{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this document we reperform some of the analysis provided in \n", "*Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure* by *Siddhartha R. Dalal, Edward B. Fowlkes, Bruce Hoadley* published in *Journal of the American Statistical Association*, Vol. 84, No. 408 (Dec., 1989), pp. 945-957 and available at http://www.jstor.org/stable/2290069. \n", "\n", "On the fourth page of this article, they indicate that the maximum likelihood estimates of the logistic regression using only temperature are: $\\hat{\\alpha}=5.085$ and $\\hat{\\beta}=-0.1156$ and their asymptotic standard errors are $s_{\\hat{\\alpha}}=3.052$ and $s_{\\hat{\\beta}}=0.047$. The Goodness of fit indicated for this model was $G^2=18.086$ with 21 degrees of freedom. Our goal is to reproduce the computation behind these values and the Figure 4 of this article, possibly in a nicer looking way." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Technical information on the computer on which the analysis is run" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will be using the python3 language using the pandas, statsmodels, numpy, matplotlib and seaborn libraries." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.6.4 |Anaconda, Inc.| (default, Mar 13 2018, 01:15:57) \n", "[GCC 7.2.0]\n", "uname_result(system='Linux', node='1a8f1c635b65', release='4.4.0-164-generic', version='#192-Ubuntu SMP Fri Sep 13 12:02:50 UTC 2019', machine='x86_64', processor='x86_64')\n", "IPython 7.12.0\n", "IPython.core.release 7.12.0\n", "PIL 7.0.0\n", "PIL.Image 7.0.0\n", "PIL._version 7.0.0\n", "_csv 1.0\n", "_ctypes 1.1.0\n", "_curses b'2.2'\n", "decimal 1.70\n", "argparse 1.1\n", "backcall 0.1.0\n", "cffi 1.13.2\n", "csv 1.0\n", "ctypes 1.1.0\n", "cycler 0.10.0\n", "dateutil 2.8.1\n", "decimal 1.70\n", "decorator 4.4.1\n", "distutils 3.6.4\n", "ipaddress 1.0\n", "ipykernel 5.1.4\n", "ipykernel._version 5.1.4\n", "ipython_genutils 0.2.0\n", "ipython_genutils._version 0.2.0\n", "ipywidgets 7.2.1\n", "ipywidgets._version 7.2.1\n", "jedi 0.16.0\n", "json 2.0.9\n", "jupyter_client 6.0.0\n", "jupyter_client._version 6.0.0\n", "jupyter_core 4.6.3\n", "jupyter_core.version 4.6.3\n", "kiwisolver 1.1.0\n", "logging 0.5.1.2\n", "matplotlib 2.2.3\n", "matplotlib.backends.backend_agg 2.2.3\n", "numpy 1.15.2\n", "numpy.core 1.15.2\n", "numpy.core.multiarray 3.1\n", "numpy.lib 1.15.2\n", "numpy.linalg._umath_linalg b'0.1.5'\n", "numpy.matlib 1.15.2\n", "optparse 1.5.3\n", "pandas 0.22.0\n", "_libjson 1.33\n", "parso 0.6.0\n", "patsy 0.5.1\n", "patsy.version 0.5.1\n", "pexpect 4.8.0\n", "pickleshare 0.7.5\n", "platform 1.0.8\n", "prompt_toolkit 3.0.3\n", "ptyprocess 0.6.0\n", "pygments 2.5.2\n", "pyparsing 2.4.6\n", "pytz 2019.3\n", "re 2.2.1\n", "scipy 1.1.0\n", "scipy._lib.decorator 4.0.5\n", "scipy._lib.six 1.2.0\n", "scipy.fftpack._fftpack b'$Revision: $'\n", "scipy.fftpack.convolve b'$Revision: $'\n", "scipy.integrate._dop b'$Revision: $'\n", "scipy.integrate._ode $Id$\n", "scipy.integrate._odepack 1.9 \n", "scipy.integrate._quadpack 1.13 \n", "scipy.integrate.lsoda b'$Revision: $'\n", "scipy.integrate.vode b'$Revision: $'\n", "scipy.interpolate._fitpack 1.7 \n", "scipy.interpolate.dfitpack b'$Revision: $'\n", "scipy.linalg 0.4.9\n", "scipy.linalg._fblas b'$Revision: $'\n", "scipy.linalg._flapack b'$Revision: $'\n", "scipy.linalg._flinalg b'$Revision: $'\n", "scipy.ndimage 2.0\n", "scipy.optimize._cobyla b'$Revision: $'\n", "scipy.optimize._lbfgsb b'$Revision: $'\n", "scipy.optimize._minpack 1.10 \n", "scipy.optimize._nnls b'$Revision: $'\n", "scipy.optimize._slsqp b'$Revision: $'\n", "scipy.optimize.minpack2 b'$Revision: $'\n", "scipy.signal.spline 0.2\n", "scipy.sparse.linalg.eigen.arpack._arpack b'$Revision: $'\n", "scipy.sparse.linalg.isolve._iterative b'$Revision: $'\n", "scipy.special.specfun b'$Revision: $'\n", "scipy.stats.mvn b'$Revision: $'\n", "scipy.stats.statlib b'$Revision: $'\n", "seaborn 0.8.1\n", "seaborn.external.husl 2.1.0\n", "seaborn.external.six 1.10.0\n", "six 1.14.0\n", "statsmodels 0.9.0\n", "statsmodels.__init__ 0.9.0\n", "traitlets 4.3.3\n", "traitlets._version 4.3.3\n", "urllib.request 3.6\n", "zlib 1.0\n", "zmq 17.1.2\n", "zmq.sugar 17.1.2\n", "zmq.sugar.version 17.1.2\n" ] } ], "source": [ "def print_imported_modules():\n", " import sys\n", " for name, val in sorted(sys.modules.items()):\n", " if(hasattr(val, '__version__')): \n", " print(val.__name__, val.__version__)\n", "# else:\n", "# print(val.__name__, \"(unknown version)\")\n", "def print_sys_info():\n", " import sys\n", " import platform\n", " print(sys.version)\n", " print(platform.uname())\n", "\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import statsmodels.api as sm\n", "import seaborn as sns\n", "\n", "print_sys_info()\n", "print_imported_modules()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loading and inspecting data\n", "Let's start by reading data." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "William: link corrected for an external call to the Mooc gitlab (I didn't copy all the documents on my session)." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountTemperaturePressureMalfunction
04/12/81666500
111/12/81670501
23/22/82669500
311/11/82668500
