE9iAEPw2lzGtYmoVfM3BbzkYIUdCEPTQIv+c7nM0jk0xAuJTVL39Arw0ECZV2e7fUeV4+FB3/olu0YKVgDSUAhg9FRnm52IsNgeIxetHwoXhNkNQNBTUFimcqe55ux9xeMuuL7j1T3r8MfhNBPdNo1okQwrLSb+nvVi3LbyUEN23pM3ct8y6D5bt3R6AGLvZ69YuasuK3+rW1s3eL5vMzq/gJlCAait4ClO7nW5+/U0c9nM0jk0ogQe4+Tj+nvE6kn5/QsU2w9Bl4vrJlr3vda/gXTU1X08QeFhYoGmzrOYCnVhurh6Z8fCipBCFJ5DsPxevl8hrF+jvljeNeyzG4lcnpOoC/fR1w2w/FuzNyyqs4qc4LrJL4OVTzojBz2KlM9o2PvAVKue+nzeegIe6LVyAIsuOn3flb+rvN5OViEvFb7cD3Gh6j8ff8958AAC1yMzH3XU715m1YzdBuGmhDKunp4/RrQ37zaoCCLy6ddO4H/Hx1gL38ew+MOKbRihZUGgqbvOLDB3/wHPoGDdXTL8orQYSEh43Wy4mt8Jqx7bdulTpV7XarZfLy6TzdXmLreV47NoaZKW+b+OZhEgH0bPTJBAE557TD2TyaM0kcGM6VPQ/FD10fSmHjsnzRcauW5H2tIBFYfh2bTpi04zUsx4r9bGr7hMZ0Ev3DOV8Tkpdv0khX+O7UZpWGMpQl12v5mYasz8M99NhIk0kmHDUDu9/J3XfV1phC72AWe/YPob0lU5JGx69UCD9nk1dsUMIEKOxL7iZQkgnD6edrnvFoBF6roqrTfE1eATQUP5OXW2O0vhhe+6HodL6uTnkNk5c67Dd6F0IglVTLnpT+PiQFilte1ol3QfY9cSqrUQb38mZd1q4KsraXmhelvheT93l+RhmNT7eS+oXqWkf8bkvANMoFFP20oIaUu28SKIqectA0hnN5NJgmLzdhEIGGIn9IpxIuYcMaUV5CYMa4ZgBA76CzH8V8Nh5FZh9KzPHUUOQIOJEgV9U56Ixf93kozueWOuU1OnMfp7yrySsnPNME2bHR3SlvLZO3kPZfbRieq0UbGkrK9Xdl0vQqix9+s/UVbsEO1nr2K0EuL5Dx8PlZj7nNNQoSNuzUJq2/u60n1ZByLyNQeK6ZVAJCePknC98do7xGpA9FM2zYz4/m50PJJBPOfiXNKK/WBqMtugV66KwioXBavLUSsEAJSGGEW/qAnlu3Bz39w4aq69Lj66iptkZddB2/dauUSUxtJqXTjLzW8jLK463aAy4aikNebijTQPGWqbbJiC51ZvpQ/ByqQph7ojgKlFxBQ3G6n5wodNBOt6Rzn34dsMJtW4Aga7jl8t73a21bu/cNOuahru+qPdj8AaU3ZDOLumgoXmW05qEEj46vxen5DeeUU969LY3YBkne9+OroSQTjmn8woZV2ZRAcQsd1lnnjmfKx5yCyct+XAiBrr4h9A/nkE66q+Y6Ji+vmbTqP7/4dbc1kbzOcSon4B4BpGvy0ukEldOwuNh+jnDdCZjG+cJ8fk6mo6FszhQojnMqcsJzQKEzG9marddSMYWNy+zXsdZzd/+w57WsAtAvyqvPxaziZoo0r+EjMGy/u9SPEhRu/aLKw0/wWI877SMylDVMXl5BM1YtylGgaPhQ1HmqvMXt0s/kpdpWiylQvE1eXs1eRQvqrDgdBSxQApJ26VCsDTidJHe/g8a+Dl4qsZ8ZSbVVJVB0LDPOAqXQufuZ7wBnk5fOWkOF842CF+/M6DdJzHp//j4Uo17SSXJ0lg5n8+ZL7Paie4WNe22GpPCLjCv+rbhereX6nyfWel4rn/cJc7ccc7PTm0uIuHX2Vqe7RyADkWFyckLVm59TviHl7t+ypgOc2+NQNo9MKilNXm4CxdsPE2Qeipu50U9DUXWqa/LSmc+0u9dZA40aFigBSZojXHeBkkomXEcEBZOX1+jU3eRlOuV9NKCkafLyb2xuGooaYbk5gm3hjyFNXupFLdZQguyy6BvllRdIkHu00HA2j6a0h4aStwqU0vytHWbKRUO0PlsvjaYQDVgU5RXAdJHN55FOufuMrHXr5t9QnZ/OREAngaGu25xOut5vvxyB+5mQTJOXxgDH6f1TExsT5B6FaT3PSTO3DhTdXmHTh+Jiosvm8mb78Frpu7XRx+Tl49+ylnfNTq/NdKODBUpATKd8sYZiGUV4+VDUS1W2yUuZzNxGR0qgBDF5OfpQCiNCt0lRI7bO0V170HIami+yh4biKFAK3/cNjHh2uHkhkEgQ0gnn5zNk1VCcJmrmhfn8neex+G9iZJtM6FFWVbfFnYnuPBQhjPWkvJzy1kGQm3alBJrbI7RuLeuloTRlkq6DrPcdPdGWtrQM9g7aNYzdcn3n55tDQzphDChc7sdPQ1HPoyGV8DW9ZVxMedm8MCPbvFb6bs14CxSrBcBv9WQ3k2bUsEAJSDqZADk49awvVjpJri++eqm8nfLunagZiuumoRT7UMo2eWloKBZzhnPnqFRy/zKMmKYVe1l8fSjyGpPaGjCSE9jdN+R6DSEMp38q6RyFN+wTNpzNC3Niq1NZ1LM9rK1R03Hs3iGp04v9JLqrVKvyFXYYLU1jfWauAkVez63D6h/Omlqdlw/FSaCkk4TPnjsLZ8waZ1zLdU+WwrwOa57FWAc1bhpKg3p/NXwoTnU9KDv3sS0ZDLoMIFTbcYsIzeaFqW15rbHWlEmCyMPkZbkHN4Hv9l5VChYoAck4OPWefasL7/mfP5n/pz1MXuq410jTrlaXNkbAfdSvkps+FNerlOZpO5YTZkfh1okpE0dLJuWz9Ip/KdyWwfdb+0r9PK6lAYD3lqkFk1dp0EQ+L5DNC0+nfD6v50MZ05x2XTLebuf31gqAUoHit+FZcR5eo3rVFlMJsmnYTtdze4IDwzm0NqaQTJCjhqbquTmdKhFa2bwRNKA6Vzcfi6qmhrTPjHpLfTppS8PZvKGhhDB5KW2hvTnj2tErAej2/mRzeVNDcTJ9q7IliNCcTnpoKJZrutaJKElbSVigBOTcoyaUzIR/bOUu8/tnz52FtIfJy88BCdg7keKOzRrG6bVrZHH4rRdOwi+bz6MxbTQPt05sv1y4bkxz2nnpFY2wRoVpqy+6J78F/0zzgE+IJWDcUyqRMDTIouejOqAmaWZw0h6yFpOXl0Bp8ooU0xEolmvv2T/k+psXqvwF04pTGuPgqMaUq39ja7cxP8XtGR4YzqElk0RDynkQZdVQrAJFaWGpRMI0rbqVQQlDc1TvUgfW+nQqy5D0oaSSCVft0FpGp+dzYKSgoQy4tDVVPtUOhnL2dCM5gYa09xJOgDEobMqkfH0ogNecGNZQYsuHTpyMKWOaDA3F8jCtDtizjxwvo7xKH+DqHb3mBDIvDWV9Z2HbT2s2QhijaHU5R5+CzDcVIMrLrSPw01D6LQLFcekVVSadMigNpURzsHz38KG0NBhl3e+xOutIzhAIKQeT5GMrjZ0pn1vXBcB55JizRHk51asa5bdk3CPF/CKRrOe1N6fRN5i1jfz9dqU085bPtNFjVK+e+6jGtKN2sHRjt/nd7RkeGM6hKZOSS5p4OOUzSQw7hOSmkmRqUe4aipGHX9iw3xwStfRKUzrhql1Yy+DU7pUGbJi8vMur6r40Ui+PRilEnQIM1O0lCGjKuJfVrr2X/i6E8A2qiBoWKAE45rBRAGSUkOUBWR3gjemkMQ/FoUH/670rzO9eM35v/uMa87vTJkiNHpFI6ljCxylvNccMO5gqjFGU+yQ/oBCd096ccZ4IGKAxj7j4lmxreXlMwJw8pgkAsHOve3hkNp9HKplwdMrv7i3SBFzq1mumvNXkBcBxBKtl8pLHJ7U1AgB2WSYd6m6UZGpcafdOeEimaW0oNUcBwKZ3+s3vbo9wYCSLZg8NRY2Qmx00FMAY+JgmLxefhBnl5bEwK+CvoRhLryTRlEliwKWTHs55z0M5YPGhDGfzrhNkgcLAonhhxqxFQ3EONCm8w83plOs8FJtp3CEfq1+33KWCgsICRYNzj5oAAPjcuUcAQMlM2+IQ0XQq4Rj1NH2ssTbP2UeOB+A/gi1OoxqQacbwaIxJtTiki/Xb+nK7Reeo67i9wP1Dxss1uimNA0MOQsknQsiKdUkaq7Dzc8qrUeSU0Ubn6zXZbyRn3aLZntm0dkMgfe0vj3P8XS3Vb05WcyiLGtGPbzX8OU7akj2QwVtDmT3JGMCs3tFr+a3goFYdsRPDWf+2ojq61saUY2fe3mwsSNjakHJ3yg8Zk0EzLgJFXbcpY5jVVD7quaWSCbNzdQsMMAWKh3AE7B1ssTDI5vLm82tKp1zNVTYNxeE6VoFilLk0H1UPKmKw+P0ayeWRThoz9r0GhUkiNGXcfSg2Ae3wfKxCkzWUGPGNvz4Bz3zxvWaET6ZIYCSTBYFy0rQxSCecJzYmyNByjpjQAgC49+UtJWkefGUbAODLFx8LwP5iqJdwTJMxAnbqsFTDSSXcTTOA/cVxG1mq0a1blJcyeR3W1ojhXB6dfXbtQJVXZ6a8bbdEF9uwUz5KaI32qJNCeYwX2cmGPmBxtiYTpSZLdWkvDeVHf1oPoNDZOIVqqntrSid9F92cKRcHtN6TqtPzjp3o6SdT9WmaVjxG0qNcNBTVIR0/tc3TKW9oKEnHqCdV3uZ0EkJYVgCQzy2dpIIPxTV0WZq8fKK8DgznzDTF96PutSGV8NRQrMedns/AcA4JMlYCVv8XY9arTFN8X8oXl3LZiM9qZWjOJF1NXlYNxGlzMnUvXlFtUcMCRYOpY5pw+LgW8//WhpRtJzX1rN7V0Y5MKuHqlO8fNswDK7btAwD84fWdtt+Hs3n82wOvAwCOnNiKRFE4rmqoE0YZI2Cn0bhK7mdvtr44zgJFuNqAFaqjO3H6mJLyKH8PEMzkVVxma9kcR9m5gn29JZP0Fih5Y+kUI6zbfs+DlhG90zyigmPY3fatGNdqCJR+B1PFiGmK8hAo8nibFJLWEaqq05YGQ6vwW/5DBVY4mVdtTvlsviQv5S9obUi5O+VHsmjOpNDWmHIUoAUNRTqoi6IckwmLD8XP5OVh6gWMelLCvLgTVu0ok0qgOZ101VCs9+DU7g8M59CcSZn34+RHMTUUl3XhjImNCSQSLqZIS1ts8ojysvnWnDQU9fwyKY7yijOtjSlbx/WQ1Cru/NQ8AIbJy6mz6OkfwdiWDD566lQAwOFyBKroskT0zJnSJgVToSWol+S4KaMBAK9LwWTFdAjKl9RvdjJQsKVbyeaMda+SidLO11recS0ZcyRmfUmtL4rO4GjERUMZyeUxSpoOnli5Cx3XP2pbGVd1vqlEAi1Fgr70GoV7Kn6R1fyCxnRC7oliz0eNBtXsZa+NnlQI88+efbvkt/2yw2pvybhuevSOFMxtjYZAsT4rdf7YlgzywtksAxSE0CiZh5dTXt1T8ahe5dHSkHKegJcX2No9gKZMEmOaM44bQan2q4ImVBtWzzudsIQNu9SHOqfVNCE5d7D9Q1mMbkojmaASDWTIIlCaHJ6vom+wcA9OmvnASBZNmaQ52HLUUIpNXkX3ZQaHJJwnRypBYWpTGuY5J4E/MCz9Vw1JreVZooAFShm0NqSweG2nOaLbs3/YPK4+R3KipNG+0z+EcS0NuPLMDkwe3WjrDDp7B3HWt542/1fOfWtHe47c4W7ezHZkkgls6CpEgwGGVvDwiu0A4OlQz+cFzvvuM+b/biYvo9G7L8W/a98gJrU1mtFgAw4jabcyFNNvPbdIK5vYZnTQP3zaMCmt3F4QpGbHlEqgtSGlYfJynimvOq3GdBKtDqNt9ZIXOjX3F1QJ2CflLp9Wlm02/CzjWjKuKxB87CcvAgBGN6fR3pzGVrkRFQB09g2iIZXABOmncTOHXHffa0YeUstxNnkJWd60vEd7nahOua0x7Si47n5pMwBg+aYevNM/jDe273MQxEYeh8kAg94Bo8NWbSppdcq7RHn1yk5e5aE6SitCCDy5eje27x1AUzpZkkY9z6a04ZQfdLlW32DWDKpw11AKAsWp/otNXk5RXm4DGyPPgnluVGMKfS5tev9Q1qw7p3Ko59fioWFGDQuUMnjp7W7kBfDUmk78/DljFGp1kCrNY+X2gjO1p38Yu3uHMFaaQ8a3NthMRFfesdR2jcZU0rbI5M59hVF5e3MGo5vT5supWPxWF376rL08Tp15Z9FscieBcmAoh6ZMskRLUozk8lizsxeTRzeakwGd7M9E/ss+CCHw5k6r49kijLLCjHZSKKIQbCkAABv1SURBVAFmXMdIm06Qr4YymM2hMZ10nCk/MJJDKkFIJxMY5SCYVGenbOfF2sXvXt1ufj/t8HbbvVn5vz9tAABMGdOEfQMjjh2BORkwk8S41gb0DhTK0tk3hEltjWZn5bao48Y9RoSW6hydBgU3PrwSQKHjKzY5DQznQGSELw+MlJrXXtu2FwDQc2AYr201vr+44R1bGlWPk0cbQQ9K+ypoP0nT5OUmHPdJzecwGXjhpF2oQd3+oayjj0StZXXUpFFobTACBJyut38oi7EyGMFJC13fuR/T25tNgeJkpnu7qx9NaePZAaUalVq1OuWi/as8G9NJjGpMm1qplcGRHPYNjJgDBqd3bMASxs4mrzpg/9AI/utRI8T3qrNnmsfndYwFUGjEubzAKTctBAC8I81a7S0Zm0B5u6sQogkYzkqrhmJtMEdNGoVRcntQK9Y0yv4+ki1tSdZwUKB0z+rhbB598sUy5heUvjQrt+/Dzn2DuOC4SWYHb7P1yw5sfGsDBkZyrp0FANyy8C3bvVg1neFcvkSgWO/IGi3U0pA0I8+K+ckzG7C1ewCj5Kzu4hH34EhhYciWhlTJS6zqQI3miwX1lx40fF/JBKExncQNHzwGgPtEy3Nmj8dwNl/y3K00S4Fu1Rx29w5i4qgG04/W6bOKbMd4w/dXLCAHR3JmJ6OiuYo1hAPDOTSnk2jKpCAESkb1E0cZz+Wz5x6Bs44cJ8ts31W8f8hYmuXow+wRa8q0NKoxjYZUEpNHN+LN3X2O96DahhIoTg71t6W2/okzZqApXerI3iQF7JETWzFljJHPtp7STcX6BrPmdrtOQnj73gHMHN9impSdtKWeA8OY2NZgDrSGs8VtzRjYJFw0lCGLhtLakMLASK6kvamIQmVWcxIov39tBwCjHbHJK8ZceebhAOzb7I617Pk8YZTRmDa/Y5gqlrxdGLXNlcJmXEsG7+wvCJRiXwcRoSGdMDtX9QL+7Mq5aG/JYFRjqYbSZdE8VCSYkw9lc5FAefQNe3DAfz26GoAh9Ma1ZEpma+/aN4i/+vELAIBTZrSbDkqrIFAvgAqh3TdQal8HgNe37TVNWTNl52cVtCPZPMY0p80Z6oB9JKtGf+kkuZq8cnmBbz32JoBCJFCxVtY/lEWztPMX59PZN4gnVhnmq4IZwzvEVb3oVo3J+lIfc1gbAODtPXazpbUOm+WEQXWt4WweL73dje7+YbMzL9Y2Absf4PCxahvZwrFcXtgmz6qyOvlQmjJJ10mjqi4+ccYMfPFCQ4AOjNjTdPePYExzGpOLwrr/nzTJqTyOmzIajxYFqSh6B0bQnEk6+uoUf3PbSwCAi0+YIk1e9jS9gyNoShumqrEtqk0Ol6TZvncA02UIuZNZdO+BEUxqayi0+SLBZZidd2DAEnFWnM+BEcNslnIRKOpdGd2UNu+5WPNWz/Oa9x5h1lExDyw3fLsT2xrZ5BVnrjv/aBABay0jKuvkRiLCjLHNZse90dKBX3baNACGAOruH8YTq3a5jt7HNGXMxtVrccYCcIyqse55oEZZTpFgm6Sge1dHwTSjGva63X2468XN5rUmtjXYBBUA/Pfjb5rfp7U3mSP737++wzyu7L5qfoeTwxYA/vJHz5vfv37JcbYyCyEwMJKTEVGFF8Iq4FS+Y5ozhmbhIFCsL/3GPf3SgVyolweXb8PitzpNZ3px0MVn715u7j2iHNjFPpTizlh1wvfLl/qt3X04/qtPADC0k47xRkdfrKH0yHKdNH0Mjpo0ChmL2XOHDEaYPrYZk+Uoe9Eau5/msTd24oSvPgnACHFuczCJXLXgZXzof/8MAPjJJ04zn19xpzUwbJiPlL+meE+N3sERZFLG0ikqoml/kYa4u9fws6WSCUwY1YC1u/qQzwszsEJpHU/J+7D6x6zXaWtMO2rCxUwYlUGjg8lr74GCecg0Fw7Y7/dB+azefYQxT8za5vJ5gefW7QFgTDgd02S8Xz0H7O/XCmn66+wbMk15xYOXA0M5c7Dg5MtRbXNMc8b02RW/62owqqYg9A3Z3y+reXJCawObvOLM6OY05h7ejlsXbzCPHSUnoSk6xrWYpqUtsgN/5T/PNzeQGteawcBIDp+9ezm+/ofVjtdpb8lg8zsHIIQwG9ToJqOBtTWmSzSHnXJGdUMqgaMmGuX53sK3bHbtWxa+hVsXb8BRk1px/+fejX+76GgAhVGtNYJq4qgGTGhtKBkFqxEtYIyi1f/qhQMKHd0sqXVYfUAKa6P/6KnTMEOOppWd/YlVu5DNC9v1AHsnrITP2OYM2hrT2NJ9oCTa7JpfLjf///LFx2LCqAbs2DeIFzbswXA2j+vufw27e4fMcN9iDcWqXamOxKoFOKEi8X776nYs39yDC2551uwIPz5vBpozKRwxoQUvb+q2nfeDp9YBAK47/yi5GVhBm1Id+t+fM8vU/O5bts02aLjmV6+Y3x+45t1GGHQqYY5o9x0YweK1XWaaDxw7ETOlcLNqLdf8cjl+t2IHmtMpc0Lutp5CcMDOfQP46TNvm8LO3F2wSCjt6h00nenv6mjH2t195npYAExhpUx4xWaoP73ZifuWbcOoxpSjViCEQMf1j5r/d4xrQZNFsweAmx9djfuXb8P4UWowZgiW3qJn+LXfG+/h2bON5ZOs9fGntZ34+7uWATCEoGorVivDhq79po8MKAREWIXOrn2DGM4ZWndLxtnnt08KurbGlGMeAPDypm4kCOZ0hp5++72ogJ2bPnI80in3DcWipq4FChFdRERriWg9EV1fzWt/4ozDze8zxjbjLDn7XdExvgUbuvqxYutebH7nAI6Y0GIzi80a32p+X7WjF8kE4fPvP9KWx4XHTcLbe/qxemevqdJaI3K29Qyg4/pHsXZXH4QQ2L1vEKcd3o6XbjgPo6UzFiiMmgDgB4uMDkvNwlamk4dXGNqF6jxnT2zF8VNHY2JbI7b1DNg6/209BzCmOY1lX/4AAMN52JxJ4pzZcgWAXB7f+KOhxZwxaxwyqQQWrem03dttz27AzBv+CMDoYL/7sZPMTvLnz72NfF7gc780OseuviF8+eJjMXl0I8a1ZEx7OAC8ssW4t/aWNN4jVzQ47sbHzfJ+b+FaU9B9/29Oxikz2s3O629/tgQvbCgIQdW5tUofisrjlOkFTa4pk0RbYwpPv9mJHz29rkS7nCQj0o6aNAoXnzAZvQMj+OitL9jSnD7TMHvOmzkWz63bg4/95EUMjuRw3Fcex73LtgIATpxmCCSrH+359Xts11B8/jevwImZsrNpa0yZo/GuokFIKplAx7gWpBJkdkJCCHPB08NGN2J6uyFQ1EKRAHDmN5+WaY3/lUDZb5ufZZjWVHk7xrVga/cBPCo12Rs/PMccYP32H94NwD6gAYBP/eJlAMC6zv3IJI3IKGsnrMw6AHDxiZORSiYwrrXBdp8/e24jgEKQTJsclP3zPSvwxfsN05sKrgGMgIkzZo3D0k2FgdibuwrWiKljmtDSkEJTOmkb1H1mwTJT0/rJJ07F6KY0MsmEWZZ8XuCK25cAMNpAsSYMALf/eSNueeotAMazmSo1/O1FgnZ9534cPq7FCNtvSJX4RdV7ceasccaGYixQvCGiJID/A/BBAHMAfJyI5lTr+pecPNX8rpxvVlSk10f+73k8vmpXScNRHQYAvLZ1L3J5gSMmtMI6+fk9s40O8uIf/hlf/p0RkaMcqFZz1YXffxZ3v7QZSzd1Y1p7k2nuuv9zZwIAtu89gGff6jIDAgDjZTauYQiBGx9ZhRVb96JTrmn1wOeM0a1a0kSZfHJ5gWWbe/D+oyeaAgAATpg6Gut278fPn3sba3YWXr5zZo/HGbPGYcnGd9DZO4iBYSNa6JHXCuax6y8y7O+qU3pzVx92WswrZx4xDp85ZxZevOE8vKtjLF7btg+5vBEi/ZulxmoDrQ0pnD9nEgBjVvsuef5Lbxc0AOWjUQIFAD5558vm9w/I80fJMNnewSyWb+42Vy8ADPt972AWr2/bh+88+RYu+dHzplA5dcYYLP7C+8y0Z8wa6+jjUAOLCVKYL93UjfuWbbWFTo+Rz7kpncRr2/bhT2s7sVFqusrRrur/+fXv4KO3voAVW/eaExlPnDba7DinjGnCb5Zuwf6hrDnSPXJiKxZ82pg3lUoaM7ZvfWYD8nlh6zw/ffZMjG42bPmvbOnBm7vsO//d/FfHAzAm8SUThLelsN/QtR//+OtXARTMn7MmtCKbF/jSg28AKCwLAxid9GFtjXj09R3I5wWeXLWrxA9CRCVa3eOWlb5/8DcnAzDMrNt7BpDPC5u/UC15pDQUwDBJ7tg7YAbXfOGCowAYbWXTngPm6g+q/Z8ze7zZjia2NZgd/e7eQTOy7m9Pn4GLjp8MIsKEUQWT8bLNPVgntZ6Tpo3BuJYMlmzsRo/UMIezedxUZK1Qg5x3LFrob1/dhjd39eFDJxrXmDWx1TaFoLN30JwgPWt8i7Fcf5VMXin/JLFlHoD1Qoi3AYCI7gFwCQBn+1EFePJf34MLbnkWl0q/iJUPnzQFNzz0hvn/nMlttt+njGnCVz40x2buOmn6GCz/8vlmRNH0sc2Gg9G6G6S0y/79ObOwdncfHnrFCFf9ysOrABTUbAB4V8dYHD6uGb98aQt++dIWfOBYY2e8H//dqaZmMrGtEXMPb8eyzT34yP8Z/owxzWlTw7ls7nTc+cIm/HjxBvzYYuI79+gJtvsZ12q8HOrFBICXbjgPqWQCcya34dm3ujDvG4tK6umBz51p06b+5QOz8f2n1uGzdxvmhTs/+S6875iJ5u8XHDcJj6/ahdO/scgcHX583nRzpPvuI8bhhQ3v4MxvPm17mTPJhCnEx7cWNEXFC9e/H1PkApNHTjS0x5O+9mRJumMnj8KMsc3YIueGrN3dhxOkb+SyudNNswxQ6PgVY5rTuOOT7zLLqhzVQOH5AcCbN11kfp/b0Y7HV+3Cp6TgO2naaHPF4xeufz+O+vJjAIDllud30yXH4YozO8w8lMns+BufMI/dMf9dmFE0sVYIYNa//xF/f04hYvGsI4zordFNaTy2chceW7nLbMsfnzcDf3e6oamnkgkcPq4Zv16yBb9eYl9S6LoLDLPq2UVavPW9ISK875gJ+M3SrZj1739EMd+57CQAwIdPnILvLnzLZuYCjEAZtTTStPZmDOfytny+9dcn4PJ5MwAYJmHrHJB3W+Z/ffIs494ntTVi/1AW8262t9m7rzrd/L5z7yA2v3MANzz0OtbtNjr0/7n0RPz1qYX7SiYID72y3XxPAeCT7+5AIkH40IlT8NjKXbjoB8/i/DmT8NgbBeH4D9LZrt6NL/9uJRav7cLsSa2mqV29F0dMaMFDr2zHvS9vwdiWBnz3SUP4TR3ThIRciSCXF+Zqy5WkbjUUAFMBbLX8v00eqxpHTRqFV//zfFvIsKK1IYXH/+Uc8///vvSkkjSfPnum6aT//t+cjJnjDbOYitkHgBdveL/5/adXnGZ+TyQI3/vYyVh03bnmiAkA/uoUexUo8wpgzJsBgFNmjLGlueuqefiLEw4z/z/a4g9qaUjhyxeXKn4XzDnM9v9VZ88qSaMcrh+bWypwAeCLFx5tRr0prjjjcIxqTGHl9l60NaZw6ox22+/nHjUB6SSZwuSUGWPwzb8+0fz9tivnYqLUQJQw+dJFx2Dtf11kduQnTx+Dj82dZmpfcya3mcJE/V7Mgk/Pw6ZvXYxxrQ14+rpzbZ2uct6eMHW07RzrfBQA+Mf3HWm7n+JnBQAPSr+H4rLTptt+n9ZeEAKZVAJ/+PzZOG6KfbDy4ZOm2P6f/+6OkutMH9tk+//TZxXuR5mI1t38QbOTfq9lALFahsMrwatQi6daufNT78JUWbeHjW7EHz5/Nk6dMQZL/+M8UzAqbrrkeLRbBheKVV+70BQ+n3J41/79L47BVz5UaKMnFj0HoFR4zStqdwDwxlcvMJ3g7y0aMAHA7649y/b/9TI0/DdLt2LZ5h7zOtYAnS9ceLTtnHkdY/HVvzSCTy4+cTIAY6XrX760Be/0D4MI+PmVc/EFKYTVUj+AEbhw6+INmDCqAT+7cq7Zlj4qBdiXHnwDf3/XMry5qw+XnjYNi7/4XgAovA/7S7XlqCG3tYDiDhFdBuBCIcRn5P9XAJgnhPh8UbqrAVwNADNmzDht8+bNVS3nCxv2YGgkbxtlW8nlBUYsO7iVw1A2h8Vru3DeMRPNDkAxnM3jFy9sxPjWBvz0mbfxT+fNNhtyMSu27sUb2/fhkpOn2MwCgFx/yLIsf/F1FBu69mNcSwajm9JmB65YuHo3Fq/tRGM6iWvfdyTam0vTAIZZ6RcvbML5cyaVdFqAEQXzzFtdeHlTN646e5ZNoAKGIOnqG8Izb3Vh9sRW05RVzIHhLBat6cQFx02yvbiAESLakErglS09OGJCq2mCKuZnz76NXy/dgtuuOM30S1nJ5vJY9GYnHl+5C9/86xMcn3Nn7yCeeasLY5ozptmu+H639QzglS09uOi4wzCxaF6OYte+QQyM5ErqQ93Pm7v68Pz6PbjstGmOeQxlc7jy9qVYsrEbD15zJk473N7p7u4dxO9f24G7XtyMc4+agBv+4piSeSevbunBko3dOGf2eIzkBE6aNtrxGbuRywu8tm0vWhtSuPvFzfjH9x9ZMg+pfyiLnfsG8YfXd+Dj82aU/A4UnNJ9g1mcOHV0yXYOe/YPYc3OXvQNZtE/lMVZR463DSpUWTbu6cfUMU3YvvcAjpzo/Hw37unHwjW7MXNcCz54gvO79drWvdjSfQDnz5lkawNPv7kbf173Dtqb0/jwSVPQlEmW3M+Wdw7g539+G+cdOwl9gyN4V8fYkjRPrd6NVTt6cWA4i47xLbj0tGmmwF6+uQd3PL8RN3zwGNuAJAhEtFwIMdc3XR0LlDMBfFUIcaH8/wYAEEJ80+2cuXPnimXLllWphAzDMAcHugKlnk1eLwOYTUQziSgD4HIAj9S4TAzDMIcsdeuUF0JkiegfATwBIAngDiHEKp/TGIZhmApRtwIFAIQQfwRQGhLCMAzDVJ16NnkxDMMwMYIFCsMwDBMJLFAYhmGYSGCBwjAMw0QCCxSGYRgmEup2YmM5EFEfgLUeSUYDKN2Qwc4MAFs8ftfJwy9NFHkA9VNWv3JGdR0ua2Wuw2WtzHXiVNbjhBBNPmmMJaYPlT8Ay3x+v00jj64I8vBME0Ue9VRWv3JyWbmsXNaal9U3HyEEm7yK+L1Gmr0+v+vk4ZcmijyA+imrXzmjug6XtTLX4bJW5jpxKqtOPoecyWuZ0FiPptJ5VIt6KWu9lBPgslYKLmtliKqsuvkcahrKbTHJo1rUS1nrpZwAl7VScFkrQ1Rl1crnkNJQGIZhmMpxqGkoDMMwTIU45AUKEd1BRJ1EtNJy7CQiepGI3iCi3xNRmzyeJqIF8vgatQeL/G0xEa0lohXyz3lHreqVNUNEd8rjrxHRey3nnCaPryeiH1KQHZCqX9aK1isRTSeiP8nnuYqI/lkeH0tEC4lonfxst5xzg6y7tUR0oeV4Res14rLGql6JaJxMv5+IflSUV6zq1aescavX84louay/5UT0fkte0derTijYwfwH4D0ATgWw0nLsZQDnyu+fBnCT/P63AO6R35sBbALQIf9fDGBujMp6LYA75feJAJYDSMj/lwI4EwABeAzAB2Nc1orWK4DJAE6V30cBeAvAHAD/DeB6efx6AN+W3+cAeA1AA4CZADYASFajXiMua9zqtQXA2QA+B+BHRXnFrV69yhq3ej0FwBT5/XgA2ytZr4e8hiKEeBZAd9HhowE8K78vBPBRlRxACxGlADQBGAbQW41yAoHLOgfAInleJ4ywv7lENBlAmxDiRWG0qrsAfCSOZY26TE4IIXYKIV6R3/sArAEwFcAlABbIZAtQqKNLYAwqhoQQGwGsBzCvGvUaVVmjLFNUZRVC9Ash/gxg0JpPHOvVrazVoIyyviqE2CGPrwLQSEQNlarXQ16guLASwF/K75cBmC6/PwCgH8BOGLNPvyOEsHaad0o19z8rYUYKWNbXAFxCRCkimgngNPnbVADbLOdvk8fiWFZFVeqViDpgjOiWAJgkhNgJGC8xDM0JMOpqq+U0VX9VrdeQZVXEqV7diGO9+hHXev0ogFeFEEOoUL2yQHHm0wCuJaLlMNTKYXl8HoAcgCkwTAjXEdEs+dvfCSFOAHCO/LuixmW9A0YjWQbg+wBeAJCFod4WU61Qv6BlBapUr0TUCuBBAP8ihPDSOt3qr2r1GkFZgfjVq2sWDsdqXa9exLJeieg4AN8G8Fl1yCFZ6HplgeKAEOJNIcQFQojTAPwGhu0ZMHwojwshRqRp5nlI04wQYrv87APwa1TPtOBYViFEVgjxr0KIk4UQlwAYA2AdjI57miWLaQB2FOcbk7JWpV6JKA3j5fyVEOIheXi3NAsos0unPL4Ndu1J1V9V6jWissaxXt2IY726Esd6JaJpAH4L4EohhOrLKlKvLFAcUJEZRJQA8GUAP5E/bQHwfjJoAXAGgDelqWa8PCcN4EMwzDs1KysRNcsygojOB5AVQqyW6nAfEZ0h1fErATwcx7JWo15lHdwOYI0Q4nuWnx4BMF9+n49CHT0C4HJph54JYDaApdWo16jKGtN6dSSm9eqWT+zqlYjGAHgUwA1CiOdV4orVa1ivfr3/wRgp7wQwAkNqXwXgn2FET7wF4FsoTABtBXA/DOfWagBfFIWoj+UAXpe//QAymqaGZe2AsbLyGgBPATjcks9cGA19A4AfqXPiVtZq1CuMaB0hr7FC/v0FgHEwAgXWyc+xlnP+Q9bdWlgiYypdr1GVNcb1uglGIMd+2WbmxLheS8oax3qFMXDrt6RdAWBipeqVZ8ozDMMwkcAmL4ZhGCYSWKAwDMMwkcAChWEYhokEFigMwzBMJLBAYRiGYSKBBQrDxAQi+hwRXRkgfQdZVnNmmFqTqnUBGIYxJsUJIX7in5Jh4gsLFIaJCLlY3+MwFus7BcYEzisBHAvgezAmxu4B8EkhxE4iWgxj3bKzADxCRKMA7BdCfIeIToaxkkAzjIlnnxZC9BDRaTDWPjsA4M/VuzuG8YdNXgwTLUcDuE0IcSKMrQ2uBfC/AC4VxhpmdwC42ZJ+jBDiXCHEd4vyuQvAl2Q+bwC4UR6/E8A/CSHOrORNMEw5sIbCMNGyVRTWTPolgH+HsbHRQrmSeRLGkjSKe4szIKLRMATNM/LQAgD3Oxy/G8AHo78FhikPFigMEy3Faxn1AVjloVH0B8ibHPJnmNjAJi+GiZYZRKSEx8cBvARggjpGRGm5N4UrQoh9AHqI6Bx56AoAzwgh9gLYR0Rny+N/F33xGaZ8WENhmGhZA2A+Ef0Uxsqv/wvgCQA/lCarFIxNxFb55DMfwE+IqBnA2wA+JY9/CsAdRP+/nTu2ARiEASCo7MP4mS2taRjhJVLcDYDoXkbIz3fOhd+wbRgi55fXOzPr8lXgCk9eACRMKAAkTCgAJAQFgISgAJAQFAASggJAQlAASGxQ0n+B3iVqmQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,9 +2247,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmcnFWZ9/29au1972zdgYQkLGE3MaC4o4A6io4whmeU6KAog/M6z+MzMzLvzIOjL+/IzCi+jCMOSobFUWFwIToiBhAVBEIjW0JI0iGQdLbu9L7Wer1/3PfdXd1d3VXdXb1U9fX9fOpTVafuc/rcd1fVr67lnEtUFcMwDMPIBt98T8AwDMPIH0w0DMMwjKwx0TAMwzCyxkTDMAzDyBoTDcMwDCNrTDQMwzCMrDHRMAzDMLLGRMMwDMPIGhMNwzAMI2sC8z2BXFNXV6erVq2a72kYhmHkFc8+++wJVa3PdFzBicaqVatoamqa72kYhmHkFSLyejbHmXvKMAzDyBoTDcMwDCNrshYNEfGLyHMi8nP3eY2IbBeRfe59dcqxN4hIs4jsEZFLU9o3iMhL7mu3ioi47WERuddtf1pEVqX02eL+jX0isiUXJ20YhmFMj6lYGp8Hdqc8/yLwiKquAx5xnyMi64HNwJnAZcC3RMTv9rkNuBZY594uc9uvATpVdS1wC3CzO1YNcCNwAbAJuDFVnAzDMIy5JSvREJFG4P3Ad1OaLwfuch/fBXwopf2HqhpR1QNAM7BJRJYDFar6pDpFPO4e08cb637gYtcKuRTYrqodqtoJbGdEaAzDMIw5JltL4xvAXwPJlLalqnoUwL1f4rY3AIdSjmtx2xrcx2PbR/VR1TjQDdROMtYoRORaEWkSkaa2trYsT8kwDMOYKhlFQ0T+CGhV1WezHFPStOkk7dPtM9KgeruqblTVjfX1GdOMDcMwjGmSjaVxEfBBEXkN+CHwLhH5HnDcdTnh3re6x7cAK1P6NwJH3PbGNO2j+ohIAKgEOiYZyzCMPOHRV47T0jkw39MwckRG0VDVG1S1UVVX4QS4H1XVjwHbAC+baQvwgPt4G7DZzYhajRPw3uG6sHpF5EI3XnH1mD7eWFe4f0OBh4BLRKTaDYBf4rYZhpEHqCqf/d4fuPvJrNaNGXnATFaEfxW4T0SuAQ4CVwKo6i4RuQ94GYgD16tqwu1zHXAnUAw86N4A7gDuEZFmHAtjsztWh4h8BXjGPe7LqtoxgzkbhjGH9EbiRONJ+iPx+Z6KkSOmJBqq+hjwmPu4Hbh4guNuAm5K094EnJWmfQhXdNK8thXYOpV5GoaxMOjoiwIwFEtmONLIF2xFuGEYs0bHgCsa8USGI418wUTDMIxZo7PfEY2IWRoFg4mGYRizRocnGmZpFAwmGoZhzBqeaAzFTDQKBRMNwzBmjeGYhrmnCgYTDcMwZo1OszQKDhMNwzBmjWH3lMU0CgYTDcMwZo2RmIa5pwoFEw3DMGaNzoEYYO6pQsJEwzCMWaPD1mkUHCYahmHMCrFEku7BGAGfEE0kSSTHVTUw8hATDcMwZoUu1zW1tKIIsAV+hYKJhmEYs0Knu0ajoaoYsGB4oWCiYRjGrNDu7nC7vMqxNCwYXhiYaBiGMSt4lsbySs/SMNEoBEw0DMOYFbzMqYZhS8PcU4VARtEQkSIR2SEiL4jILhH5B7f9SyJyWESed2/vS+lzg4g0i8geEbk0pX2DiLzkvnarW/YVtzTsvW770yKyKqXPFhHZ5962YBhGXtDlWhpeINxWhRcG2VTuiwDvUtU+EQkCj4uIV6b1FlX9l9SDRWQ9TrnWM4EVwMMicqpb8vU24FrgKeAXwGU4JV+vATpVda2IbAZuBj4qIjXAjcBGQIFnRWSbqnbO7LQNw5hthmJJfALlRUH3uYlGIZDR0lCHPvdp0L1NlnB9OfBDVY2o6gGgGdgkIsuBClV9UlUVuBv4UEqfu9zH9wMXu1bIpcB2Ve1whWI7jtAYhrHAiSWShAI+ioLO14wt8CsMsoppiIhfRJ4HWnG+xJ92X/qciLwoIltFpNptawAOpXRvcdsa3Mdj20f1UdU40A3UTjLW2PldKyJNItLU1taWzSkZhjHLROJJQn4fRUE/YJZGoZCVaKhqQlXPAxpxrIazcFxNa4DzgKPA19zDJd0Qk7RPt0/q/G5X1Y2qurG+vn7SczEMY26IJpKEAv4R0bCYRkEwpewpVe0CHgMuU9Xjrpgkge8Am9zDWoCVKd0agSNue2Oa9lF9RCQAVAIdk4xlGMYCJxpPEk5xT1n2VGGQTfZUvYhUuY+LgXcDr7gxCo8PAzvdx9uAzW5G1GpgHbBDVY8CvSJyoRuvuBp4IKWPlxl1BfCoG/d4CLhERKpd99clbpthGAucaDxJ0C8UBcw9VUhkkz21HLhLRPw4InOfqv5cRO4RkfNw3EWvAZ8BUNVdInIf8DIQB653M6cArgPuBIpxsqa8LKw7gHtEpBnHwtjsjtUhIl8BnnGP+7KqdszgfA3DmCOicS8Q7omGWRqFQEbRUNUXgfPTtH98kj43ATelaW8CzkrTPgRcOcFYW4GtmeZpGMbCwsueCgc895RZGoWArQg3DGNWiCac7CmfTwgFfBYILxBMNAzDmBUirnsKoCjgs3UaBYKJhmEYs4ITCHdFI+g391SBYKJhGMas4KXcgolGIWGiYRjGrOAFwgGKgj7LnioQTDQMw5gVvEA4uJaGBcILAhMNwzBmheioQLi5pwoFEw3DMGaF1EB42NxTBYOJhmEYs8IoS8MC4QWDiYZhGLNCJDFaNCJxszQKARMNwzByjqoSSyQJ+0cW95mlURiYaBiGkXPiSUUVc08VICYahmHknKjrihpZEW6B8ELBRMMwjJzjicYoSyOewCmTY+QzJhqGYeScaGK8aKiOtBv5i4mGYRg5Z9jS8NZpDNfUMNHId7Ip91okIjtE5AUR2SUi/+C214jIdhHZ595Xp/S5QUSaRWSPiFya0r5BRF5yX7vVLfuKWxr2Xrf9aRFZldJni/s39onIFgzDWPCMtTQ80Yha2m3ek42lEQHeparnAucBl4nIhcAXgUdUdR3wiPscEVmPU671TOAy4FtuqViA24BrceqGr3NfB7gG6FTVtcAtwM3uWDXAjcAFwCbgxlRxMgxjYTLW0vAC4vGkiUa+k1E01KHPfRp0bwpcDtzltt8FfMh9fDnwQ1WNqOoBoBnYJCLLgQpVfVKdaNjdY/p4Y90PXOxaIZcC21W1Q1U7ge2MCI1hGAuUsYFwTzRicQuE5ztZxTRExC8izwOtOF/iTwNLVfUogHu/xD28ATiU0r3FbWtwH49tH9VHVeNAN1A7yViGkRO2vXCE2x7bP9/TKDjGuqcCfhnVbuQvWYmGqiZU9TygEcdqOGuSwyXdEJO0T7fPyB8UuVZEmkSkqa2tbZKpGcZotj1/hB8+c3C+p1FwjHVPefcxE428Z0rZU6raBTyG4yI67rqccO9b3cNagJUp3RqBI257Y5r2UX1EJABUAh2TjDV2Xrer6kZV3VhfXz+VUzIWOQPROP0RW6mca8ZaGkETjYIhm+ypehGpch8XA+8GXgG2AV420xbgAffxNmCzmxG1GifgvcN1YfWKyIVuvOLqMX28sa4AHnXjHg8Bl4hItRsAv8RtM4ycMBBNMBCNz/c0Co6xK8KDAU80LKaR7wSyOGY5cJebAeUD7lPVn4vIk8B9InINcBC4EkBVd4nIfcDLQBy4XlW9n3LXAXcCxcCD7g3gDuAeEWnGsTA2u2N1iMhXgGfc476sqh0zOWHDSGUwmmAgmiCZVHy+dN5QYzp4ohEetjSca2uWRv6TUTRU9UXg/DTt7cDFE/S5CbgpTXsTMC4eoqpDuKKT5rWtwNZM8zSM6TAQi7v3CcrC2fyGMrJhwuwpE428x1aEG4uawahjBA9EzEWVSyymUbiYaBiLGi8I3meikVM8cRhZ3Oe5pyymke+YaBiLlmRSGXRrPAxELYMqlwwHwgOWcltomGgYi5ah+IhQ9JulkVMiE2wjYqKR/5hoGIuWVOvCLI3cMnZxn7ci3LYRyX9MNIxFy0DKoj6LaeSWaCJJ0C/DacyeeNg2IvmPiYaxaPHSbQFb4JdjYvHksFBAyi63Jhp5j4mGsWhJdUnZViK5JZpIDgfBwVaEFxImGsaiZTBqgfDZIjrO0rBdbgsFEw1j0TLK0rBAeE6JxpPDC/sAgj7LnioUTDQKkPuaDvH3P90539NY8KTGMSymkVsiidGi4fMJfp+YaBQAJhoFxmA0wVcffIV7nnqdtt7IfE9nQeNZGgGfWEwjx4x1T4HjoopbTCPvMdEoMO7/Qwsd/VEAfrfPClJNhicatWUhi2nkmNgYSwOcDCqLaeQ/JhoFRCKp3PG7Vzm3sZK6shC/2WuiMRmDrkuqrixMv7mnckp6S8Nn7qkCwESjgPjBjoO81j7Ade9Yw9vW1fO7fSdIJs0dMBH90QRBv1BVErQV4TlmbCAcHPeUrQjPf0w0CoT2vgj//NAe3nRKLZeeuYy3n1ZPR3+UnUe653tqC5bBaILioJ/SUMDcUzkmOoF7yiyN/Cebcq8rReTXIrJbRHaJyOfd9i+JyGERed69vS+lzw0i0iwie0Tk0pT2DSLykvvarW7ZV9zSsPe67U+LyKqUPltEZJ9724KRln/79X76I3G+fPmZiAgXnlILwHMHu+Z5ZguXgWicklCA0nDA3FM5Jp17KuT3ETPLN+/JplRZHPiCqv5BRMqBZ0Vku/vaLar6L6kHi8h6nHKtZwIrgIdF5FS35OttwLXAU8AvgMtwSr5eA3Sq6loR2QzcDHxURGqAG4GNgLp/e5uqds7stAuP3Ud7OHdlFeuWlgNQVRIEbE+lyRiIJigJ+SkJ+UftQ2XMnLErwsG1NOJmaeQ7GS0NVT2qqn9wH/cCu4GGSbpcDvxQVSOqegBoBjaJyHKgQlWfVFUF7gY+lNLnLvfx/cDFrhVyKbBdVTtcodiOIzTGGFp7h1haER5+HvL73FRSE42JGIwmKA75KQsHTFxzTDSeJDzG0gj4bZ1GITClmIbrNjofeNpt+pyIvCgiW0Wk2m1rAA6ldGtx2xrcx2PbR/VR1TjQDdROMpYxhtaeCEvKi4afiwil4YAFeCehPxqnNBSgJBQgEk/aZno5JH0g3FJuC4GsRUNEyoAfAX+pqj04rqY1wHnAUeBr3qFpuusk7dPtkzq3a0WkSUSa2toWX5rpYDRBbyROfXl4VHtpyG+/oCfBszRKw34ABmImsLkiXSA85PfZ4r4CICvREJEgjmD8p6r+GEBVj6tqQlWTwHeATe7hLcDKlO6NwBG3vTFN+6g+IhIAKoGOScYaharerqobVXVjfX19NqdUULT2DgGwZKxohAO2PcYkeDGN0rAT2rO4Ru5Iu04jYO6pQiCb7CkB7gB2q+rXU9qXpxz2YcDb7GgbsNnNiFoNrAN2qOpRoFdELnTHvBp4IKWPlxl1BfCoG/d4CLhERKpd99clbpuRQqu7XciSiqJR7SXhAH32RTghA66lURJyLA2zynJHND5BINxEI+/JJnvqIuDjwEsi8rzb9rfAVSJyHo676DXgMwCquktE7gNexsm8ut7NnAK4DrgTKMbJmnrQbb8DuEdEmnEsjM3uWB0i8hXgGfe4L6tqx/ROtXBp7XFFY4ylURb2M2BfhBPipNw66zS858bMSSaVeFLHWRoBn4+ouafynoyioaqPkz628ItJ+twE3JSmvQk4K037EHDlBGNtBbZmmudi5nhPevdUSShAe9/AfEwpLxiIJih112mAFWLKFV6we1xMw9xTBYGtCC8AWnsjBP1CdUloVHtpyG/ZUxOQSCqReHJUINzSk3NDJOYIQ1HQP6o96PdZhloBYKJRALT2DlFfFsbnG20QloZte4yJGHQzpZzFfa6lYe6pnBCJO9e2KJgupmHuqXzHRKMAaOuNUD8mCA7Y9hiT4MUvikOB4dXz3YOx+ZxSwRBxV32HA+MtDVunkf+YaBQAzsK+8Lj20lCAoViShO33Mw4vvbYk6Keq2BGN9r7ofE6pYBhyrbhwul1uTTTyHhONAqC1dyi9aHi+erM2xuHFekpCfgJ+H1UlweHiVcbMGLE0bO+pQsREI8+JxBN0DsRGbSHiYYvWJmbI87u7azRqSkMmGjliJKYx3j1lu9zmPyYaeU7b8MK+8ZaGLVqbmOiYX8O1pSHa+62mei4YiqW3NEKue8pZt2vkKyYaeY4nGvVl6WMaYIvW0jE2WGuWRu7wLI3wGEsj4PehisXY8hwTjTzH+6KrSxvTcETDLI3xRMYEa2tKw3T0W/ZULhhZpzE+pgFY2m2eY6KR53gZP7WloXGvDe/eajGNcYwN1taWhugciFpN9RzgxYvGp9w664hiSQuG5zMmGnlOu2tp1KQVDVu0NhFj3VPVpSESSaVnyKyNmRKZKKbhPrcMqvzGRCPP6eiPUBT0DQe9U/FiGran0niGA+HBEUsDRkTYmD6eIKfLngJzT+U7Jhp5Tnt/lNrSMM5u86OxPZUmZjhYOxzTcETDguEzZ+y19Qi429zYAr/8xkQjz2nvi6Z1TQG2p9IkpMueAlsVngsmTLl1n9tWIvmNiUae09E/sWj4fUJR0Gc73abB87t7X2S1Zc417Bww0ZgpkXiCgE8IjK3c5z63kq/5jYlGntPRHx3+wktHWThgKbdp8L7Y/K7LxNxTuSMSS46zMiA1pmGWRrb0DsV49JXj8z2NUWRT7nWliPxaRHaLyC4R+bzbXiMi20Vkn3tfndLnBhFpFpE9InJpSvsGEXnJfe1Wt+wrbmnYe932p0VkVUqfLe7f2CciWzBG0d4fSZtu61ESClj1vjRE46O/2MIBP2XhgLmncsBQPDFuYR+MpNyaeyp7/vPpg/zZnU3DhdYWAtlYGnHgC6p6BnAhcL2IrAe+CDyiquuAR9znuK9tBs4ELgO+JSLeO+g24FqcuuHr3NcBrgE6VXUtcAtwsztWDXAjcAGwCbgxVZwWOwPROEOxJDWl4xf2eZRanfC0ROLJcV9s1aVBOmwrkRkTiSUpmszSsJTbrNl7rBeA19sXTgXOjKKhqkdV9Q/u415gN9AAXA7c5R52F/Ah9/HlwA9VNaKqB4BmYJOILAcqVPVJdTafuXtMH2+s+4GLXSvkUmC7qnaoaiewnRGhWfRMtrDPw6neZ5bGWCLxxDgXSk1p2FJuc0A6QQZLuZ0OzW19ABzsyCPRSMV1G50PPA0sVdWj4AgLsMQ9rAE4lNKtxW1rcB+PbR/VR1XjQDdQO8lYBiNrCiaLaVj1vvRE4uP97rW2/1ROGIqNF2SwFeFTJZlUmlvzWDREpAz4EfCXqtoz2aFp2nSS9un2SZ3btSLSJCJNbW1tk0ytsPBcKRNlT4GzVqPfsqfGEYklhzOnPGpLQ5zoM/fUTMloaZh7KiuOdA8OZz4eyjfREJEgjmD8p6r+2G0+7rqccO9b3fYWYGVK90bgiNvemKZ9VB8RCQCVQMckY41CVW9X1Y2qurG+vj6bUyoIRtxTk8Q0QmZppMNxT43+Yju5toTjPRFz582QdK4/MPfUVNnnWhklIX9+WRpubOEOYLeqfj3lpW2Al820BXggpX2zmxG1GifgvcN1YfWKyIXumFeP6eONdQXwqBv3eAi4RESq3QD4JW6bQfbuKUu5HU80Md49dUp9GQCvtvXPx5QKhnSuP0hxT1n2VFY0H3dE46K1dfklGsBFwMeBd4nI8+7tfcBXgfeIyD7gPe5zVHUXcB/wMvBL4HpV9fwj1wHfxQmO7wcedNvvAGpFpBn4X7iZWKraAXwFeMa9fdltM3DWFIQD6fed8igK+odXPxsjRGLJ4X2nPNa4orHfDT4a02MolhxnxcGIpWEpt9nR3NpHXVmIcxsraeuNMLhA3MyBTAeo6uOkjy0AXDxBn5uAm9K0NwFnpWkfAq6cYKytwNZM81yMtPdFqS0Npd13yiMU8BGNO9XSJjtusRGJJ6koDo5qO7m2BBGzNGZKJJ4YV0sDRlbf24rw7NjX2svaJWWsrCkBoKVzgHVLy+d5VrYiPK/p6I9QM4lrCkb2/zFrYzTp/O5FQT8rq0vM0pghkQyWhrmnsmN/Wz9r6ss4yRWNheKiMtHIY3qH4lQUBSc9xkQjPZH4+OwpgFPqS83SmCGReGKc6w8gYDGNrEm6tV1qS0MmGkbu6IvEhwstTYSX+hg10RjF2G1EPNbUl/HqiT6r4DcDnBXh4y2NkMU0smYonkAVSsIBakpDlC6gDCoTjTymPxqnLJNoDFsaCyOItlBwMnzGf7GdUl/KUCzJke7BeZhVYeCs05g45dZiGpnx1meUhvyICEsqimjrXRhriEw08pj+SGK40NJEmHsqPZEJVi2vsbTbGZFMatp0ZnC26veJuaeyYcDdL86riVNdEqRrYGGUIjbRyGP6I/Hhkq4TMSwaMfugpjLRr+F1S8rwCdz+21dtkd80mKjUq0fQ7zP3VBZ4hdO8H4XVJQtnixsTjTwlnkgSiSczxzRcF4y5p0ZIJJV4Ugn5x3+x1ZaF+eofn8Pv95/gM/c8Ow+zy28mKvXqEfT7iMXNPZUJ7wfLsKVRGlowBcIyrtMwFib9rvmaWTTc4KO5p4bxrkU6SwPgT964kpbOAW59tJnuwRiVxZNnqBkjjC2jO5agX8w9lQUjn++RcsQLRTTM0shT+txfImWZYhpBi2mMJdOvYYDzT3LKtuw73jsncyoUhmLOtU23uA9c95S9FzMy1tKoKgkyFEsuiFXhJhp5ileNryRDTMNzwZhojJDp1zDAqcuclbevHDPRmAqZrq2zrc38f/EtdPqHA+GupVGycGrYm2jkKd4mhBlTboOWcjsWLylgMktjRWURZeEAe83SmBKZrm1x0M9gzN6LmRhvaSycGvYmGnnKVGMalj01wrB7agIXCoCIcOrSMvaYpTElhuKee2oiS8PHkL0XM+LVwEmNaYBZGsYM8CyNzOs03BXhFnwcxnOheCuUJ+K0ZRXsOd6Ls0u/kQ3DlsYEghwO+ofjHsbEDEQTiDC8sr66xEnG6FwAazVMNPIUz3zNfp2GfVA9hv3uE/wa9jhtaRldA7EFsxI3H8iUZFAU9DNk8bWMDETilAT9+HzOfl3VnqVh7iljuvQPWxrZxjTsg+qRTfYUjATD91hcI2syLe4rDvoYWgAZQAud/miCkpTPdlWxZ2mYaBjTpM+NaWQKhHsuGBONEUYyfDK4p9zaBRbXyB7P9TS5pWGikYmBaJzSlOJqAb+PiqJAflgaIrJVRFpFZGdK25dE5PCYSn7eazeISLOI7BGRS1PaN4jIS+5rt7olX3HLwt7rtj8tIqtS+mwRkX3uzSsHa+BYGj6ZOB/eI+D34feJZU+lMJLhM7l7qrYsTE1piOZWq6+RLRlTbgMW08iG/khiXDp9TWmIjjyJadwJXJam/RZVPc+9/QJARNYDm4Ez3T7fEhHv3XMbcC1OzfB1KWNeA3Sq6lrgFuBmd6wa4EbgAmATcKNbJ9zA2ZumNBTIqhpfOGALqlLxkgImy57yWFtfZqIxBSIZLQ3fgligttAZiMbHJblUlYToygf3lKr+Fsi2LvflwA9VNaKqB3BqgW8SkeVAhao+qU4qyt3Ah1L63OU+vh+42LVCLgW2q2qHqnYC20kvXouS/ixqaXiEAz5zT6XgfbFlyp4CWLOkjH2tfZZBlSVDGWIaRSELhGdDfzRBcTpLIx/cU5PwORF50XVfeRZAA3Ao5ZgWt63BfTy2fVQfVY0D3UDtJGMZZLctukc44Ld1GilEMuw9lcraJWV0D8Y40Tf/H9Z8wHufpauKCI57KhpPWpGrDAxERsc0wNnpdiFsjz5d0bgNWAOcBxwFvua2p/OV6CTt0+0zChG5VkSaRKSpra1tsnkXDH2RzAWYPEIBn8U0UshmGxGPtUuc+hrmosqOSDxB0C/4fendpp4FYpbv5AxEx8c0qkuC+WtpqOpxVU2oahL4Dk7MARxrYGXKoY3AEbe9MU37qD4iEgAqcdxhE42Vbj63q+pGVd1YX18/nVPKOwai8Yz7TnmYe2o02abcQopotJloZMNgLJG21KtHsWvd2VYik5MuplFdGmIwlpj3RIJpiYYbo/D4MOBlVm0DNrsZUatxAt47VPUo0CsiF7rxiquBB1L6eJlRVwCPunGPh4BLRKTadX9d4rYZOCm3Wcc0ghYITyWaZcotOHtQlYT87DdLIysGowmKQxOLhmdpzPcX30KnP62lsTD2n8r4rSMiPwDeAdSJSAtORtM7ROQ8HHfRa8BnAFR1l4jcB7wMxIHrVdV7d1yHk4lVDDzo3gDuAO4RkWYcC2OzO1aHiHwFeMY97suqmm1AvuDpj8QzbovuEQ74zdJIIRJPEgr4sso8ExHW1Jex+2gPdzx+gLeuq+NUd/2GMR7HrWKiMRNiiSTReHJcTKO2zBGN9r4oK6qK52NqQBaioapXpWm+Y5LjbwJuStPeBJyVpn0IuHKCsbYCWzPNcTEy9ewp+5B6RGJJwllkTnmsXVLGT547zNMHOnj3GUv57paNszi7/GYgTdZPKt66Itu0cGIG3JTkkjGf7/ryMAAn+uZ3WxtbEZ6n9EenGgi3D6lHJJ7IKnPK481raqkqCbJpVQ2/3ddG79D8Z7AsVIZi2VkaFtOYmJF95UZfx/oyRzTmey80E408JJ5IMhRLTikQbjGNESLxZFaZUx5XbGjkub9/D3992WlE40kefaV1FmeX3zgJGplFwzbQnJjhAkwTWBptZmkYU2XsXvuZsJjGaBzRyP6tLyKICG84qZol5WF+8dLRWZxdfjMQTVA8ye7BwzENc5dOyESWRlHQT3k4YJaGMXX6s6za5xEO+OyXXQrReGLCxWeT4fMJ7z1rGY/tabNA7gQMZnBPFQ8Hwu1HzER4lka6LLS68rBZGsbUGf4lMoWUW7M0RpiqpZHKG06uJhJPcqhjIMezKgyyDYTb/lMTMxibuFZOfVmYE2ZpGFOlL2LuqZkwGE1kLMA0EStrSgA4aKKRlkFzT82Y/kk+3/VmaRjTYbgAU5aB8JAFwkcxEE1k7doby0muaJiu4sRjAAAgAElEQVSlMR5VzRwID5h7KhOeJyFdoktdWchiGsbU6Rl0Uj4r3GpemQgHfEQTtkmcR3+GL7bJqC0NURz0c7BjMMezyn8i8SRJTe+L9ygKees0zNKYiGFLI517qjxM71B8Xq+fiUYe0jvk/BIpL8o2EO58iL06EoudgUgiayttLCLCSTUlHOo0S2MsXpxiMkEO+X2ImGhMhudJSCe+C2GBn4lGHtIzNHVLA7Dt0V36o3FKsowHpWNlTbG5p9IwEMssGiJi1fsy0D0YoyTkT5vhV7cAFviZaOQhPUNxRKAs28V9Qa9OuH1QHb/79C0NcILhhzoGrDDTGAaj3i/kya9tUdBnMY1J6B6MUTXBD8IRS2P+Ni000chDegZjlIUD+CaoWTAWr0KdZVA51yCR1JlZGtUl9EcT877b6EJjeM+kDJlpxUGzNCajazA2oRdheFW4WRrGVOgZilFRlJ1rChhOLzXRGPG7z8TSGM6g6rRgeCoDWcQ0wEm7tb2nJqZ7IEZVSfrPd22piYYxDXqH4lkHwSElpmHuKfqjEwcZs8XWaqTHE+RM1zYc9Jt7ahK6BqNUFYfSvhYK+KgqCVog3JgaPZOYr+kYEQ37oA7kwNJYWePUMrBg+GhGLI3Jr21x0Lbqn4yuSSwNgMbqYppe75y3FHoTjTykdyhOxZQsDW9nURMNL51xJjGNklCA+vIwB07052paBcHIorQs3FO2jciEdA/GqJxENP7sotXsPtrDf8/TxpkZRUNEtopIq4jsTGmrEZHtIrLPva9Oee0GEWkWkT0icmlK+wYRecl97Va37Ctuadh73fanRWRVSp8t7t/YJyJeSdhFz1RjGl7qnq3TyI2lAbB+eQU7D3fnYkoFgxenyOSeKgr6bRuRCRiKJYjEk1RO4km4/LwGTl9Wztd+tWdednrIxtK4E7hsTNsXgUdUdR3wiPscEVmPU671TLfPt0TEewfdBlyLUzd8XcqY1wCdqroWuAW42R2rBqe07AXAJuDGVHFazPQOxafnnrLg44ilMYOYBsA5jZXsa+2zX8wpZB8It5TbiegacNZgTRTTAPD7hL957+m81j7A/7zveRJz7KbKKBqq+luc2t2pXA7c5T6+C/hQSvsPVTWiqgeAZmCTiCwHKlT1SXWS2+8e08cb637gYtcKuRTYrqodqtoJbGe8eC06kkmldyg2pUB4UdBiGh7DlsY0957yOLuhkkRSefloTy6mVRB4AlqUocBVkaXcTkjXoJPGPVlMA+Cdpy3hb993Ov/94lG+8fDeuZjaMNONaSxV1aMA7v0St70BOJRyXIvb1uA+Hts+qo+qxoFuoHaSsRY1/dE4SWVqKbcBS7n16J+gwM1UOaexCoCXWrpmPKdCYTCWoCjoy7h+yERjYrqHLY3Mn+9r37aGc1dW0fRa52xPaxS5DoSne7foJO3T7TP6j4pcKyJNItLU1taW1UTzlanuOwWWcpvKwASlNKfK0oow9eVhXrS4xjDODreZr6uzjYj9gElH1xQ3I60oCsz553q6onHcdTnh3ntFk1uAlSnHNQJH3PbGNO2j+ohIAKjEcYdNNNY4VPV2Vd2oqhvr6+uneUr5wVT3nYKUDQvN0hhZpzHNehoeIsI5DZW81GKi4ZGp1KtHcchnlsYEDFsaGdxTHuHA3BdYm65obAO8bKYtwAMp7ZvdjKjVOAHvHa4Lq1dELnTjFVeP6eONdQXwqBv3eAi4RESq3QD4JW7bomY6loaXPWW/7pwvtqKgD3+WW7BMxtmNlexv6xsOri92BqOTl3r1KAr4iSeVmGXzjWMkpjFxIDyV8Dy4+jJ+84jID4B3AHUi0oKT0fRV4D4RuQY4CFwJoKq7ROQ+4GUgDlyvqt4ZXYeTiVUMPOjeAO4A7hGRZhwLY7M7VoeIfAV4xj3uy6o6NiC/6BiupTGFmEZR0EfQL8NWymJmIBqfcbqtx6lLy0kqvN4+wPoVFTkZM58ZyFY0huuEJwj6balYKl0DMQI+yTrmNh+WRsZPj6peNcFLF09w/E3ATWnam4Cz0rQP4YpOmte2AlszzXExMR33lIhQWzr/tYUXAgORxIwW9qWyrLIIgOM9QyYauKVesxKNEcu3vGi2Z5VfdA86q8HdZWwZmY9SzibzecZ03FMAdeWhed2vZqHQn0NLY1mF8413tHsoJ+PlOwOxLAPhKZaGMZrJdrhNh7PmJT8C4cY84bmnpiwaZeF53YN/oZCtCyUb6svD+ASO9ZhogBsIz+Laev56byGbMUL3wMS1NNJhloaRkd6hOOGAbzgjKlsc0TBLoz8Sn/HCPo+g30ddWZhj3bZFOriB8Cyyp2pKHdFo77f341i6BqNZB8HBiWlE48k5LQhmopFn9AxNzXz1qCsL094XXfTV5nJpaQAsryziWI99+UH219YTjc4Bs3zHMlnVvnQUzUOtHBONPKNncGq1NDzqykJEE0l6Bhd3emh/lgvQsmVpRZFZGi5OIDzzta1xf0l39Jt7aixdA9MsezCH6fQmGnnGVHe49RguE7nIXVQDkVmwNCwQTjyRJJpIZnVty4sC+H1Cp5XLHUUskaR3KJ71wj5ISSqYw1XhJhp5Rs8Uq/Z5eGUiF3tcoz+au5gGwLLKYnqG4sO1JBYrA9626FnENHw+obokRLuJxii8Hx8rKouz7mOWhpGRjv4ItaXZB8o86sqdPotZNBJJZSiW3a/hbFlW6YjxYrc2Ovqy253Vo6Y0aJbGGA51OpUgG6unIBrBud9XzkQjz2jvi1JbFp5yvzq3z2Je4OcVCcrVOg2AZRXOB3yxi8bhLieu05DlF151SYgOC4SP4nDn1K4hjGxDP5dbBJlo5BGD0QQD0QS1ZVO3NKpLQviERe0SGMhBqdexeKvCF/sCP+8Lr7GqJKvja0pDZmmMoaVzEBFYPhX3lFkaxmR4ee11pVO3NPw+oaZ0ca/V6M9RqddUvFXhi32BX0uX84XniWgmakpDdJhojOJw1yBLy4uGNxjNhvmolWOikUe0u37jmmnENMBJu23rXbwf1FyVek2lOOSnsjho7qnOqX3h1ZSG6ByIkpzjUqULmZbOgSnFMyB1Hy+zNIw0eJbGdNxT4KTdLmZLY6SGde4sDYCTakrY39aX0zHzjcNdA1PyxVeXhEgqtvNyCi2dg1O6hmCWhpEBz9Kom0Yg3Ou3mEXDO/fpWmoTseHkap4/1EV8EdeHONI1RENV9l943v/AXFQO8USSY91DU7Y05qMqp4lGHuEFsadradSVOTvdLtatRI54GT5T+HLLhg0nVzMQTbD7aG9Ox80XkknlaPfUfiWbaIzmeG+EeFJpyDKRwGNkx2CzNIw0tPdFKAr6pu1eWVJexFAsSd8irTR3uGuQ0pCfiuLcuqc2rqoG4JnXFmeNsNbeCLGEssIsjWkznH02XUsjX2IaIvKaiLwkIs+LSJPbViMi20Vkn3tfnXL8DSLSLCJ7ROTSlPYN7jjNInKrWxIWt2zsvW770yKyaibzzXfa+6LDK7unw5IKp+/xRbrB3tGuIVZUFWdd4CZbllcW01BVTNPri1M0Dne5i9KmIBrVtmnhKFrchX1TjmkMp9zml6XxTlU9T1U3us+/CDyiquuAR9zniMh6nFKuZwKXAd8SES+N5TbgWpya4uvc1wGuATpVdS1wC3BzDuabt7T3R6mbpmsKHEsDoHWRpoce6R5keY5dUx5vXFVN02udi9L11zKNRWm2aeFohhf2TfH9GS6QxX2XA3e5j+8CPpTS/kNVjajqAaAZ2CQiy4EKVX1SnU/c3WP6eGPdD1wsuf6ZmEe090emtRrcY6lnafQuUtHoGqShanbqi25YVUNrb2T4C3QxcXgasaLikJ/ioJ8Oq6kBQHNbH8sri4ZjFNni9wlBv+RVIFyBX4nIsyJyrdu2VFWPArj3S9z2BuBQSt8Wt63BfTy2fVQfVY0D3UDtDOect7T3RWeU+bOkwqtpvfg+qEOxBCf6olPaDG4qnOXWCH/l2OILhh/qGKCqJDjljSBrSm3TQo9XjvZyxvLp1ZkvmuPqfTMVjYtU9Q3Ae4HrReRtkxybzkLQSdon6zN6YJFrRaRJRJra2toyzTkvUVXa+6PTzpwCKAsHKAsHOL4I3VPDO4jOknvqlPoygEW5XuPZ1zs5u6Fyyv1WVBXR0rH4LLOxROIJ9rf1ccby8mn1D89xnfAZiYaqHnHvW4GfAJuA467LCfe+1T28BViZ0r0ROOK2N6ZpH9VHRAJAJTAu2qiqt6vqRlXdWF9fP5NTWrD0ReJE48lpbSGSypKKMK2L0NLw0m2Xz5J7qrI4SH15mP2ti0s0Ovqj7D3ex4WnTN0BsHZJOXtbexdlHCiV5tY+4knl9GXTszTmuk74tEVDREpFpNx7DFwC7AS2AVvcw7YAD7iPtwGb3Yyo1TgB7x2uC6tXRC504xVXj+njjXUF8Kgu0nfYTLcQ8VhaXrQoLY3p+N2nytr6skVnaew40A7ABatrptz31KVldA3EFn1hMG99z3TdU3NtacwkYX0p8BM3Lh0Avq+qvxSRZ4D7ROQa4CBwJYCq7hKR+4CXgThwvap6Z3odcCdQDDzo3gDuAO4RkWYcC2PzDOab18x0CxGPpRVhnj3YmYsp5RVHuhyhzHZDvemwZkkp254/gqrmPK13ofLUqx0UBX2c01g15b6nLnXcMfuO9w1n9i1Gdh/tIRzwsap2agv7POba0pi2aKjqq8C5adrbgYsn6HMTcFOa9ibgrDTtQ7iis9hpc+tgTHcLEY+lFUUc74ksqi82cNxT9eXh4RTF2WBNfRk9Q3FO9EWHy+sWKruOdLP7aC9P7m9nw8nVU9qZ1WPdUicOtPd4Lxetrcv1FPOGV471cNqycgL+6Tl+wgFffoiGMbfsb+sHYFVd6YzGWVJRRDSepGsgNrzAajFwpHtw1oLgHmuXjATDC100vrRtF8+85lis7z/n1GmNUV8WpqokyN7ji8ull4qqsvtoL+8+Y0nmgyegKJ8C4cbcsfd4Lw1VxZTNsL71Ylyr4Xwwe1gzQ8HNxBo3g6q5wIPhfZE4zx3s4n1nL+MTb17FlRsbM3dKg4iwbkkZ+44vvjRljwMn+unoj3Lmiqlnn3nkTSDcmFv2Hu8bNudnwtJFuFbj1RP9nOiL8sZpBGunwrKKIkpC/oIPhu840E48qXzsgpP50gfPnFKlubGsW1rO3uOLJ4PqHx/czUf//Umi7pf8z144ighccubSaY8ZDvjyZ+8pY25IJJX9bX3DgcOZsLTcE43FY2k8c8DJ0t40y6Lh8wlrl5Tx8pGeWf07883j+9oJB3y84eTqzAdn4NQlThyodRHUrh+KJfj+Uwd5+kAH33x0H6rKAy8cZtOqmhkJb1HQLA1jDK+39xONJ1m3ZOaWxvCmhYuo0tyOAx3UlYU4ZZbdUwBvWVtH0+uddA8U7p5KTzSfYNPqmilveZGOc1c6WVe/339ixmMtdB7Z3UpvJM765RX822P7+aeH9vBqWz8fPG/FjMY1S8MYxz7XR74uB5ZGUdBPXVmY19oHZjxWvvD0gQ42ra6Zk2yxd69fSiKpPLa3NfPBeUhrzxB7cpjtdG5jFcsqivjFS8dyMt5C5qfPH2ZJeZjvf/oC3nBSFbc9tp+AT3jfWctnNK5ZGsY4vEBhLiwNgPUrKth9tLBdKB4tnQMc7hpk06rZdU15nNdYRV1ZiId3F6ZobHvB2azh4tOnn+2Tis8nXHbWMn67t224hnshcrxniMf2tPLBc1dQVRLivs+8ie9evZFvbD5vxlmM4YBlTxlj2Hu8j4aq4ilvCDcRZywvZ19r73AwrpB5+lUvnjE3+1z6fMLFpy/lsVdaC+76qir3P9vCuSurcmL1erz3rGVE4kl+vacwhbZ7IMaWrTsI+n1cdcFJgJM59u71S/mjc2bmmgJnRbhZGgbg1A2+56nX+c3eNk5blrsP6frlFcQSWvBZPuD432tKQ5yew+uXifesX0pvJF5wX4I7D/fwyrFertwwvRTbidi4qoa6shA/fe5I5oPzjGg8yafvaWJ/Wx+3f3zjcFp2LikK+Ikndc5q1JtoLGC+vn0vf//TnaypL+WvLj0tZ+Oud/e4KfQsH1Xlif0nePOaWny+uVv9/vbT6mmsLuZbj+0viFTSjv4oNz6wk//9Xy8QDvj4wLkz/3Wcit8n/I8LTubh3cd54VBXTseeT1SVG7ftZMeBDv7lynN5y7rZWfU+19X7TDQWKK8c6+H2377KR97QyI+ue/O0NzNLx+q6UsIBX8HHNfa39XG8JzLnW1QE/T4++/Y1vHCoiyea2+f0b+eaoViCT931DN/fcRCfT/j8u9dRWRzM+d/59FtXU1sa4qsPvlIQQptIKv/ws5f5wY5DXP/ONVx+XkPmTtPE2xrHRGOR0jMU45bte7n27mepKA7yd+8/I+dZPwG/j9OWlbP7WP6JRvdAjJ2Hu7M61vvCfss87Gt0xYZGllaE+c7vXp3zv51L/vbHL/GHg13cuvl8Hvz8W/nzd6ydlb9TXhTkL961lidfbeeB5/PfTfU3P3qRO3//Gp96y2q+8J7ceQnSUTRsacxNMNz2npondh7u5p4nX+fVE32sXVLOR97QwMZVNXxp2y5+8txhzm2s4qYPnzVr+0OtX17BL3cdYzCaoDg0e5v45ZLeoRibv/MUu4/28MmLVvHxC09mRVXxuPUCOw508H8e2En3YIyVNcWsrJne7qEzoSjo5wPnrODup15nKJbIyZqGueZXu47x4+cO8/mL1/Hes2eWFpoNf3rhyfzipWN88ccvsm5p2Yy21phPXmrp5v5nW/jM20/hhveeMet/b67rhJulMQ88tqeVK7/9JL/YeZREUnng+cNc+e9P8m+/buYnzx3m2reewk+vv4i3rpu9glJvWVdH10CMC//xEX763OFZ+zu54kRfhM9+71n2He/l/Wcv5z+eeI13fe03bLrpYX67d6RaYyKp/J8HdnK8Zwi/T/iTDSsnGXV2uWhdHdF4kmdeG1c3bEGz+2gPdz5xgL/76U7OWF7B5941O9bFWIJ+H//2p2+gqjjEF+57IW/dVP/yqz1UlQT53Dvn5rqFA2ZpFDS7jnTz6bubOHVpOXd+chP15WH6I3H+9LtP888P7aE8HOCzb18z6/N4/9nLWfKZIm7+5Sv89f0vckp9KdUlIUrDgRkXeso1v9p1jC/c9wKDsQRf/cg5XLGhkc+2dLP3eC/f+d2rfPLOZ/jSB9bz8Tet4kfPtvDKsV6++T/Oz0k640zYtKqGoF94vPnErP4AyCWvt/fzx9/6PYOxBJXFQf75inMITnPL7ulQXx7mC5ecyl/d/yK/23eCt5268K5bLJHELzKcXPH8oS4e39fGh85v4LE9bfxmbxtffO/plBflPvaTDs+KnStLw0RjDoklkvzVf71IZXGI711zwbDrqTQc4DtXb+RTdz3DFRtXzsmW5SLCptU1fPfqjfzRvz7OFbc9STSRdFaonr2cr37kbEpC8//2SCSVL//8ZVZUFfOtj71hOGXx7MZKzm6s5NKzlvH5HzzH3z+wi5+9cJTnW7o4/6Qq3j8H7pRMlIYDnH9SNU80z/8WGbuOdPPwy60Uh3wMRBMc7hxkp5s911hdzB+f38BZDZX87/96gYBfePgv3s6q2pJp13iYCR88bwX//NAevvO7VxeUaLT2DvHNR5u5r+kQKyqLed/Zy3nlWM/wQs5bHt5HIqm8dV0dn3jzqjmbl5c91TM4N1vXzP+3QhaIyGXA/wf4ge+q6ldz/TdiiSSfvruJ81dWc8bycpKq1JSGWVlTTHVJiHuefJ2m1zv4fz98NrXTKITUPRDjyz9/mZeP9vDtj20YJwz15WEe+NxbcnU6WVNdGuLfP76BWx/Zx4Wn1HKoc4D/eOI1zmms5FNvPSWnf2vv8V5+u7eN8qIAbzipOqsFYr/adYyWzkG+nSIYqZSFA9x+9UZu/uUr3PvMIT66cSV//s41C6bA1FvW1nHLw3vp6I9OyYJLJpXeoTiVJTP7taqq/NezLfzdT3eOWmxYVxbizBWVBP0+dh7uZvvLx4df+/qfnDtcG2Q+CAf8fOKiVfzTL/ew7YUjfDDHKb7TYfvLx/mbH71I71CMD5yzgn2tfXzz1800Vhfz5+9Yw4fPb+DO379GQ3Uxn3nbGvxzmOJ9VkMl4YCPh3cfnxORlYXuNxQRP7AXeA/QAjwDXKWqL6c7fuPGjdrU1DTlv3Oka5BP393Ey0d7GHtJREAVfAKnLavg+5+6gKqSII/sbuWpV9vpGoxx1aaVbDh5ZKuKnYe7eWxPK+etrOZQ5wD//NAeugaifObta/iby06f8vzmkqtuf4pXT/Tx279+Z9pKd/vb+tj2/BFW1pTwtlPrJi3V2dYb4ftPH+SJ/SfYcWC0b3/DydWc3VDJ6rpSVtWVckpdKRVFQQZicfojCQajCf7+gZ2090d47H+/c04/iLnixZYuPvjNJ3jL2jo+duFJ7Dzcw4fOX8HaJeUc7hokGk/SH4nzyrFeLlhdQ0NVMT9+7jDf/s1+mlv7OKW+lPNXVnPmigqu2NhIxRRcHi+2dPH//Pdudhzo4M1rarn1qvMJB3wUB/2jLIh4IsnjzSdo642wvLKYi9bWzrvo9gzF+Nh3n+bFlm7euq6ON6+p44oNjVQWB/n5i0dIJJWlFUUsqQiztLyIqpLghHMe607Klmg8SdPrHXznt6/y6z1trF9ewa1Xnc/aJWWoKoOxxIKwxgE+9/0/8ETzCZ7+23dPq4oigIg8q6obMx6XB6LxJuBLqnqp+/wGAFX9x3THT1c0PLoGohzsGMDvE070RTnUMcCRrkEuPKUWBT59VxOhgI+Ta0vYdcSp7RsK+OgdinP6snJW1pSw51gvBztGbwi4aVUNX/rgmaxfkbv1FrPFb/e2cfXWHfzlu9fxR+es4MUWZ73Bcwc7GYwlOJqyQ24o4OMTb17FisoijnYPcczdcr26JMTqulK++etmTvRFWL+8gsvOXMaVG1cSiSf45c5j/PdLR3m1rZ++DHsO3fiB9XzyotWzes6zyQ93HORLP9s17HMuCwd405raUb/uAYqDfk5dVs4Lh7pYv7yC96xfygstXbx8pIfW3ghVJUHObqikvS9KMs3n1u8TTqkvY3llEQfbB/jlrmPUlob4n+85lc1vXDkvrqaZEEsk+fZj+/nJc4d59UQ/5eEAtWWhtJtthvw+6svDXLC6hjetqWXv8V4Odw1yuGuI3Ud6qC8PD1/P9r4oQb9wvCdCUdDH+SdVUxz0k3Cv6Zr6MvqG4tz/7CF6huKUhwN87l1r+cRFq2a1XPBM+PUrrXzyzme4/eMbuOTMZdMao5BE4wrgMlX9lPv848AFqvq5dMfPVDQysfNwN1ufOMBLLd188qLV/MnGRqKJJN976nUeb26npXOAdUvKeMu6ei5dv5Q/HOwi4BMuPmPJvP96yxZV5aP//hQ7UrJ+qkuCvHFVDRXFQVbVlvAnb1xJW2+EO353gB+72Vchv4+llWH8IrT2RhiIJjilrpTbPrZhwm1QVJW2vggH2vp59UQ//ZE4peEAJSE/JaEAFUUBNq6qyUsrI5WD7QO0dA7QUF3Mn//nH9jf1sefXbSadUvLCPicHyHfeHgfz7zWwf/9vjP46BtXjnq/vNTSza2P7qOtN0JtaSjt9Ygmkuw73kd7f4TyoiBXbmjkunesmbOA7GzS3NrHP/5iN8d7h/hf7zmVNfVlHO+J0No7NHx/uHOQ3+xpozcSJxTwsbK6mCXlRZzVUMHLR3t4cn87ZzdWsaq2hEgsybLKInoGY7zQ0kUiqfh9QlKdZACfCO89ezkfOGc5F62ty9m+b7NFPJHkwn98hI0n1/Dtj2+Y1hiFJBpXApeOEY1NqvoXKcdcC1wLcNJJJ214/fXX52WuhUQknuDFlm4OtPVzZkMFZyyrmNC8P9btpLfWloaGj4knkrx6op+Takryco3CbBJLJBmMJdK6muKJZN5ZBAuJoViC19r7OaWubJybJttr2xeJk0jojONJc82//bqZgWicv7p0eu7vQhKNOXVPGYZhLEayFY18+EnzDLBORFaLSAjYDGyb5zkZhmEsSha2ow5Q1biIfA54CCfldquq7prnaRmGYSxKFrxoAKjqL4BfzPc8DMMwFjv54J4yDMMwFggmGoZhGEbWmGgYhmEYWWOiYRiGYWSNiYZhGIaRNQt+cd9UEZFeYA9QCWRXFzQ7Fvp4dUCu9uBe6Oea6/E8cnUN8+F8F/L7Dxb+NSy061cHlKpq5m1yVbWgbkCTe397jsdd6OM1LeC5Lejxcn0N8+F8F/L7Lx+uYaFdv6n8/UJ2T/1skY2XSxb6uS7kawf5cb52DRfWeLlm1uZXiO6pJs1i/5RCY7Gedy6xazh97NrNjPm+flP5+4Voadw+3xOYJxbreecSu4bTx67dzJjv65f13y84S8MwDMOYPQrR0jAMwzBmCRONBYqIrBSRX4vIbhHZJSKfd9trRGS7iOxz76vd9lr3+D4R+WbKOOUi8nzK7YSIfGO+zmsuydU1dF+7SkReEpEXReSXIlI3H+c0V+T42n3UvW67ROSf5uN85pppXL/3iMiz7nvsWRF5V8pYG9z2ZhG5Vea7BGgu07zsltOUueXAG9zH5cBeYD3wT8AX3fYvAje7j0uBtwCfBb45ybjPAm+b7/PLp2uIsxt0K1DnPv8nnMJg836OeXDtaoGDQL37/C7g4vk+vwV4/c4HVriPzwIOp4y1A3gTIMCDwHvn89zM0ligqOpRVf2D+7gX2A00AJfjfPBw7z/kHtOvqo8DQxONKSLrgCXA72Zx6guGHF5DcW+l7q+8CuDI7J/B/JHDa3cKsFdV29znDwMfmeXpzzvTuH7Pqar3ntoFFIlIWESWAxWq+qQ6CnK312e+MNHIA0RkFc4vkaeBpX+YQmwAAAOoSURBVKp6FJw3Jo4IZMtVwL3um29RMZNrqKox4DrgJRyxWA/cMYvTXVDM8P3XDJwuIqtEJIDzhbdy9ma78JjG9fsI8JyqRnCEpiXltRa3bd4w0VjgiEgZ8CPgL1W1Z4bDbQZ+MPNZ5RczvYYiEsQRjfOBFcCLwA05neQCZabXTlU7ca7dvTgW7mtAPJdzXMhM9fqJyJnAzcBnvKY0h83rjz4TjQWM+2X1I+A/VfXHbvNx12TFvW/NcqxzgYCqPjsrk12g5OgangegqvtdK+0+4M2zNOUFQ67ef6r6M1W9QFXfhLMv3L7ZmvNCYqrXT0QagZ8AV6vqfre5BWhMGbaReXaNmmgsUFzf+R3AblX9espL24At7uMtwANZDnkVi8zKyOE1PAysFxFvM7f34PioC5Zcvv9EZIl7Xw38OfDd3M524THV6yciVcB/Azeo6hPewa4Lq1dELnTHvJrsP/Ozw3xnGdgt/Q0nE0VxXCHPu7f34WSjPILza+0RoCalz2tAB9CH8wtlfcprrwKnz/d55es1xMkK2u2O9TOgdr7PL4+u3Q+Al93b5vk+t4V4/YC/A/pTjn0eWOK+thHYCewHvom7KHu+brYi3DAMw8gac08ZhmEYWWOiYRiGYWSNiYZhGIaRNSYahmEYRtaYaBiGYRhZY6JhGHOMiHxWRK6ewvGrRGTnbM7JMLIlMN8TMIzFhIgEVPXb8z0Pw5guJhqGMUXcDeh+ibMB3fk4215fDZwBfB0oA04An1DVoyLyGPB74CJgm4iUA32q+i8ich7wbaAEZ/HWn6lqp4hsALYCA8Djc3d2hjE55p4yjOlxGnC7qp4D9ADXA/8KXKGq3hf+TSnHV6nq21X1a2PGuRv4G3ecl4Ab3fb/AP4vdfZrMowFg1kahjE9DunIHkHfA/4Wp3jOdrewmh84mnL8vWMHEJFKHDH5jdt0F/BfadrvAd6b+1MwjKljomEY02Ps/ju9wK5JLIP+KYwtacY3jAWBuacMY3qcJCKeQFwFPAXUe20iEnRrI0yIqnYDnSLyVrfp48BvVLUL6BaRt7jtf5r76RvG9DBLwzCmx25gi4j8O86Opf8KPATc6rqXAsA3cEp3TsYW4NsiUoKzE/En3fZPAltFZMAd1zAWBLbLrWFMETd76ueqetY8T8Uw5hxzTxmGYRhZY5aGYRiGkTVmaRiGYRhZY6JhGIZhZI2JhmEYhpE1JhqGYRhG1phoGIZhGFljomEYhmFkzf8PSwdrLe+/GiIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +2307,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 46, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +2327,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +2351,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+w1fV95/HnC0GwiSgQMPxQYSPJBE0Xyx10x+5uxC2QHxOwNQ2rVWbqDIniju1mVqTJjqnSmZhpYsu6ISE1FbWK1MSRTaF4jTq1XQJcgr+Q0Hu7UkSIXOaiYmegXnjvH9/Pqd97cjmcc/lyftz7esycOd/7OZ/P53zul8N9n8+P7/ejiMDMzKxIwxrdADMzG3wcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4YY3ugH19JGPfCSmTp3a6GaYmbWU7du3H4qI8bWUGVLBZerUqXR0dDS6GWZmLUXSP9daxsNiZmZWOAcXMzMrnIOLmZkVrqrgImmPpFckvSipI6V9Q9KbKe1FSZ/N5V8uqUvSbknzcumzUj1dklZKUkofKenxlL5F0tRcmcWSOtNjcS59Wsrbmcqeffqnw8zMilBLz+XqiJgZEW25tPtS2syI2AAgaQawCLgUmA98V9JZKf8qYAkwPT3mp/SbgcMRcQlwH3BvqmsscBdwBTAbuEvSmFTm3vT+04HDqQ4zM2sCZ2JYbAGwNiKORcTrQBcwW9JEYHREbI5sh7KHgIW5MmvS8RPANalXMw9oj4ieiDgMtAPz02tzUl5S2VJdLe/gu0f53e9v5uCRo41uipnZgFQbXAJ4WtJ2SUty6bdJelnSD3M9isnAG7k8+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr6vlrfxpJ9v29LDymc5GN8XMbECqvc7lqojYL2kC0C7pF2RDXPeQBZ57gG8Dvw+on/JRIZ0BlKlUVx8pGC4BuOiii/rL0jQ+8fWNHOs98W8/P7JlL49s2cvI4cPYveIzDWyZmVltquq5RMT+9HwQeBKYHRFvRcTxiDgB/IBsTgSyXsSFueJTgP0pfUo/6X3KSBoOnAf0VKjrEHB+ylteV3nbV0dEW0S0jR9f0wWmdffCHVfzhZmTGDUi+2cZNWIYC2ZO4oVlVze4ZWZmtTllcJH0IUnnlo6BucCraQ6l5Frg1XS8HliUVoBNI5u43xoRB4Ajkq5McyY3AU/lypRWgl0HPJvmZTYBcyWNScNuc4FN6bXnUl5S2VJdLWvC6FGcO3I4x3pPMHL4MI71nuDckcOZcO6oRjfNzKwm1QyLXQA8mVYNDwcejYi/lfSwpJlkw1F7gC8DRMROSeuA14BeYGlEHE913QI8CJwDbEwPgAeAhyV1kfVYFqW6eiTdA2xL+e6OiJ50vAxYK2kFsCPV0fIOvXeMG664mOtnX8SjW/fS7Ul9M2tByjoBQ0NbW1v43mJmZrWRtL3sMpRT8hX6ZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3BpUb7/mJk1MweXFuX7j5lZM6v23mLWJHz/MTNrBe65tBjff8zMWoGDS4vx/cfMrBV4WKwF+f5jZtbsfG+xKhx89yi3PbaD+6+/3D0EMxtyfG+xM8Qrs8zMauNhsQq8MsvMbGDcc6nAK7PMzAbGwaUCr8wyMxuYqoKLpD2SXpH0oqSOlDZWUrukzvQ8Jpd/uaQuSbslzculz0r1dElambY7Jm2J/HhK3yJpaq7M4vQenZIW59KnpbydqezZp386flVpZdaTt17FDVdcTPd7x87E25iZDSpVrRaTtAdoi4hDubRvAT0R8U1JdwJjImKZpBnAY8BsYBLwDPDxiDguaStwO/AzYAOwMiI2SroV+PWI+IqkRcC1EfElSWOBDqCNbDvl7cCsiDictlL+cUSslfQ94KWIWFXp9/BOlGZmtav3arEFwJp0vAZYmEtfGxHHIuJ1oAuYLWkiMDoiNkcW0R4qK1Oq6wngmtSrmQe0R0RPRBwG2oH56bU5KW/5+5uZWYNVG1wCeFrSdklLUtoFEXEAID1PSOmTgTdyZfeltMnpuDy9T5mI6AXeAcZVqGsc8HbKW16XmZk1WLVLka+KiP2SJgDtkn5RIa/6SYsK6QMpU6muvo3JguESgIsuuqi/LGZmVrCqei4RsT89HwSeJJtPeSsNdZGeD6bs+4ALc8WnAPtT+pR+0vuUkTQcOA/oqVDXIeD8lLe8rvK2r46ItohoGz9+fDW/rpmZnaZTBhdJH5J0bukYmAu8CqwHSqu3FgNPpeP1wKK0AmwaMB3YmobOjki6Ms2Z3FRWplTXdcCzaV5mEzBX0pi0Gm0usCm99lzKW/7+ZmbWYNUMi10APJlWDQ8HHo2Iv5W0DVgn6WZgL/BFgIjYmVZyvQb0Aksj4niq6xbgQeAcYGN6ADwAPCypi6zHsijV1SPpHmBbynd3RPSk42XAWkkrgB2pDjMzawK+caWZmVXkG1eamVlTcHAxM7PCObiYmVnhHFzMzKxwDi5mZlY4BxczMyucg4uZmRXOwcXMzArn4GJmZoVzcDEzs8I5uJiZWeEcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhas6uEg6S9IOST9JP39D0puSXkyPz+byLpfUJWm3pHm59FmSXkmvrVTaO1nSSEmPp/QtkqbmyiyW1Jkei3Pp01LezlT27NM7FWZmVpRaei63A7vK0u6LiJnpsQFA0gxgEXApMB/4rqSzUv5VwBJgenrMT+k3A4cj4hLgPuDeVNdY4C7gCmA2cJekManMven9pwOHUx1mZtYEqgoukqYAnwP+oorsC4C1EXEsIl4HuoDZkiYCoyNic0QE8BCwMFdmTTp+Argm9WrmAe0R0RMRh4F2YH56bU7KSypbqsvMzBqs2p7LnwF3ACfK0m+T9LKkH+Z6FJOBN3J59qW0yem4PL1PmYjoBd4BxlWoaxzwdspbXpeZmTXYKYOLpM8DByNie9lLq4CPATOBA8C3S0X6qSYqpA+kTKW6+pC0RFKHpI7u7u7+spiZWcGq6blcBXxB0h5gLTBH0iMR8VZEHI+IE8APyOZEIOtFXJgrPwXYn9Kn9JPep4yk4cB5QE+Fug4B56e85XX1ERGrI6ItItrGjx9fxa9rZman65TBJSKWR8SUiJhKNlH/bET8XppDKbkWeDUdrwcWpRVg08gm7rdGxAHgiKQr05zJTcBTuTKllWDXpfcIYBMwV9KYNOw2F9iUXnsu5SWVLdVlZmYNNvzUWU7qW5Jmkg1H7QG+DBAROyWtA14DeoGlEXE8lbkFeBA4B9iYHgAPAA9L6iLrsSxKdfVIugfYlvLdHRE96XgZsFbSCmBHqsPMzJqAsk7A0NDW1hYdHR2NboaZWUuRtD0i2mop4yv0zcyscA4uZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3AxM7PCObiYmVnhHFzMbMg7+O5Rfvf7mzl45GijmzJoOLiY2ZC38qedbNvTw8pnOhvdlEHjdO4tZmbW0j7x9Y0c6/1gm6pHtuzlkS17GTl8GLtXfKaBLWt97rmY2ZD1wh1X84WZkxg1IvtTOGrEMBbMnMQLy65ucMtan4OLmTWdes2BTBg9inNHDudY7wlGDh/Gsd4TnDtyOBPOHXVG33cocHAxs6ZTzzmQQ+8d44YrLubJW6/ihisupvu9Y2f8PYcC33LfzJpG+RxIiedAGsu33DezluY5kMHDwcXMmobnQAaPqoOLpLMk7ZD0k/TzWEntkjrT85hc3uWSuiTtljQvlz5L0ivptZWSlNJHSno8pW+RNDVXZnF6j05Ji3Pp01LezlT27NM7FWbWDDwHMjhUPeci6b8DbcDoiPi8pG8BPRHxTUl3AmMiYpmkGcBjwGxgEvAM8PGIOC5pK3A78DNgA7AyIjZKuhX49Yj4iqRFwLUR8SVJY4GO9L4BbAdmRcRhSeuAH0fEWknfA16KiFWVfgfPuZiZ1e6MzblImgJ8DviLXPICYE06XgMszKWvjYhjEfE60AXMljSRLDBtjiyiPVRWplTXE8A1qVczD2iPiJ6IOAy0A/PTa3NS3vL3NzOzBqt2WOzPgDuA/DKOCyLiAEB6npDSJwNv5PLtS2mT03F5ep8yEdELvAOMq1DXOODtlLe8rj4kLZHUIamju7u7yl/XzMxOxymDi6TPAwcjYnuVdaqftKiQPpAylerqmxixOiLaIqJt/Pjx/WUxM7OCVdNzuQr4gqQ9wFpgjqRHgLfSUBfp+WDKvw+4MFd+CrA/pU/pJ71PGUnDgfOAngp1HQLOT3nL6zKrie+Ia1a8UwaXiFgeEVMiYiqwCHg2In4PWA+UVm8tBp5Kx+uBRWkF2DRgOrA1DZ0dkXRlmjO5qaxMqa7r0nsEsAmYK2lMWo02F9iUXnsu5S1/f7Oa+I64ZsU7nbsifxNYJ+lmYC/wRYCI2JlWcr0G9AJLI+J4KnML8CBwDrAxPQAeAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIdZ1XxHXLMzx7d/sSHr4LtHWbFhF0/v/CVH3z/BqBHDmHfpR/na5z7pi/bMcnz7F7Ma1HI1eKvOy7Rqu631ObjYkFbt1eCtOi/Tqu221udhMbMKWvUuva3abmtOHhYzK1ir3qW3Vdttg4eDi1kFrXqX3lZttw0ep7MU2WxIKM3LXD/7Ih7dupfuFpkcb9V22+DgORczM6vIcy5mZtYUHFzMzKxwDi5mZgXyhasZBxczswL5wtWMV4tZSzr47lFue2wH919/uZfXWlPwjVD7cs/FWpK/HVqz8YWrfbnnYi3F3w4/4N5bc/GFq32552Itxd8OP+DeW/Op9kaoQ4F7LtZ0Kn0j97dD996a2fdv/OA6wxULL2tgSxrvlD0XSaMkbZX0kqSdkv44pX9D0puSXkyPz+bKLJfUJWm3pHm59FmSXkmvrUzbHZO2RH48pW+RNDVXZrGkzvRYnEuflvJ2prJnF3NKbKCKWoJ5qm/kQ/3boXtv1gqq6bkcA+ZExHuSRgB/L6m0PfF9EfGn+cySZpBtU3wpMAl4RtLH01bHq4AlwM+ADcB8sq2ObwYOR8QlkhYB9wJfkjQWuAtoAwLYLml9RBxOee6LiLWSvpfqWDXwU2GnKx8UVlz7qZrLV/uNfKh/O3TvzVrBKXsukXkv/TgiPSrdkGwBsDYijkXE60AXMFvSRGB0RGyO7IZmDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVmef+PpGpt75NzyyZS8RWVCYeuff8Imvbzx14Rx/I6/eUO+9WfOras5F0lnAduAS4H9HxBZJnwFuk3QT0AF8NQWAyWQ9k5J9Ke39dFyeTnp+AyAieiW9A4zLp5eVGQe8HRG9/dRldfbCHVefdC/6WvgbefWGeu/Nml9Vq8Ui4nhEzASmkPVCLiMbgvoYMBM4AHw7ZVd/VVRIH0iZSnX1IWmJpA5JHd3d3f1lsdNUZFDwN/LBz7dHGRpqWi0WEW9Leh6Yn59rkfQD4Cfpx33AhbliU4D9KX1KP+n5MvskDQfOA3pS+qfLyjwPHALOlzQ89V7ydZW3eTWwGrJb7tfy+1r1ito7xN/IB7/TnZuz1nDK/VwkjQfeT4HlHOBpssn07RFxIOX5Q+CKiFgk6VLgUWA22YT+T4HpEXFc0jbgvwFbyCb0/1dEbJC0FPhURHwlTej/dkT8bprQ3w78RmrOz4FZEdEj6a+BH+Um9F+OiO9W+l28n4tZ45Qv2CjxEurmN5D9XKrpuUwE1qR5l2HAuoj4iaSHJc0kG47aA3wZICJ2SloHvAb0AkvTSjGAW4AHgXPIVomVZnwfAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIeZNami5uasNZwyuETEy8Dl/aTfWKHMnwB/0k96B/ArYx0RcRT44knq+iHww37S/x9Z78jMWoAXbAwtvkLfzOqmqLk5a36nnHMZTDznYmZWu4HMufjGlWZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4RxczMyscA4uZmZWOAcXszrzfiY2FDi4mNVZfj8Ts8HKN640q5Py/Uwe2bKXR7bs9X4mNii552JWJy/ccTVfmDmJUSOy/3ajRgxjwcxJvLDs6ga3zKx4Di5mdeL9TGwocXCxQa3ZJs9L+5k8eetV3HDFxXS/d6zRTTI7I04ZXCSNkrRV0kuSdkr645Q+VlK7pM70PCZXZrmkLkm7Jc3Lpc+S9Ep6baUkpfSRkh5P6VskTc2VWZzeo1PS4lz6tJS3M5U9u5hTYoNJs02ef//GNlYsvIwZk0azYuFlfP/GmrbIMGsZp9wsLAWAD0XEe5JGAH8P3A78NtATEd+UdCcwJiKWSZoBPEa2BfEk4Bng4xFxXNLWVPZnwAZgZURslHQr8OsR8RVJi4BrI+JLksYCHUAbEMB2YFZEHJa0DvhxRKyV9D3gpYhYVel38WZhQ0f55HmJJ8/NandGNguLzHvpxxHpEcACYE1KXwMsTMcLgLURcSwiXge6gNmSJgKjI2JzZBHtobIypbqeAK5JQW0e0B4RPRFxGGgH5qfX5qS85e9v5snzBmm2YUhrnKrmXCSdJelF4CDZH/stwAURcQAgPU9I2ScDb+SK70tpk9NxeXqfMhHRC7wDjKtQ1zjg7ZS3vK7yti+R1CGpo7u7u5pf1wYBT543RrMNQ1rjVHWdS0QcB2ZKOh94UtJlFbKrvyoqpA+kTKW6+iZGrAZWQzYs1l8eG5xKk+fXz76IR7fupdvfps8YX8Nj5Wq6iDIi3pb0PDAfeEvSxIg4kIa8DqZs+4ALc8WmAPtT+pR+0vNl9kkaDpwH9KT0T5eVeR44BJwvaXjqveTrMgPoM1m+YmGl70N2ul6442pWbNjF0zt/ydH3TzBqxDDmXfpRvva5Tza6adYg1awWG596LEg6B/gvwC+A9UBp9dZi4Kl0vB5YlFaATQOmA1vT0NkRSVemOZObysqU6roOeDbNy2wC5koak1ajzQU2pdeeS3nL39/M6szDkFaump7LRGCNpLPIgtG6iPiJpM3AOkk3A3uBLwJExM60kus1oBdYmobVAG4BHgTOATamB8ADwMOSush6LItSXT2S7gG2pXx3R0RPOl4GrJW0AtiR6jCzBvEwpOWdcinyYHImlyIffPcotz22g/uvv9zf1szqpFX/37Vau8/IUmSrjlfJmNVfq/6/a9V218I9l9Pki/XM6q9V/9+1arvdc2kAX6xnVn+t+v+uVds9EA4up6mWVTK+etlaWTN9flt1dVqrtnsgHFwKUO2dbofCOKsNXs32+W3VO0y3artr5TmXOmjVcVYz8OfXPOfStIbSOKsNPv78Nq9mGqos5+BSB4NhnLWZP8R2Zg2Gz+9g1WxDlXk13VvMBq7Vr17Of4hXXPupRjfH6qzVP7+DTSvcKNRzLlaRx9vNms/Bd4+e9EahZ6JH6TkXK5zH282aTysMVXpYzCpqhQ+x2VDU7EOVDi52Ss3+ITYbipp9vyLPuQxxrXZ3VjOrP8+5WM2aeSmjmbUuD4sNUa2wlLHVuBdo9oFqtjm+UNJzknZJ2inp9pT+DUlvSnoxPT6bK7NcUpek3ZLm5dJnSXolvbYybXdM2hL58ZS+RdLUXJnFkjrTY3EufVrK25nKnl3MKRkavAqseO4Fmn2gmp5LL/DViPi5pHOB7ZLa02v3RcSf5jNLmkG2TfGlwCTgGUkfT1sdrwKWAD8DNgDzybY6vhk4HBGXSFoE3At8SdJY4C6gDYj03usj4nDKc19ErJX0vVTHqoGfiqHFq8CK416g2a86Zc8lIg5ExM/T8RFgFzC5QpEFwNqIOBYRrwNdwGxJE4HREbE5slUEDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVqWhcnfWM829QLNfVdOcSxquuhzYAlwF3CbpJqCDrHdzmCzw/CxXbF9Kez8dl6eTnt8AiIheSe8A4/LpZWXGAW9HRG8/dVmVmn0pY6twL9DsV1W9WkzSh4EfAX8QEe+SDUF9DJgJHAC+XcraT/GokD6QMpXqKm/3Ekkdkjq6u7v7y2J22twLNOurqp6LpBFkgeWvIuLHABHxVu71HwA/ST/uAy7MFZ8C7E/pU/pJz5fZJ2k4cB7Qk9I/XVbmeeAQcL6k4an3kq+rj4hYDayG7DqXan5fs1q5F2jWVzWrxQQ8AOyKiO/k0ifmsl0LvJqO1wOL0gqwacB0YGtEHACOSLoy1XkT8FSuTGkl2HXAs2leZhMwV9IYSWOAucCm9NpzKS+pbKkuMzNrsGp6LlcBNwKvSHoxpf0R8F8lzSQbjtoDfBkgInZKWge8RrbSbGlaKQZwC/AgcA7ZKrGNKf0B4GFJXWQ9lkWprh5J9wDbUr67I6InHS8D1kpaAexIdZiZWRPw7V/MzKwi3/7FzMyagoOLmVkTavWtxR1czKzl/5ANRq1+OyHfuNLM+vwhW3HtpxrdnCFtsNxOyBP6ZkNY+R+yklb7QzaYHHz3KCs27OLpnb/k6PsnGDViGPMu/Shf+9wnB3TXhyLu1u0JfTOrie+L1nyKvp1Qo4bXPCxm1oTqtTeM74vWnIrYWrzRw2sOLmZNqJ5zIEX8IbNiFXE7oRfuuPqkw2v14OBi1kQa8W3T90UbnBrdK/Wci1kT8RxI8YbyMutG3q3bPRezJtLob5uD0VBeZt3IXqmDi1mT8RxIMRo9oT3U+ToXMxuUir5eZCjzdS5mZomHGBvLw2JmNmh5iLFxPCxmZmYVeVjMzMyawimDi6QLJT0naZeknZJuT+ljJbVL6kzPY3JllkvqkrRb0rxc+ixJr6TXVkpSSh8p6fGUvkXS1FyZxek9OiUtzqVPS3k7U9mzizklZmZ2uqrpufQCX42ITwJXAkslzQDuBH4aEdOBn6afSa8tAi4F5gPflXRWqmsVsASYnh7zU/rNwOGIuAS4D7g31TUWuAu4ApgN3JULYvcC96X3P5zqMDOzJnDK4BIRByLi5+n4CLALmAwsANakbGuAhel4AbA2Io5FxOtAFzBb0kRgdERsjmyi56GyMqW6ngCuSb2aeUB7RPRExGGgHZifXpuT8pa/v5mZNVhNcy5puOpyYAtwQUQcgCwAARNStsnAG7li+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr8vMzBqs6uAi6cPAj4A/iIh3K2XtJy0qpA+kTKW6+jZGWiKpQ1JHd3d3f1nMzKxgVQUXSSPIAstfRcSPU/JbaaiL9Hwwpe8DLswVnwLsT+lT+knvU0bScOA8oKdCXYeA81Pe8rr6iIjVEdEWEW3jx4+v5tc1M7PTVM1qMQEPALsi4ju5l9YDpdVbi4GncumL0gqwaWQT91vT0NkRSVemOm8qK1Oq6zrg2TQvswmYK2lMmsifC2xKrz2X8pa/v5mZNVg1V+hfBdwIvCLpxZT2R8A3gXWSbgb2Al8EiIidktYBr5GtNFsaEcdTuVuAB4FzgI3pAVnwelhSF1mPZVGqq0fSPcC2lO/uiOhJx8uAtZJWADtSHWZm1gR8hb6ZmVXkK/St6Q3ljZvMhhIHF6ur/MZNZjZ4+a7IVhfeuMlsaHHPxerCe8ObDS0OLlYX3rjJbGjxsJjVjTduMhs6vBTZzMwq8lJkMzNrCg4uZmZWOAeXQcwXLJpZozi4DGK+YNHMGsWrxQYhX7BoZo3mnssg5AsWzYrnYebaOLgMQr5g0ax4HmaujYfFBilfsGhWDA8zD4wvojQzq+Dgu0dZsWEXT+/8JUffP8GoEcOYd+lH+drnPjlkRgPOyEWUkn4o6aCkV3Np35D0pqQX0+OzudeWS+qStFvSvFz6LEmvpNdWpq2OSdshP57St0iamiuzWFJneizOpU9LeTtT2bNr+aXNzKrlYeaBqWbO5UFgfj/p90XEzPTYACBpBtkWxZemMt+VdFbKvwpYAkxPj1KdNwOHI+IS4D7g3lTXWOAu4ApgNnCXpDGpzL3p/acDh1MdZmZnRGmY+clbr+KGKy6m+71jjW5S0zvlnEtE/F2+N3EKC4C1EXEMeF1SFzBb0h5gdERsBpD0ELAQ2JjKfCOVfwK4P/Vq5gHtEdGTyrQD8yWtBeYA16cya1L5VVW20cysJt+/8YMRoRULL2tgS1rH6awWu03Sy2nYrNSjmAy8kcuzL6VNTsfl6X3KREQv8A4wrkJd44C3U97yuszMrAkMNLisAj4GzAQOAN9O6eonb1RIH0iZSnX9CklLJHVI6uju7j5ZNjMzK9CAgktEvBURxyPiBPADsjkRyHoRF+ayTgH2p/Qp/aT3KSNpOHAe0FOhrkPA+SlveV39tXV1RLRFRNv48eNr/VXNzGwABhRcJE3M/XgtUFpJth5YlFaATSObuN8aEQeAI5KuTPMpNwFP5cqUVoJdBzwb2froTcBcSWPSsNtcYFN67bmUl1S2VJeZmTWBU07oS3oM+DTwEUn7yFZwfVrSTLLhqD3AlwEiYqekdcBrQC+wNCKOp6puIVt5dg7ZRP7GlP4A8HCa/O8hW21GRPRIugfYlvLdXZrcB5YBayWtAHakOszMrEn4IkozM6toIBdRDqngIqkb+Od+XvoI2VxOq3G768vtrq9WbTe0bttP1u6LI6KmSeshFVxORlJHrVG5Gbjd9eV211erthtat+1Fttt3RTYzs8I5uJiZWeEcXDKrG92AAXK768vtrq9WbTe0btsLa7fnXMzMrHDuuZiZWeEGZXA5yR40/17S5rSnzP+RNDqlj5C0JqXvkrQ8V+b5tC9Nad+aCU3U7rMl/WVKf0nSp3Nl+t07pwXaXe/zfaGk59K/+05Jt6f0sZLa035B7bkbs9a8X1ELtLtu57zWdksal/K/J+n+srrq/Rkvsu3NfM5/S9L2dG63S5qTq6u2cx4Rg+4B/CfgN4BXc2nbgP+cjn8fuCcdX0+2TQDAr5HdcWBq+vl5oK1J270U+Mt0PAHYDgxLP28F/gPZTT43Ap9pkXbX+3xPBH4jHZ8L/CMwA/jPDIkDAAADj0lEQVQWcGdKvxO4Nx3PAF4CRgLTgH8Czqr3OS+43XU75wNo94eA3wS+AtxfVle9P+NFtr2Zz/nlwKR0fBnw5kDP+aDsuUTE35HdSibvE8DfpeN24HdK2YEPKbsR5jnAvwLv1qOd5Wps9wzgp6ncQeBtoE3Zfd9GR8TmyD4Rpb1zmrrdZ7J9JxMRByLi5+n4CLCLbPuGBWT7BJGeS+fv3/YriojXgdJ+RXU950W1+0y172RqbXdE/EtE/D1wNF9Pgz7jhbS93gbQ7h0RUboR8E5glLJ7RdZ8zgdlcDmJV4EvpOMv8sEdl58A/oVs64C9wJ/GB/cwA/jL1HX9n2e6630SJ2v3S8ACScOV3SR0Vnqt0t459VRru0sacr6VbYh3ObAFuCCym62SnkvDFgPZr+iMOs12l9T9nFfZ7pNp6Gf8NNte0grn/HeAHZFt/ljzOR9KweX3gaWStpN1D/81pc8GjgOTyIYMvirp36XXboiITwH/MT1urG+TgZO3+4dk/8AdwJ8B/5fsZqE17XdzBtXabmjQ+Zb0YeBHwB9ERKVeayF7DBWlgHZDA855De0+aRX9pNXlM15A26EFzrmkS8m2k/9yKamfbBXP+ZAJLhHxi4iYGxGzgMfIxp0hm3P524h4Pw3T/ANpmCYi3kzPR4BHacxQQr/tjojeiPjDiJgZEQuA84FOKu+d08ztbsj5ljSC7D/dX0XEj1PyW2kYoDQEczClD2S/omZud93PeY3tPpmGfMYLanvTn3NJU4AngZsiovR3suZzPmSCS2lFhqRhwNeB76WX9gJzlPkQcCXwizRs85FUZgTweT7Yt6bh7Zb0a6m9SPotoDciXovKe+c0bbsbcb7T+XkA2BUR38m9lN9jKL9f0ED2K2radtf7nA+g3f1qxGe8qLY3+zmXdD7wN8DyiPiHUuYBnfNKs/2t+iD7pnwAeJ8s4t4M3E62UuIfgW/ywQWkHwb+mmzy6jXgf8QHqz22Ay+n1/6ctMKmSdo9FdhNNkH3DNldS0v1tJF9YP8JuL9Uppnb3aDz/ZtkXfuXgRfT47PAOLJFB53peWyuzNfSed1NbrVMPc95Ue2u9zkfYLv3kC0WeS99tmY06DNeSNub/ZyTfRH8l1zeF4EJAznnvkLfzMwKN2SGxczMrH4cXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwv1/q4MdzlEclD8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +2390,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +2452,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 50, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGalJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDsr4QAhIqzgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq+69XcXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvaqO4CZmfWWC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJ+TnzVqlWxZs2aWYc9+OCDrFixop+zr6zJ2aDZ+Zytuibnc7bqyubbunXrPRFxUFczjYi+/a1duzbmctVVV805rG5NzhbR7HzOVl2T8zlbdWXzARPRZe11V4yZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmVGGX9B5JN0u6SdJFkvbtVzAzM6um48IuaTXwbqAVEUcDS4DX9SuYmZlVU7YrZimwXNJSYD/gzt5HMjOzbihK/OappLOAc4DdwFcj4tRZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuuyZng97nm9yxq2fTGlwOO3d3Pv7Q6pU9m/dCftVe115yturK5hsZGdkaEa1u5tlxYZf0JOAS4BTgfuAfgIsj4vNzPafVasXExMSsw8bHxxkeHi6bd1E0ORv0Pt+aDVt6Nq31Q3vYNNn5N1Vs37iuZ/NeyK/a69pLzlZd2XySui7sZbpiXg7cHhE/iYhHgUuBF3czczMz670yhf1HwH+QtJ8kAS8DtvUnlpmZVdVxYY+I64CLgRuAyeK5m/uUy8zMKir1tb0R8UHgg33KYmZmPeArT83MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy03Fhl3SEpO+0/f1M0h/1M5yZmZXX8U/jRcQtwPMBJC0BdgCX9SmXmZlVVLUr5mXA/4mI/9vLMGZm1j1FRPknSZ8BboiIv5hl2CgwCjA4OLh2bGxs1mlMTU0xMDBQet6LocnZoPf5Jnfs6tm0BpfDzt2djz+0emXP5r2Q9nbr5TKXMd/yNnm9c7bqyuYbGRnZGhGtbuZZurBL2hu4E3hOROycb9xWqxUTExOzDhsfH2d4eLjUvBdLk7NB7/Ot2bClZ9NaP7SHTZMd9/CxfeO6ns17Ie3t1stlLmO+5W3yeuds1ZXNJ6nrwl6lK+aVpK31eYu6mZnVo0phfz1wUa+DmJlZb5Qq7JL2A34LuLQ/cczMrFudd4YCEfEQ8OQ+ZTEzsx7wladmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmSn703gHSrpY0g8kbZN0XL+CmZlZNaV+Gg84F7giIk6WtDewXx8ymZlZFzou7JIOAF4KnA4QEY8Aj/QnlpmZVaWI6GxE6fnAZuD7wPOArcBZEfHgjPFGgVGAwcHBtWNjY7NOb2pqioGBgerJ+6jJ2aD3+SZ37OrZtAaXw87dnY8/tHplz+a9kPZ26+UylzHf8jZ5vXO26srmGxkZ2RoRrW7mWaawt4B/AY6PiOsknQv8LCLeP9dzWq1WTExMzDpsfHyc4eHh8okXQZOzQe/zrdmwpWfTWj+0h02Tnffwbd+4rmfzXkh7u/VymcuYb3mbvN45W3Vl80nqurCXOXh6B3BHRFxX3L8YeEE3Mzczs97ruLBHxF3AjyUdUTz0MlK3jJmZNUjZs2LeBXyhOCPmNuAtvY9kZmbdKFXYI+I7QFd9P2Zm1l++8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM6V+QUnSduAB4OfAnm5/SdvMzHqv7G+eAoxExD09T2JmZj3hrhgzs8woIjofWbod+CkQwF9HxOZZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuq8kduxhcDjt3L/68h1av7Gi8Xrfd5I5dPZtW2bbrdJl7ob3dernMZcy3vE19T4CzdaNsvpGRka3ddnOXLexPjYg7JR0MfA14V0RcM9f4rVYrJiYmZh02Pj7O8PBwybj9t2bDFtYP7WHTZJVequ5s37iuo/F63XZrNmzp2bTKtl2ny9wL7e3Wy2UuY77lbep7ApytG2XzSeq6sJfqiomIO4v/dwOXAS/sZuZmZtZ7HRd2SSsk7T99G3gFcFO/gpmZWTVl+hsGgcskTT/vwoi4oi+pzMysso4Le0TcBjyvj1nMzKwHfLqjmVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZKF3ZJSyTdKOnyfgQyM7PuVNliPwvY1usgZmbWG6UKu6RDgXXA3/YnjpmZdUsR0fnI0sXAR4D9gT+OiJNmGWcUGAUYHBxcOzY2Nuu0pqamGBgYqJK5ryZ37GJwOezcXXeSuTU5X9lsQ6tX9i/MDO3r3OSOXYs233bzLW9T3xPgbN0om29kZGRrRLS6mefSTkeUdBJwd0RslTQ813gRsRnYDNBqtWJ4ePZRx8fHmWtYnU7fsIX1Q3vYNNlx0yy6Jucrm237qcP9CzND+zp3+oYtizbfdvMtb1PfE+Bs3agjX5mumOOB10jaDowBJ0j6fF9SmZlZZR0X9oj4LxFxaESsAV4HXBkRp/UtmZmZVeLz2M3MMlOpozYixoHxniYxM7Oe8Ba7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8tMx4Vd0r6Svi3pu5JulvShfgYzM7NqyvyC0sPACRExJWkZ8A1J/xQR/9KnbGZmVkHHhT0iApgq7i4r/qIfoczMrDqlet3hyNISYCvwbOC8iPiTWcYZBUYBBgcH146Njc06rampKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT85XNNrR6Zf/CzNC+ztW1fs23vAu9J+r0RM3WhNe5bNuNjIxsjYhWN/MvVdh/8STpQOAy4F0RcdNc47VarZiYmJh12Pj4OMPDw3POY82GLaVz9cr6oT1smqz0O9+Losn5ymbbvnFdH9P8e+3rXF3r13zLu9B7ok5P1GxNeJ3Ltp2krgt7pbNiIuJ+YBw4sZuZm5lZ75U5K+agYksdScuBlwM/6FcwMzOrpsz+/FOAC4p+9r2AL0bE5f2JZWZmVZU5K+Z7wDF9zGJmZj3gK0/NzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMlPmN0+fJukqSdsk3SzprH4GMzOzasr85ukeYH1E3CBpf2CrpK9FxPf7lM3MzCroeIs9Iv4tIm4obj8AbANW9yuYmZlVo4go/yRpDXANcHRE/GzGsFFgFGBwcHDt2NjYrNOYmppiYGBgznlM7thVOlevDC6Hnbtrm/2CmpzP2arrd76h1SsrP3eh92ud5stWVx1pb+uybTcyMrI1IlrdzL90YZc0AFwNnBMRl843bqvViomJiVmHjY+PMzw8POdz12zYUipXL60f2sOmyTK9VIuryfmcrbp+59u+cV3l5y70fq3TfNnqqiPtbV227SR1XdhLnRUjaRlwCfCFhYq6mZnVo8xZMQI+DWyLiD/tXyQzM+tGmS3244E3AidI+k7x96o+5TIzs4o67tCLiG8A6mMWMzPrAV95amaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpaZMr95+hlJd0u6qZ+BzMysO2W22M8HTuxTDjMz65GOC3tEXAPc18csZmbWA4qIzkeW1gCXR8TR84wzCowCDA4Orh0bG5t1vKmpKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT8zlbdf3ON7R6ZeXnLvR+rdN82eqqI+1tXbbtRkZGtkZEq5v597ywt2u1WjExMTHrsPHxcYaHh+d87poNWzrO1Wvrh/awaXJpbfNfSJPzOVt1/c63feO6ys9d6P1ap/my1VVH2tu6bNtJ6rqw+6wYM7PMuLCbmWWmzOmOFwHfAo6QdIekt/YvlpmZVdVxh15EvL6fQczMrDfcFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWmVKFXdKJkm6R9ENJG/oVyszMqivzm6dLgPOAVwJHAa+XdFS/gpmZWTVltthfCPwwIm6LiEeAMeC3+xPLzMyqUkR0NqJ0MnBiRJxR3H8j8KKIeOeM8UaB0eLuEcAtc0xyFXBPldCLoMnZoNn5nK26JudzturK5jssIg7qZoZLS4yrWR77pU+FiNgMbF5wYtJERLRKzH/RNDkbNDufs1XX5HzOVl0d+cp0xdwBPK3t/qHAnb2NY2Zm3SpT2K8HDpf0DEl7A68D/rE/sczMrKqOu2IiYo+kdwJfAZYAn4mIm7uY94LdNTVqcjZodj5nq67J+ZytukXP1/HBUzMze2LwladmZplxYTczy4wLu5lZZp6QhV3Sakmr684xG0nPlPQeSSfUnWWmJmeDZudztuqanK/J2aB6vidUYZe0RtLVwBXAxyW9pO5M7ST9R+BrpO/SeZukt9cc6ReanA2anc/ZqmtyviZngy7zRUSj/4B9226/FvhEcfvNwD8AQ8V91ZDtBOAZ0/MHPgCcVtx/EfAlYLiOfE3O1vR8zpZnviZn63W+Rm6xSzpA0l9JuhX4hKTDikG/A/youD0G/BA4Y/ppi5jvKEnfA/4b8FlJJ0Rq7aOAQwAi4jrgm8BbFjNfk7M1PZ+z5Zmvydn6la+RhR04EdiXtGCPAB+QtJy0W/JqgIh4GLgYeElx/7F+hZF0qKQD2h46BbgkIl5K+oB5g6TDgQun8xUuA46WtE+/8jU5W9PzOVue+ZqcbbHy1VbYlSyV9FZJX5d0lqRnFYOfDTwSEXuAPwN+CpwGfBV4iqRfK8a7FfixpOP6lPFISV8GvgF8WNL01xT/P2C/4vYXgbuAdaRP1Ce37WHcR/p2y+f9KmVrej5nyzNfk7Mtdr7aCnuxq/GbwJuAjwH7AH9TDL4LuLv4ZPoxaWGeRWqA7/P41wIvA+4tHu8JSSva7j4fuCMi1gBXAp8oHr8PeFjS/hFxH/CvwFOLHN8E3luMtzfwc2B77tmans/Z8szX5Gx15lu0wi7pOEkflXR6cV/AkcAVEfGliPgYcJikFwM7SJ9gRxZP3wYMFI/9BfAqSa8mfSgMAt/tMtuTJJ0v6Xpgo6SDinxDwLWSFBH/CNwvaR1pT2H/YjjF/YOBx0h7GAdL+hvgImBPRNydY7am53O26pqcr8nZmpJvUQq7pOcAfwk8APyepPcW814NPFAsNMD5wBtIhXoP8OLi8RtIR4wfiohrgA3A6cDxwH+PiMfaplHFS4v5vYp0UOJs4ADSl50dUuxdAFxQ5Pt2sSyvBIiIbxXTWBoR24AzgZuB/xkRb6E7Tc7W9HzOlme+JmdrRr65Tpep+kfasj6DtNuxtHjsT4Gzitst4JPAycDLga+0PfdppF0VSIX8RtKvMB0D/G/gKW3jlj4dqWjYM4GrSd05q4rHvwi8u7j9DGBjMfxYUn/YkrZl+0kxndWkPYl3Ap8FPgWs6KLdGput6fmcza+r2+7f//V0i13S80kHOH8b+CDwvmLQDtJvpkL65LkW+F3gn4FDJD1X0rJI/ek7JL0kIq4kfd3lR4FLgYsi4t+m5xVFy5R0EvAa4EPAcaS+fUhn20zvHfwY+Drwyoi4nvSJO1LMcwq4Djg2InYAbyR1Bd0FvC8iHiwbqG1P49VNyzaD266axrUbuO26yfZEaLsyP433SyS9EDgc+GpE/IS0NX5rRJwu6QXAOZJawDjwnyTtFxEPSfou8HukczQvBP4A+KSk3cAkcHsxi78CLoyIXSUyKSJC0rGk3ZyvA1sinR7568BtEXGlpNtJV6++AtgK/I6kVRFxj6R/BR6U9HTgz4HTJB1M+tWoe0m7TkTEBDBRod1apL2aB4CPA3cDz6w7m9uuWrYnQru57fJru/mU2mJXskzSmyTdSOrYPxCYLrw/B7YXW983kHYtjgMe4vFTeAAeJe2CHELaKr+J1L9+NXBPRNwBaau8YlF/KfAZ0lHllwMfKUZ5DLhV0vKIuL3I91zSi3Un6XzS6eVYQmqfS4qMpwJrgc1R8RxXSSslfbaY5u3AuRFxt6S9SJ/kdWZbUrTdb5J2BRvTdsV6NyDpfBrWdsU8Q9IwzVzn9pG0oqFtd0DD225A0r6SLqBhbbegTvprgBXAi4vbBxbBPjnLeGeRLoNdXdw/mdSffhjpKwCuLh7fl9QNs6rtuccAe3eSZ8Y89wPexuNb/suAPwLeUQx/EvC9YvqnkPq71hTDTiqWZVVxexJYSerf/3J7HmCvLrJdRLpibIDUtXRm2zjTxyHeCfyPxcrW9rqeQVrZ1pMO8DSl7aazXVqsVwc1rO32B7aQfkkM4D1NaLcZ+b4M/HVx/2PA2+puO9J74s2k9/8lTWu7tnxXAn9fPNaY9a7TvwW32CWdDdwGbJE0GBH3k/qF7iz6xl+jxy8Q+hbpAOj0hUbXkg6iPhQRFwA/lfQ50kHRW4Bf9CFFxI0R8chCeWZkOwS4HBgGPkc6QPFa0l7CnmK6PyUdeH03qe/rYB4/jfIa0rn0j0TE5cCnSVeznkc6Yv1oW75Sn6ozsv0d8PYi263AEZI2FltRv690wdUVpD2Yvmcr8q0gvblOIF0/8ArScY9jSVtKdbZde7bNpLMFXku6huE36m67wnLStRfPkrSKtM4vKaZZS7vNkm9v0rr2VFIXx9GSPlJX20laRjrGdjLw8Yj43WLQMW3TrK3tZuT7WERMb3FPAkfV2XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI7txacSaeV9Udv900lbJm8Gvt32+FOBO4vb7yBdtvuk4vlfAp7eNu6qPmV7E+lI968Df1/8vR74X6Rz+RctW9v0Dmy7/Z9Jb6ZT6267WbL9MemUsWc2qO3eTOprfT/wVtKBtOvrbrdZ8r2PtMezqgltR9oDO3XGY6cA1zWh7ebI9/QiQ+3rXcfL0cGCTp+acwowXtxeRtqaWlncP4y0tX4saRfwYtKW1j+RPqn26Uv41Mcl+MVvt76Ax7t77iWdMzo97tcoCi1p9+mrxTh/skjZjgG+Mb3ito23jHRw+YTi/jn9zjYj5wGk4xs7gQ8X9+8FButqu1my3VXMdwVFN19dbdf2er6F1M32WuALxWP31N1uc+QbKx5rP124lvWO1EVxK7CpmP8HivpxH3BwA9a59nxXkb6Y69C617vSy1FigZ9MulDoOcX9pTOGnw+cPL0CkboezqRPRX2OlfkCHj9f/nPAR4vbv0ba43h62wtzNG1fCbxI2d7R/lhx+5Ci7Z672NnaMvwh6XzbzaR+7W8WbzjV2XYzsp1HOq3s2U1oO9JXRi8h9aFeTdoyvgl4f93r3Cz5/pl0htkLGtJ2XyHtgT2NtBV8FmnDsCnrXHu+L5Au/T+8CW3X6d900emIpE8BP4uIDcX9vUjnXb4DeA5wSpTsJ+8VSYeS+rTeFRG3Kn2h2GiRazXwnejNVWXdZHt7RNxWPHYMqVtqXZHtD+vI1k7pOoQzSW+yI0kr66HU2HZt2Y4mvdn+nHSW1UnU1HaSBkjdHPuQ2uk3SBeenE3aUj6cGtttlnyHk45P/BbpmNfLSO1Xy3qn4rTn4vbzSO/Ta0mX1Ne+zs3IdzTpSvdzSd80W9t6V0bZ89g3A+cWBxmOJK3Ex5NelLPrKuqFYyjOgZd0Bqn//2xSF9IPIp1+WXe2HxXZbietHHtIW/E31pit3b2kg4Dvi4i/k3QacHND8t1P6ie+ifS6LqO+tttDOnviUdKW+s9J6/8k8N4GtNtc+R6W9BpSwa9tvZsumoX7Sced3h8RFzag7Wbme4C08boN+K/Uu951rOwW++tIB0ofJn3j2JURcUufspUi6VrSwbXtpHNIPxQR36s1VGFGtruADQ1qt5WkLbg3kL7/fjNwXkQ8Ou8TF8Es2T4dEZvqTfXLigtPpvuy76o7z0xFvpOBz0Y666TuPPuQfnPhjaQ96r8EPhXpa7prN0u+zRHxZ/WmKqfjwi7puaTzOS8mHSzq2VfldqvYg/ggaUv485GuWmuEJmcDkLSU1P3yMClfk17XxmaDdFEX8FiU2TpaRE3OJ+lM0mm1n2va6wrNz7eQUlvsZmbWfE39aTwzM6vIhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpn/D0QBdzhJVkBDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -341,9 +2485,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } @@ -364,7 +2506,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4, -- 2.18.1