44/04/83667500
56/18/82672500
68/30/836731000
711/28/836701000
82/03/846572001
94/06/846632001
108/30/846702001
1110/05/846782000
1211/08/846672000
131/24/856532002
144/12/856672000
154/29/856752000
166/17/856702000
177/2903/856812000
188/27/856762000
1910/03/856792000
2010/30/856752002
2111/26/856762000
221/12/866582001
\n", "
" ], "text/plain": [ " Date Count Temperature Pressure Malfunction\n", "0 4/12/81 6 66 50 0\n", "1 11/12/81 6 70 50 1\n", "2 3/22/82 6 69 50 0\n", "3 11/11/82 6 68 50 0\n", "4 4/04/83 6 67 50 0\n", "5 6/18/82 6 72 50 0\n", "6 8/30/83 6 73 100 0\n", "7 11/28/83 6 70 100 0\n", "8 2/03/84 6 57 200 1\n", "9 4/06/84 6 63 200 1\n", "10 8/30/84 6 70 200 1\n", "11 10/05/84 6 78 200 0\n", "12 11/08/84 6 67 200 0\n", "13 1/24/85 6 53 200 2\n", "14 4/12/85 6 67 200 0\n", "15 4/29/85 6 75 200 0\n", "16 6/17/85 6 70 200 0\n", "17 7/2903/85 6 81 200 0\n", "18 8/27/85 6 76 200 0\n", "19 10/03/85 6 79 200 0\n", "20 10/30/85 6 75 200 2\n", "21 11/26/85 6 76 200 0\n", "22 1/12/86 6 58 200 1" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv(\"https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/raw/master/data/shuttle.csv?inline=false\")\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We know from our previous experience on this data set that filtering data is a really bad idea. We will therefore process it as such." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF9JJREFUeJzt3X2UXXV97/H3d5IACYlAg02VQAFJsVyBCOFJtDfx6Qa7JPUCBbyCl940ZUlul9y2htvVa6m1a1V8qHpFY+SiQldNVRBom14e1Ii0IASM4UHBuYBhEhogBshASGYy3/vH2bN7Mkxmzhlmz5lzeL/WmpWz9/mdne939pz5zN5nn9+JzESSJICuVhcgSZo8DAVJUslQkCSVDAVJUslQkCSVDAVJUqmyUIiIqyPiqYh4YC/3R0R8PiK6I2JDRJxQVS2SpMZUeaTwNWDxCPefAcwrvpYBX6qwFklSAyoLhcy8HfjlCEOWANdkzV3AgRHxuqrqkSSNbmoL/+9DgCfqlnuKdU8OHRgRy6gdTTB9+vQTDz300AkpsFEDAwN0dXXmyzOd2pt9tZ9O7W2i+nrkkUeeyczXjjaulaEQw6wbds6NzFwFrAJYsGBBrlu3rsq6mrZ27VoWLlzY6jIq0am92Vf76dTeJqqviPhFI+NaGbs9QP2f/HOBzS2qRZJEa0PhJuDC4iqkU4HnMvNlp44kSROnstNHEfENYCFwcET0AH8OTAPIzJXAGuA9QDfwInBRVbVIkhpTWShk5vmj3J/AJVX9/5Kk5nXeS/mSpDEzFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklSqNBQiYnFEPBwR3RFx2TD3HxAR/xARP4mIByPioirrkSSNrLJQiIgpwJXAGcAxwPkRccyQYZcAD2Xm8cBC4NMRsU9VNUmSRlblkcLJQHdmPpqZu4DVwJIhYxKYFREBzAR+CfRXWJMkaQSRmdVsOOJsYHFmLi2WLwBOyczldWNmATcBbwRmAedm5j8Ns61lwDKAOXPmnLh69epKah6r3t5eZs6c2eoyKtGpvdlX++nU3iaqr0WLFt2bmQtGGze1whpimHVDE+g/AeuBtwNvAG6NiB9m5vN7PChzFbAKYMGCBblw4cLxr/YVWLt2LZOtpvHSqb3ZV/vp1N4mW19Vnj7qAQ6tW54LbB4y5iLg+qzpBh6jdtQgSWqBKkPhHmBeRBxRvHh8HrVTRfU2Au8AiIg5wNHAoxXWJEkaQWWnjzKzPyKWAzcDU4CrM/PBiLi4uH8l8JfA1yLifmqnm1Zk5jNV1SRJGlmVrymQmWuANUPWray7vRl4d5U1SJIa5zuaJUklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVKo0FCJicUQ8HBHdEXHZXsYsjIj1EfFgRPygynokSSOb2sigiHhTZj7QzIYjYgpwJfAuoAe4JyJuysyH6sYcCHwRWJyZGyPiV5v5PyRJ46vRI4WVEXF3RHyo+EXeiJOB7sx8NDN3AauBJUPGvB+4PjM3AmTmUw1uW5JUgcjMxgZGzAN+DzgHuBv4ambeOsL4s6kdASwtli8ATsnM5XVjPgtMA/4DMAv4XGZeM8y2lgHLAObMmXPi6tWrG+tugvT29jJz5sxWl1GJTu3NvtpPp/Y2UX0tWrTo3sxcMOrAzGz4C5gCnAVsAn4K/Az4z3sZew5wVd3yBcD/HjLmC8BdwP7AwcDPgd8YqYYTTzwxJ5vvf//7rS6hMp3am321n07tbaL6AtZlA7/nG31N4TjgIuC3gVuB92bmfRHxeuBO4PphHtYDHFq3PBfYPMyYZzLzBeCFiLgdOB54pJG6JEnjq9HXFL4A3Accn5mXZOZ9AJm5GfizvTzmHmBeRBwREfsA5wE3DRlzI/C2iJgaETOAU6gdgUiSWqChIwXgPcCOzNwNEBFdwH6Z+WJmXjvcAzKzPyKWAzdTO+10dWY+GBEXF/evzMyfRsT/BTYAA9RONzV1lZMkafw0Ggq3Ae8EeovlGcAtwFtGelBmrgHWDFm3csjyJ4FPNliHJKlCjZ4+2i8zBwOB4vaMakqSJLVKo6HwQkScMLgQEScCO6opSZLUKo2ePvow8K2IGLx66HXAudWUJElqlYZCITPviYg3AkcDAfwsM/sqrUySNOEaPVIAOAk4vHjMmyOCHObdx5Kk9tXom9euBd4ArAd2F6sTMBQkqYM0eqSwADimeKu0JKlDNXr10QPAr1VZiCSp9Ro9UjgYeCgi7gZ2Dq7MzDMrqUqS1BKNhsLlVRYhSZocGr0k9QcR8evAvMy8rZi8bkq1pUmSJlpDrylExO8D3wa+XKw6BLihqqIkSa3R6AvNlwCnA88DZObPAT9PWZI6TKOhsDNrn7MMQERMpfY+BUlSB2k0FH4QEX8KTI+IdwHfAv6hurIkSa3QaChcBjwN3A/8AbXPSNjbJ65JktpUo1cfDQBfKb4kSR2q0bmPHmOY1xAy88hxr0iS1DLNzH00aD/gHOBXxr8cSVIrNfSaQmZurfvalJmfBd5ecW2SpAnW6OmjE+oWu6gdOcyqpCJJUss0evro03W3+4HHgd8d92okSS3V6NVHi6ouRJLUeo2ePvofI92fmZ8Zn3IkSa3UzNVHJwE3FcvvBW4HnqiiKElSazTzITsnZOZ2gIi4HPhWZi6tqjBJ0sRrdJqLw4Bddcu7gMPHvRpJUks1eqRwLXB3RHyH2jub3wdcU1lVkqSWaPTqo7+KiH8G3lasuigzf1xdWZKkVmj09BHADOD5zPwc0BMRR1RUkySpRRr9OM4/B1YA/7NYNQ3426qKkiS1RqNHCu8DzgReAMjMzTjNhSR1nEZDYVdmJsX02RGxf3UlSZJapdFQ+GZEfBk4MCJ+H7gNP3BHkjpOo1cffar4bObngaOBj2bmrZVWJkmacKMeKUTElIi4LTNvzcw/ycw/bjQQImJxRDwcEd0RcdkI406KiN0RcXYzxUuSxteooZCZu4EXI+KAZjYcEVOAK4EzgGOA8yPimL2M+wRwczPblySNv0bf0fwScH9E3EpxBRJAZv7hCI85GejOzEcBImI1sAR4aMi4/w5cR23CPUlSCzUaCv9UfDXjEPacRbUHOKV+QEQcQu1y17czQihExDJgGcCcOXNYu3Ztk6VUq7e3d9LVNF46tTf7aj+d2ttk62vEUIiIwzJzY2Z+fQzbjmHW5ZDlzwIrMnN3xHDDiwdlrgJWASxYsCAXLlw4hnKqs3btWiZbTeOlU3uzr/bTqb1Ntr5Ge03hhsEbEXFdk9vuAQ6tW54LbB4yZgGwOiIeB84GvhgRv9Pk/yNJGiejnT6q//P9yCa3fQ8wr5gjaRNwHvD++gGZWc6fFBFfA/4xM29AktQSo4VC7uX2qDKzPyKWU7uqaApwdWY+GBEXF/evbKpSSVLlRguF4yPieWpHDNOL2xTLmZmvGenBmbkGWDNk3bBhkJn/taGKJUmVGTEUMnPKRBUiSWq9Zj5PQZLU4QwFSVLJUJAklQwFSVLpVRMKW3t38pMnnmVr785WlyKpSVt7d7Kjb7fP3wnwqgiFG9dv4vRPfI8PXPUjTv/E97hp/aZWlySpQYPP38eefsHn7wTo+FDY2ruTFddt4KW+Abbv7OelvgE+ct0G/+KQ2kD983d3ps/fCdDxodCzbQfTuvZsc1pXFz3bdrSoIkmN8vk78To+FOYeNJ2+gYE91vUNDDD3oOktqkhSo3z+TryOD4XZM/flirOOY79pXczadyr7TeviirOOY/bMfVtdmqRR1D9/p0T4/J0AjX7ITls7c/4hnH7UwfRs28Hcg6b7AyW1kcHn79133sG/nPlWn78Ve1WEAtT+4vCHSWpPs2fuy/RpU3wOT4COP30kSWqcoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqRSpaEQEYsj4uGI6I6Iy4a5/79ExIbi618j4vgq65EkjayyUIiIKcCVwBnAMcD5EXHMkGGPAf8xM48D/hJYVVU9kqTRVXmkcDLQnZmPZuYuYDWwpH5AZv5rZm4rFu8C5lZYjyRpFJGZ1Ww44mxgcWYuLZYvAE7JzOV7Gf/HwBsHxw+5bxmwDGDOnDknrl69upKax6q3t5eZM2e2uoxKdGpv9tV+OrW3iepr0aJF92bmgtHGTa2whhhm3bAJFBGLgP8GvHW4+zNzFcWppQULFuTChQvHqcTxsXbtWiZbTeOlU3uzr/bTqb1Ntr6qDIUe4NC65bnA5qGDIuI44CrgjMzcWmE9kqRRVPmawj3AvIg4IiL2Ac4DbqofEBGHAdcDF2TmIxXWIklqQGVHCpnZHxHLgZuBKcDVmflgRFxc3L8S+CgwG/hiRAD0N3LOS5JUjSpPH5GZa4A1Q9atrLu9FHjZC8uCrb076dm2g7kHTWf2zH3HbWw76dS+qtK9ZTvbXuyje8t2jpozq9XlqE1VGgoamxvXb2LFdRuY1tVF38AAV5x1HGfOP+QVj20nndpXVT56w/1cc9dG/ujYfi79m9u58LTD+NiSY1tdltqQ01xMMlt7d7Liug281DfA9p39vNQ3wEeu28DW3p2vaGw76dS+qtK9ZTvX3LVxj3XX3LmR7i3bW1SR2pmhMMn0bNvBtK49d8u0ri56tu14RWPbSaf2VZX1Tzzb1HppJIbCJDP3oOn0DQzssa5vYIC5B01/RWPbSaf2VZX5hx7Y1HppJIbCJDN75r5ccdZx7Deti1n7TmW/aV1ccdZxw77Q2szYdtKpfVXlqDmzuPC0w/ZYd+Fph/lis8bEF5onoTPnH8LpRx3c0JU3zYxtJ53aV1U+tuRYLjz1cO6/9y5uu/RUA0FjZihMUrNn7tvwL8JmxraTTu2rKkfNmUXPjGkGgl4RTx9JkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpVGkoRMTiiHg4Iroj4rJh7o+I+Hxx/4aIOKHKeqRmbe3dyU+eeJatvTtHHbvusa185paHWffY1nHbZjNju7dsZ9uLfXRv2T7q2GZUVW+zNezo2z3qdru3bOfb657o2O9BFdsdampVG46IKcCVwLuAHuCeiLgpMx+qG3YGMK/4OgX4UvGv1HI3rt/Eius2MK2ri76BAa446zjOnH/IsGM/cNVd3NFdC4PPf6+btx01m2uXnvqKttnM2I/ecD/X3LWRPzq2n0v/5nYuPO0wPrbk2DF2Xn29Y6nhD3+zj0s/8b29bnfwezCoE78H473d4VR5pHAy0J2Zj2bmLmA1sGTImCXANVlzF3BgRLyuwpqkhmzt3cmK6zbwUt8A23f281LfAB+5bsOwf6Wte2xrGQiDfti99WVHDM1ss5mx3Vu27/HLEOCaOze+4r+Wq6p3rDXsztzrdl8t34Px3O7eRGZWs+GIs4HFmbm0WL4AOCUzl9eN+UfgrzPzjmL5u8CKzFw3ZFvLgGXF4tHAw5UUPXYHA8+0uoiKdGpvI/YV06bPmHrQ634jurqmDK7LgYHd/duefCT7drxYP3bKrINfP2X/A1/2x8zuF559cvf2ZzaPZZvNjO2accDsqa957eEAu198jikzDgCg//mnHx948bmRz2WNoKp6x1rDYG/Dbbf+e1CvTb4H4/azOIpfz8zXjjaostNHQAyzbmgCNTKGzFwFrBqPoqoQEesyc0Gr66hCp/bWyX31P/dUx/UFndvbZPtZrPL0UQ9waN3yXGDzGMZIkiZIlaFwDzAvIo6IiH2A84Cbhoy5CbiwuArpVOC5zHyywpokSSOo7PRRZvZHxHLgZmAKcHVmPhgRFxf3rwTWAO8BuoEXgYuqqqdik/bU1jjo1N7sq/10am+Tqq/KXmiWJLUf39EsSSoZCpKkkqEwBhHxeETcHxHrI2Jdse7yiNhUrFsfEe9pdZ3NiogDI+LbEfGziPhpRJwWEb8SEbdGxM+Lfw9qdZ3N2ktfnbC/jq6rf31EPB8RH273fTZCX52wzy6NiAcj4oGI+EZE7DfZ9pevKYxBRDwOLMjMZ+rWXQ70ZuanWlXXKxURXwd+mJlXFVeMzQD+FPhlZv51MX/VQZm5oqWFNmkvfX2YNt9f9YppZTZRmybmEtp8nw0a0tdFtPE+i4hDgDuAYzJzR0R8k9rFNscwifaXRwoCICJeA/wW8H8AMnNXZj5LbSqSrxfDvg78TmsqHJsR+uo07wD+X2b+gjbfZ0PU99UJpgLTI2IqtT9ONjPJ9pehMDYJ3BIR9xZTcAxaXsz2enWrDwHH4EjgaeCrEfHjiLgqIvYH5gy+d6T491dbWeQY7K0vaO/9NdR5wDeK2+2+z+rV9wVtvM8ycxPwKWAj8CS192XdwiTbX4bC2JyemSdQm+X1koj4LWozvL4BmE9th3+6hfWNxVTgBOBLmflm4AXgZdOdt6G99dXu+6tUnBI7E/hWq2sZT8P01db7rAixJcARwOuB/SPiA62t6uUMhTHIzM3Fv08B3wFOzswtmbk7MweAr1CbJbad9AA9mfmjYvnb1H6Zbhmcubb496kW1TdWw/bVAfur3hnAfZm5pVhu9302aI++OmCfvRN4LDOfzsw+4HrgLUyy/WUoNCki9o+IWYO3gXcDD8SeU36/D3igFfWNVWb+G/BERBxdrHoH8BC1qUg+WKz7IHBjC8obs7311e77a4jz2fMUS1vvszp79NUB+2wjcGpEzIiIoPaz+FMm2f7y6qMmRcSR1I4OoHZq4u8y868i4lpqh7UJPA78QbvN4xQR84GrgH2AR6ld7dEFfBM4jNoP9TmZ+cuWFTkGe+nr87T5/gKIiBnAE8CRmflcsW427b/PhuurE55jfwGcC/QDPwaWAjOZRPvLUJAklTx9JEkqGQqSpJKhIEkqGQqSpJKhIEkqVfbJa9JEKy7F/G6x+GvAbmpTXEDtDYa7WlLYCCLi94A1xfsppJbzklR1pMk0a21ETMnM3Xu57w5geWaub2J7UzOzf9wKlOp4+kivChHxwYi4u5iH/4sR0RURUyPi2Yj4ZETcFxE3R8QpEfGDiHh0cL7+iFgaEd8p7n84Iv6swe1+PCLuBk6OiL+IiHuKefRXRs251N6M9ffF4/eJiJ6IOLDY9qkRcVtx++MR8eWIuJXa5H5TI+Izxf+9ISKWTvx3VZ3IUFDHi4g3UZsW4S2ZOZ/aadPzirsPAG4pJjjcBVxObfqBc4CP1W3m5OIxJwDvj4j5DWz3vsw8OTPvBD6XmScBxxb3Lc7MvwfWA+dm5vwGTm+9GXhvZl4ALAOeysyTgZOoTcx42Fi+P1I9X1PQq8E7qf3iXFebcobp1KZQANiRmbcWt++nNp1xf0TcDxxet42bM3MbQETcALyV2vNnb9vdxb9PhwLwjoj4E2A/4GDgXuCfm+zjxsx8qbj9buA3I6I+hOZRmyZBGjNDQa8GAVydmf9rj5W1Dzqp/+t8ANhZd7v++TH0xbccZbs7snjBrpjH5wvUZmfdFBEfpxYOw+nn34/gh455YUhPH8rM7yKNI08f6dXgNuB3I+JgqF2lNIZTLe+O2mc9z6A2J/6/NLHd6dRC5pliht2z6u7bDsyqW34cOLG4XT9uqJuBDxUBNPi5xtOb7El6GY8U1PEy8/5idsrbIqIL6AMupvZRiI26A/g7ah/ycu3g1UKNbDczt0btc6IfAH4B/Kju7q8CV0XEDmqvW1wOfCUi/g24e4R6vkxtVs31xamrp6iFlfSKeEmqNIriyp43ZeaHW12LVDVPH0mSSh4pSJJKHilIkkqGgiSpZChIkkqGgiSpZChIkkr/HzHofwgP0tIHAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n", "import matplotlib.pyplot as plt\n", "\n", "data[\"Frequency\"]=data.Malfunction/data.Count\n", "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Logistic regression\n", "\n", "Let's assume O-rings independently fail with the same probability which solely depends on temperature. A logistic regression should allow us to estimate the influence of temperature." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 23
Model: GLM Df Residuals: 21
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3.9210
Date: Mon, 06 Apr 2020 Deviance: 3.0144
Time: 07:33:03 Pearson chi2: 5.00
No. Iterations: 6 Covariance Type: nonrobust
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err z P>|z| [0.025 0.975]
Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740
Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110
" ], "text/plain": [ "\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: Frequency No. Observations: 23\n", "Model: GLM Df Residuals: 21\n", "Model Family: Binomial Df Model: 1\n", "Link Function: logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -3.9210\n", "Date: Mon, 06 Apr 2020 Deviance: 3.0144\n", "Time: 07:33:03 Pearson chi2: 5.00\n", "No. Iterations: 6 Covariance Type: nonrobust\n", "===============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "-------------------------------------------------------------------------------\n", "Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n", "Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n", "===============================================================================\n", "\"\"\"" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import statsmodels.api as sm\n", "\n", "data[\"Success\"]=data.Count-data.Malfunction\n", "data[\"Intercept\"]=1\n", "\n", "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n", " family=sm.families.Binomial(sm.families.links.logit)).fit()\n", "\n", "logmodel.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The maximum likelyhood estimator of the intercept and of Temperature are thus $\\hat{\\alpha}=5.0849$ and $\\hat{\\beta}=-0.1156$. This **corresponds** to the values from the article of Dalal *et al.* The standard errors are $s_{\\hat{\\alpha}} = 7.477$ and $s_{\\hat{\\beta}} = 0.115$, which is **different** from the $3.052$ and $0.04702$ reported by Dallal *et al.* The deviance is $3.01444$ with 21 degrees of freedom. I cannot find any value similar to the Goodness of fit ($G^2=18.086$) reported by Dalal *et al.* There seems to be something wrong. Oh I know, I haven't indicated that my observations are actually the result of 6 observations for each rocket launch. Let's indicate these weights (since the weights are always the same throughout all experiments, it does not change the estimates of the fit but it does influence the variance estimates)." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 23
Model: GLM Df Residuals: 21
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -23.526
Date: Mon, 06 Apr 2020 Deviance: 18.086
Time: 07:33:03 Pearson chi2: 30.0
No. Iterations: 6 Covariance Type: nonrobust
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err z P>|z| [0.025 0.975]
Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068
Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023
" ], "text/plain": [ "\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: Frequency No. Observations: 23\n", "Model: GLM Df Residuals: 21\n", "Model Family: Binomial Df Model: 1\n", "Link Function: logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -23.526\n", "Date: Mon, 06 Apr 2020 Deviance: 18.086\n", "Time: 07:33:03 Pearson chi2: 30.0\n", "No. Iterations: 6 Covariance Type: nonrobust\n", "===============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "-------------------------------------------------------------------------------\n", "Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068\n", "Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023\n", "===============================================================================\n", "\"\"\"" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n", " family=sm.families.Binomial(sm.families.links.logit),\n", " var_weights=data['Count']).fit()\n", "\n", "logmodel.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Good, now I have recovered the asymptotic standard errors $s_{\\hat{\\alpha}}=3.052$ and $s_{\\hat{\\beta}}=0.047$.\n", "The Goodness of fit (Deviance) indicated for this model is $G^2=18.086$ with 21 degrees of freedom (Df Residuals).\n", "\n", "**I have therefore managed to fully replicate the results of the Dalal *et al.* article**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Predicting failure probability\n", "The temperature when launching the shuttle was 31°F. Let's try to estimate the failure probability for such temperature using our model.:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n", "data_pred['Frequency'] = logmodel.predict(data_pred)\n", "data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n", "plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false, "scrolled": true }, "source": [ "This figure is very similar to the Figure 4 of Dalal *et al.* **I have managed to replicate the Figure 4 of the Dalal *et al.* article.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Computing and plotting uncertainty" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following the documentation of [Seaborn](https://seaborn.pydata.org/generated/seaborn.regplot.html), I use regplot." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", " return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VPW9+P/XmS2ZTBKykAVIWA07ogVRVERRFtkVqQJVq2LVVvttrfeqt9ar9qr1/nrtrW1vK1rrWlrBhSWKVlBwQ3GNBMIeCEsmIXsms53l98ckAyEBMiGTWfJ+Ph4hc07OnHw+JJP3fLb3RzEMw0AIIYQ4gSnSBRBCCBGdJEAIIYRolwQIIYQQ7ZIAIYQQol0SIIQQQrRLAoQQQoh2hS1A3H///UycOJHZs2e3+3XDMPiv//ovpk6dypw5cyguLg5XUYQQQnRC2ALE1VdfzbPPPnvSr2/atInS0lLeffddfv3rX/PQQw+FqyhCCCE6IWwB4rzzzqNXr14n/fr69euZP38+iqJwzjnnUF9fT0VFRbiKI4QQIkSWSH1jp9NJbm5u8Dg3Nxen00l2dvYpn+fxqQAoihL4DAQeKihK4BhFCZ5vuU4IIURoIhYg2svw0ZE/5vWNPpyVDSF9r5bAoQQDhxIMHiblxOPAY5Mp8Nhkovlc9wSarKwUKkOsXyyR+sWueK4b9Iz6hSpiASI3N5fy8vLgcXl5+WlbD51lGGC0PAicCfkeigJmRQkEDpOCOfhhwmRSsJi7L4gIIUR3iFiAmDJlCi+//DKzZs3i22+/JSUlJWwBoisYBqiGAfrJg4vJpGAxKVjMpuYPBYvFhEkChxAiBoUtQNx99918/vnn1NTUcMkll3DXXXehqoHxg0WLFjF58mQ2btzI1KlTsdvtPPbYY+EqSrfRdQOfbuBT9VbnLSYFq8WE1WLGZg0EDyGEiHZKrKX7rqhuCnkMItqYTAo2i4kEq5kEqxmT6VgLoyf0g0r9YlM81w16Rv1CFbEupp5M1w08Pg2PTwPAajaRYAsECyGEiBYSIKKAX9Pxu3Ua3X5MNguNLh9JCWasFgkYQojIkQARZTTdwO1VcXtVLGaFpAQLiQkWGegWQnQ7CRBRTNUM6pv8NLj9JCVYcCRaW41XCCFEOEmAiAGGAS6PSpNHxZ5gIdkugUIIEX4SIGKIATR5Vdw+FUeiFUeiRRbnCSHCRibkxyDDgEa3n8o6TzA3lRBCdDUJEDFM1w1qG33UNHjRdP30TxBCiBBIgIgDXr/G0ToPLo8/0kURQsQRCRBxwjCgocnP0To3flWLdHGEEHFAAkScUTWDqnov9S4femxlURFCRBkJEHGqyatSXeeR1oQQotMkQMQxVTeorvfS6JaxCSFE6CRAxDmDwJTY6noP+in2shBCiBNJgOghfKpOVb0HvyrTYYUQHSMBogfRdIPqeg9uryyuE0KcngSIHsYA6lw+CRJCiNOSANFDSZAQQpyOBIgeTIKEEOJUJED0cPUun6yVEEK0SwJED2cAdY0+DFl1LYQ4gQQIgaoHdq4TQojjSYAQALi9Kl6fdDUJIY6RACGC6lxeWW0thAiSACGCdAMamnyRLoYQIkpIgBCtuH0aPr90NQkhJECIdtQ3yawmIYQECNEOVTNokgV0QvR4EiBEuxrdfjRdMr8K0ZPFXIB4+NnNfLPrqHSBhFnLHtdCiJ7LEukChOqAs4EDzga+3lXJ/EmDSE9JjHSR4pbHp+FXNawWc6SLIoSIgJhrQVjMCgC7DtbxvyuK+Pi7I+jSmgibepe0IoToqWIuQDy0dCIDc1MA8Ks6hZ/u55k12zha545wyeKTX9Ml46sQPVTMBYg+vR0snTOS+ZMGkWANdH3sL2/gDyu/k9ZEmDS4/TLmI0QPFHMBAsCkKEwYkcP/W3g2BXm9gMA73cJP9/Nc4XZqG70RLmF80XUDl0daEUL0NGENEJs2bWL69OlMnTqVZcuWtfl6Q0MDt99+O3PnzmXWrFm89tprId0/LTmBH145nKsvGRxsTew9XM9TK4v4ZrfMdOpKLo9f8jQJ0cOELUBomsYjjzzCs88+S2FhIWvXrmX37t2trnnllVcYMmQIq1ev5qWXXuKJJ57A5wstF5CiKIwfns1PrzmbgX0CYxMen8arG3bz6vu78fjknW9XMIxAkBBC9BxhCxBFRUUMGDCA/Px8bDYbs2bNYv369a2uURQFl8uFYRi4XC569eqFxdK5mbfpKQksnTWSK8/vj9kUmOn07e4q/vjad5RVNJ5xfQQ0eVVpRQjRg4RtHYTT6SQ3Nzd4nJOTQ1FRUatrlixZwh133MGkSZNwuVz87ne/w2Q6fczKyHCc9GvzLitg3Mhcnl29lfKqJqobvDy9upj5k4dwxYT+mBSl85XqJqeqX6TZk2ykOmxndI+srJQuKk10iuf6xXPdIP7rF6qwBYj2+v+VE/44f/TRR4wYMYIXX3yRAwcOcNNNNzF+/HiSk5NPee/qatcpv55kNXH73FEUfrqfLSUV6LrB6+/vZtueo1xz6VkkJUbv+sCMDMdp6xdJtTUueqfZOx1os7JSqKxs6OJSRY94rl881w16Rv1CFbYuptzcXMrLy4PHTqeT7OzsVte8/vrrTJs2DUVRGDBgAHl5eezdu7dLvr/NauaqSwaz6IqC4AB2yYFa/vh6EWUV8ftLEG66AU0yo0mIHiFsAWLMmDGUlpZSVlaGz+ejsLCQKVOmtLqmT58+fPrppwAcPXqUffv2kZeX17XlGJzJnQvG0DczCYDaRh/LVm9jc3G5zHLqpCaPrIsQoicIW1+LxWLhwQcfZOnSpWiaxoIFCygoKGD58uUALFq0iB//+Mfcf//9zJkzB8MwuOeee8jIyOjysmSmJnLbvNG8tXk/n21zoukGqz8upayikfmTBmO1xORykIjRjcAe1kmJ1kgXRQgRRooRY28FK6qbcJ5BP+E3u47yxqa9+LVAKuu+mUksmTY0apL+RfsYRAuTSSGrV2KbcaXT6Qn9vPFav3iuG/SM+oWqx711PqegN7fPH0VGSgIAh6ua+NPrW9l7uC7CJYstum7g8cnWpELEsx4XIAD6ZDr4ydVjGJqfBgTm9z9XWMLmbeWneaY4nsstC+eEiGc9MkAA2BMs3DB9GJeM7QuAbhis/qiUNz/cKzupdZCqG7JSXYg41mMDBAT60Wec35/vTzkruM/E59sreP7tEklx3UEut/w/CRGvenSAaHHOWb350dxRpCYFZuXsOVTPn9/cSlW9J8Ili35+Tcfrl7EIIeKRBIhmeVnJ3HHVsfUSR+s8/PmNrZSW10e4ZNFPFs4JEZ8kQBynl8PGj+aOYuTAdKBl8Ho73+2tinDJopvXr6FqMm4jRLyRAHECm9XM4qlDmXR2HwBUzeAf7+3io6Ijsnr4FKQVIUT8kQDRDpOicOUFA5hz0UAUBQzgrc37Kfx0v2xpehJunyr/N0LEGQkQpzBxVC5Lpg7Fag78N32ytZxXN+yW7pR2GAZ4ZOaXEHFFAsRpjByYwdI5I0hKCKStKtpTxYvrduCVVcRtSDeTEPFFAkQH5GencNu8UaQlBzbK2X2ojmfWbqNRVhK3ouqGBE4h4ogEiA7KSrNz27zR5KTbATh81MWy1cXUNnojXLLo0iTdTELEDQkQIWiZBjsgN5AV8Widh6dXFXO01h3hkkUPmfIqRPyQABEie4KFm2YODyb6q3P5eHp1MYePRn+K7u4iWV6FiA8SIDrBZjHzg2lDGTM4EwCXR+XZtdtkK9NmMptJiPggAaKTLGYT1045i/OGB/bZ9vg0/lq4nb2HJTWHqhv4VWlFCBHrJECcAZNJYf6kQVw0OhcAn1/nhbdL2FlWG+GSRZ7bKwFCiFgnAeIMKYrCzIkDuPTcfkAgu+lL7+yg5EBNhEsWWR6fKqlJhIhxEiC6gKIoTDsvn2nn5QOg6QavvLuT7aXVES5Z5OgGkgZciBgnAaILXXpuP648vz/QHCT+tYvifT03SEg3kxCxTQJEF5s0ti+zJg4AAtuYLn9vF1t7aLpwn19D16WbSYhYJQEiDC4a04c5Fw4EAkHiH+t398iWhAGyZ7UQMUwCRJhMHJ3L3IsGAsdaEtt64JiEpN4QInZJgAijC0bltmpJLH9vV48buFY1WRMhRKySABFmE0fnMvvCwJiEphv8/b1dPW6dRJMMVgsRkyRAdIMLR/cJDlxrusHL7+5g96G6CJeq+3hktzkhYpIEiG5y0Zg+TJ8QWCehagYvvbODfUd6RlqOwG5z0ooQItZIgOhGk8/px+Xj8gDwqzovrCvpMQn+mryyuZIQsUYCRDeb8r1+TD6nLxDI3fS3t0o4UhX/qcJlsFqI2CMBopu1pOVoSfDn8Wk8V7idih6w6ZAMVgsRWyRAREBLgr/xzanCXR6V5wq3U13viXDJwksS+AkRWyRARIiiKMy/eBBnDwlsOlTv8vFc4Xbq4niPa8MAr+w2J0TMkAARQSaTwsLLhjBiQDoA1Q1efv/Pr2nyxO/qY7esrBYiZnQoQNxyyy28//77IXcPbNq0ienTpzN16lSWLVvW7jWfffYZ8+bNY9asWfzgBz8I6f7xwGwycd3lBQzumwrA4UoXz7+9PW7faXt8mnQzCREjOhQgrr32Wl544QWuuOIKli1bRk3N6TfD0TSNRx55hGeffZbCwkLWrl3L7t27W11TX1/Pww8/zJ///GcKCwv5/e9/37laxDirxcT104aRn50MwMFKFy+9uwO/qke4ZF1PNwx8/virlxDxqEMBYtq0aTz//PM888wzVFRUMHv2bP793/+drVu3nvQ5RUVFDBgwgPz8fGw2G7NmzWL9+vWtrlmzZg1Tp06lb9/AtM/MzMwzqEpsS7CZuXHGcPpmOQDYe7ieVzfsjst02ZLhVYjYYOnMk6xWKwkJCdx7771MmjSJ++67r801TqeT3Nzc4HFOTg5FRUWtriktLUVVVa6//npcLhc33HAD8+fPP+33z8hwdKbYUS8D+H/Xnsv/9/KXHK11U1xazdtbyvjBjOEoihLp4nUZR4qd3plJcVWn42VlpUS6CGETz3WD+K9fqDoUIN59911efvllqqqqWLx4MYWFhTgcDlRVZdq0ae0GiPb6mU/8g6BpGsXFxTz//PN4PB6uu+46xo4dy6BBg05Znurq+F1YlpHh4MYZw3h6VTGNbj8ff3sYMzCjeae6WJeR4eBoVSOa10+CzRzp4nS5rKwUKivjc3V8PNcNekb9QtWhALFy5UpuvfVWJk2a1PrJFgsPPPBAu8/Jzc2lvLw8eOx0OsnOzm5zTXp6OklJSSQlJTF+/HhKSkpOGyDiXWZqIjfNHM4za7bh8Wls+vYwDruFSWf3jXTRuozHr8VlgBAinnRoDOLpp59uExxaTJkypd3zY8aMobS0lLKyMnw+H4WFhW2uvfzyy/niiy9QVRW3201RURFDhgwJsQrxqU+mgxtmDMNiDrS63t58gK92Vka4VF3HK4vmhIh6HQoQixcvpq7uWHrq2tpalixZcsrnWCwWHnzwQZYuXcrMmTO58sorKSgoYPny5SxfvhyAIUOGMGnSJObOncvChQu55pprGDp06BlUJ74MzE1l0RVDMTX3zL2+cQ87Dpx+Blks0A1kNpMQUU4xOvA2bt68eaxateq057pDRXUTzjjuJ8zIcLQZY/lyRwWvbdwLgNVs4pbZI+ifE5uDacfXL9FmJi05IcIl6lrx3I8dz3WDnlG/UHWoBaHrOk1NTcFjl8uFpsXnQq5oNG5YNjMmBAap/ZrOC+t2UFET+8n9vD5NNhISIop1KEDMnj2bm2++mVWrVrFq1SpuueUW5s6dG+6yieNMGtuHi8f0AQLpKv72VuznbTKQjYSEiGYdmsV02223kZ2dzYYNGzAMg+uuu65D6xVE11EUhRkX9KfR7eeb3Uepc/n429sl3DZ3FPaETi1niQoen0pSYuyWX4h41uFX5lVXXcVVV10VzrKI0zApCldPHozL42fXwToqaty8+M4Obp45AqslNvMu+lQdVdOxmGOz/ELEsw4FiKqqKl566SXKyspQ1WNpEnpq7qRIsphNLL5iKM+u3cahoy72lzfwzw27WHzFUEym2FyZ7PFpJNslQAgRbToUIO666y6GDBnCxIkTMZtlcVOkJdjM3HjlcP6yaivV9V62ldaw5pNS5l40MCbTV7i9Ksl2a6SLIYQ4QYcCRH19Pb/+9a/DXRYRgmS7lZtmjuAvb27F5VH5bJuTXg4bl57bL9JFC5mmG3j9GglWefMhRDTpULu+oKAAp9MZ7rKIEGWmJnLjlcOxNY8/vLuljC93VES4VJ0jGwkJEX063IKYO3cu5557LgkJxxY2yRhE5OVlJbN46lBeXLcD3TB4Y9Neku1WhvVPj3TRQuL1aTJYLUSU6VCAmD17NrNnzw53WUQnDc1P4+rJg1n5wR50A5a/t4ulc0aSl5Uc6aJ1mAE0eVRSHbZIF0UI0axDAUKmt0a/7w3Not7l490tZfjUwGrr2+eNIjM1MdJF67CWwepYnY0lRLzpUHu+tLSURYsWBbOxFhcX84c//CGsBROhm3xOXy4YmQOAy+3n+bdKaHT7I1yqjjMAlyd2yitEvOtQgHjooYe44447SEkJJHsaMWIE69atC2vBROgURWH2hQMZOTAw/lBV7+HFdSX4/LGTzqLJq0p+JiGiRIcCRENDA5dccklwjr3JZMJqlXnr0chkUrh2SgEDmrO9Hqx0sXz9LrQY2dvaMAJjEUKIyOtQgDCbzfj9/mCAcDqdmEwy2yRaWS0mrp8+lN69AuMPOw7UsvqjfTGzQU+Txx8zZRUinnV4w6A777yTmpoa/vCHP7B48WJuvvnmcJdNnIGkRCs3zRxOSvMK5S0lFWz46lCES9UxuhHoahJCRFaHZjHNnz+fvLw83n//fdxuN0888QTjx48Pd9nEGUpPCSykW7amGJ9fZ/2XB+nlsDF+ePbpnxxhLo9KUoIlJlOHCBEvOpzNdfz48RIUYlDf3g6WTB3KC28HFtK9+eFeUpKifyGdrhs0eVUciTLWJUSkdChALFiwoN13citXruzyAomuV5CXxoLJg1kRYwvppBUhRGR1KEDce++9wcder5fCwkKys6O/m0Icc+7QLOpibCGdrhu4vSpJ0ooQIiI6FCAmTJjQ6vjiiy+WQeoYNPmcvtS5fHy2zRlcSHfbvFFRnWq70aNil1aEEBHRqbmqjY2NlJWVdXVZRJgpisKcGFtI19KKEEJ0v5DHIHRd5+DBg9x0001hLZgIj5aFdH8t3MYBZ2NwId0Ppg3DHKU5kKQVIURkhDwGYTabycvLIycnJ2yFEuFltZi4Yfownl5dTGWthx0Haln14V6uumRwVP4RlrEIISKjU2MQIvYlJVr54ZUj+MuqrTQ0+fliRyWpDhtXjM+PdNHaJa0IIbpfhwLEBRdc0O4L0zAMFEXh008/7fKCifBLT0ngh1cOZ9nqbXj9Ghu+OkRKko3zR0Zf61DWRQjR/ToUIBYtWkRtbS3XXnsthmHw2muvkZOTw8yZM8NdPhFmfTId/GDaUJ5/uwRNN1j98T5SkqyMHJgR6aK1IesihOheHZrFtGXLFv7zP/+T4cOHM2LECB544AE2btxIv3796NevX7jLKMJsSL9eXHPpECCQTfUf63exv7whwqVqq6UVIYToHh0KEBUVFVRXVwePq6urqaysDFuhRPcbe1ZvZk0cAICqGbywrgRndVOES9WWy6NKplchukmHuphuvPFG5s2bx2WXXQbAxo0bue2228JaMNH9LhrTh3qXjw+LjuDxaTz/dmAhXVpyQqSLFqTrBl6/RqKtw2nEhBCd1KFX2ZIlSxg3bhxbtmzBMAyWLFnCsGHDwl02EQHTz+9Po9vP17uOUufy8fzbJfxoziiSEqPnD3KTR5UAIUQ36PCrLC8vD03TGDVqVDjLIyLMpChcPXkwjW4/uw7WUVHj5sV3Srh51ghsFnOkiweAT9VRNR2LWTatEiKcOvQK27hxI7NmzeKuu+4C4LvvvuP2228Pa8FE5JhNJhZPHUpelgOAA85Glr+3C03XI1yyY2RbUiHCr0MB4qmnnmLlypWkpqYCMGbMGA4cOBDWgonISrCaufHK4a22LX1j096oGSB2+1T0KCmLEPGqw230rKysVsc2m63LCyOiiyPRyk0zR5DqCPysv9p5lLc/OxAVQcIwwCNTXoUIqw4FCIfDwdGjR4MLlD777DNSUlJO+7xNmzYxffp0pk6dyrJly056XVFRESNGjGDdunUdLLboLi2rre0JgfGHj4qOsOnbwxEuVYB0MwkRXh0KEL/4xS+49dZbOXjwINdffz333HNPqwR+7dE0jUceeYRnn32WwsJC1q5dy+7du9u97re//S0XX3xx52ogwi43I4kbpg/H2jwo/M7nZWwpqYhwqUDVjahOVS5ErOvQLKaxY8fy4osv8tVXXwFw7rnnBscjTqaoqIgBAwaQnx9I/jZr1izWr1/PWWed1eq6l156ienTp/Pdd991pvyimwzITWHx1AJeemdncG9ru83M6MGZES2X26dhs0bH7Coh4s1pA4SmaXz/+9/ntddeY/LkyR2+sdPpJDc3N3ick5NDUVFRm2vee+89XnjhhZACREaGo8PXxqJord/EDAcWm4XnVhdjGPDq+7vpnelg5KDQgkRX1k9RoHemI6ryM2Vlnb77NVbFc90g/usXqtMGCLPZTHp6Ol6vl4SEjq+obW8g88QX8aOPPso999yD2RzaO8DqaldI18eSjAxHVNdvSG4Ksy8ayJqPS1E1gz+/VsQts0bQP6djL6xw1E/1+LEnRMfCuaysFCoroy+PVVeI57pBz6hfqDr0qho4cCBLlixh+vTpJCUlBc8vWbLkpM/Jzc2lvLw8eOx0OsnOzm51zdatW7n77rsBqKmpYePGjVgsFq644oqQKiG618RRubi9Ku99cRC/qvP82yXcOmckfTIj0/Lx+LSoCRBCxJMOvapcLhcFBQXs3bu3wzceM2YMpaWllJWVkZOTQ2FhIf/zP//T6poNGzYEH993331ceumlEhxixGXn9sPj1fjou0Depr+9VcKP5oykd5q928vi9Wtouo7ZJCurhehKpwwQv/nNb7jvvvt4/PHH+fjjj7nooos6fmOLhQcffJClS5eiaRoLFiygoKCA5cuXA4E9JkTsUhSFKy/oj9un8uWOShrdfv5auJ0fzR1Fekr3J/dzezWS7RIghOhKinGKVU9XXXUVb7zxRpvHkVRR3YQzjvsJo30M4kS6bvDPDbv4bm8gHXxmaiK3zh1JalL7CynDVT+LSYlI6+VE8dyPHc91g55Rv1Cd8i3X8bEjGlbPiuhjMiksvOwshvVPA6Cq3sNzhdtxefzdWg5VN/CrsiZCiK50ygDh8/nYs2cPu3fvbvW45UMIAIvZxOIrhjK4b2BtTEWNm78VbsfdzakwZGW1EF3rlF1MU6ZMOfkTFYX169eHpVCnIl1M0cvr1/jbW9s54GwEID87mZtnjiDBdmwac7jrl5maiNUSubGIeO6miOe6Qc+oX6hOOUh9/CwjIU4nwWrmh1cO569rt3PoqIuyikZeWFfCD68c3m2rnRuafGSkJnbL9xIi3sm0D9GlEm0Wbpo5nNyMwHqZ0vIGXnxnB75uGh/wqTpen4xFCNEVZHWR6HJJiVZunjWCZ9Zso7LWzd7D9bz8zk6un35m29TuOljLFyUV1DR4SU9JYPzwbAry0tpc1+D2kWCL/Iwm0Tlb91XxUdERKmvdZKXZufjsPowOMZ2L6BrSghBhkWy3csvsEcENh3YfquPld3d0eqbRroO1vPN5GVX1XnQDquq9vPN5GbsO1ra5VtWMbh8gF11j674qXtu4F2eNG90AZ42b1zbuZeu+qkgXrUeSACHCJjXJxtLZI8lsDhK7Dtbxl9e/w6+GvnXpFydJL36y8w1uv+w4F4M+KjoS0nkRXhIgRFilOgJBIiM1sLq6eG9Vc0sitCBR0+AN6byuGzS6u3cthjhzlbXuk5z3dHNJBEiAEN2g1wlBYtfBOl4KceD6ZOk7TpXWw+1RUbXQWysicrJOsho+K01mpkWCBAjRLdKSE7h19kiy0wN/AHYfquPFdTs6vCPc+OHZIZ0HMIB6ly/ksorIufjsPiGdF+ElAUJ0m17JCdy9eFxw4Hrv4Xqef7ukQ9NSC/LSmD4hn8zUBEwKZKYmMH1CfruzmI7nU3UZsI4howdlsmDyYHLS7ZgUhZx0OwsmD5ZZTBFyypXU0UhWUse2jAwHpQdr+OvabcF+5fzsZH545fCw7elgUqB3WuAPTrjF82rceK4b9Iz6hUpaEKLbpSbZuHXOqOBiurKKRp5duy1sg8q6IXmahOgMCRAiIpLtVpbOHkm/rMAudEeqmnhmzTbqwjRm0OSRaa9ChEoChIiYpERL837WyUBgiuOy1cVU1Xf9lEbdQMYihAiRBAgRUYHcTSM4q18vILCuYdmqYsqrm7r8e7k8quxrIkQIJECIiEuwmrlhxjBGDkwHAqugn1lTzAFn1w4Y6rqB2yuJ/IToKAkQIipYzCYWXTGU7w3tDQT2mP7r2u3sOFDTpd+nu3e6EyKWSYAQUcNsUrh68hAuGpMLgF/TeemdHXy9s7LLvoemSyI/ITpKAoSIKiZFYeYFA5g+IR8IDC6v+GAPm7453GXjB41uv4xFCNEBEiBE1FEUhcnn9GPB5MGYmte2rfv8AGs+LkXXz/wPuyaJ/IToEAkQImqNG5bND6YNC+4xvXmbk1f+tbNLdqdrkkR+QpyWBAgR1YYPSGfp7JE4EgNpOLbvr+Gva7fT0HRmC+okkZ8QpycBQkS9/Oxkbp8/OrjxUFlFI39ZVYzzDNdKSCI/IU5NAoSICZmpidw+bxQDcgIJx2oavPxlVXG7W46GoqHJh6ZLV5MQ7ZEAIWKGIzGwz/U5ZwXWSnj9Gi+8XcKnxeWdnpWkG1BT7+2SwW8h4o0ECBFTLGYTCy8bwuXj8oDAH/g1H5ey6qN9nR50VnWDmgavJPMT4gQSIETMURSFy8flcd3lZ2ExB+bBfr69gufe2t7p6at+TafI5GQKAAAeZElEQVS2wSvrI4Q4jgQIEbPOHtKb2+aOItVhA6D0SAP/98Z3HKps7NT9fKpObaNPgoQQzSRAiJjWLyuZn1w1mvzsQMrw2kYfT68u5qtOpufw+jWZ/ipEMwkQIualJNm4dc5IzhueDYCqGaz8YE+nxyXcPi1sGxcJEUskQIi4YDGbuOqSwVw1aRDm5vwcn21zsmx1MTUN3pDv5/aq1J/hYjwhYp0ECBFXzhuRw4/mjqRX87jEwUoXf3y9iJJOpA1v8qhU1Xnwq7JOQvRMYQ0QmzZtYvr06UydOpVly5a1+frq1auZM2cOc+bM4brrrqOkpCScxRE9RH52CncuGENBXmCXOrdX48V1O3h78/6Qu5z8mk51vYeGJhm8Fj1P2AKEpmk88sgjPPvssxQWFrJ27Vp2797d6pq8vDxefvll1qxZwx133MGvfvWrcBVH9DCORCs3zhjO5ePyaE4Iy4dFR1i2upjqEPe8NghsVyprJURPE7YAUVRUxIABA8jPz8dmszFr1izWr1/f6prvfe979OoVeJd3zjnnUF5eHq7iiB7IZAqsl7hp1ghS7FYg0OX0h9e+45vdR0O+n08NtCZk1bXoKSzhurHT6SQ3Nzd4nJOTQ1FR0UmvX7lyJZdcckmH7p2R4Tjj8kUzqV/XmpDhYPjg3rxQuI3ivVV4/RqvbtjNvvIGFk0bRlKiNaT7GSaF9DQ7FnP776+yslK6othRKZ7rBvFfv1CFLUC011+rKEo7V8LmzZtZuXIlf//73zt07+pq1xmVLZplZDikfmGy6PKz+CQ7mXc+P4CmG2zZ5mTn/hoWXjaEwX17hXSvqqpGUpJs2BNav4SyslKorGzoymJHjXiuG/SM+oUqbF1Mubm5rbqMnE4n2dnZba4rKSnhgQce4P/+7/9IT08PV3GEwKQoXHx2H3581Wiy0+0A1Ll8/HXtdtZ+UhrSRkS6EXhuTYNXssGKuBW2ADFmzBhKS0spKyvD5/NRWFjIlClTWl1z+PBh7rrrLv77v/+bQYMGhasoQrTSJ9PBT64aw4WjA12gBvDJ1nL+sPI79peH9g7S69eoqvPQ5JF9rkX8CVsXk8Vi4cEHH2Tp0qVomsaCBQsoKChg+fLlACxatIg//elP1NbW8vDDDwNgNpt5/fXXw1UkIYKsFhOzLxzI8AHpvL5xD7WNPqrqPSxbXczE0blMPS+fBKu5Q/fSDahv8tPkUUnplRTmkgvRfRQjxt72VFQ34YzjfkIZg+h+xfuqeHvzAaqPW3GdbLfQu1ciqmaQnpLA+OHZFOSlnfZeGRkOGuvdOOzWDgcYgK37qvio6AiVtW6y0uxcfHYfRg/K7FR9utraT0v54OtDuDwqjkQLl57bj9kTB0a6WF1OxiDaClsLQohYsOtgLe9/fZjEBAsZCtQ1+tB0g0a3SqO7EXuCGb9m8M7nZQAdChI+VcfX4MVmMZFst2I7TaDYuq+K1zbuDR47a9zB40gHibWflrL241IgMMmksckfPI7HICFak1Qbokf7oqQi+DjRZiEr3R7M5QSBVdgVNU243H62bHeGdG+fqlPd4KW63oPXf/IB8I+KjoR0vjt98PWhkM6L+CItCNGjnZjIz6QomEyAAgomVE3HaJ6x1FSmUlbRQH52aE3141sU9gQLCTYzpuOmfFfWutt9XmVtaCu+w+FkGzC5Orkxk4gt0oIQPVp6SkKbc2aTCavZTFZaIqkOGy1/y/2qzp/fLGblB3to6ESmV5+qU+fyUVnjpqbBi9cXaFVkpdnbvT4rLTHk79HVku3tLyJ0nOS8iC8SIESPNn5427U5SYkWHIkWFEUh2W4lO81Oou3YOMJXOyt58p/fsvGbQ53K9GoQmB5b0+ilzuXjojG57V538dl9Qr53V7v03H4hnRfxxfzQQw89FOlChMLl9uOK4zz9drsNdxw336OtfpmpiaSnJFDb/I4+IzWBKd/LY1j/9OC53r0SmT6hP+OGZXG40oXLo6LpBnsO1fPNrkocdivZ6XYURQm5fqqmk5pko2/vJGobvLi9Gtnpdmac3z/iA9QAQ/PTQIHDVS5UTcdhtzJtQv+4HKB2OBJoiuO/LQ5H29by6cg01ygTjdNAu1Ks10/TDT7f5uS9Lw/i9qrB8/2yHEw/rz8Tzu7b6folWM0kJVpCmh7bnXrCNNB4r1+oZJBaiBCYTQoTR+dyTkFvPvj6EJ9sLUfTDQ5Vunjure18XFzOlHP7BffIDoXXr+H1a1hMCvZEC3abBZOp/fxlQnQHCRBCdII9wcKVFwzg/JE5/OuLMr7dXQXAjv017Nhfw/D+6Vw+rh/9skIPFKpu0NDkp6HJf9KZT0J0BwkQQpyBjNRErp1SwCVj+/LuljJ2HKgFoORADSUHahgxIJ3LvtePvE4ECmieIqv6UFxgs5pJtJklWIhuIwFCiC7QJ9PBjTOGU93k5/UNu9h7uB6A7ftr2L6/hoK8Xkw+px+D+qScNO39qbTMfPL6NQkWottIgBCiC52Vl8bS2SPZd6Se9V8eDAaKXQfr2HWwjv45yUw6uy8jBqR3enyhvWCRYDWTYDNhNsnMddF1JEAIEQaD+qQGA8XGbw6zsyzQ9XTA2cgr/9pJZmoiF43J5XtDs06bq+lUjg8WNIHFrAQDhs1i6lRrRYgWEiCECKNBfVIZ1CeVw0ddbPzmEFv3VWMYUFXvYfXHpby7pYzxw7O5YGQOGalnvnJa1QxUTaXJo6IQSGueYDNjs5ixWqR1IUIjAUKIbtC3t4NFVwylut7Dx1vL+bKkAp+q4/FpfFR0hI+LjjCsfzoTRmYzNC+tS6a3GrQMcuuAH5NJIcFiwmY1Y7NKd5Q4PQkQQnSjjNRE5lw4kCvG5fFFSQWfFpdT2+jD4NjMp7RkG+OHZzNuaBa9kkNf/Xoyum7g9mm4m3NAmUwKNosJq8WExRz4LAPe4ngxt5La59dwVtRjGGAYBroBumEEjwFOVaP2qhu8F2DoBpH8D4n1lcanI/VrTdcNSg7UsLnYye5Dda2+pgBn5fVi3LBsRgxI75YuIotJwWoxYW3ukjr+e/aElcbxXr9QxVwLIjC9L7zFNpoDTiDwNAch/VjwMTCCQcgwAgHFaP6n5XHgeccCV+B5QrRmMimMHJjByIEZVNV5+Hy7ky93VtLkUTE4Nvsp0WZm9OBMzi3ozYDclLC901d1A/W4VoYCmM0KVrOJREcCXp+G2axgMUv3VE8Qcy0IIKajfEvQOb4FxHGtoMxMB5VHG1E1HVXVUfWY+/GckrQgTk/VdLbvr+HLHZXsOljbpkXcy2FjzJBMzh6SSb/ejm6bqXR83RQFLCYTFrOC2WzCajbFfOCQFkRbMdeCiHUmRYFTvKCTk2y4j8u1rxsGmmYca83ogRaMrrcOMie2eqTFErssZhNjBmcyZnAmdS4f3+yq5OtdR6moCWwsVOfy8VHRET4qOkJGSgKjBmUwenAG/bKSu20MwTDAr+kENso7tlteS4vD3Bw8LGYTZlPgs+SVij3SgogyXfkupnXQaHvcXmum1fFx9+gq0oLoHMMwOFLVxDe7jvLd3irqXG3TUqc6bIwYkM6IAekM7pva5e/mz7RuigJmRcFkUlAUBZMS6GIzm5Tmz6bg40iQFkRb0oKIY4qioChg4sxfcKcNJu0cQ9uxGEUJvMuMuXclEaYoCn17O+jb28GMC/pT5mykaE8VW/dV0dAU2H+i3uXjs21OPtvmxGYxcVZeL4blpzE0P61LZ0N1lmGAGnhncsrrFI4FjlbBw6wEurRkem63kQAhOuR0XWMdldU7GWtwtlnz5+A/ge6zwNcIfm4JMrpO82fj2OeWxz0o4pgUhQG5KQzITWHWhQM4WNFI8b5qivdVU928x7ZP1dlWWsO20hoActLtFOSlcVZeLwbmppzR6u1wMwjsu6Gd5IfaKoCYTZgUmlskSvBXVGk+p3DsjVLgzUnzO5TjvxmB3ztV01G1YzsEtvwOnvhrH2yNNz+/5Xe25d5K8zXHT3I5Xkt5jwU/JWpXvEuAEBHT8qJQgv+0ehCSdrvToE3gCVzb3vMDV7XMWGsJQFpzEIrW+GNSFPrnpNA/J4UZ5/enotZNSXOCwLKKxmBdnTVunDVuPvruCGaTQn5OMoP7pDK4byr52Skxtcq6VQDpxJavJ6OZzFTXebrsfqFQlMDP8viXQcuREgyAoLS0qpoDosl0fABUWr16uiLoSIAQcaEru9Paowff0R7rTlM1A03T8Ws6qhb5EKIoCjnpSeSkJzH5nH40eVR2H6plZ1ktu8rqaGjeClXTDUqPNFB6pIENXx3CYlbIy0pmQG4KA3MDwcaeIH8aupNhgNbmnUvX/k7JGIQQYWI6zeCppgfSZlijaJpnUqKFs4f05uwhvTEMA2eNmz2H6th9sI7S8oZAgj8C+ZtKyxsoLW9gY/Nzs9Ls9M9Jpn92MnnZyWSnJ0WuIiJiJEAI0QXMJhOORBNZGUloPj8+v45f1fCrOloUdFEpikJuRhK5GUlcNKYPmm5w+KiLvYfrKD3SwH5nAx7fsemqlbVuKmvdfLmjEgCr2UT/Pilkp9np1zxYnpVmxyxTV+OaBAghupjFbGqeYnrs5dUyruFvTtDn82sRDRpmk0J+djL52clMPicwduOsbmJ/eQMHnI0cqGigut4bvN6v6ew5WMeeg8fSgVjMCtnpSfTJSCI3M4mcjCRy0u0k261RO+gqQiMBQohuYDIpmAgsGLMnWNB1A49Pxe3V8GtdN9Da6fIpCn0yHfTJdHDBqMC5RrefQ5WNlFU0cqjSxeEqV3BKLQS6pg4fdXH4aOu1EUmJFrLT7WSn2ckKfiTSKzlBkgHGGAkQQkSAyaSQlGglKdGKquk0eVW8Pu2kUzsjIdluZVj/dIb1TwcgPT2J0rIaDh91ceioi/LqJo5UNVHT4G31vCaPGhwEP57FrNC7l53M1EQyeyWQmZpIRmoiGakJpDoSpLsqCkmAECLCLGYTqUk2SArkYfL5Nbx+PeLdUCdSFIVeyQn0Sk5gxMCM4HmPT8VZ7aa8uglnTRPO6sD4RaPb3+r5qmZQXt1EeXVTm3ubFIW0FBtpyQmkpyQEP/dKDpzr5bDFdJ6nWCUBQogo0jJ+kZQYGBfwNo9X+DUdTYv8YHd7Em2W4MK94zV51OBg99E6N5W1Ho7Weaiu97RpKemGQXW9t9W4x4kciRZ6OWykOmykJAU+pyZZSUmykdzy2W6RldZdSAKEEFHKpCjYEyyt1iS0rPb1q8c+ojFoQGAsor3AoesG9U0+jtZ5qGnwUl0fCBq1jT5qGrxtWh4tXB4Vl0flcFXbFsjx7AkWku1Wku1WHHYLjsTA46REC45ES6BrL8FCUmLgw2qWvbtPRgKEEDGkpYWRaAsctyzY86t6cysjEECiaCijDZNJIS050I3UHp+qUdvoo67RS12jj9pGL3UuH/UuH3UuH3WNvuAajva4vSpub6D10hEWcyAQJyfZsFlM2G0W7AmBfWcSE8wk2pof28zBjwSrhQTrsf2+4zVTrQQIIWKYoihYLUqbVBmargdXeqtac56h5rQh0c5mMZOdFpgFdTI+v0ZDk586l49Gt4+GJj8NTX4a3a0/XG7/aQf+Vc0IPr+zrBYTCc17fQc+m7G17P993GerxYTtuN36jv9o2fbV2vzZ0vzY0rzXRiRmgIU1QGzatIlHH30UXddZuHAhP/rRj1p93TAMHn30UTZu3EhiYiK/+c1vGDVqVDiLJETc2rqvio+KjlBZ6yYrzc7FZ/dh9KBM/lq4jS3bK/BrOhaTwvgR2Ywfls0n3x2hss5DZmoi543IpqBfGiUHqtlSUkF1vZf0lATGD8/mYGUjn29z0uTTSLKZmTAyh8vOzTtpOXYdrOWLkgpqGo7dA2hzriAvrcPPL8hL4/2vDwbK4VVJSrCcshwt96iu9wQG1Qekk5VmZ/ehOkr219DQ5MdmNZGRkojVYsLtU/GrBg1NPtzNM8pCCaUt3X10rNHSKS37agT32Wj+bGlOWmg2K1ias96aTcf25GhJajhmWE7I3zNs+0Fomsb06dP529/+Rk5ODtdccw1PPvkkZ511VvCajRs38tJLL/HMM8/w7bff8uijj7JixYrT3jvec7ZL/WJXpOq3dV8Vr23c2+a8I9HC9uaMri0MAuMDWSe8Qx83LCu4crrlz0JtoxeX29+cKVUJnp82oT9XjM9v3rjqWILEkrIa1n1W1uq+Hp+KAiScsFXw9An5bYLEroO1vPN56+cD5GbY+W5PVZvzl36vX5sgcbJ7jBqUTvG+mjbnW8px/H4XO5vrcXxGVkM3GD04g7TkBDw+Da+/+aP5sV/Vg8c+VQ98NJ+PBmv+Z17IzwlbC6KoqIgBAwaQn58PwKxZs1i/fn2rALF+/Xrmz5+Poiicc8451NfXU1FRQXZ2driKJURc+qjoSLvnS/a3/YMI4Paobc598PUhUpICgxstg7Yut4phBLKIHj+Q+2lxOQsmD2lzj60b9wS7u1qCidsb+F6O5p0SW96RFu2pYvywY691w4Bvdx9tpz/faDc4AGzZXsHMCwa2StH79c7KdjPTb9leESzD8b7eWcnoQZkk2gLdQADf7DoaeCd+QvLHOpePuRcNarcsJ6MbBv7macu+5paGTz32uM2HFggqLV2Dx8aXjh23dBm2dCFqzcdq83XBLsYz7FIMW4BwOp3k5uYGj3NycigqKjrlNbm5uTidztMGiM5kJYwlUr/YFon61TT62k3ZrRvtbOPRvB3tide7PCoZqYknPL95r4OW1OzNn5s8arv1bK8cug4otNmDosHtp39e+gnnVBJtbfeqUHUDm6XteY9P46yBma3r4dXazUZ7tM5D73bGNZp8GkMH9wYgs5e9+R7b2r2H26cxbEhWm/PxKmwBor2eqxOnknXkGiHE6T35s8mRLgJw5uXoinpEyz3iQdhWlOTm5lJeXh48bq9lcOI15eXl0r0khBBRImwBYsyYMZSWllJWVobP56OwsJApU6a0umbKlCm8+eabGIbBN998Q0pKigQIIYSIEmHrYrJYLDz44IMsXboUTdNYsGABBQUFLF++HIBFixYxefJkNm7cyNSpU7Hb7Tz22GPhKo4QQogQhW2aqxBCiNgmWa2EEEK0SwKEEEKIdkV1Liav18uSJUvw+XzBldk//elPqa2t5ec//zmHDh2iX79+/O///i+9evWKdHE7pWV8Jicnh6effjqu6jZlyhQcDgcmkwmz2czrr78eV/Wrr6/ngQceYOfOnSiKwmOPPcagQYPion579+7l5z//efC4rKyMn/70p8yfPz8u6vf888+zYsUKFEVh6NChPP7447jd7rioG8ALL7zAihUrMAyDhQsX8sMf/rBTr72obkHYbDZeeOEFVq9ezZtvvsmHH37IN998w7Jly5g4cSLvvvsuEydOZNmyZZEuaqe9+OKLDBlybEVqPNUNAr+oq1at4vXXXwfiq36PPvookyZNYt26daxatYohQ4bETf0GDx7MqlWrgj87u93O1KlT46J+TqeTF198kddee421a9eiaRqFhYVxUTeAnTt3smLFClasWMGqVav44IMPKC0t7VT9ojpAKIqCw+EAQFVVVFVFUZRgig6A+fPn895770WymJ1WXl7OBx98wDXXXBM8Fy91O5l4qV9jYyNbtmwJ/uxsNhupqalxU7/jffrpp+Tn59OvX7+4qZ+maXg8HlRVxePxkJ2dHTd127NnD2PHjsVut2OxWDjvvPP417/+1an6RXWAgMAPct68eVx44YVceOGFjB07lqqqquB6iezsbKqrqyNcys557LHH+Ld/+zdMx+2AFS91a3HLLbdw9dVX889//hOIn/qVlZWRkZHB/fffz/z58/nlL39JU1NT3NTveIWFhcyePRuIj59fTk4ON998M5dddhkXX3wxycnJXHzxxXFRN4ChQ4fyxRdfUFNTg9vtZtOmTZSXl3eqflEfIMxmM6tWrWLjxo0UFRWxc+fOSBepS7z//vtkZGQwevToSBclbJYvX84bb7zBM888wyuvvMKWLVsiXaQuo6oq27ZtY9GiRbz55pvY7faY7ZI4FZ/Px4YNG5gxY0aki9Jl6urqWL9+PevXr+fDDz/E7XazatWqSBerywwZMoSlS5dy8803s3TpUoYNG4bZ3DaPVUdEfYBokZqayvnnn8+HH35IZmYmFRUVAFRUVJCRkXGaZ0efr776ig0bNjBlyhTuvvtuNm/ezD333BMXdWuRkxPIP5+ZmcnUqVMpKiqKm/rl5uaSm5vL2LFjAZgxYwbbtm2Lm/q12LRpE6NGjaJ37+ZkdnFQv08++YS8vDwyMjKwWq1MmzaNr7/+Oi7q1mLhwoW88cYbvPLKK6SlpTFgwIBO1S+qA0R1dTX19fUAeDwePvnkEwYPHhxM0QHw5ptvcvnll0eymJ3yi1/8gk2bNrFhwwaefPJJLrjgAn7729/GRd0AmpqaaGxsDD7++OOPKSgoiJv6ZWVlkZuby969gT0YPv30U4YMGRI39WtRWFjIrFmzgsfxUL++ffvy7bff4na7MQwjLn92VVWB9OiHDx/m3XffZfbs2Z2qX1SvpC4pKeG+++5D0zQMw2DGjBnceeed1NTU8LOf/YwjR47Qp08ffv/735OW1v7uVLHgs88+47nnnuPpp5+Om7qVlZXxk5/8BAiMI82ePZs77rgjbuoHsH37dn75y1/i9/vJz8/n8ccfR9f1uKmf2+3m0ksv5b333iMlJZDaO15+fk899RRvvfUWFouFESNG8Oijj+JyueKibgCLFy+mtrYWi8XC/fffz8SJEzv1s4vqACGEECJyorqLSQghRORIgBBCCNEuCRBCCCHaJQFCCCFEuyRACCGEaFdUZ3MV4lQWLlyIz+fD7/dTWlpKQUEBACNHjuTxxx+PcOk6pri4mLKysrhaqSzih0xzFTHv4MGDLFiwgM8++yzSRWlDVVUslpO/D1uxYgWffPIJv/vd77r83kKcKfntEnFp5cqV/OMf/0DTNFJTU3n44YcZOHAgK1asYN26dTgcDnbu3EmfPn34j//4D5544gnKysoYO3YsTzzxBIqicM8992C32zlw4ADl5eWcf/75/OpXv8JqtdLQ0MBjjz3Grl278Hq9XHjhhdx7772YTCYWLVrEhAkT+Prrr0lKSuKpp54KLhL0er2MHTuWhx9+mPr6ev70pz/hcrmYN28e559/PkuWLGHx4sV8/PHHAOzfvz94vH//fhYtWsS1117L5s2bufrqq5k3bx5PPvkkX3zxBT6fjxEjRvDQQw9ht9sj/BMQccEQIsaVlZUZEyZMCB5v3rzZuO222wyv12sYhmGsX7/eWLJkiWEYhvHqq68aEyZMMMrLyw3DMIybb77ZmD9/vtHQ0GD4fD5j5syZxubNmw3DMIxf/OIXxrx58wyXy2X4fD7jhhtuMP7+978bhmEY9957r7FmzRrDMAxD0zTjpz/9qbFy5UrDMAzjuuuuM3784x8bqqoGv15bWxt8fPfddxuvvvpqsDw/+9nPgmUvLS01LrzwwnaPS0tLjaFDhxrr1q0Lfv2pp54ynn766eDx448/bvz+978/s/9QIZpJC0LEnQ0bNrBt2zYWLlwIgGEYuFyu4NfHjRsXTCQ4cuRIPB4PycnJAAwbNowDBw5w/vnnAzBz5kySkpKAQA79Dz74gEWLFvH+++9TXFzMM888AwRyhfXv3z/4PebMmRPMoKnrOsuWLeOjjz5C13Vqa2s7vVNZUlIS06dPb1VXt9tNYWEhEMi+OmrUqE7dW4gTSYAQcccwDL7//e9z5513tvv1hISE4GOTydTmWFXVk95XURQg8Ef/6aefpm/fvu1e2xJUAFatWkVRURF///vfcTgc/PGPf+TIkSPtPs9sNqPrevDY6/We9L4tZfr1r3/Neeed1+79hDgTMs1VxJ2WrJVOpxMIJAvcunVrp+719ttv43a78fv9rFmzJtiymDJlCsuWLUPTNCCQebisrKzdezQ0NJCeno7D4aCuri74bh/A4XDQ0NAQPM7Ozsbj8QTvtXbt2tPW9bnnngsGksbGRvbs2dOpugpxIgkQIu5ccMEF3Hnnndx2223MnTuXOXPm8MEHH3TqXuPGjeOOO+5g9uzZ5OfnB7cY/dWvfoWu68ybN485c+Zw6623UllZ2e49rrrqKmpra5k9ezZ33313q3f7F110EQ0NDcydO5fHHnsMm83Gfffdx4033sj111+P1Wo9Zfluv/12hgwZwjXXXMOcOXNYsmQJ+/bt61RdhTiRTHMV4iTuuecexo0bx6JFiyJdFCEiQloQQggh2iUtCCGEEO2SFoQQQoh2SYAQQgjRLgkQQggh2iUBQgghRLskQAghhGjX/w/VTvdCkDkrbgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.set(color_codes=True)\n", "plt.xlim(30,90)\n", "plt.ylim(0,1)\n", "sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**I think I have managed to correctly compute and plot the uncertainty of my prediction.** Although the shaded area seems very similar to [the one obtained by with R](https://app-learninglab.inria.fr/gitlab/moocrr-session1/moocrr-reproducibility-study/raw/5c9dbef11b4d7638b7ddf2ea71026e7bf00fcfb0/challenger.pdf), I can spot a few differences (e.g., the blue point for temperature 63 is outside)... Could this be a numerical error ? Or a difference in the statistical method ? It is not clear which one is \"right\"." ] } ], "metadata": { "celltoolbar": "Hide code", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }