From 1f006fbd6e98262a2845750aa08c31bd30f2093b Mon Sep 17 00:00:00 2001 From: b2ed4e4495a5739ed80fc555779bc4b2 Date: Mon, 21 Feb 2022 19:39:59 +0000 Subject: [PATCH] Varicelle --- module3/exo2/exercice.ipynb | 3283 ++++++++++++++++++++++++++++++++++- module3/exo3/exercice.ipynb | 13 +- 2 files changed, 3290 insertions(+), 6 deletions(-) diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 0bbbe37..4326776 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -1,5 +1,3283 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020220679777691612638151119FRFrance
1202205710851779713905161121FRFrance
220220479547672112373141018FRFrance
32022037139721068017264211626FRFrance
42022027849560261096413917FRFrance
52022017137931059716989211626FRFrance
6202152713239961116867201525FRFrance
7202151713326962917023201426FRFrance
82021507141281031217944211527FRFrance
92021497136741036916979211626FRFrance
10202148711549850314595171222FRFrance
11202147711419837614462171222FRFrance
122021467821657241070812816FRFrance
1320214578965646811462141018FRFrance
142021447873656361183613818FRFrance
152021437814551641112612717FRFrance
162021427944360371284914919FRFrance
172021417402122395803639FRFrance
1820214074441245464287410FRFrance
192021397229110563526315FRFrance
2020213874325226763837410FRFrance
21202137719647543174315FRFrance
222021367344117305152528FRFrance
232021357256211074017426FRFrance
24202134714293782480204FRFrance
252021337382918305828639FRFrance
262021327410818956321639FRFrance
2720213174793230172857311FRFrance
282021307719041911018911616FRFrance
29202129768004109949110614FRFrance
.................................
15981991267176081130423912312042FRFrance
15991991257161691070021638281838FRFrance
16001991247161711007122271281739FRFrance
1601199123711947767116223211329FRFrance
1602199122715452995320951271737FRFrance
1603199121714903897520831261636FRFrance
16041991207190531274225364342345FRFrance
16051991197167391124622232291939FRFrance
16061991187213851388228888382551FRFrance
1607199117713462887718047241632FRFrance
16081991167148571006819646261834FRFrance
1609199115713975978118169251832FRFrance
1610199114712265768416846221430FRFrance
161119911379567604113093171123FRFrance
1612199112710864733114397191325FRFrance
16131991117155741118419964271935FRFrance
16141991107166431137221914292038FRFrance
1615199109713741878018702241533FRFrance
1616199108713289881317765231531FRFrance
1617199107712337807716597221529FRFrance
1618199106710877701314741191226FRFrance
1619199105710442654414340181125FRFrance
16201991047791345631126314820FRFrance
16211991037153871048420290271836FRFrance
16221991027162771104621508292038FRFrance
16231991017155651027120859271836FRFrance
16241990527193751329525455342345FRFrance
16251990517190801380724353342543FRFrance
1626199050711079666015498201228FRFrance
16271990497114302610205FRFrance
\n", + "

1628 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202206 7 9777 6916 12638 15 11 \n", + "1 202205 7 10851 7797 13905 16 11 \n", + "2 202204 7 9547 6721 12373 14 10 \n", + "3 202203 7 13972 10680 17264 21 16 \n", + "4 202202 7 8495 6026 10964 13 9 \n", + "5 202201 7 13793 10597 16989 21 16 \n", + "6 202152 7 13239 9611 16867 20 15 \n", + "7 202151 7 13326 9629 17023 20 14 \n", + "8 202150 7 14128 10312 17944 21 15 \n", + "9 202149 7 13674 10369 16979 21 16 \n", + "10 202148 7 11549 8503 14595 17 12 \n", + "11 202147 7 11419 8376 14462 17 12 \n", + "12 202146 7 8216 5724 10708 12 8 \n", + "13 202145 7 8965 6468 11462 14 10 \n", + "14 202144 7 8736 5636 11836 13 8 \n", + "15 202143 7 8145 5164 11126 12 7 \n", + "16 202142 7 9443 6037 12849 14 9 \n", + "17 202141 7 4021 2239 5803 6 3 \n", + "18 202140 7 4441 2454 6428 7 4 \n", + "19 202139 7 2291 1056 3526 3 1 \n", + "20 202138 7 4325 2267 6383 7 4 \n", + "21 202137 7 1964 754 3174 3 1 \n", + "22 202136 7 3441 1730 5152 5 2 \n", + "23 202135 7 2562 1107 4017 4 2 \n", + "24 202134 7 1429 378 2480 2 0 \n", + "25 202133 7 3829 1830 5828 6 3 \n", + "26 202132 7 4108 1895 6321 6 3 \n", + "27 202131 7 4793 2301 7285 7 3 \n", + "28 202130 7 7190 4191 10189 11 6 \n", + "29 202129 7 6800 4109 9491 10 6 \n", + "... ... ... ... ... ... ... ... \n", + "1598 199126 7 17608 11304 23912 31 20 \n", + "1599 199125 7 16169 10700 21638 28 18 \n", + "1600 199124 7 16171 10071 22271 28 17 \n", + "1601 199123 7 11947 7671 16223 21 13 \n", + "1602 199122 7 15452 9953 20951 27 17 \n", + "1603 199121 7 14903 8975 20831 26 16 \n", + "1604 199120 7 19053 12742 25364 34 23 \n", + "1605 199119 7 16739 11246 22232 29 19 \n", + "1606 199118 7 21385 13882 28888 38 25 \n", + "1607 199117 7 13462 8877 18047 24 16 \n", + "1608 199116 7 14857 10068 19646 26 18 \n", + "1609 199115 7 13975 9781 18169 25 18 \n", + "1610 199114 7 12265 7684 16846 22 14 \n", + "1611 199113 7 9567 6041 13093 17 11 \n", + "1612 199112 7 10864 7331 14397 19 13 \n", + "1613 199111 7 15574 11184 19964 27 19 \n", + "1614 199110 7 16643 11372 21914 29 20 \n", + "1615 199109 7 13741 8780 18702 24 15 \n", + "1616 199108 7 13289 8813 17765 23 15 \n", + "1617 199107 7 12337 8077 16597 22 15 \n", + "1618 199106 7 10877 7013 14741 19 12 \n", + "1619 199105 7 10442 6544 14340 18 11 \n", + "1620 199104 7 7913 4563 11263 14 8 \n", + "1621 199103 7 15387 10484 20290 27 18 \n", + "1622 199102 7 16277 11046 21508 29 20 \n", + "1623 199101 7 15565 10271 20859 27 18 \n", + "1624 199052 7 19375 13295 25455 34 23 \n", + "1625 199051 7 19080 13807 24353 34 25 \n", + "1626 199050 7 11079 6660 15498 20 12 \n", + "1627 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 19 FR France \n", + "1 21 FR France \n", + "2 18 FR France \n", + "3 26 FR France \n", + "4 17 FR France \n", + "5 26 FR France \n", + "6 25 FR France \n", + "7 26 FR France \n", + "8 27 FR France \n", + "9 26 FR France \n", + "10 22 FR France \n", + "11 22 FR France \n", + "12 16 FR France \n", + "13 18 FR France \n", + "14 18 FR France \n", + "15 17 FR France \n", + "16 19 FR France \n", + "17 9 FR France \n", + "18 10 FR France \n", + "19 5 FR France \n", + "20 10 FR France \n", + "21 5 FR France \n", + "22 8 FR France \n", + "23 6 FR France \n", + "24 4 FR France \n", + "25 9 FR France \n", + "26 9 FR France \n", + "27 11 FR France \n", + "28 16 FR France \n", + "29 14 FR France \n", + "... ... ... ... \n", + "1598 42 FR France \n", + "1599 38 FR France \n", + "1600 39 FR France \n", + "1601 29 FR France \n", + "1602 37 FR France \n", + "1603 36 FR France \n", + "1604 45 FR France \n", + "1605 39 FR France \n", + "1606 51 FR France \n", + "1607 32 FR France \n", + "1608 34 FR France \n", + "1609 32 FR France \n", + "1610 30 FR France \n", + "1611 23 FR France \n", + "1612 25 FR France \n", + "1613 35 FR France \n", + "1614 38 FR France \n", + "1615 33 FR France \n", + "1616 31 FR France \n", + "1617 29 FR France \n", + "1618 26 FR France \n", + "1619 25 FR France \n", + "1620 20 FR France \n", + "1621 36 FR France \n", + "1622 38 FR France \n", + "1623 36 FR France \n", + "1624 45 FR France \n", + "1625 43 FR France \n", + "1626 28 FR France \n", + "1627 5 FR France \n", + "\n", + "[1628 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n", + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + " raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020220679777691612638151119FRFrance
1202205710851779713905161121FRFrance
220220479547672112373141018FRFrance
32022037139721068017264211626FRFrance
42022027849560261096413917FRFrance
52022017137931059716989211626FRFrance
6202152713239961116867201525FRFrance
7202151713326962917023201426FRFrance
82021507141281031217944211527FRFrance
92021497136741036916979211626FRFrance
10202148711549850314595171222FRFrance
11202147711419837614462171222FRFrance
122021467821657241070812816FRFrance
1320214578965646811462141018FRFrance
142021447873656361183613818FRFrance
152021437814551641112612717FRFrance
162021427944360371284914919FRFrance
172021417402122395803639FRFrance
1820214074441245464287410FRFrance
192021397229110563526315FRFrance
2020213874325226763837410FRFrance
21202137719647543174315FRFrance
222021367344117305152528FRFrance
232021357256211074017426FRFrance
24202134714293782480204FRFrance
252021337382918305828639FRFrance
262021327410818956321639FRFrance
2720213174793230172857311FRFrance
282021307719041911018911616FRFrance
29202129768004109949110614FRFrance
.................................
15981991267176081130423912312042FRFrance
15991991257161691070021638281838FRFrance
16001991247161711007122271281739FRFrance
1601199123711947767116223211329FRFrance
1602199122715452995320951271737FRFrance
1603199121714903897520831261636FRFrance
16041991207190531274225364342345FRFrance
16051991197167391124622232291939FRFrance
16061991187213851388228888382551FRFrance
1607199117713462887718047241632FRFrance
16081991167148571006819646261834FRFrance
1609199115713975978118169251832FRFrance
1610199114712265768416846221430FRFrance
161119911379567604113093171123FRFrance
1612199112710864733114397191325FRFrance
16131991117155741118419964271935FRFrance
16141991107166431137221914292038FRFrance
1615199109713741878018702241533FRFrance
1616199108713289881317765231531FRFrance
1617199107712337807716597221529FRFrance
1618199106710877701314741191226FRFrance
1619199105710442654414340181125FRFrance
16201991047791345631126314820FRFrance
16211991037153871048420290271836FRFrance
16221991027162771104621508292038FRFrance
16231991017155651027120859271836FRFrance
16241990527193751329525455342345FRFrance
16251990517190801380724353342543FRFrance
1626199050711079666015498201228FRFrance
16271990497114302610205FRFrance
\n", + "

1628 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202206 7 9777 6916 12638 15 11 \n", + "1 202205 7 10851 7797 13905 16 11 \n", + "2 202204 7 9547 6721 12373 14 10 \n", + "3 202203 7 13972 10680 17264 21 16 \n", + "4 202202 7 8495 6026 10964 13 9 \n", + "5 202201 7 13793 10597 16989 21 16 \n", + "6 202152 7 13239 9611 16867 20 15 \n", + "7 202151 7 13326 9629 17023 20 14 \n", + "8 202150 7 14128 10312 17944 21 15 \n", + "9 202149 7 13674 10369 16979 21 16 \n", + "10 202148 7 11549 8503 14595 17 12 \n", + "11 202147 7 11419 8376 14462 17 12 \n", + "12 202146 7 8216 5724 10708 12 8 \n", + "13 202145 7 8965 6468 11462 14 10 \n", + "14 202144 7 8736 5636 11836 13 8 \n", + "15 202143 7 8145 5164 11126 12 7 \n", + "16 202142 7 9443 6037 12849 14 9 \n", + "17 202141 7 4021 2239 5803 6 3 \n", + "18 202140 7 4441 2454 6428 7 4 \n", + "19 202139 7 2291 1056 3526 3 1 \n", + "20 202138 7 4325 2267 6383 7 4 \n", + "21 202137 7 1964 754 3174 3 1 \n", + "22 202136 7 3441 1730 5152 5 2 \n", + "23 202135 7 2562 1107 4017 4 2 \n", + "24 202134 7 1429 378 2480 2 0 \n", + "25 202133 7 3829 1830 5828 6 3 \n", + "26 202132 7 4108 1895 6321 6 3 \n", + "27 202131 7 4793 2301 7285 7 3 \n", + "28 202130 7 7190 4191 10189 11 6 \n", + "29 202129 7 6800 4109 9491 10 6 \n", + "... ... ... ... ... ... ... ... \n", + "1598 199126 7 17608 11304 23912 31 20 \n", + "1599 199125 7 16169 10700 21638 28 18 \n", + "1600 199124 7 16171 10071 22271 28 17 \n", + "1601 199123 7 11947 7671 16223 21 13 \n", + "1602 199122 7 15452 9953 20951 27 17 \n", + "1603 199121 7 14903 8975 20831 26 16 \n", + "1604 199120 7 19053 12742 25364 34 23 \n", + "1605 199119 7 16739 11246 22232 29 19 \n", + "1606 199118 7 21385 13882 28888 38 25 \n", + "1607 199117 7 13462 8877 18047 24 16 \n", + "1608 199116 7 14857 10068 19646 26 18 \n", + "1609 199115 7 13975 9781 18169 25 18 \n", + "1610 199114 7 12265 7684 16846 22 14 \n", + "1611 199113 7 9567 6041 13093 17 11 \n", + "1612 199112 7 10864 7331 14397 19 13 \n", + "1613 199111 7 15574 11184 19964 27 19 \n", + "1614 199110 7 16643 11372 21914 29 20 \n", + "1615 199109 7 13741 8780 18702 24 15 \n", + "1616 199108 7 13289 8813 17765 23 15 \n", + "1617 199107 7 12337 8077 16597 22 15 \n", + "1618 199106 7 10877 7013 14741 19 12 \n", + "1619 199105 7 10442 6544 14340 18 11 \n", + "1620 199104 7 7913 4563 11263 14 8 \n", + "1621 199103 7 15387 10484 20290 27 18 \n", + "1622 199102 7 16277 11046 21508 29 20 \n", + "1623 199101 7 15565 10271 20859 27 18 \n", + "1624 199052 7 19375 13295 25455 34 23 \n", + "1625 199051 7 19080 13807 24353 34 25 \n", + "1626 199050 7 11079 6660 15498 20 12 \n", + "1627 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 19 FR France \n", + "1 21 FR France \n", + "2 18 FR France \n", + "3 26 FR France \n", + "4 17 FR France \n", + "5 26 FR France \n", + "6 25 FR France \n", + "7 26 FR France \n", + "8 27 FR France \n", + "9 26 FR France \n", + "10 22 FR France \n", + "11 22 FR France \n", + "12 16 FR France \n", + "13 18 FR France \n", + "14 18 FR France \n", + "15 17 FR France \n", + "16 19 FR France \n", + "17 9 FR France \n", + "18 10 FR France \n", + "19 5 FR France \n", + "20 10 FR France \n", + "21 5 FR France \n", + "22 8 FR France \n", + "23 6 FR France \n", + "24 4 FR France \n", + "25 9 FR France \n", + "26 9 FR France \n", + "27 11 FR France \n", + "28 16 FR France \n", + "29 14 FR France \n", + "... ... ... ... \n", + "1598 42 FR France \n", + "1599 38 FR France \n", + "1600 39 FR France \n", + "1601 29 FR France \n", + "1602 37 FR France \n", + "1603 36 FR France \n", + "1604 45 FR France \n", + "1605 39 FR France \n", + "1606 51 FR France \n", + "1607 32 FR France \n", + "1608 34 FR France \n", + "1609 32 FR France \n", + "1610 30 FR France \n", + "1611 23 FR France \n", + "1612 25 FR France \n", + "1613 35 FR France \n", + "1614 38 FR France \n", + "1615 33 FR France \n", + "1616 31 FR France \n", + "1617 29 FR France \n", + "1618 26 FR France \n", + "1619 25 FR France \n", + "1620 20 FR France \n", + "1621 36 FR France \n", + "1622 38 FR France \n", + "1623 36 FR France \n", + "1624 45 FR France \n", + "1625 43 FR France \n", + "1626 28 FR France \n", + "1627 5 FR France \n", + "\n", + "[1628 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + " data = raw_data.dropna().copy()\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
period
1990-12-03/1990-12-091990497114302610205FRFrance
1990-12-10/1990-12-16199050711079666015498201228FRFrance
1990-12-17/1990-12-231990517190801380724353342543FRFrance
1990-12-24/1990-12-301990527193751329525455342345FRFrance
1990-12-31/1991-01-061991017155651027120859271836FRFrance
1991-01-07/1991-01-131991027162771104621508292038FRFrance
1991-01-14/1991-01-201991037153871048420290271836FRFrance
1991-01-21/1991-01-271991047791345631126314820FRFrance
1991-01-28/1991-02-03199105710442654414340181125FRFrance
1991-02-04/1991-02-10199106710877701314741191226FRFrance
1991-02-11/1991-02-17199107712337807716597221529FRFrance
1991-02-18/1991-02-24199108713289881317765231531FRFrance
1991-02-25/1991-03-03199109713741878018702241533FRFrance
1991-03-04/1991-03-101991107166431137221914292038FRFrance
1991-03-11/1991-03-171991117155741118419964271935FRFrance
1991-03-18/1991-03-24199112710864733114397191325FRFrance
1991-03-25/1991-03-3119911379567604113093171123FRFrance
1991-04-01/1991-04-07199114712265768416846221430FRFrance
1991-04-08/1991-04-14199115713975978118169251832FRFrance
1991-04-15/1991-04-211991167148571006819646261834FRFrance
1991-04-22/1991-04-28199117713462887718047241632FRFrance
1991-04-29/1991-05-051991187213851388228888382551FRFrance
1991-05-06/1991-05-121991197167391124622232291939FRFrance
1991-05-13/1991-05-191991207190531274225364342345FRFrance
1991-05-20/1991-05-26199121714903897520831261636FRFrance
1991-05-27/1991-06-02199122715452995320951271737FRFrance
1991-06-03/1991-06-09199123711947767116223211329FRFrance
1991-06-10/1991-06-161991247161711007122271281739FRFrance
1991-06-17/1991-06-231991257161691070021638281838FRFrance
1991-06-24/1991-06-301991267176081130423912312042FRFrance
.................................
2021-07-19/2021-07-25202129768004109949110614FRFrance
2021-07-26/2021-08-012021307719041911018911616FRFrance
2021-08-02/2021-08-0820213174793230172857311FRFrance
2021-08-09/2021-08-152021327410818956321639FRFrance
2021-08-16/2021-08-222021337382918305828639FRFrance
2021-08-23/2021-08-29202134714293782480204FRFrance
2021-08-30/2021-09-052021357256211074017426FRFrance
2021-09-06/2021-09-122021367344117305152528FRFrance
2021-09-13/2021-09-19202137719647543174315FRFrance
2021-09-20/2021-09-2620213874325226763837410FRFrance
2021-09-27/2021-10-032021397229110563526315FRFrance
2021-10-04/2021-10-1020214074441245464287410FRFrance
2021-10-11/2021-10-172021417402122395803639FRFrance
2021-10-18/2021-10-242021427944360371284914919FRFrance
2021-10-25/2021-10-312021437814551641112612717FRFrance
2021-11-01/2021-11-072021447873656361183613818FRFrance
2021-11-08/2021-11-1420214578965646811462141018FRFrance
2021-11-15/2021-11-212021467821657241070812816FRFrance
2021-11-22/2021-11-28202147711419837614462171222FRFrance
2021-11-29/2021-12-05202148711549850314595171222FRFrance
2021-12-06/2021-12-122021497136741036916979211626FRFrance
2021-12-13/2021-12-192021507141281031217944211527FRFrance
2021-12-20/2021-12-26202151713326962917023201426FRFrance
2021-12-27/2022-01-02202152713239961116867201525FRFrance
2022-01-03/2022-01-092022017137931059716989211626FRFrance
2022-01-10/2022-01-162022027849560261096413917FRFrance
2022-01-17/2022-01-232022037139721068017264211626FRFrance
2022-01-24/2022-01-3020220479547672112373141018FRFrance
2022-01-31/2022-02-06202205710851779713905161121FRFrance
2022-02-07/2022-02-1320220679777691612638151119FRFrance
\n", + "

1628 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 \\\n", + "period \n", + "1990-12-03/1990-12-09 199049 7 1143 0 2610 2 \n", + "1990-12-10/1990-12-16 199050 7 11079 6660 15498 20 \n", + "1990-12-17/1990-12-23 199051 7 19080 13807 24353 34 \n", + "1990-12-24/1990-12-30 199052 7 19375 13295 25455 34 \n", + "1990-12-31/1991-01-06 199101 7 15565 10271 20859 27 \n", + "1991-01-07/1991-01-13 199102 7 16277 11046 21508 29 \n", + "1991-01-14/1991-01-20 199103 7 15387 10484 20290 27 \n", + "1991-01-21/1991-01-27 199104 7 7913 4563 11263 14 \n", + "1991-01-28/1991-02-03 199105 7 10442 6544 14340 18 \n", + "1991-02-04/1991-02-10 199106 7 10877 7013 14741 19 \n", + "1991-02-11/1991-02-17 199107 7 12337 8077 16597 22 \n", + "1991-02-18/1991-02-24 199108 7 13289 8813 17765 23 \n", + "1991-02-25/1991-03-03 199109 7 13741 8780 18702 24 \n", + "1991-03-04/1991-03-10 199110 7 16643 11372 21914 29 \n", + "1991-03-11/1991-03-17 199111 7 15574 11184 19964 27 \n", + "1991-03-18/1991-03-24 199112 7 10864 7331 14397 19 \n", + "1991-03-25/1991-03-31 199113 7 9567 6041 13093 17 \n", + "1991-04-01/1991-04-07 199114 7 12265 7684 16846 22 \n", + "1991-04-08/1991-04-14 199115 7 13975 9781 18169 25 \n", + "1991-04-15/1991-04-21 199116 7 14857 10068 19646 26 \n", + "1991-04-22/1991-04-28 199117 7 13462 8877 18047 24 \n", + "1991-04-29/1991-05-05 199118 7 21385 13882 28888 38 \n", + "1991-05-06/1991-05-12 199119 7 16739 11246 22232 29 \n", + "1991-05-13/1991-05-19 199120 7 19053 12742 25364 34 \n", + "1991-05-20/1991-05-26 199121 7 14903 8975 20831 26 \n", + "1991-05-27/1991-06-02 199122 7 15452 9953 20951 27 \n", + "1991-06-03/1991-06-09 199123 7 11947 7671 16223 21 \n", + "1991-06-10/1991-06-16 199124 7 16171 10071 22271 28 \n", + "1991-06-17/1991-06-23 199125 7 16169 10700 21638 28 \n", + "1991-06-24/1991-06-30 199126 7 17608 11304 23912 31 \n", + "... ... ... ... ... ... ... \n", + "2021-07-19/2021-07-25 202129 7 6800 4109 9491 10 \n", + "2021-07-26/2021-08-01 202130 7 7190 4191 10189 11 \n", + "2021-08-02/2021-08-08 202131 7 4793 2301 7285 7 \n", + "2021-08-09/2021-08-15 202132 7 4108 1895 6321 6 \n", + "2021-08-16/2021-08-22 202133 7 3829 1830 5828 6 \n", + "2021-08-23/2021-08-29 202134 7 1429 378 2480 2 \n", + "2021-08-30/2021-09-05 202135 7 2562 1107 4017 4 \n", + "2021-09-06/2021-09-12 202136 7 3441 1730 5152 5 \n", + "2021-09-13/2021-09-19 202137 7 1964 754 3174 3 \n", + "2021-09-20/2021-09-26 202138 7 4325 2267 6383 7 \n", + "2021-09-27/2021-10-03 202139 7 2291 1056 3526 3 \n", + "2021-10-04/2021-10-10 202140 7 4441 2454 6428 7 \n", + "2021-10-11/2021-10-17 202141 7 4021 2239 5803 6 \n", + "2021-10-18/2021-10-24 202142 7 9443 6037 12849 14 \n", + "2021-10-25/2021-10-31 202143 7 8145 5164 11126 12 \n", + "2021-11-01/2021-11-07 202144 7 8736 5636 11836 13 \n", + "2021-11-08/2021-11-14 202145 7 8965 6468 11462 14 \n", + "2021-11-15/2021-11-21 202146 7 8216 5724 10708 12 \n", + "2021-11-22/2021-11-28 202147 7 11419 8376 14462 17 \n", + "2021-11-29/2021-12-05 202148 7 11549 8503 14595 17 \n", + "2021-12-06/2021-12-12 202149 7 13674 10369 16979 21 \n", + "2021-12-13/2021-12-19 202150 7 14128 10312 17944 21 \n", + "2021-12-20/2021-12-26 202151 7 13326 9629 17023 20 \n", + "2021-12-27/2022-01-02 202152 7 13239 9611 16867 20 \n", + "2022-01-03/2022-01-09 202201 7 13793 10597 16989 21 \n", + "2022-01-10/2022-01-16 202202 7 8495 6026 10964 13 \n", + "2022-01-17/2022-01-23 202203 7 13972 10680 17264 21 \n", + "2022-01-24/2022-01-30 202204 7 9547 6721 12373 14 \n", + "2022-01-31/2022-02-06 202205 7 10851 7797 13905 16 \n", + "2022-02-07/2022-02-13 202206 7 9777 6916 12638 15 \n", + "\n", + " inc100_low inc100_up geo_insee geo_name \n", + "period \n", + "1990-12-03/1990-12-09 0 5 FR France \n", + "1990-12-10/1990-12-16 12 28 FR France \n", + "1990-12-17/1990-12-23 25 43 FR France \n", + "1990-12-24/1990-12-30 23 45 FR France \n", + "1990-12-31/1991-01-06 18 36 FR France \n", + "1991-01-07/1991-01-13 20 38 FR France \n", + "1991-01-14/1991-01-20 18 36 FR France \n", + "1991-01-21/1991-01-27 8 20 FR France \n", + "1991-01-28/1991-02-03 11 25 FR France \n", + "1991-02-04/1991-02-10 12 26 FR France \n", + "1991-02-11/1991-02-17 15 29 FR France \n", + "1991-02-18/1991-02-24 15 31 FR France \n", + "1991-02-25/1991-03-03 15 33 FR France \n", + "1991-03-04/1991-03-10 20 38 FR France \n", + "1991-03-11/1991-03-17 19 35 FR France \n", + "1991-03-18/1991-03-24 13 25 FR France \n", + "1991-03-25/1991-03-31 11 23 FR France \n", + "1991-04-01/1991-04-07 14 30 FR France \n", + "1991-04-08/1991-04-14 18 32 FR France \n", + "1991-04-15/1991-04-21 18 34 FR France \n", + "1991-04-22/1991-04-28 16 32 FR France \n", + "1991-04-29/1991-05-05 25 51 FR France \n", + "1991-05-06/1991-05-12 19 39 FR France \n", + "1991-05-13/1991-05-19 23 45 FR France \n", + "1991-05-20/1991-05-26 16 36 FR France \n", + "1991-05-27/1991-06-02 17 37 FR France \n", + "1991-06-03/1991-06-09 13 29 FR France \n", + "1991-06-10/1991-06-16 17 39 FR France \n", + "1991-06-17/1991-06-23 18 38 FR France \n", + "1991-06-24/1991-06-30 20 42 FR France \n", + "... ... ... ... ... \n", + "2021-07-19/2021-07-25 6 14 FR France \n", + "2021-07-26/2021-08-01 6 16 FR France \n", + "2021-08-02/2021-08-08 3 11 FR France \n", + "2021-08-09/2021-08-15 3 9 FR France \n", + "2021-08-16/2021-08-22 3 9 FR France \n", + "2021-08-23/2021-08-29 0 4 FR France \n", + "2021-08-30/2021-09-05 2 6 FR France \n", + "2021-09-06/2021-09-12 2 8 FR France \n", + "2021-09-13/2021-09-19 1 5 FR France \n", + "2021-09-20/2021-09-26 4 10 FR France \n", + "2021-09-27/2021-10-03 1 5 FR France \n", + "2021-10-04/2021-10-10 4 10 FR France \n", + "2021-10-11/2021-10-17 3 9 FR France \n", + "2021-10-18/2021-10-24 9 19 FR France \n", + "2021-10-25/2021-10-31 7 17 FR France \n", + "2021-11-01/2021-11-07 8 18 FR France \n", + "2021-11-08/2021-11-14 10 18 FR France \n", + "2021-11-15/2021-11-21 8 16 FR France \n", + "2021-11-22/2021-11-28 12 22 FR France \n", + "2021-11-29/2021-12-05 12 22 FR France \n", + "2021-12-06/2021-12-12 16 26 FR France \n", + "2021-12-13/2021-12-19 15 27 FR France \n", + "2021-12-20/2021-12-26 14 26 FR France \n", + "2021-12-27/2022-01-02 15 25 FR France \n", + "2022-01-03/2022-01-09 16 26 FR France \n", + "2022-01-10/2022-01-16 9 17 FR France \n", + "2022-01-17/2022-01-23 16 26 FR France \n", + "2022-01-24/2022-01-30 10 18 FR France \n", + "2022-01-31/2022-02-06 11 21 FR France \n", + "2022-02-07/2022-02-13 11 19 FR France \n", + "\n", + "[1628 rows x 10 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + " sorted_data = data.set_index('period').sort_index()\n", + "sorted_data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + " periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXmcFcW59vOec4Zh3xcRUFBxARdUJCRq1OBCjDeaRBOyaW7MJck1X3Zz9WYzi4lZzTWLiYkxmk2NSa7euCsqLgiiIgqI7IKg7Mg6zJxT3x/d1V1d/dZyzukZhjn9/H5weqqrq6qrq+qtdy0SQiBHjhw5cuRQUdjXDciRI0eOHJ0POXHIkSNHjhwp5MQhR44cOXKkkBOHHDly5MiRQk4ccuTIkSNHCjlxyJEjR44cKeTEIUeOHDlypJAThxw5cuTIkUJOHHLkyJEjRwqlfd2AWjF48GAxevTofd2MHDly5Niv8Oyzz24UQgxx5dtvicPo0aMxd+7cfd2MHDly5NivQESrfPLlYqUcOXLkyJFCThxy5MiRI0cKOXHIkSNHjhwp5MQhR44cOXKkkBOHHDly5MiRQk4ccuTIkSNHCjlxyJEjR44cKeTEIUeXwd62Cm6fuxr50bc5ctSP/dYJLkcOHb98ZCn+5+ElaC4VcP6EEfu6OTly7NfIOYccXQYbd7QAAN7c07aPW5Ijx/6PnDjkyJEjR44UcuKQo+sh1znkyFE3nMSBiLoT0RwieoGIFhDRt8L0q4joNSKaF/47V3nmSiJaSkSLiegcJf1EInoxvHcdEVGY3kxEt4Xps4lodPavmqOrIxhNOXLkyAI+nEMLgHcIIY4DMAHAVCKaHN67VggxIfx3DwAQ0TgA0wCMBzAVwK+IqBjmvx7AdABjw39Tw/RLAWwRQhwG4FoAP6j/1XLkyJEjR61wEgcRYEf4Z1P4z8a3nw/gViFEixBiBYClACYR0XAAfYUQs0Rga3gLgAuUZ24Or+8AMEVyFTly5MiRo+PhpXMgoiIRzQOwHsCDQojZ4a3PENF8Ivo9EQ0I00YAWK08viZMGxFe6+mJZ4QQbQC2ARjEtGM6Ec0lorkbNmzwesEcOXLkyFE9vIiDEKIshJgAYCQCLuBoBCKiQxGImtYB+EmYndvxC0u67Rm9HTcIISYKISYOGeI8yChHDi+s2rQTz726ZV83I0eOToWqrJWEEFsBPApgqhDijZBoVAD8FsCkMNsaAKOUx0YCWBumj2TSE88QUQlAPwCbq3qTHDlqxGk/ehTv/dVT+7oZOXJ0KvhYKw0hov7hdQ8AZwJ4OdQhSLwHwEvh9V0ApoUWSGMQKJ7nCCHWAdhORJNDfcLFAO5UnrkkvL4QwAyRx0DIkSNHjn0Gn/AZwwHcHFocFQDcLoT4FxH9kYgmIBD/rATwSQAQQiwgotsBLATQBuAyIUQ5LOvTAP4AoAeAe8N/AHAjgD8S0VIEHMO0DN4tR44cOXLUCCdxEELMB3A8k/5RyzNXA7iaSZ8L4GgmfQ+Ai1xtyZEjR44cHYPcQzpHl8TyDTsw5SePYvPOvfu6KTly7JfIiUOOLgcB4IaZy7Fsw07cv+D1fd2cHDn2S+TEIUeXAYUW0bkpQ44c9SMnDjm6DHKf+hw5skNOHHLk6CDc99Lr+MWMJfu6GTlyeCE/CS5Hl0RnFC196k/PAgA+846x+7glOXK4kXMOOXLkyJEjhZw45MiRI0eOFHLikKNLI9dR58hRG3LikCNHjhw5UsiJQ44cOXLkSCEnDvsBVm3aiVWbdu7rZuTIkaOBkJuy7gc47UePAgBWXvOufduQHDlyNAxyziFHjhw5cqSQE4ccXQ5CCIj0KbM5cuSoAjlxyNFlkJutNjaEELh97mqs27Z7XzelSyAnDjly5OgSeHXzLnzljvn4wm3z9nVTugRy4pCjSyOP1No4aC0HosSVG3ft45Z0DTiJAxF1J6I5RPQCES0gom+F6QOJ6EEiWhL+DlCeuZKIlhLRYiI6R0k/kYheDO9dRxRMXSJqJqLbwvTZRDQ6+1fNkaPxMOHbD+DDv3t6XzejgyDC/3N9Uxbw4RxaALxDCHEcgAkAphLRZABXAHhYCDEWwMPh3yCicQCmARgPYCqAXxFRMSzregDTAYwN/00N0y8FsEUIcRiAawH8IIN3yxRPLduIF1Zv3dfNyJGjKmzd1Yonl27a183oEMhIvJ0xIu/+CCdxEAF2hH82hf8EgPMB3Bym3wzggvD6fAC3CiFahBArACwFMImIhgPoK4SYJYQQAG7RnpFl3QFgiuQqOgs+9NvZOP+XT+7rZuTwRL5ANC7yT58NvHQORFQkonkA1gN4UAgxG8AwIcQ6AAh/h4bZRwBYrTy+JkwbEV7r6YlnhBBtALYBGFTLC+XIkS8OjQn53fONQTbwIg5CiLIQYgKAkQi4gKMt2bkdv7Ck255JFkw0nYjmEtHcDRs2uJqdo8GgMpudi+/M0RGIiUJOHbJAVdZKQoitAB5FoCt4IxQVIfxdH2ZbA2CU8thIAGvD9JFMeuIZIioB6AdgM1P/DUKIiUKIiUOGDKmm6Tk6IdZt243WcqVdym6U3ePS9dsxL9eFAcgV0VnDx1ppCBH1D697ADgTwMsA7gJwSZjtEgB3htd3AZgWWiCNQaB4nhOKnrYT0eRQn3Cx9ows60IAM0K9RKfDd/61EGu35k429WLb7la89fszcNVdC7zy722rYNoNs/Dcq1vauWX7F8786UxckOvCAOQK6azhwzkMB/AIEc0H8AwCncO/AFwD4CwiWgLgrPBvCCEWALgdwEIA9wG4TAhRDsv6NIDfIVBSLwNwb5h+I4BBRLQUwBcRWj51Rtz4xAp88fZsnGwWrn0Tu/eW3Rm7ILbvaQUAPPLyekfOAMs37sDTyzfjyr+/2J7N2m8wZ8VmtLQ15thxIacN2cAZlVUIMR/A8Uz6JgBTDM9cDeBqJn0ugJS+QgixB8BFHu3tFJDONvVg1942nHvd4zjzqKH43SUnZdCq/QtSP9AeE/mJJRsxsFe3oJ4uGFRj6fodeP9vZuGDkw7a103pVIg5h5w8ZIHcQ7oGZDH4WtuCMuasSKlWGgJyyW6PefywJzeyv2Lb7oDrevn1N/dxSzoXROQElyML5MShBmQy+MLVsVE3Obk1Ue2QfVdp0LFjQqPOpfZCThxqQBaTUk7wRh3PUtxTrYWJLf9exfKpK/drRFerXA0rFYGv/vNFLF2/w515P0ZOJLJBThxqQQajryBl7g06kttj97unTuX+/vItCh76GiEElm1IEoFX1m/Hn2e/ik//6dl2bN2+Q65zyBY5cagBWQ69RhUNtIdUqXf32L6ilvL3lzUlJqzmBv/hqZWY8pPHEmmVkLEqFrq2TG8/+YydHjlxqAGFDAXmLrHK3rb2cRLb56hS5+JjdTS8Xw8AwLuOHV5Tk/aXRSXmOs15nn817RgniUknC1uWGaK5tL98yE6OnDjUgKZi/ZNLsr4uzqGrOn3Fi312M1kuDqUad8b7mzhCHTs+bZdZuirjIHLakCly4lADSoXsum1/W5CyRpavr5ZVS7H7y5eIjBmUF9b7kWMOJOeQJefbmbC/fL/9BTlxqAFNpfq7TQ7kRtU51BoHpz1p6f5Cp7nFXdc/cO8SE4d2adY+hySWjb7hygo5cagBTRnOrkYfyFm+vezLtho92G0E6/lXt2D0FXdjuWIBtHrzLsxd2fFOjJxCuuwxjuRGpKvqHCQae0Zlh5w41IBSJjqH4LdROYdId5ghcZRF3f3iOry2JQyOWMWnsjXlf59/DQDw2CtxqPhTf/gILvz1rGqb6YX7F7yOma+kw9LvaS1j6s8eBwBs3tkapVcnVsqunZ0J+XkO2cIZWylHGqViBjS1wQew0H6zgLp7nrU826MxO3q3/ck/Br4IK695VyJdhs4AgI07WqJrL7FSuBPpqqassUK6wSdXRsg5hxqQpVip0aEuYq3lCn7ywOIoYmu1KHuyYXtay3hiyUYAwI6WNrYt6XZ2jgXHNPJ83r3ri5WkzmEfN6OLICcONSALzqHRdzecN+td89bi5zOW4sf3L07l91nPfKPlfudfC/GRG2dj4do38SUl/HpHfZPde8u4/G8vYPPOvdU/bOgHF23Y01qO+rqr7m1yopAtcuJQA4pddufVPrh97mo8tWxjIo2LoClPhdvTWpvjX7ni99yqTbsABGKZReu2x22yLC5Z7rbveHY1/vbsGvzkgTQRdMFkhlpxUIcjv35fREC6uilrTiOyQU4c9hEaaZfzlTvm40O/nZ1Is4pwapzevpxDt9AUeW9bBVt3xbv3jv4ktazRpkdsoTQkPnJj8A26KnGIIIB/PLcGL67Ztq9bsl8jV0jXgEYXCWUKpStj5y6v7Cn46hy6hWLBveVKMpJrFV7G9UAWUctBRCYOphqrt65KG1SF9BdvfwFAWqGfwx8551ADslwgGhXtIQJo8xQrNTcFw76lrZwMQZFhW2xYvmEngI7nHCS6KucQO8Ht44Z0ETiJAxGNIqJHiGgRES0gos+F6VcR0WtENC/8d67yzJVEtJSIFhPROUr6iUT0YnjvOgq3QUTUTES3hemziWh09q+aHbIYe53F+mVfgfNmrfdIT1/nt4hzaKskZPUd9Un+8NTKzMusjjhkU+f8NVs71TjOdQ7ZwodzaAPwJSHEUQAmA7iMiMaF964VQkwI/90DAOG9aQDGA5gK4FdEVAzzXw9gOoCx4b+pYfqlALYIIQ4DcC2AH9T/au2HTjQf9ntwXcml+axnbYxshXtO1TkkFlWP75rlpze909L12w13zPVXI1bKws/hqaUb8e5fPInfP7my7rKyQj4vs4WTOAgh1gkhnguvtwNYBGCE5ZHzAdwqhGgRQqwAsBTAJCIaDqCvEGKWCLYbtwC4QHnm5vD6DgBTKEvzkIyRhc6h0cdxbMqqJNZ5dCpHHDhI4tDSVtHESubn22M0mob4slDsVA1c1ko+9VaDNaEH+qJ15nOsP/K72ZFneUeiM3Ez+zOq0jmE4p7jAUjTk88Q0Xwi+j0RDQjTRgBYrTy2JkwbEV7r6YlnhBBtALYBGFRN2zoUHTj2uvo4VxfkepcsH1PWRxevj0xZVWU04NfXHbHw2PrBVH+Hi5U8CPkTSzfi87fNM2fIGHIsNWxImozhTRyIqDeAvwP4vBDiTQQiokMBTACwDsBPZFbmcWFJtz2jt2E6Ec0lorkbNqTjznQUstE5+NbVeUb6Mys345HF6zMtk+uHWt/ZRx/9sZuewYyXg3fQD1LqPD1dPb79fwu9rbWyUEjHp3EYiNW+WKH35w/YCeFFHIioCQFh+LMQ4h8AIIR4QwhRFkJUAPwWwKQw+xoAo5THRwJYG6aPZNITzxBRCUA/AKlwl0KIG4QQE4UQE4cMGeL3hu2AjmRbOxPncNGvZ+Hfb3omk7K4g1nqFXdUS1RumbVKa5P7+SylnaaibHWYWvjwy+sxZ4VfhNhMiENkd8zfV7my2+eu5jNljE40VboEfKyVCMCNABYJIX6qpKtnMb4HwEvh9V0ApoUWSGMQKJ7nCCHWAdhORJPDMi8GcKfyzCXh9YUAZohOLDjMhHPwLMV3N5g1/vufL+KGmcvarXzr+9cY46jaEaOHr/B5PMthabLOsouVLPc8x1QW9M11jp9KHL5yx3zsVGJYtQd+MWMJPhUGK8yRDXyc4E4G8FEALxKRFCD+N4APEtEEBONjJYBPAoAQYgER3Q5gIQJLp8uEEOXwuU8D+AOAHgDuDf8BAfH5IxEtRcAxTKvvtarHqk07sW13K44d2d+ZN5P1wbOMamTJWeIvs18FAEx/+6HtUn70WqoTXDqpujLraA9g7+t6zWyrQXubYmTDOQS/JmLZ2sFnn//4gVc6tL5GgJM4CCGeAL+ZucfyzNUArmbS5wI4mknfA+AiV1vaE6f96FEAfh6VHblcd17+KRskFNJ1rll191UH93Ut75uFDioLhbQkMD6cgy2fxMuvv4lDh/RGUxbh8HNkgvxL1IAsRAu+JewrzsEXDy96I3GugC8ixoFTSDOJfgtpfX3V4bGVTOlWuZKtPL9Vv5ABdYhPo+Pv68p+2zhetWknpv7scXz/npfrbleO7JATBw37SsZvQidrTgK795Zx6c1zccnv51T9rI0AZOpoVsX23B6VNYPGeJbZ3iKsLMNnmDZKus+JsEiZpO7n2Ve3ZNauHPUjJw4aWhV2ePQVd+Nb/7cglacjTVk7M+cgT15bubF6py2JpA9cndZKdXZVR5sNGwmXpRt8W2jLl4VYiRxiJf1b2PpWEqt9Yv6aw4icOGjQB/VNXHiADnWC238nTKUi8NuZy9l7sVjJ7/28HNQ821VXHfv4c2TB3WTp52Du9OQN27ovw3l05o1QIyInDhp8do/17jBfeWM7Fqz1izW/LzZTp/3okUzKmfHyelx9zyL2Hu/nkLxXLeolpLan20PQ057CI1vZPqK2Bxe+gXXbdlvKCH5Nc0H/FFZLMIf+Ise+QX6egwZuDK/evMuZpxqcfe1M77z7Yjclw0vYsGbLLvRpbrLm2dNWttwN3ov3kE7DZ7NbP+fQ0eZKfLJNvGLbmKhjpV6x0n/cMhdD+zRjzlfPZO9LEaCpy/RkW9fmYqXOiZw4aOCG56k/TO6kO3IN6YzzZcP2Fpzyg0dw0Ykj3Zk7EHXrHDpJX9uMImxtzDp8xvrtZiu0goPLS+kcrNZKwWbEthH6+cNLsHbbHnz/vccY8+TIFrlYSQN3zkAqTx171Cv+Pr+m9nQmyKM1H32luvhWZc+zE7h3dnXD6s27MHvFplR6pw3tC7MCXi6STcXqWq/2r+3JLEJ2x6Kg5IfZtKMFe1rLqTlioluPvbIBn/rTs2xZKn7y4Cv465xXa29wjqqREwcNNvt7eNxz4dZn0nFmbASgMyrpXN6xJtw5Lw7fzIuO7BYwtnun/vAR7GlN20ua8o/o3yOdt5M4wf328RXBfWaJtzXRX6yUXVhWvZ4Tv/sQLr35Gau10qJ1b2L0FXfjmZWb8aoisu2EQ72hkRMHDZyiNJUn4zpt5xB4nnzZwQgWhmp9QnbttekgHDGFqqrJjQIz8jvCGMEHz64K7P2rXcN9T8IzcSTb97R6x0CyGQ88uXQTo5COr59YshEAcP9Lr6NPcyzZLntQh2O+eT+272n1amOO+pATBx2SOGQY4E3CpHCzcQedmXOoRx/SUa9lWl9LDHXocCc4x31uh28bl3rIimorPuaqB3DCdx70KuL1bXtki9j7OhE1tbuXQhx8xvr2ljYsXGs+YChHdsiJgwY5qO3DtLaVzTR520uE1V6Qa0u11iXqWsftwKP7nAVTxv3Aid07uqtdBKfENNLWD5xYjYWljBbPgHnfvGuBtT1phbRaffyHGkrJl0v24TBy1I+cOGioRJyDOc9Di2o78MZ3IiXb0/kmgtQNuNqmy8xdrxKZR3bAMl3trjzOk10bXB7hhQJhUxVxq/a02sV2Eq5XqEaX5JuTGytEtXnF1ytqfXbVZtz2TK7cdiEnDhoia6V2WKCMp2ZZxUqZN6NuyOlczw6u2kez/h6cxY6tho460lwN37JtdytO/O5DeHaV3yE+vrt+1+IvdR71lGXjHOpFvZzD+66fhf/6+4sZtQbYuKMFW7SzQboCGp44/HHWyoRHsI+1Uq3wdRhS0Rk5B9miaglXQqzEPFuvh3Q14DmH9q9XBUdvvvrP9KKlytjtYiU/zsGFC389K5U2e/kmLNuwI5Vuak7alNWQU+kDX/rb2ebExO8+hOM9dTX7ExqeOHz9zgUJj+D2HHemQW0b7J3Rz0G2V+ocdhqskPTJbpI7R/mZfNyzWYC39fexVsoOXAtqFVkC6TDZJtTSlx+44WlM+cljqXTTBsFmrWSCN3HIiJ3+3j2LsHarOURIo6PhiYOOSCHdHpyDKd0ypztarPTn2auceSTBUonarr3tewxkXLm5PdWAO9OgPWM6sYuQthpu29WaOro0VZeFPHkHMfTK5QejWMm3ViXZV/+QVVj9G2Yuxxdum+fO2KDIiYOOyM+hHXQOxvnhZ8pqm/wL176Js699DKOvuNsqXli3bXfk4Zxun8BX//lSKi3dpuQvALT4WspE5VrucUtL1pxDjdZKtWoeLr/jBWdZ//kXwxnIChGx95sfsuzL2KRVr0MXKxnaUsNJgFmKlWw+Ro2OnDhoqFWe7lW2UaxkfsY35MS51z2OV94IZMI2R6a3fn8GTr5mhnc71oWTX227yfIklWZuLotadQ61rBWsQtqjHC6L67mXXtvGLqJ6nz25NB3+A/DvR9+NRJYbnyXrd2Db7rRTml6DqTmq5ZHve9piPlWLzna4V2eCkzgQ0SgieoSIFhHRAiL6XJg+kIgeJKIl4e8A5ZkriWgpES0monOU9BOJ6MXw3nUUmoAQUTMR3Ramzyai0dm/qh8iD+l2kCuZTVltogLl2rMel2WNSUfALfpvCwnJX+fEYT84U8Jsusvcbqs4pYaaeGslc0kPLHi95vrP+/kTWLah9gORkv4hZvh+g6yH9q69bWgrVxJmt2mdA7/JqaUp37gzfQBXrWjrnCEIOgV8OIc2AF8SQhwFYDKAy4hoHIArADwshBgL4OHwb4T3pgEYD2AqgF8RUTEs63oA0wGMDf9NDdMvBbBFCHEYgGsB/CCDd6sJfk5wtREP0xO2zYvvblBFraIPG7uuxsDh8lXLnmchHonLqv5bdCsVU2mmYva0lrEyNFrgleW1rba1bFrtcbji644yvQUCXcF3/rUQJ373ISXVba1ERJirmOl2ZJslWttyzsEEJ3EQQqwTQjwXXm8HsAjACADnA7g5zHYzgAvC6/MB3CqEaBFCrACwFMAkIhoOoK8QYpYIRvgt2jOyrDsATKF9MVKgcg5++aor26S885vw/pxDFY1S2+GpB+Dy+YqauPL0/FlaK5na0FzyD5/hqtvEibmgjocsxBuiho1EFigQcM9LSc7K18/hN4/xJwV2FFp9Q440IKrSOYTinuMBzAYwTAixDggICIChYbYRANTQo2vCtBHhtZ6eeEYI0QZgG4BBTP3TiWguEc3dsKG6cNG+iBY5x9yqRSnma/Znqse3zlrXBesCpdzi2lHt4sb6Ofg855nmAkccajE1BoDrH11WQwuSffDoYrMJq2rFYxUredebMeHwUO5zVf5tbjJCsen712MJ53rX1lysZIQ3cSCi3gD+DuDzQghb5CuTAbnNsNzL6FwIcYMQYqIQYuKQIUNcTa4JMW2wD6qaRAI1eEgnd4O+9dQGX+KTBXHIErWsdd0Y4mAsP3HNvXttC4zajzbuw+U8GJWnnudgYduy/lLEGKHadA4SW3b5RVf19d/g4BqXuVjJDK8ZQkRNCAjDn4UQ/wiT3whFRQh/5dZnDYBRyuMjAawN00cy6YlniKgEoB8Av5gB7QTXgmNbSL9yxwsYfcXdTKHV11XLmlurqZ8n48Dm4+usdYGqkgupYbmrTqzUPguIWmqrZQH0t1ZSymbafNjQ3hjQsylzhTRHh/T6fao0HULEjTffb+KaP96RbBsQPtZKBOBGAIuEED9Vbt0F4JLw+hIAdyrp00ILpDEIFM9zQtHTdiKaHJZ5sfaMLOtCADNEOwpNz//FE/j1Y7wowFOqZJ1gt89dw6abBqpvyO72skYRQkT/bHkkODlt9WIlXkEZ3OPyV1V8TTBzdvbnalWPqd/Wf5GyfCMXyRUCRJS5Dw8xrXpNc/rz2bCUivxyxI0VmwHEpaeM8a53aJ9mZ7t8MX/N1szK6gzw4RxOBvBRAO8gonnhv3MBXAPgLCJaAuCs8G8IIRYAuB3AQgD3AbhMCCF55k8D+B0CJfUyAPeG6TcCGERESwF8EaHlU3ugUhF4Yc02XHPvy+z92EPaJVaqfoKZJqWvqMB3UnNt37ijBfe9xJtj/mbmcoy58h5s3+Mn2/32/y1MtzOD1dtnP7BiY9oktJaqB/bq5l+OcOeZ+N0Hcf4vnqiqDWpZNsWoL+3x6QfyzFcNuOK+eHvS6S8hHjWUw4UoB3jibBM1lRQPR9em5W2HDrberwbv/sWTmPHyG5mVt69RcmUQQjwBM2c7xfDM1QCuZtLnAjiaSd8D4CJXW7LAVsZhJ9mW8Je5d8phg/HE0uAUK9Ni+KoSp8lUtm86kNwh+U5qbj6c/4snU7s5iRufWAEAeNNywpZa98J1aZUTt5OzWytVd8+XMI4d2htL1qcDxOno2S099M20wV73Iy+vx8Yde7FxR3WROdUF07bYJRTSNtGfY4AIBN8kayZMCLfoy2fslgwn1HH9b+McVCLj2rRk7edgm//7GxrOQ9q1k5B3uTE1cXTk55dYgFvLlWhivl2N8KoVYhqotsUn4SFtzOUuz0QYgNij2nbwvKvuLKyV4r63lzX6irvxixlL2LK6NxXxqw+fUFVb4nLcYiWO4PkQI1e5rZ5HfNpyzVnpE2qb2oFzcBfoMzyauLNbYTCdthRYVMpxrf2mOdnSVsYZP37UakXG4SqGq95f0XDEwUcua8pXIMI3zhuXyLdtdyvGfvVe/IoxZ9QnvGlS2iZOknPIRgmnQ57tXI/FURYbMPuuOPn3jx94hc23a2+blwKXVaJqf1/6h2fwg/terslizAe+YiVfjfSidW9io+VwoFKB2uW4U59di8/YNW1OuEdtZzoUlZd0nf1gGvLrtu7Bio07M/XG3t/QcMTBNZBF6iJGsUDR8ZJyzL3xZhAz55/Pv5bK78uy2iZOLZxDrSGNbc11zW1uEqbMGw1/PbV0I2Yt22TI54ZKyN/c05ZYAE2LIRcBVH+Fh19ej+sfXdYOIRgDqLtWX2cs13ewBV2Md9TZvpEUV9ngMyRNYiVud28b4+p4cG14TOXI8z7UyACNhoYjDq4xatM5EMWhnuWAlZOxe1O6K7PhHOJFo70tdmy7LBfH5cN1zF8dW3OoVX3od7Pxwd8+DbsljhlqWdstehMV/GJmEPspyb8xWLlJvPTaNpz388e9HLfUTYFNhq42tR5Lo6YitY9COiPOwaSQ5p60jVWXSW8yL39fHR9dzQrJF41HHFycgxQrcZwDkXJ+cpAmD3U6vudeAAAgAElEQVTvzsTq0XeDRp2Dlv6j+1/GZX95DoC26BrarivBarUcqtWZC/Cb/H97Njbx5XJHhLnK5qvZA8VubbITHz+HNx0WXd+7ZxFeeu1NPP+qe0FRq7O9c1aRZIqhWKke4nDyNTPwhydXJNJ8CJZPlUWDzoHb3Zdt4lblb5dYycSwqed9bOqCR4D6oPGIg6f7lUnnEIuVgvstbQHn0MxwDm065+CoU+KXjyzD3fPXpcowtV1VggO1hxu3STacRJVJu05RGlcDnnD461t81lKbS35buYLv/GthKj1r2IIqdjPa/NdeX6kQ+DLXw328tnV3Sunq0ya/DYt/u9R9TNobO752GqB4bNj6dncadXZJNB5xcHIO5nyFAkWySDnmJHfQxExmfddiGojz12wztkcd3L6Lfq3+g7aJ5GTPmWdfes0cZcVmrVQtbG37lsF6hCMg8h1+8cjSyLw3KL/GhjmglqtXMURxzkqIlZSMt06fbCx7KxOaolQoWDkHzmvcBwLuU9ySoh53nmQ6wzlYuINEPDIHM2ziLDrC6bKzo/GIg/O+MOYrECLOIT5HWd5LTw59wTQN/i//LX1KmERHWCvFz/nJcTlUWyX3LjFhZu5VUbf6JbhFMshDePdxBybS5ELxs4eSHI/NAkhHNSI9m2zcpxwC8N4TRrD3pD+OipLUORjKq3VB9BmX9eRhrZWUztulxaVSs+v96HtCnVq+LgFoFDQecXA5ClkWqEBmm1RIS7BiilQR1Q+yWqyVAIGnl2/C/zIWVDbYlKLuQIT1T6DZK/iT0IDqzFx9ZfS6dYxpEfh/f30+up548AA2j0RLFUHitiiybP0dTN89eawm4afvn5B4zvbu17zv2CB8BvOaf53zas1xhvwU0vb7fbqXquIc1DTdCEHNnuYqtHIMlarlN+ppcQ1IHPzuc/mIFLFSOI9EdC+dP71rqaKhIWqxVqoIYNoNT+Pzt83DjpY2fO7W590PwW4e6JwfHm07Z/wwa/ZbZq1yF+IBXz8HXRRiMj1WOYf+PdNhN1TsqeIs7fsWvB6Z8Ka4n0QkVpV79C4+gW+cNw4j+vdg7y1+fTuu/MeLxmezCHM2c4k7xL6Ro2HS1AVbD/uSONK2os9BPw5NTTdtmna2tPEBNrsIGo44uGDbIReJ0BTuNuVCIgfbQ4vWp+LTu3YtLmza0aLtIH3FSnG+u+atxZ3z1lpyx6hL5+DRtF7NsWKv+vXGxjpUWxYPE+eQXHzslUkDBV9IM0khkgRBFVOa+qrmQ520d3C12SlS9Oj/m55cab3fXCrWLFbSfTvU7Cm9n6WcZLo9z57Wcs2e8fsLGo44uAbys6u2GPMVKFbaSfGBmu3yO+ZrdekDs7pV7MTvPoTlaqA5z8fVagf0bPKuz7Rz3rarFcvW289ArvbdrGdCV7nY62V5WSsx0Ul9jjp1ta3FwTlcdsahib+Lit+MauevEgejLb69KQkkOFzLO3x08sGptCxEhjaMP7AvDhrYw8uUmGuTfjfJOej39HL4OtXyl21IE4Fjr3oAF/zySf7hLoLGIw7KUOJYQukubzJlbQ79GSLiYJk3+sAz5X3boalD7yKsVjw0faeoOrDV3bqKbYyi1hTf592/fAJzVtqP1/DhHGYvj8uw6hCYN61O5+BuCwcv4uC4b/NQBoDLzzky8beqIygpdv7FRPA4pX5HA1yv7gq8d/CgnvjY20Yn0kx1HjeyX3C/TtbtXccOR8ESStwlVrK4OaRFu1ppJsKnlv/duxdh8evbE/cb4RyIxiMOVcjtdRQKFHMO4SJg21Xp7Kgp60EDexrLEFUsDNXkO+7bD6TSTCEcVnlEmvSRS7+2dXekPMxyN/rAQj4UuQ0EpFadNo8J73pPF3HQofrNqKfTqcTBtGhWQwRluwlkfYdSgRJmtID5W8k21vsppUjNZHbqUkjLD/md88fjwS+8HYOV9rvm4IyX11st5yTO+dlM8wt0UTQecfDNxwyYAgHNTUnOwfegHlte2+RSZaZPLzdb85jKq2be1mOy5/ukDGtdDSfgKv8vc/SziN2rJreDrpZz6NcjLbLbU+WRltECi3ix791cghpJIukkX99K7OIcSsWCN9Hh2u6D1O69IqzOebzOIb7+5SNBSJPRg3th7LA++MQpY3DBhMBM2WcTwoVad3lWNwIajzh4fnQuV1HhHOQO0a7E9WyTp/z9znlp09TZDMGwed7aUM9h6771yP6yn5tdczMCeHpI6232IY7qI9yCWK3Zo9QtCBG06fGvnIHHLj8dRw7vq9RpKrN6+ZkrthIX38gcf0i2vb4P1lYRVuc8G+fwwuqtmPFyEFZbbgpKxQLec8JI9lmuDhmy3lVno6HxiIPjfo+QMzCZsha1wHvWXb+nWMl3HDZr8ZtayxV84Ian0+UZrl2wnWPsgr+4Luw3W1meOoeVUllf50SWSmKf2FK+Nfku2xFxQHCE56iBPTGodzN+dOGxUR5pjimEcFqeudrH+UGo3VcqFlKcl9FayrNOFyrCThy4dDmOVDNj9dVk2G5dUsiNrWqjvjYKGo84OL75BcdLr9l0xqLi5yDLse0UvcVKyvXuvWaZtR6/yVR3rbueeg4q8Z1LPw3PYbDtNn0ZmIcWBUcy6iX5+TkQhvbtDgAYM7g3AD+xUtaQUVeEQEKUpJ5UJ5s1c8nGRFgP9kwKIaIw8ibY3rKpmD7zwTSe9LlQK1rLgVjJR+wqRXncGFGbLXX7Phs07rNz57M0GpzEgYh+T0TrieglJe0qInpNO1Na3ruSiJYS0WIiOkdJP5GIXgzvXUfhFoaImonotjB9NhGNzvYVdZhHsqoQ5AaROnHkgKom5IQpp1rE1t3mCJA9uyU5Bx/Tv3+/6RljeVnCV7Rw34JAeWwjAJy811a+emtw725eHtJEwBfPOhw/ueg4nHnU0FQ55rqyJSDJKL/2kNW6+MPklf+W7z3MpstnbO/QVCw4zuFQ6qc4Rz1xY8uVCkpFSn33Pa1lrNq0M9rt//yDx+M3Hz0RgIFzZ/xE0ubkaeh5WtrKkaiqkeHDOfwBwFQm/VohxITw3z0AQETjAEwDMD585ldEJFe06wFMBzA2/CfLvBTAFiHEYQCuBfCDGt/FC7a5XVRCC5x1bdo64YgD+iisdJBxqcURZuXGpG/AsjqdZiaNGZj4u72Dhk0+ZKA7U4hqN9227L47eJ0IHD2iL2Z8+XS/ZxEcKfq+E0emzujIGpbTV5VTy4RRqSsXL9sxrt5wKKR7dCum2iFMYa0z4hzKlUDXoet8PvWnZ3Hajx6Ndv+9m0vRBo77VqpviOwrn+CX12tcwt+f5cPOeOsru4i+wkkchBAzAdiN3GOcD+BWIUSLEGIFgKUAJhHRcAB9hRCzRNBztwC4QHnm5vD6DgBTyGfrVyNsn61YsJ+v27NbKXWew29mLjfm/5IWUG/eaj7Gv68Fit42s1jJqzgnSob4+jyqq9SukGY4ByafTqiH9umOvt2bqt7F1rrImYL66dCL/Z9pcTykgiJWMrVb9pWuLHbpDzhwJrwqejYVUzoH14E49Q63gHMopEypH128IaxfVmj/VgmxUqRzcHMO/9BikJm49zfe9AvA2FXUFfXoHD5DRPNDsZOMRjYCgGpXuCZMGxFe6+mJZ4QQbQC2ATB7hdUJ2+QpUHqhvvOyk6Pr5qbYzK+W3UFbpYIhfZrxrXeP1xoVX9oGVtqpjs+cVaCwanaqVXMOlv6r1qRWFZkAnmaVSiY90q5PXb5mxeozEudPiCOpJqyVDO2WfVsynPGQqMuxVHOe4SqCDZBeprksgJ9TxQLhohNHWtsiURYCTUUycozyuxDib8WNcWI4h5S1koc+S4/VpLbTB13F0qlW4nA9gEMBTACwDsBPwnRWDGpJtz2TAhFNJ6K5RDR3wwZ3IC8O1thJDOcwLFRaAsFpb1xobl9UKoEY4egR/bQ2qXn8FdwmIrB1VzYnV1VDHLj5cNJocwRT2/zhJhdvPcY/7+XnwOT3IXBy/MgwK/UiYa1k0jlI4qB9D85pz6iHQrzA6nnUP3t0Sy8JZoV0smwVwUJufx+JckWgVCgYnRDlOC+ogS8Zq7dkbKqw7VqR697czdahwnTUrK8FUxehDbURByHEG0KIshCiAuC3ACaFt9YAGKVkHQlgbZg+kklPPENEJQD9YBBjCSFuEEJMFEJMHDJkSC1Nt+scCpQa5tK0FYjP4AVq2x1UhEicCRG3KS7LJm/XB6dpJ7OnyuBvJlQj4q62P2zzrFbOpxq6reYlbZHjnNsk5Gu2aJ7Qpr5ycZgykKOdc+B1DrsZb2xXz7mOCQ0OBKrSlJW5X6C01ZMJ5YpAqUjG8C3/E56vQYpYiY1gwCik9TnyruuecLZnh4Fz8NWFNTTnEOoQJN4DQFoy3QVgWmiBNAaB4nmOEGIdgO1ENDnUJ1wM4E7lmUvC6wsBzBDtqNFxEgcBbNsd7xx6dCtiUK8gTDMpA16I6kVLwRGWlJ58yrXN1j4di57Pt3tvNnFfquGSuJ6oxsw38Ryrc+B3p0D6m1bL3OlybB/LKP0bmrgs1xCR5yYL2HbaQSFN2vkTO1sC4jD7v6ek8hrbrXEn67fvwW8fj/VmxUKafzGVadXVkP+5Gm0VgY079uK1rbvxxJL0IUWzQhFegUjR0di0UIpYSd9QeSzwpjM5fDctXYQ2wHk4KhH9FcDpAAYT0RoA3wRwOhFNQDCmVwL4JAAIIRYQ0e0AFgJoA3CZEEJubz6NwPKpB4B7w38AcCOAPxLRUgQcw7QsXswEV0huAYHjvhXHHWoqEv712VOwfENgeaTuXKodBEIIFAoc5xBfm3ZPQZ1+nMOuvfzOp1pUJ1ZKt8WmOnhqWXoRkPBl3yOZd5yi/O94VskViyDSoopU26T8W6uEDOFOZcpHJx+MCxkZvOw3H5NonXjI76yKPn16Tp0Dl/35OTyzMhaRBQda6fl52NZ+jkM2oVwRWLg2OFL2llkrccrYwXx9SHME6rhLOMEV4nnK4fJzjsCI/j3w+dvmMW3nG+5NHOpW0fPYvbeMXXvbMKh3sztzBnASByHEB5nkGy35rwZwNZM+F8DRTPoeABe52pEVrArpQtrOj4gwvF8PDO+XPChFCOFkH3tpfgmBWImsMvFqzlQwLaL6sYm1olCnzsG2yP9Vi4ekgiV6HvOtVrFSSlRhqUsYFmqXWGlIn2YcN6p/+r5y4RIr6ThpdNrUmAsFodaji5U2aXGFOM7BPM4VfYnWeAJ5by5G9O+Bfj1K2LijhRWVqdXZxEpqbVI/Ywom2bu5hIG9+IObTO02hbTX0V7WSh+4YRbmr9mGh754Gg4b2rt9KlHQcB7SNriCkgHxgimEexC8e0LyjOKK4GWxajGcXNNkoWGatKYJUS2kDf5gj52KvlsqVwRefG1bTfVWG+IpxbV4rEkJhbRmrWT7rNJLXa+iqH1U/TOamhSJsmAmDjKPXuYoJprvf//TfKJbVJ5yrYeeLnBiT5POgcz3ifxMoa9+z9H4/JmHo2+o53mcEStJNJcKiSi26TrjdvfpHpRnUi6XK8LIIZiIg42rV9FeOof5a4L5dOZPH2uX8nU0HHGwfTdXOOMgT1gO3JyDbpIpY8ikiINSzif/ODdVjolFNnEZpkFcrRNVnD9dnn6IkL6gP8kccO+L17YmLUpayxW0sqaL2t/Rb3XvqQeQ89E56FyV/rcklq5lQq3TbK3kwdKEWLvVHjpDP0Na30hwYiWXtRJbD9JndEflKd/yrHHD0K1UQDcPM91mxVqQd4KLr/v2CIQiqv4w0YbQOIRtO2OsAPiFdAcYazAhcPszq53h3NvKlcw2dlmg4YiDDT6cQ1Ihbc+rcwEi5Bxsjjmco41pQpgmrWkQyzARvuBY+NOP4K3E9JZc/Ps5xnKrVeQfc9X9uMRaXvBbq1gJkD4uYXmWZyKTUANhkpB95mqbWqfLzyGLDamupdE3ErxCmi9r/IH9jPeJiI3wGtQZj085xny+XY9uMXGQRahVqy1vLhXRrVjAjhZ+QQ42anylartVjtB2wM9NHzsputbH98OL1uMrf5+PH92/2Pg8AFz0m1k4/Gv3WvN0JBqOONiURQT3BFQXTCfnwIiBCpTUCRw6pJeTIpkcekxj1WRy94WzDrdXpKFP91JYT1zee44fweathpWudpHbYzh607Se+Cw0+hJYoDjwm6l9Ew8eYLT6SXEOkYhKEpPk/a+fNy5RlxDp93n4S6cB8BN36fXqOCoMAa7rHDjOQe9ArsiPTD4I48IyuTm1o6XN6LTXwhAHH3RvKkbWSty3ShVF5vlerpg5H7VN6rXNOVM9IEnvr+0tAfeyaYfdw/r5V7d2KkunxiMONrESJf0cxjJKH1Ws5FL86jt4qZBWI6+6PFaBWsRK/GJaXTgMYOSAQAmvWj8ZRVNVDGpV4Ww7IrVW+Cw3qzYn414FxCG4Np68pkQO1RciXeegLvocTg0tcmRdcmyoOHRIb3QrFurmHJ74rzNw2uFDonarxaSIA/kppHs3N1l1DgDQZBgre9tU4hD8+ogCu5cKTEA9+2bPdLsihNHgQn0fdcrYRD6HDOmF90/0P0Nif0DjEQfLvYBziHNc/NaD03kUzuGbd72Uuq9ip0Y8pJ/D2GEx0fFZyEycg1ms5CcjdjtoBcNDFT3EYgBdAes3A0YP6pnIW08wuXh5CBfsKnQN9y94I/E3kfuMDnXXrTfbpHNQn038LfNFBAnsYFBFWbW6/4wcECuu9T7SubJCgdGJMWWqujNTq0ycg7rIVhNGrXtTMSXqtInobWLiQCHN3xMQ6NO9hLlfOzNB9G0K6aZiAceEkQ9MZ8fXGzLu0CG96nq+WjQecbBrpBODidtZkDKrpe+DCTNf2ZBQvolQrDRyQE80FQmjBvaQRVkx8eABbD6jtZLB3EffmZqcfSS4sWx01LKWFOP4gwZoooDaJ0x8CI4sy7/MUw5L2tIXFEWtVedgEivpSlwpEzfkT/loMGIl33apqEf0BIQe0h6B9woUv5OpPJ02yHytbepmI/j10jk0FVOWe7Z4RzYDk3LFrHMQAujTXMLg3s2J8W7jHEoFUr6pxjlE7akPHR3Qz+nn0NXg4hzUDNxCKFN8P9S9L72Odx07PHpGlrnw21NRIMI7/2cmSxz+8om34PAD+mDd1j0YM6QXjv7m/SkxUrXWSjpa2iro3lQ03ucmT2rHTGn9yw6Drf2B/bqjIkSi3dzk9TGd5dsb/PpwI9MmjUr8XSDFisbQfQUilFFJ1CWREiuFv86IpopuwtTfsl0+3JnLgdBldMGoHHiFMyiaDKby9PlTEUCReIW0DvYM9wIppuRhn1jeV9ev6OWb6pYcvixDQvo5rNuWjs9ElD4ILPUudVIHXz+LrNCAnIP5ni7/59YYVeZpK0ueNd1dOb1NNZ9rKhZCyxBe5zC0bzMG927GMSP7Rc50LrFS/9C81BSCQ58LenygVH4mTV94pR5DbcqbBvPB7k3FFCHZy3Av1YpP9Nw+xEFfGMhH5xASwqeXb8I9L65LPZ9oU/gOtz4TOPv97dmk058qVtq9t4x7XnydPQVQbZfarF9/5AS2jW8a4gKp9crunbUsHVmWGJ0D9z227W61xlaSZamoCIE5KzYnzJJNHINpg6OLlZLnpWv1wyJWspiyqt9fHUuS41n8+vZE/k+fHhwzq/vLxOXJ9tRHHcpVRiuuFw1HHFwKrITIg/mYnJyVKL0g/fyDxwMAejUnj3tMeZIadjdqPv0MCQmdy/3bJ98KwDyxemhcQktbxbnz0pG27w9+1QXEKK4K5fpqlXuYvL76C1mOtAKJDpj3IA56jqRsP7DG0RGIeASm3fA0nns1eTaHruuXbVsfHtn52pbkblMVQTwR+oTo/h2pdinpowfXKH9WjC62Gc4tSPs5mIqKyINX1bfMWoX3/2YWHlr4hjNviyF4pB5e3RZRQPfpUKFy8SmI+HsmiEO46dJ9MsaE3yJ20EuXF7TH2FSvDVFHH2PbcMTBzjlo91kFYbxQy0l7zrgD8JdPvCWRrzlciNXyhGG34vPJC5QeQPoiKttm8nPQCVhLWxkPLHzdUicn5kimSaW12hKTs49cXFWCxHEvvnNAeitv0Q7d8eEcdCKty/ZtIge2vPR+G0DsCKZPbHXXbYuFlWiXUoQPAeTb6V6I9Hdhgx5S8h10kcchjPJUnpqohsgw+TmYJCjyu5U9RG1kaHtQvvnkvYqIHRLVcdIabmSaSroyRdZH0fPJ2yJqD4dyReAzf30+kfbimm24/G8vJOZKVue0+KLxiIPlni7iYXUOmqxYpuk7ajl5ZXlt5QoeX7IRm3cmd2u23Y0KznlOP1NANkFdiM5QnNZULgYILFVsSmlWrKSZEspdlPoOZuIQTPqEWIkhZC7O4eBBPRN16w32Iw5M2yJrJV4erZs6q0h5jIcZpdhN/3aqfNpm659ol2Ns+kB9TO9m6begf3jzQh1f6+Nowsj+zPiJKxzWtxnXf/gEo87LNAaKhbjfALu1Eiw6h3JFRBsbrpWR/kp5SfkJ9ed08+ZqjcrWbNmFu+fHYkohBP79D3Pwt2fXYOPO2Dci5xzaGdyHu3X6ZLx41dkpzoGbfiY5q74e6YP4sVeCw4lWbtrFlmeqJyq/QKldq+5xKRcMVY7/yOL4UCR9Ira0lVM7aNWZh7dWCn7lQOXO9OUG8a3TJwe7YCTFSlzYBLVvX2LiM3EESYWJONz05IroOtW/pDjBAejVnF60OO5N4kcXHZf4W0TEgW+LKp+2cQHqpkCt2tcE+D9OHZOs15JXPb5UhcsPRyC9IeAs/VQiM6J/D7zzmDjyf5pb4ZESKzk4BxPKQuDwYX1w7Mh+qf5XCbbaz6bjWvWouWmFdNgeQ4PSzrIKx6LcyjmHdgY3uXt2K0aButS7nM+YenKXzSRTHyj2D8ux7Xp5HuIActfVTWGJW1orCaJ26Slj8NAXTjO2QU2TFidN2kK9evMuLAvFByomHzIoUq6qhKSbzqIjef+8n6cPZylqXFnUtvDXtNh+6/8WRtdWhbRIWx/J8k2foH+Kc5BiJfsUE7BHvy0WyEuEwoEI+Oq7xqXrVMRnKmQ79L4xKpwRj3HdX4LrP9d3N+VV8+sKaXVOpH1LzKasUlzztkMHa17QFdz1wlq8vi3QFalrgKn/9ZAq1Sqkdb3fRb9+KmUV2VauGPUw7YXGIw5MmlxsdBGPTSGtfk8ibrGR9bkXdLVOOQlGD0pG3FR3kEve2J4KzTz+wL5RG7ggdRJz/nsKfv2REwEEJ8ap7S4WCP2URY7lnMJEqfRWOYfde8s49YeP4Ip/8JFBJYG7/I75Udobb6YDxbkWQdnm//p7sh6h3bdBz0I68TXoW0zfc4hmfitzyQBwYzQFsqrLtb1uU7EQ7SzVbD6bSP77UbixEfjNzOWJe5KoprQnTF1CxO/AmVhyznRqm5tLSc7MZT4ruUV9AbYrpO3WSnGeONf/zgsOqJR6EXUsmTzV5d/xxtHcHg465/Dcq1tTlnOvbt7lbaKeFRrPz4HpXykX1j8tL1aJd0sJLiPM26d7CT/7wASF/bW3Rx/AB/TtjhMO6p/atRflrrsicNa1M1NhJ8qKgq3Vokfo37NbJLNvaa2woavjv/nds6wPSMpffz5jibFeIA5RMfOVWNTFBRp09ZkrhIcpGqgKzolNiJhAmAgjJ39vLnFHawblSJ+NH114rFaWyoGaX7hYoNjAQMnmY91i+n5CAEvW78ALqzWLK6MSPl1X4JcRXHMe+YcOSYeeURdhF+egv5/8ppIjkbttK3GATefA5/ny315I5FP7xMTBybbKNurm2a5Pxb3DxtACTz7b0foGoCE5h3Qnx5yDpnOw7EDVSU2giMAM6d2MKUcNQ0RqFDk2B92Ls61cYUURRMGglDmf0mzUhSKndDnLyB1iWSQdr3wOsJEhkOXk7laUbL4wHjSjlqdPrBH9e6TyuRY+08Iie6c2hXSgc7DJh00KaV3RDyiim/CiZ7dkHtXs0TbvS0WKFoY5K+Oj1ZstzotRe7m0cIxz/iWy33Rxqql5EafKaIU/fvKYdP0Mh6yXZapT3rf5OeiwxS2L5q6FuwjqSz9jEhv1DsfBjpZW7X5S7KTDRuDKHkSwvdBwxIEbCSWVOCjpNrGKEMAyGT6DYguaw4f1SeYLn5PWHBO008D0OtsqvIKyUAjNQA2T4cD+3WNlsbKT088dVttWEckB26xNWG4wDw4V1u84Igj/LSe5jzg84dAV4o5PvxV/+cRbookl22XDecfGisznXo0tts6fEESM5eTd6bYk/y5obWNFiuAJF2+eHG4KpMghZVgVL3K2Ba5UILSVBZZv2IHrH10GAPjclLEsUU21lyNwkGIlvi61bRIuyyGOOBQKaUKqltOsbYCued8xABCdzqbXqZu8VkKTaFvwSzvnEG/sbJuRb/zbeOUZWXcyj3xc6i11R8R4w8GPSxtXYCIOj7y83vhMVnASByL6PRGtJ6KXlLSBRPQgES0Jfwco964koqVEtJiIzlHSTySiF8N711HYU0TUTES3hemziWh0tq+YBPcZisqkMJ1JK5GOChkMwl7NJdzz2VPxo4uOTeSTFUprDukcpz6rjs22imDFIgUilAU/qT9zxmH42QeOjya1Oti4SKzq4Taqlckn3x54ev7wwmNx+TlHsAvkCQcNwMzLz8DPpk3AaYcPwVXvDiZPRdh3YME7pBfX4f164G2HDY7Cgwdl2Uu65K2jo+uLb4zPeThn/AFRW1zgnBFVzoyD6nOglZZKqWgLiU0nJd938iHpYz9LhUDnoB5aM6XKczn0pgYiUYbIGaOU8r0is5tk4aPCgH8yYFzCSk3biAzv1wMfnHRQijPQ6yKi6Fv9+IHF+NlDsShTb6a/zsEMGdcsaJMk+MknZLocwzt04iDbY6jDNt4jfWoET4sAACAASURBVJOWZdmGtNFH1vDhHP4AYKqWdgWAh4UQYwE8HP4NIhoHYBqA8eEzvyIiyf9eD2A6gLHhP1nmpQC2CCEOA3AtgB/U+jI+YHdMRZ5zqDa20rgD+0a7hzhfkFE6e6XsurU62soVdkGXO1tuIJ09fhj69WxSOId4J2ciNEDQF5+7NT5gvUcYpuP9E0fhsjMOM7LBBw3qie5NRdz88UmRbNm0G02/g2mhiStzlqMsYlwbXfJsgDdlTegctAyfnTI2WpR8IHPJ/Pq6K/8M6gyuv//epF4CkGKlilX8Z4KR+wHfx5LjcimHZRonxlQ51TPHDcPfPvVWXPK20cEzyvPcNwr6iF+AVVFhMRxHt881n0MewOxDFO3mYR9val/Ib2niHLpFUYwrfAYDbOdE+Jjsthecs0gIMRPAZi35fAA3h9c3A7hASb9VCNEihFgBYCmASUQ0HEBfIcQsEXz1W7RnZFl3AJhC+rYuQ1h1DtB0DszzJltmHar4CQA2hAe5q7GW4jbFMIqVmF139LzGtq7dFlsAcU5Guq24CT6fQX1Pl2VWgcjoUKWbgvrGV+IWyn49mnD1e46u6jmdcyAAX5l6RHR/9KCeobVSGh84KYjj/7V3HYWzxw0DoC4kktjw1EHATEAAYMWGnXh08Qas2mSPAPzVc49KJ7J6EyTapaIQiVd1sRJfpyQmapTVRy8/A7dOnxz9fdLogQo3EOfj/FuCbxBc683TD+Dx4w4BE18QETHHGFcJrP5NU2WGBE9f7KVI6AFD2BAr51DmxUrtdU61ilp1DsOEEOsAIPyVfO4IACo5XxOmjQiv9fTEM0KINgDbAGR/AkwIm7UStMnP2/kHv+rHkYejq1DN2jbtaMF1Dwfsr75Y63LstrJgFdJyYeUGhUzr2S1NCHozylJV3m2DD4X2DUQIwLrz/sH7krvmiuCVcI9/5YxUmRyODo+wtLVFRcw5xPf/8/TDcP6EA6P7YNr/8nem4stnB0TkE6cegm+GYjZoi1xa2R/8/ebuVqPoCQC2h0r+ZxRlNPfORw7vk37HdLaobdy3l5uS3poD4Pt/MwsAMO2kUfivqUdGbYicLpWd8oj+PTD5kOT0jTcQcaWpEBSIw6sEebV3oeR1YK3kWtiT5WzeuTcKk//Vc8eFdabbZqrXpAT/4KQgDpckOLrXvxQNbdjOnwTno3PwPQUyS2StkOa+lukr2kRxvGSXaDoRzSWiuRs2bOCyOMEVnOQc4hwmixVo+b5yzhHpjCEqQmC9Mih013u9jrZKhVUiFwhGnYNM6tVcqspSx9efwFoWZFl83/bpXsKXzz48Kk+t8nKl3+SpcxIVIXDzUytT5Y0amPT/kPXrfgSufZX+ZpJwPbVsY/h3koCGtCFVsG7GqosTTVyBXIh//eiyVPgFDt0VvwBeXGTeyOj5Av4o3UMy/xmhscHRI/om7n/5nCOiDQiBIiW77ZwDQLEwUrItWvcm07ZwHAmRcvjSw3xzYzc1NigmDk8t24gTvvMgVm/ejQtPHBn587g2SgniwMj/uzcVInFsUyEtVrrvpXW46cmVfOFauRy272ll83RmzuGNUFSE8FeqztcAUAPljwSwNkwfyaQnniGiEoB+SIuxAABCiBuEEBOFEBOHDOEPuneB2yHIAWDg/FMoFighA9TNFNWyHl28Hj+2HCyu7m4qlSC0BLfAB+EzeMHN4F6xA9YBfbs73yGS2XuKxux5YjEbN16/eu5R+Mw7xob1Jge1etKergytCME6yJnqdy1Qpuei+kPC9bGbnkm1Q94HgOUbk+IdTrENqDqHuHwV/XsGVjknjRkYjUmOGE9/+yEAkrtRbmHwFcTKBZP7VtIxjYhwymGDU6Kf/j2alLbG7bXJzAFFv6IMuPWMf4v0aL71mdU469qZiXu7WmJiUQxDyajvvPKad0WWTnG9sSnr80oUXXWDxnE1KtRk10mBkhtSx+Kn/vQcG21XhY1z+NDvZgNI6xw6wrS1VuJwF4BLwutLANyppE8LLZDGIFA8zwlFT9uJaHKoT7hYe0aWdSGAGaLW8xA9wBUceV8i+eFNO+digRIflNusyx3JX+esxsMWszPVFluGBOYCgsnFi1sYDlK8qVNNJuD77z0GN398Uqq9almSNdYedSKmM/wnq2j9aToilAvZ8MenV3m0IIC+QHFDSBWxpcVKyf7QF40CEf41P3mGAwddJ2XjCkb074EBPbtZxUofCr+L6pfAEgemLSZuguMb/v3k0cnvUSDoa35JOc9aPdzGdPJgVBajp+O58iDPXfPWpu7pMb+CyKl2qJyDumCrJtsx4TKZKce1xKasyjhRWiE5/mo9mV0LvRACv3t8RSJNKvnbEz6mrH8FMAvAEUS0hoguBXANgLOIaAmAs8K/IYRYAOB2AAsB3AfgMiGEJPmfBvA7BErqZQDuDdNvBDCIiJYC+CJCy6d2g/IdjhvZD89+7cxID6A7zZh2Y6UCJZRw7AlenmRXPrltdyu+8b8LABg4BwoGkYtscs9+cNJB0QHzQZ1pVvrCE0foj3kqpNWyzPoQmVcnFlG7U0pQuw27RPdwor+ucRlcN+nmxyp0whX1UUXedzYlUa5u9sgt/MWQG7QppOVjKnFgFxPLs8lswe5cJ6YfP3lMsm3EizvUFLmH2bidPxdCb0c5saHixjiFhCtd75+UkPiB/s29AFPY3seXbMADypnhqm5ONajg+rVbqRAdrPT7MHCjUSHNiJV84CIOKzbuxAxtg9mP0XNmDWf4DCHEBw23phjyXw3gaiZ9LoCUCYkQYg+Ai1ztyArqwGsqFjBIiYmjcw6mtbFYIOwtxwuX767N2CYBXPvgK7gtNM0zOcEFHrzJgfSp0w5N5tPFHEx9HOfArje6mM3wShR2HG/ymOSwkn+rO9Xkc1x7PnnaIam0UQN7JqyzfGELvBf8HfwWw92gLTieXg7gFisBKnGQD5vbmRQrpfNxjn+mkPMCwPfvXZRI1+X1asA/Faqpr3zX3yvRbjlEoj8Ht8150EscqDj9BfncojQZK+2jii8MADyxdCO+orVNQKQ4JYmpRw9P/G3aoBUKhGKBqicOjh1f+wuQeDR0bCV9wqtsaPC3WazUokShNLHIPpB1qhPRJlbSx9G7jzvQWq8tsqpaFDc+fckbQSoS0/cuOD7mSHQTRN12XQW3SHALoGle+VhOJf4Gz1l8+93jMbxvd0w50s/xTBdHubiCgBs0cxcc58CJPziO0fT9hADmr0mHQldhUvqq1lc+nuhB3uBX9b8xjcuKYZOhQhJVH3BcyJZdaU7HJLLlwIkfJZqKVINYyU5MOLPfjkDDhc9I6hSS9/TDfkxDv1SgxE7OdDC8D2SdahEmsZIqgojaolk2+UxYl/lenM938ochGZS+e/rKKVj07amRU6CsV21/wfLOgpkvXHvMcaTierj4VqnAe4Xk2JCmo4N6N+Nr541zht7W2xjrHML6OM5BWwxtJ++p443b0ftyNr5QOYfezaUoZIlK7Lyd8SLiYBfZRspyZ3lV+Dkw+b6uhDFX27Fph108BgRnoOjnqKhoKhaMnINuUSeh9sv9n3976r7v2R1Zo/GIg3Kd6nTSiYcf58DDX0gtRLIu3pQ1mKz6WDfZz9taEekJKukFNJkv1VQWRGnOYUCvpsjET603Kboh9hqwO2mp8IlWyZ52pxWl75TnaRFLfWHWOaTz6r4rpjyArpBO5/M9NtR2ml2iXsUir1QkDAotgSIJGJE3d8wprvnoA76nIgZjVw0pwkGK0HScHYZZkXUCwdhdsn67s+4bn1iBl1+P840/MGnu281CHEyfSB13LifZjkQDipXMSjF9o2HUORA5D97wFiuFdaptsYXP0KOxpuibR71cOHFuAPqLxii14+Nl4P6ezyxxYNqz26C0Vh/fvbeM7k1FO9eY2o3WtltLcQ4Vs8hILsA27kImtTpMWdmNDJNkUjSn88VK33JZoFhIBlgk+O9oOXNj7skChWIgl1iJCK2VSuqAoVS9jqB6QduCXwHzsaEq9ijj7Yp3Hpmy8isVk8YqKkyKZ3WD04OJaKC/gx6uv73QeMRBueZs1FVxhmlcFYvEnn2cKMuzPbJOtSk7mQPnA7GHwGe1g8j1Car/zbPvaZ0Dbzuvl8W/lZTXq0XwojFK7Lps8FW67vE4HWtXaxkDtDTupL1kH7gXUFvICj0OD6+QDhaMW+e8GrUhVRyjc+AWGV+dQ3OpmArXfezItDe56sujBoOMw09T6p0eu/x0psa4Har4xKRf4b67HgqFiNiQ41x5rq+ohk63WQ1dMOFAPPfq1kRMqKOG901ZDdnESiYuVyXW+iFIsm0St3x8Et5+eG0+XtWi8cRKVegcTEOlVCg4xUrVBkdT27Jwbdp71KQgdIuVzPqQxI6kDoV0ZIKoma262moDa3POLIC79/Lf4fiDYnLAHX6kl2SOuMrj5MMG4T/enrae0l+xom61mTpnvLweS8JjVW06B1U0posyAANxYMprbiqgpa2cCB1/08dOYuuVUqByRaTOROc+papf4t5h7LA4xAf3vAyfoc7B3108ER9+y8HJfAW34x2Qtj7k84QiVkafl6wzmH8qdzG4d7dUvm7FgvEkRh+iUWREymq7TjlssLGNWaPhiIO6Cr5lTDoGjPpdTex3gQxybK0s/xYlD92Zzi46aackIL0o+HD6sW+Ci+V26y+CfEFfbdjBx45R8/mC63puZ7eb4bKAZL/IHbC66HAixWR/2BtrMlXWxUqyzXwwRTthV9Mkp/rs185MmF/bn023r7lUQEtbJUFguMOKJFcDBEr/UkQcYv2IboJpGnuc6bQp4nFFAM+sjM/oMBERF+cePOvWr8RipWS8IhlTS0KK2VTOYTwTv6upWGA3Iz27FY1+O0n/j/R92W3XfuC4zA0PbGg8sVLY0b/56IlRBE0J0kQLJjawVCg42VpfPwdpoaFOAm4HVjTI61PEwUOs5Ktz0OX5poEp9SYbHdYe6oKghzoAgHs+eypmLtmAa+59mSVc6xh/hj0e4gWOyOv9kuYc/GTVqXRZpyKSAUyh05N/m6zUgFisZLKa8pX/N5eKaGmraAdCpcuUYiU9pIsqJtP71Sh2DJPLTmslP26zSH6+BFLcqaIPQwiBpFjp7s+eklr4ZX9wwS1VlIpx29SzUvp2b4qO/tQh6z1qeF923Yi87GvUg9WKhuMc5FA5eFBPZmecVEqa7I+LhQwV0pRWSJuslaoRK8kQAQN6phdhLpwBx0Ss2bIruh7Rvwf++Z9vY99Btq3NGYAtvn772DR7PO7AvhjYkz8JDOCjzvrEmPGJha9vDGqFGo0XiEUJTYyRgb6gc9yFXBCicgznY/taKzWXCmhpLSdFGQauplIRMXGLiINcqIABGoE3NUHOM/U78MTBP81H5wBG53D3Z09l2xZEqg1ym2KblStm0ZlESRErHfn1+6L0Pt1LaKsItt2yX/75n29j31e+QzWcdxZoPOIQiYANCjFl0picWQLikI1YSVpUqNlNIbtZ+/bUDjj4PXxYH3zn/PH4+YeOTz0j26YuhsP7d0/l26kEO/viWYezbDQQhJV+YfXWaCHhuAL5Dtw11zZuna518b7piZWpMvX6n391K2avYOM9snDtkqNDWioi8AnwEStxxCEcChHnYIjLwj7LtLEpFCu5zhmXO+VILBaOyQsmjEC3UgHvOWEkejeXEuIXm8EC4Bc+Q9ZtK7NQBeegUodjRvRLxCEDYmLbUi5H7eMMH3SfFBNMFnnylDjOuk5yVMUCbx5sc5JsTzQecYisLdL39IB6pl1pseC2lvA9r0gGOEuasnI7F4MFT0qMFE+wj751NAYz8unYtlugX48mnHnU0OhENxXnHhPbg7vEFs+9utW5u030iVE+neZqJHxMMDncNnc1dmm6Cf3z6DJsEyGMnjelhzd+eF/gKNVqOJ8D8Jvsup+DqW+5BUn3ngfiRc7lHyI3I5KIyDE5enAvvPLdd0YOXcngifZ3UOu0OY7qIVe48vx1DnFZnA+BPIt7zZbdsb8JU6l0CnRxobJ/dUifH44oyzKLROymdUFooJJzDu0Mi/FIqEuIKbtZ5+DmHHz1Rss37MALq7dis+LSbw6f4bbgKTK7L1Pb5IE6Bw3kPTdV6xIfRZi0OzfZi6tFmBZGuTF+fvWW1L2jhsdK1P/3jsOc7VEx7hv3J76Z622+995jrPeNIhSt5LZyBU2GzD56gkjnUK6EO0sTcUinfTE8RyNRXiEQnbpEgMVCIFaKdtOGtpYSxMH+TcsJJ7h0Pv0MDcBgbVcw+xLoUPuFMxOVYqJdLeUo8inHOUipgpyDppAWqpWXClk3t+EsV4IICYUCsf2yeefeqOyOROMppMNfrp/1uCgmnUNB0TkcrLGpEr7KozVbgljv/3guPijPKAPmOIeUaMJchloWEIQC2NHShqaSu60+YTl2hqeWmSaOKq81lSbbdv+C1xPpP77oOLzvhDhO04j+ycOBqoWLs3NFvTQ9r3d7m2IGmi7DWkWQJ9I5iESoaR9w36GocSImSLHSvS8F38Gk0yh6hB+W75AIn8HlY7kErrx0FF6+3iRx0A+UAuLIsm2VCl58bVtYJy9WKivmrg98IR3mAjDrruS34DiPmUs2KibC6bp7hefFdHQUjcYjDtHHSfd0SXNgsXEOkoh8/z38DrNaIu+SmBD5OT9FcltLA+StXz6yDACvLE3X48yC3aF1holzGNY3FnGZdQ5B+vY9STHQUcP7aOE23O2xwTbR/u24A9njVVWYxUrJO63lirE/qjm1DzD3KwCWcHDlyyJcYhm5A77yHy+Gz/F1+3AOnI7rS2enT09kN1RM0kLmFDlTvepiPKxvWq/GhSfhXjWKoFtJPseVx81TeRAQd+8FJVQLV2rZsma1JxpOrCTBfVtdXMTJ4QEtmqjFvLMauHbmxYJBrGSwVrItPPoCxplZuurhIM/n/fVHT2TvJw5ZMcqng19992XSrdQK2/OHD+W/e/J5Q7r2d1nxLtbhFyRR0UVZvtNQZuFjQ5iE/ehy4iwWkgurmXOoTedw5AHpM68l55ko36OPVHGjCkJScc29g2y/SiyNJzEqcbCM4zc87VA3W4085h2qEq5cKQLsaM6h4YiDXedAkXzvy2cfnjooXUIdPKYJW+3i5dpFmsRKJmsld3nxtU9MGVt5hw8LFtPWNoH3nTDSGH1S1VuYiUNwQ99hpc7edrbYDG6RUA+78XM08hMVtZaF0cLIZ4yoTXGZqx6neD0DBsVqJFJ0EAdtB2xSxFbDObislTZsT/sBuMbxsSP74bcX85sRoqRXMud9zHEOJmsl9Qx30xiRZt0Tv/tQIl2W77IS48bE3rIw3mtPNB5xgLmjVasSfaIl8iU4B9PET6f9w+AnAAA7mF2TikK1YiUPYiNhsoBJ5LeUJ61i9rSVEx6kOtQSXDJ7/VV1H4d6lHO6OSMAjBkcp5nK/rNyGpmRcyDCkD7NUZ/uLVfQzFjJAH6iOldAxmRe//JcOgf9e6/atIvNpy64LoLvCtnNxxSzv9SXzz4CIwfwej8ACcW1lXNIiJV4zkG1VrJxSZwFvCTGtZhj55xDB8HGOaiLpG1xTXAOlh2EjhMO0sO/+YMo5mr09ES9heqJg2vRAVw6jODentayVWma0Bk48ugitJ7dSlo+W2sdYE2CC8o1/9jJhw3G5EMGBvVbij/jiCEY1CvQrwR9wnvV+hA4NYtL/OfTJXJ8LH7DHgBR1/mYwmOr46IaPwcuLydWcnFLrvHWkhAXmfUyCbGSxcxWisbMOgferFgeFlXlIXFedbYXGlAhHfzyOgdlgbB8CB+dQ9YHdBSJEnLMb5w3DuceMzyVLxIruQZSQqzkbquP9dOe1oqdc1CKsCn0gDSXlCXnwO3dfMQj6j1b9fLwIyDYMZoWMHWHevxBPKeqLqIu8Z9Pn3h8agDp/ud8JoC432zDnfOQ5rCJ2fy43qmZCXEd1YtkiG1bfCsX5yDnU7yLt4uVVDz8pdOw5I0guKLerz6+O1Hb9ifOgYhWEtGLRDSPiOaGaQOJ6EEiWhL+DlDyX0lES4loMRGdo6SfGJazlIiuo3YUrsV6f06sROy1DnUHYtrZqAtu/55N+Ot/TK6ypUkUCkmFXlOpgAP6ma0vqtE5+JxyZl8w42vbkYaFxC7TXpY+Z1I6B+15V8wbFa4YVbZ3lflspsqBOWNw3WLhplQC/n2HXwXg3kV7EQfPTYuab+r4A/BWwxkC0TkP1nYFv65QJx/SzkbQ28HBzjkAu1pjboS33grSVB0Md6aCJBhSNGb0c6G0n8OhQ3pH9eh90OrSUCPWU+yPHtJnCCEmCCEmhn9fAeBhIcRYAA+Hf4OIxgGYBmA8gKkAfkVE8itcD2A6gLHhv6kZtIuFsFgb+IR3AHSdA59P5UI+cNIo4+TyRYpeGnZhtYiVfBZWH84BgLfOwbRQyLLU3deK75+byqcSoW+fPx6PfPl0Y706WM7BU6Qov4NNEicPP3p92x7MXrHZKMLxcQpMttExXT3WDt+ongnu2LJRis55sKz7ss9WbNxprXPapINS89I1jrvbOAcKnNuitlo4ApVz4MawbIdLxFMsJMdur3BuyU+nc08+501LgtTBjEO76BzOB3BzeH0zgAuU9FuFEC1CiBUAlgKYRETDAfQVQswSwcp9i/JM5vDZ4QB2OXxS58DnS+gvMqD40llOwrQJq0Uh7bLpD8oz31Nfz1aWWqfu5KaXJSdEz25FVj59hGIKefyoAawNuwncQuZjkgnEYhkr54BgE/L4kg0AgK27eHl9wbNOCZf4z6cM37Go5vIVsZpQjYTVJ4y5CivnAEoouXkT1eDX5fdRjVhJHV/SxNgkLuXCe+vY66izvVAvcRAAHiCiZ4loepg2TAixDgDC36Fh+ggAq5Vn14RpI8JrPT0FIppORHOJaO6GDRtqbzE8OAdLz6iTxbSrIqJoMFajf3jP8eyrJxxlgOCwGQ6+pqyqdRQXzz9drh/nMHqw2XLEa2ercQ4mT2jfb8WB45S6K0pjm5NVVK/lXeThR9UQaJskVZ78lYVYyXeBUZcwW70+0WD1d/vJRccZ8+qEyNWHg5gDd+J6kThKlBMVy/IfXWxfTyQhlxFXyTDmCkRs9Fm5idT1ET4BBF2irPZCvcThZCHECQDeCeAyIuJ9ygNwryYs6elEIW4QQkwUQkwcMqS2o/JspqzenIOqm/CwarJN/MvOODS6/sQpY3DtByYY80r8/dNvxWFD005EgBJbqYpdxpA+6eB8ErIYn1hNAB+/Js4XZzQpV/Vmq+ajprJM34qLvzSkTzNuZE4+66EQDB8Ria13A52DcC7E6jey5e0RmsK6FkqfT66LlYzhX1SRl6flnm+73nfiSEtmrXwn52BXSCfK4qyVwvIXhRuCiQfzFoWRtZJjFy+/vUR0hrgM06GJkSRX8MMLjzW8xX6qkBZCrA1/1wP4J4BJAN4IRUUIf9eH2dcAGKU8PhLA2jB9JJPeLrCZsqqj2CZG8dE5AH4L9ZeVMAJvMTjdAUicG9u72Rz35+nlmwDAeLAIB5MnOBC33co5eJj2Ask+N+km1JPPhvZpZj1/geSCY/pWFzBc2DfOG8dyI6rs2m7GLOu3c1L6AU5svirFSuoJaaZ6JUx6JLWv3nHkUPzr/53iLKtezqEqcYhGmKvlCpPPJuvlox0n07hTGIF4TLQ6fA50sZLUUch5lOYczIH8nrziHQDiubzfiJWIqBcR9ZHXAM4G8BKAuwBcEma7BMCd4fVdAKYRUTMRjUGgeJ4Tip62E9Hk0ErpYuWZzGELvFdILDh+Vje2yRGLeMztSZoqmst659Fx+GzTeQkAsDY8Le2FNVuNeVTIkBcmyHe1WW+p72DPF1+PM4Q8UE0LbaabhQSBdlsDSfTuzovQVAsV+zd1cw5AsAh87tZ51jzVKqRdkN/hY28bjYXf5m06VCnGqAE9LOc+K9dWYukTeM8frrAp1UAfP6aAeipM4zcOVmmPPCxjMEnoUW11ncN//X2+sbxhIUf/8MvB/po7C6I9UY+fwzAA/wwHZAnAX4QQ9xHRMwBuJ6JLAbwK4CIAEEIsIKLbASwE0AbgMiGEfNtPA/gDgB4A7g3/tQtsh/2og6dePwcgnlS+lrm2xVBtz4Ce9oihrnapcC1KcqB3t4qL4mubOE6d998zBCyUZe1tq1gtURKE3Gg5kk43KTDVnbZtMZT3bESwQOQ6ZTTVvnpFN0C8CNs+qWpXb7N+8p0LWXMOKeJQB9HUvzW7IdTab9xoSJPX1uT5FjqIkodkpYiD9n5zwgOmuI1hqVhAn+YStof6wWqkAVmgZuIghFgOIKVZEkJsAjDF8MzVAK5m0ucCOLrWtlQD22E/yd2SuYw758VSL9ti6Gs5JGElDqroxicWUg1WKRzkZDWFgAA0TsrTy6qPYQcfKf7KFeMuH/AzCuAWXBNxUHUOPsp3q/hMkztzBy7p9diGiG/EBVmGrf09mxUOycblKdc282Qf09g6pEreprccdFEN1y/6eDBVF8ekKqNUMJ+rUaCks2qbThwUnYN61HCToY/79WyKiMN+I1ba38F1c0I8Yln01Y/vo6j1Hd92xzvJhfiV5cutuLxW5UbTrmiOr31CcUwY1d9yOlrwu7etYg0lTh47Wy7d9B4ql2LrEvmJ7GLH5CL3+49NNOQj9lqHP3EIyrCZd77jyKHRtZ3Axfds5c33EF+qr/bY5adb8+rvWuvpf0CaqHFDTicgJhNlucj/77y11lP09C7VFdjqfJNe00ByrE5RvlF/RUrA6dDaEw0bPoNDLeaRPvJpX4pv8y6WxMEm3lHhezCMh4NmUK+Fc/DVOUgcYojaqpYlTz4zIakfMu3i0mlGzkEhDrbgaH6cQ1LubJLrq5/b9u0lt3v0CF5PIxGJAC3iAn4MUAAAEbtJREFUuJ7dSjh73DA8sPANL64XsG8MXt/mc+hOdVyvCpt+zQWVOEw5cihOHZu2cPTlTFZtsjvwReVpc13SETlGk2fUx5NP5S5vuHhidK+Hp6FEe6DhOIfo0zjESpwLvYSvrFg9z9kHPpyD7/iwiQJqga+Jqm3R9NkDyh1Ua1lYFfQJmbiJODDpJp8Otb+48BoSrZqYgANRchNi6pNNO+JYQrbvJcua/vZDjXmAeHfr2hjIpvkYUwD2jQF3LoMOVQlb7Wl21RITFaqY9ur3HOMVmt60j9vlqQzWx5cMfcHpHOT3uvKdR2LcgTHhLxYoIvB7HOdutCcajjjImeZSSNs8fX3l+dWaoPkowX3LsgUkU/Ha1t3W+zf9+0mYOv4A7118PZM5KMtvl+lDHLj+PNDjeFEbEfu/FwJ905Zd6SBxEoSkOaNpLN2neIlbiUP4azqLWkLa0LsWYGn10sMSNsVXfHnpKbzpZ6K+1nhhNelf2gNJI4P6yuLCiXNQTzsE7NZKkjs4dqT5eAB5dOm+QMMRB5spqyoKsMnshdceOEY9SjWJyN/As6zmOhdpiTOOGGo82U3Cl3PwQdJ/wbI7L7jz6X31WcYpTsV3zh8PoLaY+4l6KTlGTNzKVe8eH11bOS5NNGGCXHhcGwO5aTH5kADApDGxz42tN2yGChJ7QuJwymGDnXmzxPB+8UbARxdmw6WnjPHKp4sQdT+HxAFK4bWvEUdHo/GIg8UJ7rFX/EJy1KEjqxnSIsd37fWZtFlBXdBtu9b4iEU/cZGvWMnnCEsA+Lhjgp85bhi6lQr48FsONub5/JljAbi8qJNjxMQVnK44NtoNCNz9BsQiC5sYCIhDp/S1WINNGjMwurYRLh9RjeTWphw11JHTj2O5+K3m76OiX494obZx5e87IfbBNeUaf2A/L65H1x3phF0lDpLTq3dD1V5oQOJgnmi+O8ZpJwWO3l899yiv/L4WFzYxio+nsorhTDhvDr47IhvUNtmUobLvbXNB3eDZFaZ8/Sr0BcG1uA7v1wOvfPedxjOJAWD0oECZbg/gmI7pz7bPc1GQC4ore6xzsHMOsmk+CzvgFyLGhsOG9sacr07Bx9422pl3qCWUi8S3FI7LBnVzYWMcjhvVz6s82V3nHnOAMY/R818qpMPOn7d6axSl1vc7dDQaz1op/OWGtO9k/da7x+NzZ47F0D5+C7Arjr2E6exlIJ6grgXuXccMx90vrkuILGz4+nnjvPLZoE5Cm9WNbrnBoZgh56B3VRZm4rIMm9KaECzAvboVMY05o0DCVz+zM9QR6Kfh6SiHyk+XzkEuUL471mIGi5fvXFEJmzybXIevmba6UNs2Gr6Ls5zHJu9+IN33H37LQWH9QZslAb/gl09GeTraCskXjUccLFFZfUIBAMGk9h3sgD9xsGFgGH3SNY5/Nm0CvvfeY5wLSZZQJ55NJ+IjVkr4Lzgsglx1ms7XrgeyDJ/gfIHFlW1R8muPPD7TFVpdiils3BtQvaz7PObEQRXTThqFkzPSJ8hP9PuPTcTph7vFUDao49LW1+r8nDh6oDHfxtC67KBB5k2cSpCWfe/clGMiJ0XwHQcdjc7Jz7QjYs4h/UGy/kaSRbY5zfjikMG9MW54X3zSYc7YVCwkZK0dAd9FRnaDVazkafnkdySmJlZyPuGGzRRaQg0eaJv4vjvGL551OPo0l3DoUPOiBCje7E7OQdbvN/0HOHwNrnnfsfg3wzGi1UL2SLdisW5DDtn3Y4f2to6lZRtiZzQfE/ADLIp89fmi4kltiq0E1K8sby80IOdg1kj7ThZfTD36ANwya1XVtt0cupUKuOdzp2bQquzhuyOPwhf7KqQ9HAyt7WoHzkFa3ticEdVqrOIMz/E25f+3d+4xVpRXAP8ddgHdXQFBWHkLBlBAEdgitFCsKSJqpFF8V6hYLYmm1qSpz6ZpTFM01tZXVGIhaK02fUVstRZbH7VaH9QXuKKARqFEfPNa5eHpH/MNe9l7Z+7cy9x5sOeXTHb2u9/97jnzzcyZ73xnzndkM6/9dGbZetHnHLI7EVrpu0Fh+KO2sJT00H5eTh4ePGoopMeBwbfNoGO/J1qpxHNiFF3TGF1k02QlQGm3Ury/sfVzzx0QlEfI547zJrB0/qR4fzxB/PN92ohw18KXESak905qGG1COozTJrSnHIhjzsE3Dgd2iyZbaIK+mG/Om9u8861XmcSMe+YcMujO8CWKQ7aoKWemujenrz052vxbj4A33iF41Na13nc1Fr/UVs4NCHDfd/dtDfpq6HTGISyUNe6JoQunDaO5R/e98tmUYtZR/Zk+srrFi7JA+00//Ph9uWe+J9pcQtjTUtRJyWEh/uFq8OeaRjUHvxkcNQ173PjpNcotmer3QxZHDj5RrsVyLqByecN8Zoxu5o3rTmTswGhRS2GegKDP/JFm247dRfMO5UKPYe/Q4qTofG6liDHjcTBmQE+eu/qbNf+dtGkPD45WL/xt64IopBhurIWXYRxupZljmrn/osmhLoiobiWAcYN6hkY0VcKt54xn/SdtZW+avsGK240aB/6xK2e4WgPWqyhkRD8v2umCr5YP147y9O4TlEEVwkNZu9d34fOdu9m+c+9UHOXcgGnR+YxDyMjBT0J3xYlHJCbP/oB/3KKuDRE+Id3+YYTldcsybnB7aoJ4QlmFKYcHr9gHewc7PLP2w9CX7x68tPRKbNVw0AFdObJ/+WAE/0aYxXGDn0uoXLRdWOoPn0EHN/D2z0+K/UEwLFw7zDA3dKtj+47dPP7Gpr3Kw0aX9180OfLCXXGTvUeHGhMlfUbY+wb7CwtPO4rbz50QS1v+GgFR3RnhE9Lt+8tff3+fZSt01yWVD98PPQX4eFtwDqa08HMOte0MTyY3eXhvGiPchONkc9tOAA5pqj4bayG18BCEGYewUUBDt3radu4uymcWJuOUw/uwYHp4hGKt6HQjh1ljD2Vkc1PJTowSarm/EJcrA2DK8D7cMOdoTjk6PB7eD+OLesEGrYPs887CkyPL9+y6jxJ7Ui686Z71lcEhNdPhjm9P5K4n1+5xuwTxwMVTEpKonRvPHMftj68JnfRNm7BAgrCRwwdbvuAPK9bXQqSa0OmMw9A+jQwNmKQ8YUwzj7W+z8iQyUajGBHhzJbyN0E/aissmsZfoxfgl2cVLTRYFXfPa2HDp22xRwcFURiREuW4JM3hfZu4YU48xzZuZo45lJljgtNTZJ2m7vXceMY4xg8pzrS6o4Sf9JGMhqdDhoyDiJwI3AzUAXer6sKkZTizZTCnjhtQ0eSUEZ1zJw1BFc49NnjUUhiTPmZAtOiRcjR2r0/U4O8oMHBJBD4Y2WLOxEFl64xsbuLvl09PQJrqyYRxEJE64HZgBrAeeEFElqnq60nLYoahdtTXdWFemeRrB3StY+zAHqzcsDmWlwfTJI68VUZ2+NePvsG7H2+Ppa3jj2iOpZ1akgnjAEwC1qjqOgAReQCYDSRuHIz0uXf+sbz90bbcPnX76ySEJecz8sfg3g0M7t1Q9feHH9LIOpeJdWif6ttJiqwYh4HAewX/rweOTUkWI2UObuxWNp9PllkwfThtO3aFus+Mzsc/f3gcAK0bN4e+RJkVsmIcSj0iFj12icjFwMUAQ4bYhWdkk4Zu9VwTMRWD0fkIWy8kS2TFqbseKAzrGAT8r2MlVV2kqi2q2tK3b37TTRiGYWSdrBiHF4ARIjJMRLoBZwPLUpbJMAyj05IJt5Kq7hKRS4FH8UJZF6vqqpTFMgzD6LRkwjgAqOrDwMNpy2EYhmFkx61kGIZhZAgzDoZhGEYRZhwMwzCMIsw4GIZhGEVIXl/xF5EtwOoSHw0B3o3QRE/gs5jqxdkWmA7V/mYaOqQlW5R6aZxHcdfLsg55vZ5HqWr5V7RVNZcb8GJA+QcRv78ornpxtmU6JCJbbDqkKFuU45b4edSZdMjr9Rx07+y47Y9upahr6j0UY7042wLTodrfTEOHtGSLUi+N8yjuelnWYX+4ngPJs1vpRVVtiVqeJ0yHbJB3HfIuP5gOtSCqPHkeOSyqsDxPmA7ZIO865F1+MB1qQSR5cjtyMAzDMGpHnkcOhmEYRo3IhXEQkcUisklEVhaUjRORZ0XkNRF5SER6uPJuIrLElb8iIscVfGeiK18jIrdIQkuNxSj/EyKyWkRedlu/JOR3vz1YRB4XkVYRWSUil7ny3iKyXETecn8PLvjOVe5YrxaRmQXlafVDnDok3heVyi8ifVz9rSJyW4e2ctEHZXRI5XqoQocZIrLCHe8VInJ8QVup9EMkooQ0pb0BXwcmACsLyl4Aprv9+cB1bv8SYInb7wesALq4/58HpuAtLvQIMCtn8j8BtKTUB/2BCW7/IOBNYDRwA3ClK78SuN7tjwZeAboDw4C1QF3K/RCnDon3RRXyNwJTgQXAbR3ayksfhOmQyvVQhQ7jgQFufyywIe1+iLLlYuSgqk8BH3coHgU85faXA6e7/dHAP9z3NuGFkbWISH+gh6o+q16v3AN8q9ayOzn2Wf4ExAxFVTeq6n/d/hagFW9519nAUldtKe3HdDbwgKp+oapvA2uASSn3Qyw6JCFrKSqVX1W3qerTwOeF7eSpD4J0SJMqdHhJVf3Fy1YBB4hI9zT7IQq5MA4BrAROdftn0L6S3CvAbBGpF5FhwET32UC8Fed81ruytKhUfp8lbgj947SGoCJyGN7T0HNAs6puBO+iwRvtQOl1wQeSkX7YRx18UuuLiPIHkac+KEeq10MVOpwOvKSqX5CRfggiz8ZhPnCJiKzAG9rtcOWL8Q7yi8CvgGeAXURcpzpBKpUf4DxVPQqY5rbzE5UYEJEm4I/AD1R1c1jVEmUaUp4YMegAKfZFBfIHNlGiLKt9EEaq10OlOojIGOB64Ht+UYlqmQkfza1xUNU3VPUEVZ0I3I/nD0ZVd6nq5ap6jKrOBnoBb+HdcAcVNFFyneqkqEJ+VHWD+7sF+C0JuzhEpCvexXCfqv7JFb/vhse+u2KTKw9aFzzVfohJh9T6okL5g8hTHwSS5vVQqQ4iMgj4MzBXVde64kzdkzqSW+PgRyaISBfgWuBO93+DiDS6/RnALlV93Q3ztojIZDf8nAs8mI70lcvv3EyHuPKuwCl4rqmk5BXg10Crqt5U8NEyYJ7bn0f7MV0GnO18q8OAEcDzafZDXDqk1RdVyF+SnPVBUDupXQ+V6iAivYC/Alep6r/9ylm7JxWR1kx4JRvek/VGYCeetb0QuAwvSuBNYCHtL/QdhpettRV4DBha0E4L3gm0FrjN/04e5MeL2lgBvIo3qXUzLnImIR2m4g15XwVedttJQB+8CfS33N/eBd+5xh3r1RREYaTYD7HokFZfVCn/O3jBEFvduTc6h31QpEOa10OlOuA9/G0rqPsy0C/Nfoiy2RvShmEYRhG5dSsZhmEYtcOMg2EYhlGEGQfDMAyjCDMOhmEYRhFmHAzDMIwizDgYRg0QkQUiMreC+odJQdZew0ib+rQFMIz9DRGpV9U705bDMPYFMw6GUQKXUO1veAnVxuO9rDgXOBK4CWgCPgS+o6obReQJvDxYXwOWichBwFZVvVFEjsF7A74B72Wn+ar6iYhMxMultR14OjntDKM85lYyjGBGAYtU9WhgM95aG7cCc9TLibUY+FlB/V6qOl1Vf9GhnXuAK1w7rwE/ceVLgO+r6pRaKmEY1WAjB8MI5j1tz4XzG+BqvMValrvs0HV4aVF8ftexARHpiWc0nnRFS4Hflyi/F5gVvwqGUR1mHAwjmI65ZbYAq0Ke9LdV0LaUaN8wMoO5lQwjmCEi4huCc4D/AH39MhHp6nL0B6KqnwGfiMg0V3Q+8KSqfgp8JiJTXfl58YtvGNVjIwfDCKYVmCcid+Fl2rwVeBS4xbmF6vEWZFpVpp15wJ0i0gCsAy5w5RcAi0Vku2vXMDKDZWU1jBK4aKW/qOrYlEUxjFQwt5JhGIZRhI0cDMMwjCJs5GAYhmEUYcbBMAzDKMKMg2EYhlGEGQfDMAyjCDMOhmEYRhFmHAzDMIwi/g8+9e+l9tfLCAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYI1d97/09VaXS3q1WLzO9zT62xx7bY2awxzgYGwM22QxvcGKW4AC5Bi5JCMnNfcnyXuDm+ia5BLiXEBzMC8EQwDgkxCaxsY3xAsbYM15nxrPvvU1vUndrl6rO/aPOKZW2ltQtqaql83meeaanpFKXaqTzO9/fSiilEAgEAoHAimT3BQgEAoHAeQjjIBAIBIIShHEQCAQCQQnCOAgEAoGgBGEcBAKBQFCCMA4CgUAgKEEYB4FAIBCUIIyDQCAQCEoQxkEgEAgEJSh2X8BK6evro5s2bbL7MgQCgWBN8cILL8xSSvurPW/NGodNmzZh//79dl+GQCAQrCkIIWdreZ5wKwkEAoGgBGEcBAKBQFCCMA4CgUAgKEEYB4FAIBCUIIyDQCAQCEoQxkEgEAgEJQjjIBAIBIIShHEQ1MRcLI2HD0zafRkCgaBFCOMgqIl/eXEMH/32i4ilc3ZfikAgaAHCOAhqIpHR2N/COAgEnYAwDoKaSOd0AEAqo9t8JQKBoBUI4yCoiQwzDsmsZvOVCASCViCMg6Am0jnDKKSEcRAIOgJhHAQ1kc4K5SAQdBLCOAhqIi3cSgJBRyGMg6AmuFspLYyDQNARCOMgqAmhHASCzkIYB0FNmDEHkcoqEHQEVY0DIWSUEPIEIeQwIeQQIeTj7HiYEPIYIeQ4+7vHcs6fEkJOEEKOEkJuthzfTQg5wB77IiGEsONuQsj32PHnCCGbGv9WBauBu5WEchAIOoNalEMOwB9TSncA2AvgY4SQSwF8EsDjlNLtAB5n/wZ77HYAlwG4BcCXCSEye627AdwJYDv7cws7/iEAEUrpNgBfAPA3DXhvggZiFsEJ4yAQdARVjQOldJJS+iL7eQnAYQDDAG4FcC972r0A3sF+vhXAfZTSNKX0NIATAK4mhAwC6KKUPksppQC+WXQOf63vA7iJqwqBMxDGQSDoLOqKOTB3z1UAngOwjlI6CRgGBMAAe9owgPOW08bYsWH2c/HxgnMopTkACwB667k2QXMx3UoZYRwEgk6gZuNACAkA+BcAf0gpXVzuqWWO0WWOL3dO8TXcSQjZTwjZPzMzU+2SBQ2Et89I5YRxEAg6gZqMAyHEBcMwfJtS+q/s8AXmKgL7e5odHwMwajl9BMAEOz5S5njBOYQQBUA3gPni66CU3kMp3UMp3dPf31/LpQsahJnKKrKVBIKOoJZsJQLgawAOU0o/b3noQQB3sJ/vAPCA5fjtLANpM4zA8/PM9bRECNnLXvP9Refw13oXgJ+wuITAIfBUVhFzEAg6A6WG51wH4LcBHCCEvMyO/RmAvwZwPyHkQwDOAbgNACilhwgh9wN4DUam08copXxF+SiAbwDwAniY/QEM4/MtQsgJGIrh9lW+L0EDoZSKVFaBoMOoahwopT9D+ZgAANxU4Zy7ANxV5vh+ADvLHE+BGReB88jpFDrTcUI5CASdgaiQFlSFxxuA+pRDXIwUFQjWLMI4CKpibbZXayrrmdk4rvjMozg4vtCsyxIIBE1EGAdBVazKoVa30pm5ODSdYiKabNZlCQSCJiKMg6Aq3DioioRUtrZU1oVkFgCQ0UTqq0CwFhHGQVAVnqnU7XXVHHMwjYNFdUQTGZyfTzT+AgUCQcMRxkFQFV7jEKrDOEQTpcbhz35wAB/4xr7GX6BAIGg4wjgIqsJdQyGfC5mcDl2vXp9oGgctXzz3xJEZTIoYhECwJhDGQVAVrhy6vSqA2vorFbuVnj05h2RWQzyjFagJgUDgTIRxEFTFGnMAaktnXUhm2LmGIXjs8AXzsSh7TCAQOJeOMw4/PzGLTz1wsCbXiMCAL/AhHzMONcQduHJI53RQSvH44QvwuIyPG3c5CQQC59JxxuG1yUXc++xZLKVE9W6tcOUQYsqhlnRWa0D6zFwCFxbTeMuOdQWPCQQC59JxxqHHZ/jNIwnh2qgVM+bg48ahvphDjBnibQMBAOLeCwRrgY4zDmG/YRzmxQJVM9ytZMYcajAOUbMITjOVx/ouj/GYuPcCgePpOOPA/eZigaqd4oB0NeWQyuYzkjI53XRDrevmxkG4lQQCp9NxxsF0K8XFAlUr+VTW2rKVrIt/JqebxiXsU6HKEiLCOAgEjqdzjYNQDjWTzumQCBD0GOM/qrmVeLyBn8uVg8clo9vnEqpNIFgD1DIJrq0IehTIEhHGoQ4ymg63IsOrGh+XSm4lXaf46YlZeJT8nsOqHNyKhB6fS9x7gWAN0HHKQZIIQl6XcG3UQTqrwe2SzEW/UirrU8dncMfXn8dDByYBAKosIaMVKoeQTxUxB4FgDdBxxgEwgtLCtVE76ZwOtyLBq8oAKruVzs0ZHVcfe82ohu4PupEuUg4hr0sYB4FgDdCRxqHHp4qAdA2MR5P40cFJZhxkeBRmHCoEpPlgn4mFFADDOGSKYg49PlW4lQSCNUBnGge/WKAAI3bwse+8iLFI+RkL33nuLD767RcRSWTgViRIEjEG/lRovDdu6bgqEaDXr5bEHEJ+F6LJLCgV7UsEAifTmcZBBEUBGKM8/+PVSTx3ar7s44vJHCgFjl+Iwc36IvlV2ax4LmYimoREjJ+7vS54XDLSOQ2prA5Vlli8xzAYtc6FEAgE9tChxkFFJCF2r9mc8f4TmfKLfSxtHB+PJuFmLqWhkLdAIViZiKbwhq19AAzjoCpGQDqd0+BmweweVoQoEgIEAmfTkcYh5Gu/3esXHjuGp47N1HUOH8QTrxBD4MYBgLm4bwj7cK7MqM+spuPCUgq7N/ZgqNuDblbwxmMObpdhXEKszkQkBAgEzqYjjUPx7vWlc5E1P9v4az87ja8+faquc7LMOCTSFZRDqtQ4jIZ9GIskS1qeTy2kQCkwHPLiE2+9CO/fu9FQDrlC5ZBvXyKUg0DgZDrTOPh5C40McpqOO77+PP7P48dtvqrVkc5p2HdmvqaOqZxsFeUQt7ibVG4cerzI5HTMxNIAgLFIAh+/7yUcu7AEwHA73bZnFL+xeyRvHLK6OctBVKgLBGuDzjQOlgXqlbEFLKZyBS0frMzF0rj175+p6Gd3ArpOkdUo0jkdL56N1HyeqRyqxBwAmDGH0bAPAEzX0i9OzeOBlyfwFaZahkIe85zCmINxPu/PVOl+CwQCZ9ChxiHvVvrpccNPH6/gWjkxHcMr56M4MrnYsuurFx47AIBnTs7Wfh4LSMfSFWIOFdxKAEw33FLKWOSfP21kPA2FvAXnZDWKZFYzlQP/O13DwCCBQGAfHWkcrEHRp48tbxxyzLfOZxo4EetC+8yJuZrPqxZziKdzGGaLPU9lHQ55QQhwft5QUtaJen0BFR4WeAbyrqilVM48zhWE1aAJBALn0aHGwVAOp2fjePl8FEChC8UKX8TSFQq/nAC/tr6AG6+ORTG9mKrpvHzMofS96zpFPKNh53AXgPyi7nHJWBf0mG6lWDoHwmobrKoBMHorAcBiMmsqD24whHIQCJxNRxoHlyyh16/iH585A50CW/r8SFQIymaZYnDyYsZVze2vH4UsEfzto0drOi8fcyh979xgXDbUDUIAr0URjIa9OB/Ju5X6Am5ct60XV46ECl7DXUY5yBKBIhFHG1uBQNCBLbs53/zQ1Xjy6AwSmRyWUjn84KVx87GcpuPBVybwjl3DyGprwK3EFtqL1wfxges246s/PYX37d2IK4oW62Iy7L2Vc6lxJdUfdOPL73kdLh/pNh8bDfvw7EnDfbWYyiHoUfCtD14DiZdHM7hKWEzllQNgGA0n30+BQNChygEwdsQfu3Eb/uTmS9DlcSGezpkV08+cnMMf3f8KDowvmLtrJ+90eWM7tyLh99+8DQG3gn/6xdmq53FVVFY5MOPgdyt4++WDGOnxmY+N9vgwtZhCOqdhKZVD0OMqMQxA3jhkNVoQi3CzthoCgcC5dKxxsOJzy9BpfpHlAdpERsvHHNaAW8ntkhH0uDDY7cFisnwMxYoZcyirHIzFO+guFZfDPV5QCkwvprGUypZ9DgCossUgFCsHB99PgUAgjAMAIMAWN+5n54ttRtMtysG5i5m16ykAeFUFiRqK4axFcMV9pngaq7/Mwt/Ligjn4xnEmFupHFaDUKAchFtJIHA8wjgA8LPxl3wHzauMszk9H5B2sBuEL7TcjeN1SUhWKGyzwmMOmk5LFuuY6VaSS87jFebziQxzK1VQDkVqIf+zjIwwDgKBoxHGAfndMV8QC5XDGghIW2IOAOBTlZqaCmYttQbFcQd+L4JuV8l5YVYnMh/LGG4lT+lzgCLjUBBzkBxtbAUCgTAOACxuJeZn5wtXVtNLYg4/PzGLnMMKuPJuJWMB9qpyxdRcK1mLwSuOO8SXUQ7hgGEcZmNpxDNa3cpBlYVbSSBwOlWNAyHk64SQaULIQcuxTxNCxgkhL7M/v2x57E8JIScIIUcJITdbju8mhBxgj32REKN0ihDiJoR8jx1/jhCyqbFvsTo+tgDymAMPTKdzekG20pnZON7z/z+Hhw9OtfoSl4W7aMyYg0uuOMrTSi3KIVBm4Q+6FSgSMWsdAhUD0hViDi5hHAQCp1OLcvgGgFvKHP8CpXQX+/MQABBCLgVwO4DL2DlfJoTwVeFuAHcC2M7+8Nf8EIAIpXQbgC8A+JsVvpcVk1cO3K2UVw7WgHSUNYs7Oxdv9SUuSz5bibuV5JrcSjzmAJRWScfSObhkYqoRK4QQ9PhVnJ0zjENXBbdScYZS/meRyioQOJ2qxoFS+jSA8nMkS7kVwH2U0jSl9DSAEwCuJoQMAuiilD5LjbSYbwJ4h+Wce9nP3wdwE1cVrcJfbByYcsjkCmMOfDc+FnFWh1bTONTrVrIqh6Lme/F0rmymEqfXYhxqcSuVZCuJVFaBwNGsJubwe4SQV5nbqYcdGwZw3vKcMXZsmP1cfLzgHEppDsACgN5yv5AQcichZD8hZP/MTH1Tz5YjoPKANI85GAtXVtNNl006pyGZzY/NdBIlqawuIxtI05cfg2o1DsW9pWKpXEV3EWC0Pef3oVJA2qo6RIW0QLC2WKlxuBvAVgC7AEwC+Bw7Xm7HT5c5vtw5pQcpvYdSuodSuqe/v7++K14GHnNIFKWyZiwxh0xORzJj/DzuNOVQkq1kvJ9qrqWspptxgeKZDrH08sYh7FdN41MuLgEspxxEKqtA4HRWZBwopRcopRqlVAfwVQBXs4fGAIxanjoCYIIdHylzvOAcQogCoBu1u7EagkuWoCoSYiVFcLQg5sAX0LFo6ZhMO0nndKiKBO6N8zIlVGmIDyeTo+hmHWqLp8HFqriVwqzWAajNrVSgHEQqq0DgeFZkHFgMgfNOADyT6UEAt7MMpM0wAs/PU0onASwRQvayeML7ATxgOecO9vO7APyEFpfrtoCAWykJSBfEHLJ6gaKYjadbfYkVsc5oBvIdVKtlLGU1HSE2ma14pkO8inLoqcU4VMpWEm4lgcDxVO3KSgj5LoAbAPQRQsYAfArADYSQXTDcP2cAfBgAKKWHCCH3A3gNQA7AxyilfIX6KIzMJy+Ah9kfAPgagG8RQk7AUAy3N+KN1YvfLZt1DjyVtaDOIacVBHnHI0kMBD2lL2QD6Zxe4N+vx63U5XWBkPLKwdpsr5iwLx9nqJSt5JLzHkOeSQUYikIYB4HA2VQ1DpTSd5c5/LVlnn8XgLvKHN8PYGeZ4ykAt1W7jmbjV8srh5zFrWRdbMciSVy1oaf0hWwgndULlQMzDtUylrKacZ7PJZcoh6oxh4AbAKBIpOB3WyGEGHOkczo8SmHMQdMpcpoORRZ1mAKBExHfTIbfrZQ03stqpamsvDO1kzKW0jmtYGdeq1spo1G4ZAk+t1KiHOJpbfmYA2uhEfQoWC7z2M0Wf+v1cWMi1INA4FyEcWD43Uo+lbWgzoG3z9CQzGro9rrQ5VEclbFU0a1UTTnkdLhkCX5VLmifoeuUKYfSAjhOj99wJVVKY+Vwo+Apk9YqjIOg09F1igNjC3ZfRlmEcWAE3PkFMsXdSgV1DjoSGQ1el4yRHh/GWOsIJ5DJFbqVuHGo1rY7q+lQFQKfqiCSyOAzPzyEM7NxLLF23V3eygt/r99wK1UKRnPUcsqBKRuRzirodO7ffx6/9qWf4fDkot2XUoIwDgy/qph+93LKIadTxFI5eFQZwz1ex7mVytUUVGvbndWYcnDLeObELP7xmTN45NAUphZTAIB1XZUD7iEWkF4uLgHk01nLFcSJdFZBp/MvLxq1wS+ei5R9/NvPncXnHzvWyksyEcaBYbiVKsccACCazMCnyljf5cH0kpNSWYuVg7FgV09lZTEHVQEv25hcSGFywTB8Q6HKxsHjkuFX5apuJVWR4JIJZMsYUW4ohFtJ0Mmcn09g3xnDKFhdS4lMzvzuPn54Gv/x6kTZ85uNMA4Mv1s2J6Kls3m3krXFRDSRhdclozegIprIFjxmJ0a2UmnMoZpbKcOUA9/9q7KE8WgSkwuGcljf7V32/E19foz0LP8cVZEK4g38GL9ugaBT+beXxgEAF60L4BWLcfjIP72Ij9/3EgDDe5Gy6XtSNZW1U/C7FXMimlkhncvXOQDAQjKLgS4P+lga53w8s6zrpVUUZyu5FQmE1FYEp8oEezb1mIZwghkHiQADQfey53/nd/cW/N5yqLJU8px2civpOsVnHz2K9+3diOHQ8oZSUAildNlMt3bnoYNTuHpTGFdvDuPup04ildWQymr42fEZXD4SAmB8R1I1dFhuBkI5MPjueSmVMw0Cb5/BP7+RRAZel2QahxmHuJaK3UqEkIozHTSd4v595414CstW+sB1m/HV9+/BcMhrGIdoEv1BN1xVahC6fa6CyudyqIpU0va7nbKVxqNJ3P3kSTx++ILdl7Km+MWpOez5Hz/GE0en7b4U25hcSOKSwSAuH+mGplMcmljEU8dmoFOY3ot0ThfGwW64nz6SyJjHjAWUml1bU1kdXpeMPjYJbS6eKX0hGyhOZQUM11I5t9KTR6fxX//lVTxzctaIOViMylDIi0gii1OzcQxWcSnViluRS5WDi8cc1r5yyA+IWvvvpVU8f3oev/OPz2MunsHRqSW7L8cWcpqOhWQWPT4VV4x0AwAOjEXx+GHDWGYs3otk1nB3txrhVmLwlEyrGuDDfgIeBUssWO1VFVM5zDpFOWS1kiplTwXlwANgi8msGXPgcLfIgfEF3HTJQEOubaTHi2LPAb/WdkhlNdOfRfykZv7xmdMIelzQ9Syiiazdl2MLC8ksKAV6fC6s7/KgP+jGD16ewOmZGIC8qk7ndOjUSB5Rlda64IRxYPD+QNNLKfMYjzlYO5DygDQAzDmk+V46p5fszn1qeeOw/4zR8HaRTbVTLf2PhphxyOT0himHz/z6ZSX919vJrRQz+3EJ5VArZ+YSuHy4GwfHFxBNOEN9txruoejxqyCE4I/eehH++w9fQzKroS/gNlU1dy8ls4Xp6q1AGAdGNyv44spBlkiBcuD4VBkBtwK3ImE2Zv8Hm1Ja1q3kVZUSt1Iqq+FVlhURYTs2q3IY7PaU/Xk1lOudZLqV2mC3zZVDLWNZBcbn9dxcHNdsDmMskuhY5cC/f3zj+e6rN+CmHQP46bFZvDoWxb++aGQyZSwdGrBMUWozEDEHBp9rML1oGIegRzFbdlsLvbyqDEII+gJuR7iV+Ien2K3kdUklRXAHxxfM5/MvpXU3sr7bY7qABpepcVgt7ZStFEsJt1I9zMYyiGc0bOr1IeRTC2J8ncQ8i1f2+PJeiYGgB7+xewReVcm7ldjnyo7NhzAODK4cLizljUMqq0HTaUGLCJ6d0xdQMeuAgHR+fnSxW0kp+UDxeINEYMp5q3JwyRLWsTbkjVIO5VDbyq3Eq+rXvqFrBefm4wCAjb1+hLwuLCQ7VDmwtcPqsua4FQkZTYfOUusBezYfwjgw/KoMWSKYZq0jgm6X6ZaxKgdeYOYY5cCNg6vYrSSXtOx+4ew8tvT50WPZsalFbh9eFd2omEM52inmUNyPS7A8Z+eMnmQben0I+VydqxwSpcqBw+OHaUudlVAONkIIQZdHMWMOAY8Cnj0WcOd9fbwddm9AtT0gfWBswbzeUrdSaUD68OQSLh/pht+t5GMORRkQQyFvTQVwq4EbpHbYbccywq1UD2fmEiDEyGLr8akdG3OIJrLwuCRz9ooVHj9cSuXvjR0JDyIgbaHb6zJ7JnVZXEnWgLTXohzmYhnoOoUktb7Kk1KK3/zKs7jh4n4A5dxKcsFuYymVxXg0ifes24BjF2Jl3UoAcNOOAUiENHUIDyHGgKC0Q9qPrIZ8KuvaN3St4NxcHEPdXrgVGd0+l1nkVa2Yst2Yj2fMmSjF8O/yosU4COVgM91el+lDtjaUC1oD0q68ccjp1DafKZ9Mx7OPSrOVCt1Kxy4Y+dMXrwvCr8pls5UA4J1XjeCL776qmZcOgM2RboPddlykstbF2fkENvYa42e5S6UTXUuReKZgDruVvHHIJ5TYobKFcbBgnV8QrKIc7K514Asrbx1ezq2UyenQWLvVYxeMStSL1wfhdyvmrqQ45tAq3C65LWIOMVEEVxdn5/LGIcS+b53oWppPZMoGo4F8/HAxKZSDY7Aah0CRWuCeI64c+s3+SvbseooDoOXcSkD+Q3V0agk+VcZwyIuAOx9PqdY/qVm4FaktUllFQLp2llJZzMcz2BD2A8inj3eqcghVdSvllYPIVrKZ7gLlkP/Z2jzOjDmwgK1dyqHYjVFcIe1l/aASLGB6fHoJ29cFIUkEfsv4T5dsT1dMwzis/d12vGhAlKA8lFL8zY+OAIDZS4i7lRY6UDlEElmEfeWL2rhxsAakq3VYbgbCOFjoruBWclnaTvMdOZ+EFrGp1qFYZpbEHMxpcFw5xHDxugAAoz05x9XiknyOqshtsaDGRIU0AON78FcPH8Z3njtX0IKG881nz+KffnEOH37TFly3rQ9A/jsUbWLcLqvp+IPvvuSoBn9m072KMQfuVrIoBxuUqchWstDlqWQciGnN+aLrN3fm9iwKxTKz2K3k5wN/MhrmYmnMxtK4aF2QPZZ/b7bFHNrErRQT2UoAgMcOX8BXnjoFAHjq2Dp85bf3FDz+kyPT2D4QwP978yXmsVYEpKcWUnjwlQlcORrCxeuDTfs99cCNYeWYQ6lySNmwzgjjYIErB0UiBal1qpx3K/Hj3EjYZxyWVw4+d96tdGLa+JBt58bBXaiK7MCtSG3SlTWfrdTJw2smWGLEddt6zUI3K/F0Dv1Bd0Hat8clw61ITXUr8cSLRQdVYkfKtM6wkncrWZWDiDnYCjcOHpdc0HNIkSW4FQkSyf/HSZIxUCdR1L+oVXDjwK+nOObAlUM8rZk7Mx5EDzgh5tAG2UqUUsQzOcgSMdsqdyqT0RT6Am5s6QuYY2atxNK5giQPTrOrpHnvK+tCazc8jbyycWBuJRFzcA5dXuPD61akAneLSyZwuyR4XXLBzpDPnbYDbhwuYVK5xK3EvojxdM5sK82/nE5RDmvdOCQyGijNuwc6OWNpYiGJoZAHgyEPFpLZkk1TJePQ7CppbhSsC63dmE33/MsHpK1qxw63pTAOFrhycCtSgXJwMbeSVy38cPtUxRaLDuRjDtdu7UOXRzEn2XF4XCGe0RBjXwyepWR9bqt7xHPaIebAM5V6uXHo4LjD5EIKg90eDLGeXBPRQvUQS+cK6oU43V5X2YD0j1+7gJs+9+SqXY88JuQUt9JENIm7nzwBRSIV+5flYw7GtcsSEXUOdmMaB5dcsKM2UlkleNXSWgK+QLQavhD99rUb8cwn31yyyPvc3K2UM9UNVwwBRyiHtZ+txBcePhlwrb+flUIpxWQ0icFur9nNd3IhWfB4PJ0rUKwcQzmUupVeGYvi5Ey8bOZTPfAJjk5RDh/8xj6cnInjS+95XeWAdJFbqdvrEnUOdlOgHORi5SCZQWiOr0zn01bBdxJel1xQk8HhBiCeySGWzkGR8hlXTqhzUNvArcSD0bxavlOVw2LK2IAMhTzmNMFJi3JIl5mLwgn5XJiLZUpmJHPXC28smcpqODeXqFtJ8Iwfp8QcTs/G8Z5rNuCWnesrPifvVjKu2TAOQjnYCl9k3S65YF6rSyZ47zUb8eHrtxY83+9WbAxIG1+SYoPF4QH0RFozd208XuIE5dAXMNqGx2xSXo0gZrqVDOXQqS00uEoY7PZiXZcxMGrCohy4ui5nHK7eHMZcPIMfvjpZcJzHIWZjGTx9bAaXfeoRXP/ZJ/A/Hzpc17XFHBRzyGo60jm97H2wwjem/Jq7hHGwH1kiCLIRoKpcmMr6lkvX4Td2jxQ838hWsjcgXRyI5hBC4HcriKVzJcFAnwOMw7Vbe6HpFM+enLPl9zcCvuj1BTs7IM1VwlDIA1WR0BdwFyiH2DLG4R27hnHpYBf+5uEjBQsgVw6zsTReOR+FplP0BVRTSdSKGZBO2r8J4Z+Xcu41K5JEoMqSubZ0e10i5uAEurwuuBWpYM5BpQXU71YQt0s55IyB48u1C/erhrIxlEPe2AVYQFqWCGQb2o0DwJ6NYfhUGU8fm7Hl9zcC/n/fx5SDXckJdjNhUQ4AMNTtKVAOsWUWRUki+Itf2YHxaBI/eGncPM7TW2eX0phcTCHsV9EXcJvDb2qF/+6lVLbEddVq8kayentyM2WeGF2hhXJwAJv7/BgOeQtjDhV25z61dKBOq0hlNHiqZBr5WKptPK0VfDG5obAr3gAYMYdrt/Ti6eNr1zjwXWmnxxwmo6mCAVGD3d6CWgfu2gmWyVYCDBWpyhLOzMXNY9w4zMTSmFpIYX2XZ0WFkzzmoFPYlnbO4TGqasoByGcsqYoEj0tGKqvj4QOT+Pxjx5p6jVaEcSjiq+/fg8/celmBQai0iBrZSvalspabImUl4FZYnUOhW4kX9dnlUuJcf1E/zs4lcNayKKwlzFRWlq0eoVvQAAAgAElEQVRkRxWrE5hYSGJdl8ccEDUY8mAymjR36lxhVVoUCSHoDaiYjxkGgVKKSJzHHNKYiCYx2O2BS16Jccgre7vTWZdzrxXDM5aMFHoJqayG778whnuePgldb40CEsahCK8qw63IhcpBqqQcFCSzWsv+s6ykctWnZ/lUOR+QLqqDCLgV2/oqca6/yJhi97MTs7Zex0rhxoFP9Opk5cBTWAFgqNuLeEYzW07zBXq5RdEYu2sYh3hGM91Hs0sZTC2mMMjiGdkVupWs12EXywXmizE7HygSPIox1XEskkQqq2NycXXpvbUijEMF+MKpSKSiX5+7Z+wIFqWyGjzK8sbBrxoB6XI55j63bLty2NTrg0smOD+frP5kBxJLa/CrMjxq+8zEXgkXFlMFBV2DocJah3hRhX45wn435mJGsNna6fh8JIFoIovBbq+hHOo0DkupHPqY28/ujKVaA9JAvjhVVYw506mshrGI0bPq5HSseRdpQRiHCkgSgSKRZRdQr5qvJWg1yawOTxW3Ek+1NdxKhc/1q0pB0N0OCCHoC7gxG7NnJsZq4UaXK7hOTWVdTOUKBmXxokDuJoqljUW5XIW0eY5fxSx7Po83jIbzsYv1XYZyqNetFEvnzNqLNeVWcnG3khFzsMZMTs04xDgQQr5OCJkmhBy0HAsTQh4jhBxnf/dYHvtTQsgJQshRQsjNluO7CSEH2GNfJCzpnhDiJoR8jx1/jhCyqbFvceW4ZGnZoK3ZFtuGuIOhHJb/7/O7ZcTSGuIZrWS3EnArtisHAOgPuutOT3QKs7E0wn7VVHCd6lZKZHLmdwHIB575Tp339vIt4wbtDahm+ir/+6KBfItt7laqRzlQSrGUypotPZziVqopIG26leQS9/Gp2dbE6GpZHb4B4JaiY58E8DildDuAx9m/QQi5FMDtAC5j53yZEMLf2d0A7gSwnf3hr/khABFK6TYAXwDwNyt9M41GLeqxVIzPxpkO6Wz1mINfVRBNZKDptOQD6XdAzAHAmlYOkwspDIW8cMkEEjHci//rR0fMed2dgK5TJDJaQe0Mn4vCYw6xlJEQsVzadW/AjWRWQyKTM5UDbzEPGBlQqlxfzIFXZpvKwW63ktnGpvZUViNbKf899asyTs04xDhQSp8GMF90+FYA97Kf7wXwDsvx+yilaUrpaQAnAFxNCBkE0EUpfZYaKQzfLDqHv9b3AdxEiDOa4hvKYTnjwGc62OFW0go+NOXwuRXkWLC8WMq+55oN+MB1m5p1eTXTH1i7ymFywciiIcSY/3F2LoEvP3kSDx2YrH5ym8DjbVblYBoH5sYprrMpB+8zNBfLmJlK2wcC5uPruzxQ68xW4m6cIRYDcYJbyRgcVotxyLuVrF0Qrt3a2zK30kqH/ayjlE4CAKV0khAywI4PA/iF5Xlj7FiW/Vx8nJ9znr1WjhCyAKAXgO0pLG5FWrZIjH/g7cifTmX1iq0zONYvbLFyuPmyyr1dWklf0MhS0XW67M7SaSQzGiKJrLkr9bpkHJlaBGDf6Fg74PE2q3LgsQXuxqnUrtsKDxrPxTOIJDKQCLCVGYcenwteVYZLIXXNzOC/P+xX4XFJppKxi1iqfPPBcvA6B7cr71bq8ii4ciSEHx+eRiKTK+nE3Gga7Vco9+2myxxf7pzSFyfkTkLIfkLI/pmZ5hdPuWSybMyB/+ckbVAOqVrcStYvbA1S1g76A25oOm3qwJd60HWKg+MLVZ/HM3HWdxm7Uo9Lxhk2AW2ug4wDj7dZNyKyRBBwK3UZB96fai6Wxnw8gx6fahbVrWcxA1WW61MOZvGdC0GPq2Dsph3Ea7gPHNOtJOeVw0iPD1v6DYPZCtfSSo3DBeYqAvt7mh0fAzBqed4IgAl2fKTM8YJzCCEKgG6UurEAAJTSeyileyile/r7+1d46bWjVikU81mmrbWa2oxDZeXgFPrYAjDjkLjDjw9fwK/+3c9wrsyoSytTLIuGp226XRI05sJziqFrBaZyKNrFBj2KJSBdfpaDFV5lPhczlEPI5zKP8RoKl0LqCkhzYxBwK+jyKCX9lV4di5ZtF94sajGSHNOt5JJMFTHS48WWfj+A1gSlV2ocHgRwB/v5DgAPWI7fzjKQNsMIPD/PXFBLhJC9LJ7w/qJz+Gu9C8BPqN1NUBguudaAtB3KQS8ZDVqMtfCt1g9lq+GjS2eXnLGgjkUMRTAbX95YTTDjwDNhrDUn83H7O4C2ikSFIGuXZadergizGK4cZuNpROJZhP0q3IqM9V0ebO4zFkQ3iznUujzwWQ5Bj4Iur6sgIB1P5/Cuu5/F1585U9NrNYJ4pg63kqUIjiuH0bAPm/v8uGZzuECpNYuqV0oI+S6AGwD0EULGAHwKwF8DuJ8Q8iEA5wDcBgCU0kOEkPsBvAYgB+BjlFK+rf4ojMwnL4CH2R8A+BqAbxFCTsBQDLc35J01AFWRIC0TG+dfiFZnK2k6RUarIebgdr5xyCuH1lR9VmOOGYVqQ5wmo8yt1M3dSnlD3VExh/QyyiGZr5Cuphy8qgyfKmOeKYcNYR8A4J8/ci1CPiPAzVV8Tqc19QVbsvR0CnpcWLAEpF8+H0VG0zFfZRPQSGJpzZwZUw0z5sDqHABDOXhcMr734Wubdo1Wqq4YlNJ3V3jopgrPvwvAXWWO7wews8zxFJhxcRrWlgDl4LvFVgek+XjNWtpncJzqVuoPOks5zLFCrGrGYWIhxQKdxj22/l/Mx43hNQ5JumsqlZRD0KOYrsJ4pjZ3Cm+hMR/P4MqREABjt8zhKj6T02uq0eHjcYMeF7o8Csbm867CfWcMz3Wjax9ePh/FS+ci+MB1m0sei6dzGA4tv6ZwrL2VNvb68MbtfXjj9ua70q3Yn+juYP72tivxudt2VXxckog5KvSzjxzBienW5LfzStxqRXDWL6RTjQOfn+GUmAOvuagWR5piaawcbhzWd3mQ0XTbO4C2CrOwq0g5dHldWErlQCk16xyq0et34+RMDPPxjBlvsMINQq1B6XyrcLnErfTC2YjxnAYbh399cQx3/cdh5MrERmpxr3GsbiWfquBbH7oG2yypva1AGIdl8KlK1c6nPlXGoYkF/P0TJ/HwgamWXBfPLa+qHKzGoQU+ypVgttBwSK0Db+FQqSXKXf/xGu74+vOYiBb2E+Jupas2GDveTnEtceXgU0uVw2Iyi3ROR65MEWY5+gIqXh1bQE6n+PVdQyWPc+VQayHcUirH5r/LCHldiCaMmQ45TceLzDgsVVGI9ZLOGu93qkxzvFiFOdrlsBbB2YUwDqvEpyp46VwUQOM/aJXgbRqqGS5uEDwuyWyn7ET6g27HKAcec6g0vvThg1N46tgMjl5YMourgLyLkRuHTklnrdSO2whI58z7WGmWgxVeCPf2netxyfquksd5RX+ts8eX0jl0sd8b9qvI6RRL6RyOTC0hntEgS6ThbiXu8uWJDRxK6YpSWStNemwFzl0x1gg+VTY/rK3Ko86PCK2maowPolOD0Zw+B1VJLxdzmFlKF3zp11vcSm6XDEKAK0Y6TDmkNUikdBELelzI6dR009XiTlnHakb+4KbtZR+vVznE0/lCsR7WVn0+ljFdSrs39JhNARsFT7U9b4lvTC+msJjMQae1u3etMQe7cPaqsQawyulWzalNmW6l5W27qkhQZcmx8QZOf9CNl89H7L4MJDI5001SLubw8nlDIX74+i34ytOnsDHsNx97E5tNweMQ8x1iHOIZw49eHHznSoHPkq6WrQQAd7xhE/Zu6cWOwVLVAFhiDjUah1RWM7+fYRbDmE9kcGYujoBbwcXrgzje4DhhmsUD+Sbi2IUl/PqXfoZ3XmWUedVyH4DCSXB24exVYw1gXXhb1diLB6SrpbICRjCu1iCYXQwE3ZiLZ5DJ6bZ+GbhqAMorh5fPRyBLBH/4lotw8871uHy423zslp3rccvO9eZnoFMK4RJpDb4y1fe8hTdvQsjbeC9HX8CNvm2Vn2cqh1xtdQ7JrG62vuYDmSLxDGaW0hgIuhHwKGbQvFGZZdyLcD6SQCqr4Q+++xJSWR0/OXIBQO2dCoRbqQ2wKodG+S9TWQ3/+dsvlK3SffTQlFmdWy0gbVyf4ni30kiPF5QCE1F7h/5Yu8OWC0i/dC6KHYNBeFUZr9vQUzadMuhWoEiko2IO5TYfXDm8Oma0ItnS5y95Tr3w2oaMVlsmWCqjwct24GZjP2Yc+oJuBD1GY8paYxi1YI05fOPnZ3Bkagk7h7twYbF29xpQWCFtF8I4rBLu09zS52+Ycjg5E8NDB6bw6GuF2U8LiSzu/NYL5pDxWoyDUQDkbOPAc9nPR5ZvWdFsuHJQJGLOIOBoOsWrYwvYNRpa9jUIIejxq50Tc8hUUA7cOIxH0e11ocdfmppaL/k6h1qVg2aqa24cuHLoD7oRdBc2CGwEPM12PJLEY69dwJUj3bjz+q3m4/X3VrIv5iCMwyoJeow8/ddt7GmocgBQMheAp8eNsx12tZgDAHz61y/DJ956UUOuq1lw43Bu3mbjwDKVhnu8SBS5lY5PLyGWzmHXaE+5Uwvo9audE3NIl+8Oytt2n59Pmu0vVgtfMOuJOfCMPp8qQ1UkzCeYcQi4Ld1jG+cO5ipkciGJl89Hcf1F/bjKsqGouyuriDmsXf7TG7fgrZeuw0+PzzasX3wyY3zAjl4o7Nt+oSh3upaYw94tvQ25pmayvsvjiFnSvMZhQ9hXkj31+GGjt+Qvbeur+jo9PrVzYg4ZzWy3bSXoybeJaIRLCcgHpLM1uoGSljnrhBCEfSomoikspXNMORjXWClteSWkczoIAXQKgFJcf1E/Rnq85lCrWo3DzuFufORNW7F3q33fX6EcVslo2Ic3bu9Hl0dBOqebPsfVwBv5Hb+wBF3PS+hi4+CuwTisBWSJYDjktd2tNBtLw6/K6Au4S2IOjxyawq7RUEH6aiXCfrWjYg6+Mgtelzd/bFODjIO6AuVgnbPe41dxbMpQ4/3BvHJoZJV0OqthmM34CLoV7BoNgRBi1r/U05X1k2+/xNZ4oTAODYLvlBrhWuIV0ImMZrqQAGCa7WZ5n/ta3EprhdGwr6D3jR3MxTLoC7rhd8sFqazj0SReHVvALTtrG5DU43d1TswhrZWtvve6ZHNQVqPcSqZyqNE4JDNagbru9as4yaao9Qfd5sLbyCFA6ZyOrWzmwhu29ZrXvHdLLzwuqebGe06gfVYXmwl6Ghfcsg6qPzqVjztML6bQ5VFw82Xr4WY1DO3CaNjniJhDr1+FX1UKUlkfOWgkBtQ6PW8g6EE0ma3avK8diFeYSEYIMb8TjTIO9VRIU0qRyhV2Lu5hVdKA0Sqex0Ua6VbK5HRs6vVh75Ywbn/9BvP4HdduxGOfeFPVrgZOon1WF5vpMpXD6uMO1hbgRy1B6QuLaazr8uCP33YRvv2717RV18/RHh8iiWxDv6j1MhfLoDfght9tuAh587Snjs1g20Cg5kXu0sEuUAocmlhs5uXaDqUUiYxWcT40/0402q1Ui3LIahSaTgsW47Avv2sfKHArNTYg7XMruO/Oa3HjJQPmcUWWCjrMrgWEcWgQfJfUiCpp7lbqC6gFGUsXllJY1+VByKdiz6bwqn+PkxgNG37a8zaqh7l4xlAOzN3AXUtTC6m6gqpXjBrFca+ORRt/kQ4indOh6bTiLOOgRylw36wWtY6urEmzxUx+iQuzgUISAXoD+etqVJahzuas2Jlh1Eja4104AF4R2gjlkMpoIMTIWHh1bMEMSk8vpjHQVb3SdC0y2sNqHWwyDpRSROIZhP2q6UOPsaD0HDteKwNBDwa7PWYBWLtiznKo4CrZ2OvDlSPdZR9bCS6lduNQrjll2O9if7shS4R1bJUaplZ5oNzOKv9G0h7vwgGYyqFBbiWvS8avXTGE07NxfP+FMVBKMb2UwkCwtmEha40NNtc6LKVzyOkUPb68ckikjdYKkUR9xgEArhjpbnvlYE6Bq6AMPv+bu/B3735dw36fWkdA2jQORTEHID9gCjC+t43qpsxjIXY2y2skwjg0iEZnK/lUGe+8ahiv39SDv3r4ME7NxpHVKNa1qXII+VxQ5eYO/fnxaxfwu/fuL/sYzy7q8aumuyGWzmExmYOm0xUYhxDOzCWwkGjfedJ55VDeOHhcckMDsGb7jDLKgVKKHx2cMuNEyTLGIVzGOATcSsPcSjyNXbiVBAUE3QoIQUMK4ZJZDR6XDEki+Mt37EQ0mcVnf3QUQL6tcbtBCIFXlZFq4gS1fWfm8ePDF8w6Eiu8ojnsd5n9suJpzayaLjeZbDmuYO6UA+Pt61ritSDl2mc0A0IIVFlCRittn/HsyTl85J9ewJNHZwAYaawACuocTOMQsCoHV8MC0rwjqzAOggIkiSCgKg3JmbbmZ1+yvgvXbunFI6zPUrsqB8DY5SWzzTMOXPZbu69yeEWz1a0US+csRqO++37FsFH09Op4+7qWEunllUMzcMmkrHJ4hcV3eCGlOS1RsWYrlVcOjYo58M+XiDkISuBzc1dL0tKHHgDetXsElG2W2jXmABj9bxJNVA7cD12u71Ekbuwewxa3UiJjMQ6++pRDt88FvyqXNUTtgqkcWpi7rypS2ZjDwQnDOPDOvnwX7y1SDldvDmPvlnymH2/b/Q9PncS+M/Orura8W0nEHARFBD1KQwLSyYxW0HH1lp3rzYwQ666n3fC45IICwEbDd3ZljQNTDiGfNZXVYhzqdCsBRqC2nAurXUhUGBHaTFyyVFY5HBznxsFoMVMu5qDIEu7/8LW44eJ8/UHQo+D0bBx//fAR/PP+86u6Nn5ddrbZbiTt8S4cQtCjNCSVNWnpJgkYbcFvvWoYwyFvTW261yqtUg7l+h7NxzOQJYIuj2IWdcXSmvnc3hW0nParctmJcu0CV8mViuCaQTnlsJDM4iybfTLGlAOPOVRrThlkBY/8dVZDPlupPZZV0ZW1gXR5XJhcSFV/YhWSGQ2+nsIP9X/71UsRe2v77kIBwwXQzApp0ziUyYiKJDLo8alGYNwlQyKGcuAuvpUYZZ/a3sqBu8x66nS5rQZVlpAuMg6HmEtpsNtjupXMmIO6/EJtHdspjEMh7fEuHIKRM924bCUrHpdc06jFtYzXJZs7vmawnFtpPp4xi6QIIUZ/JRZzqDeNlRNwK22tHCKJDLq9rrIT8ZqFqkglLbsPjRttSt526TrMLKWRzmmWOevLG3Vu2EZ6vIiuMu04nRUxB0EFuryuxrTPKOom2Sm00q20mMri5ydnzcciiWzBDtjnls2Yw0qNg88tt51yePLoNG79+2eQ1fS6K8cbgapIJS27D4wvYKjbg8tHjAyxqYVU2SK4crxr9wi+/jt7cO2W3lWnofPrEspBUAKPOVBa2xjDShRnK3UKXrU1qazz8Qy+9exZvOerz+F7+84BgNk6g+Nnu/7VGAe/2rg0Safw3Ol5vHI+iqmFVMk9awUuuTTmMBZJYHO/H0MhI5NvPJpEMqtBkUhVVRPyqXjzJevQ7XUhulq3UlZUSAsq4Hcr0GltLYUrQSktmH3bSXhdSlPdSlblcJw1NPzzHxzEvjPziCQyCFmUw1C3FyemY6tTDk1WQnbAJ+RNL6VXdW9WilomW2kxlUOXx2UO2RmPJJHM6HV9h0I+FxIZraa+TZUQdQ6CivBioNX08U/ndFBaWNnZKXhVCcmstirlNRtLVzw/rxzSODUbx5WjIfQGVHzlqVOIJLJmzAEArr+oD0cvLGFqMbWiTCWAq4/2Ug584NT0YsowDi0MRgNG873iBXwplUXQo5hT+iaiKSSzWl2TEvkQntUEpUX7DEFFrG0XVgrfOfs6UDn4VAUaa3u8EiYXktj7Px/H08dnyz6eYrJ/PpbB6Zk4rhzpxpsvWYenj89AY033ODeyXHijr9LKEgH8bkM5rNbN6CSm2ajaC4spoyHhCuo/VkO59hlLTDm4FRn9QTcmokmksxq8VTKVrHSz//uF5MqLFkWdg6AivLK2eP5wPSTLtBruFHhmSSqzMuMwFkkip1McnSo/ZIdnk8QzGpbSOWzp8+P67X3ml9rqItk2EDDdFFZFUQ8+VUFuFcbOiXC30skZoxHkSlXVSlEVgoxlTntO05HIaGbjy6GQFxMLybpds41RDsyt1CYTGtvjXTgEn3v1biXuo27nYrdKcOWVyK7s/vEUVV4lW0w6p6PHMg1sS38Ab9jaBzbq2GzpDBjprG9mk7xWrBwaoCSdBM9QAoAjzAC3ssYBMBberEU58EI83jJ/OOTBWKR+4xBixmE16azpnAZZIlCEcRAUE2CVovFVBCF50LTSdK12hn+ZVxqUjrIWGJMLyZLHuLtqsNtrHtvS70e3z4UrR40UyGL/+dt3GjOjN/WubLxjIzYLTmLWUjx4hM02b7Vbqbh9BjcOfNjWaI8P45EkEunSWqHlCPkaoByy7TMFDhDGoaH4GhCQLtcTplPgrrSVZvjMs+Z55arU+YIyxFxFHpeEIWYo3ri9HwBKMm/esK0P+/78Ldi+Lrii6+EJCu2SsTS9aBgHVZbMRbnVAeni9hm8lxlXDiNhHzKajrPz8bqMQ3dDlIMwDoIKBBroVqonmNYucLfSSpvv8eZ5E9EkFhJZXPXfH8UTR6YLXnOY5cJv6vVDYv6kD7xhE/7HO3ZipMdb8pqraXToN5VkeygHnql08fq8sbSjzsGqHIqNwyj7P7ywmK5rgxX0uEAIVlXrkMnpbVPjAAjj0FB8q9z5AtaGYZ3rVlrp/ePT3GZjGbxwbh6RRBYvnI0AAFIsiDnIlMPW/oB5Xo9fxfv2bgQhZMXXXo78uNE2UQ5LhiLbOZyfC13vEKTV4i6qkDbdSiwgPRrOuwDrSeqQJYKgW1lVlXQ6p7VNjQMgjENDsQ6JWSnlBqN3Cqt1K3HlAABPHDEmgvGZ1Lx6tT/gRn/QjV0sztBMzNTmdlEOi2kQAlw6aCgHtyK13P3pkg3jwNODi40DzzAD6k/qCPlUM261EtrNrdR529Mm4lYkyBJZVT+dRI2thtsR/p5X7lbKwiUTZDWKnzB3EjcOXDl4VRlP/JcbWnJ/G1EU6SSml9Lo9atm3KbXrzZcbVVDVSRQaiQYKDIxd/rcreRxyVjX5a7brQQYcYfVprK2S40DsErlQAg5Qwg5QAh5mRCynx0LE0IeI4QcZ3/3WJ7/p4SQE4SQo4SQmy3Hd7PXOUEI+SJp9SeuQRBC4FtlD/9OrnPwrTKAG4lncBELHo+z1s3ni5SDW5EQcCuQpeZ/xHwNyF5zEjNLKfQHPeY0wlZnKgEweyVx11JxKitgZCwBRtJBPYR8q+uvJGIOpdxIKd1FKd3D/v1JAI9TSrcDeJz9G4SQSwHcDuAyALcA+DIhhN/JuwHcCWA7+3NLA67LFgKrbJlQazfJdsRMZV1FQHrHYJf5b49Lwlw8g1g6V3ML50ZiZiu1kXIYCLrNOeatrnEA8n2LsjnuVsrCp8oFtQU87lDvd6hr1cpBa5sCOKA5MYdbAdzLfr4XwDssx++jlKYppacBnABwNSFkEEAXpfRZajgSv2k5Z83hU+VV+ZgTmRxkicAlr0nxtCq4Wkqu4P5pOkU0mcVQt8csdHvTRUaK6vn5hC2DWLwuGYS0j3KYXjSMQ2/ADYmsbDrealHZ9yKtGfd0KZUrUA1APmOpXvUd8rqwsNpUVuFWMqEAHiWEvEAIuZMdW0cpnQQA9jcf2DoMwDqkdYwdG2Y/Fx8vgRByJyFkPyFk/8zMzCovvTmsdsBLMqPD55Jb7st1Ai6ZQJbIipTDQjILSo3MI17odvNlRhHbufmELcpBkgh8LrktlIOmU8zG0hjockOWCG68eABXb+5t+XWYyoFVSS+msmYwmjMS5m6llcUcVtoLq92K4FYbkL6OUjpBCBkA8Bgh5Mgyzy232tFljpcepPQeAPcAwJ49exzZzWy1oyGTWa0jO7ICLGbjWlmba56pFParGAp5cHImhustymGgy/CT1+uHXi0+t9IW2UqTC0bfKu7P/9rvvN6W6zBjDrl8zKFUOazMrRTyuZDTKeIZzaxZqoeMJmIOJpTSCfb3NIAfALgawAXmKgL7e5o9fQzAqOX0EQAT7PhImeNrEr9bQWxVyiHXkfEGjkeVV5StxGscQj4Vt+0Zxe+/eRt6/SqCHgXn5hO2jXD0rzJBwSnwrK8N4ZW1EmkUfFTun//gAM7Mxlm77kLlcOlQF3aNhgrqMep5bT6Hul7SWVHnAAAghPgJIUH+M4C3ATgI4EEAd7Cn3QHgAfbzgwBuJ4S4CSGbYQSen2eupyVCyF6WpfR+yzlrDv8qR0MmOnREKGelA3IizFcc9qm4+bL1+L03bwchBBvCPsOtZFM75dUqSafAs75GbTYOb9zeh0//2qU4MLaA/++Bg8agH2+hcej2uvBvH7uuoJK7Fnjty/4zkRVdm6hzyLMOwA+Yb1wB8B1K6Y8IIfsA3E8I+RCAcwBuAwBK6SFCyP0AXgOQA/AxSilfBT4K4BsAvAAeZn/WJD51ddlKkUQGPStsEd0OeF3yihrv5ZVD4b3bEPbh6IUl25TDamNQTuH8fBKyRDDIBurYBSEEv3PdZpyYieHfXpqAqkglbqWVsrnPj76Ain1n5vGeazbUda6uU2Yc2mdjt+K7Sik9BeDKMsfnANxU4Zy7ANxV5vh+ADtXei1OIuBenRtheimNK0eaX73rVFY6R9oac7AyHPLiiaPTZrZS62MOsmm41gKUUjzw8gQOjC9gY68P7792EwDDrTQc8jqmHfWu0R780y/OAWk0zDgQQnD15jCePz1f13mfe/QofnJkGumc1lbZSqJCusH4VAXJrAZNp3UXWlFKzXTBTsWnrkw5zCcyUBXJbFnB6Qu6kcrqmI9nQEjrB7H4VQVjkZX5sO3gmRNz+MPvvQxZIqCU4p1XDSPoceHcfKT7ZsQAABZRSURBVML2eIOVXaP5eEJxttJqeP2mMB46MIXxaLKgFUcxn3/sGMYiCXz+N3fh8OQSDk0Y8y1EnYOgIjzLYSV+5lg6h2RWw0BX5xoHb53ZShcWU3jbF57Cv78yiR6fqyQFmOfij0eScCtSy1OEjYr5tRNz+Pozp9EXUPGV9+2GToEXz0UBGDGH0XDlxbLVbOkLIMi+a10NUg6AYRwAYF8V9bD/zDx+cXIOAAr6MbWTcmifd+IQeMuElQRVeUtk3p6gE/Ey5VUr+89EcOxCDOPRZMEgH04fU2Fj0YQt0/X8q6yYbyWnZmL4yZFpvPeajdi7tRcSMRbBeDqHuXjG9mC0FUkiuIKph+JspdWwY7ALQbeCJ49OL/u8aCKLeWYU5q3GoY1iDsI4NJjAKjqz8mEqnexW8rqkutxKp2ZiAIDHPnE9/v69ryt5vJ+lJ3Ll0GqM7DVtxYVVrSCr6fjUAwfx2197Hi6Z4L17NyDgVnDZUDeePz2P8xFnpLEWw2NzXd7GKQdZIvjN14/igVcmcGBsoeLzFpJZpLI6EpkcIvEMdm80Wsh1e9snmUQYhwZjnQZXq4F49NAUHjk0ZfbLX82AmbVOvamfJ2diGOr2YPu6YFkfMZ83EElkbVEOPlVBjmWyOJWjU0u499mzGAp58HfvvspUrns29eDl81GcnI4DyBeXOYU9m4wFmdcnNIqPv2U7ev0qPvXgQeh6eaPOezDNLmWwkMziuq29+Pff/yX86hWDDb0WOxHGocHwofL3PH0Kl3/6EXzwG/tw/MLSsuf87x8fx2cfOYoZ4VaCxyUjla19IT01G8cWy+CeYnr9+YXDY4Pk5zvJ1TR0azZzLJvqk2+/BLfszC9uV28KI53Tce/PzwBwnnK48eIBfP8j1+LyOovdqtHlceH337wdL56L4gRTplaymm5u/E7PxaFTo/hy53C3LRuQZiGMQ4PhA38eOTSFXr+Knx2fxb3Pnln2nPORBE7NxHB+PgFVkRoqk9caPlVGRtOR06obCEopTs3EsaXfX/E5qiKZC7QdwUIeEJ+LOTeddZZtSqyGFAD2bApDIsDzZ+bxxu19JTUkdkMIwZ5N4aYkGWwfMDYc82XSkK2G/uS0YTxaPS61FXTuKtQk+NzgrEbxG7tH8KODU1hMVnaTLCSyZk/6Z07OYSDo7simexxeZLX/bAR7tyzf2G1mKY1YOlcw8rMcvQEVC8msLcqhl7k8yi0yTmEubhiHviJ3Zn/QjX/+yBvQF1CxsbeyAW5HupkhjJbp0mo9dpIpC6cZzkYglEOD8Vsadt1w0QCCHgVLqcouBR7sA4AT07GODkYDwK9eMYRev4q7nzxZ9bknZwxf+HLKAcj7pO1QDnxHyRdgJzIXy8CtSKZL1MrujT0dZxgAqzswb9S/+/w5fOe5c4XKYaZ9lYMwDg2GB6T9qozdG3sQcCvLBqZ5zxpOJ8cbAKNC+oO/tBlPHZvBoYnK2SJA/ou5XMwByGcs2ZFm2BdwvltpJpZGX6CzFWsxITbIyGoIvvLUSXzz2TMFBoNvUOwYfNRshHFoMHz3dd22Ptb3xWW6jcrBlcNWtvvt5AI4zvv2boTXJeOf948t+7xTM3F4XBIGu5Y3qDxjqdWtMwAjuClLxPHKoc+GkZ9Oxq/KkCViupBi6RzOzicwuZAqcCvxJJIeoRwE1VBkCXdevwX/6fotAMDcSssphyS6PIo5OKXT3UqAIem39PtxZi5e9vGspuMfnzmNhw5MYnNfAFKVNiV9NioHSSLo8amOjzn0NjgddK1DCDEmwzHlcHRqEZQaSmJywUg5X882Japc3iW31hHGoQn82S/vMMvwuzyuqjGH0bAPOwaN9sKd7lbijPb4SlxunJ+fnMNnfvgawn4Vf/ErO6q+FjcOdigH4/ermHWwW2l2KWPLyE+n0+11IcqMw2usdxIAHJ40ft7UZ6T2hsq0bWkHhHFoMjzmUKlC9vx8AqM9Plw1ahT0bOrrvOBfOUbDXoxFkmXvG0+9vPt9r8N12/qqvhZ3K9nV2iDsd65yoJRiLp4uyVQSGBlLi9w4TOaNw5GpJXR5FHPT0Y7BaEAYh6YT9CjQafkh85RSjEWSGA17cflIN578Lzfg6s1hG67SeYz0+JDO6ZiJlfrqeXvuWv28diuH3oAbc2XehxNYTOWQ1ahQDmXo9rrM+MJrE4tmBf6pmRhCPtU0Cu2YxgoI49B0eFOwWJm4w8xSGumcbjY0E6ohD+8Aen6+tN31fDwDRSJmV85q9JvGwR7l0OtXzSrkZnNwfMEMktbCLDNajW5B0Q7wmENO03Fkagk3XmLMJDcqol2mcRDKQbAiAqydcLm4w5Epo62G03rWOAF+T8YipXEHY1qeWrOftz/oRsCtYJ1NmWBhv4qlVA6ZJvdXopTifV97Dl98/HjN5/AUW2EcSjGUQwZn5uJI53RcNdpjKqxub944tGMaKyAqpJsOn1K1WKQcxiIJ/Mn3X8H6Lg9et6HHjktzNCPMOJQLSs/HMwjX8YX0qjKe/JMbELKpYyaPeczHM1jfxDGbi8kcoolsxSyvcnB3V69IZS2h26diKZ3D4UljE3fx+iAGQx7MxTMFbqV2NQ5COTQZPoikuBDuE997GcmMhns/eLVZqi/I41Vl9AXcZaeoReLZuuds9wXcto247G1RlTSvmZmI1j55blYYh4p0e12gFDgwbhRjbu7zY32X4e4MeV3mBqUdaxwAYRyaTsBtLGJWt9J4NIl9ZyL46A3bcPH6oF2X5nhGerwF7UU484nMmvLz8hqCZldJjzOjMB41srw+/eAh3Pf8uZLn/furE/jhKxMAgNmYMT61HiXWKXCl+fL5KAaCbvjdCoZChvIL+VxmwWq7FhAK49BkgmbMIa8cfnRwCgBwy871tlzTWmE07CsbkI7EM2tKynND1ux01nGmslJZI8vrO8+fw8Pss2blrx46gi/95AQAQ830+FTbVJWT4VlIB8YWzGQR7hbs9rqwbSCIf3jf7rb9HotPRJPhxsGarfTIwSlcsj6IzSI7aVlGe7yYiCahWQau6DpFZI0phz7WCnu2yems4xZ30rMn55DJ6ZhcKDSuY5EExqNJnJtPgFKKmaW0SGOtAG++l8xq2MyaDw5ajANgbPDaaTSoFWEcmoxfVUBI3q00s5TGvrPzbbvbaCSjYR9yOi3woS+mstDp2goCdnkVKBJpunIYiySgsFYiTx2dAQBMRlMFz3nu1DwAY8GbiaVxejbekV1Xa8Fav8CVw3DISJRYS5uTlSKMQ5ORJIKAqpjZSj8/OQtKgbfsWGfzlTkfrqxOzeazb/gCu5a+nIQQ9AfdmFpIVX/yKhiPJrGTTUV76phhHJbSuYJ41y9OzZk/n5qJ4/RsHFsHhHEoR5clu20za5WxZ2MPPvuuK3D9Rf12XVbLEMahBQQ9+bbdPDWz2oAaQf4enbKMaqy3OtopbOz11ZViuhLGI0lcOtQFvyoXFN1NWozSc6fnzSlnz5yYRVaj2CY+i2Xp9pYqB0kiuG3PKFwdEKNp/3foAIKW5nvj0ST6Aiq8bdjFsdH0BVQEPQpOzViVg3Ef11p2zeY+P87OlW8k2Aji6RwiiSxGerwYYm0e+OLG3XKTC0as4Td2j4AQ4PHD0wCAbQPCOJTDrcjwsqr6jeHOU1fCOLSAgKVt91gkafZoESwPIQRb+gM4NWtRDnGuHNZWbcjGXj/m4hksLtOhdzXwYPRwyIvhHuPz9UusKSFXDjze8Evb+jDU7TWbyW0VxqEiIZ8Lg92ejtzMCePQAqxupfFI0qz+FVRna5+/UDlwt9IaUw6beo3/83NNUA/3/vwMvsvqGUZ6vObm47ptfZAIMMkMx3On5xD0KNgx2IUNrJ/Xui43ujxry9C2krBfrTqGtl0R7TNaQNDjwtm5BHSdYiyaxFsvFcHoWtnS78e/vjSO8/MJ/PMLY1hMZqEqEnxrbCfHM4JOz8bNoHEjOD+fwKcePGT+ezjkM5XDjsEgBoIeTFiUw9WbwpAlgo29Pjx7ak7Evqpw1zsvN11LnYYwDi0g4FawlMpiNp5GJqebX15Bdfh86E9872XsPxuB1yUj7Ku96Z5T2MiUw9kGB6V/fPgCAOAvfmUHUlkN67rcuPHiAbx8Loodg10YDHkwuZDE9GIKp2bjuP3qUQDABnY9It6wPLtGQ3Zfgm0I49ACuljMgfcJGhHGoWa4pN9/NgKJGPn5a7G1uU81usKeabBb6fHD09ja78fvvnGLeWzHYBfuef8eADBjC8+dNuIN17BxtJuYkhHGQVAJEXNoAUGPgnROxxmWr88LaQTV2dTrBxcJ//v2qwAA4TUWjOZs7PWvWjl8b9853PnN/cjkdCylsnju9BzesoybcrDbg4loEr84NYeAW8FlQ10AgCtHQ+gPuk1jIRAUI5RDCwiwoTSvjhndHYVbqXY8LhkXrzNajfz6lUMYjyTNFgZrjU29PjzBKpfnYmnc++xZ/N6N2yBLBE8fm8H1F/VDliq7y6aXUvjMD19DIqPhnqdPYn23F1mNLltQORjyIp3T8d3nz+EtO9aZPZSGQ17s+/O3NPYNCtoKYRxawOvZ6M/79p1Dj89lGgtBbXzvzmvhZiM+P3rDVpuvZuVs7PVjZmkMS6ks7tt3Hl98/DguG+pCKqvh4/e9jD948zb80dsurnj+5x89hqymY++WMP7P48eh6RRb+/3LzgPZNdoNVZbwW68fxSfeelEz3pagTRGrVAu4bKgbv3z5ejx0YEr4eFdAu8y7uIoFN392fNbsffTj1y6YNTB/98QJ7N3Sizew+gQrY5EE7t9/Hr/zhs34yA1b8K67n8XVm8P4b7926bJqY/fGMI7d9fYmvBtBuyNiDi3ij956MSQCjIh4Q8dy9eYw+gIqvvP8ObxwzgiwP35kGk8em8a7do9gc58fn/zXA8hqOj736FH852+/gGRGAwA8+MoEdAp84LpNGAh68PR/vRF/e9uVokZB0DSEcWgR2wYC+MJv7cJH1rBbRLA6FFnCLTvX46fHZ6HpFO+9ZiPm4xmksjr+n6uG8Wdv34Fz8wn85b+/hi89cQIPHZjCB7+xD8mMhgdemsDujT0YDYvNhaA1OMY4EEJuIYQcJYScIIR80u7raQa37hru6LxpAfCrVwwBMDLYPvHWi6BIBCGfC1dvDuOmHQO4YqQb33z2LHr9Kv7y1svwi9NzeNc//BxHLyzh1l1DNl+9oJNwhHEghMgA/h7A2wFcCuDdhJBL7b0qgaDxvH5TGEPdHtx48QDCfhXvvWYDPnTdZiiyBEII/vhthvvxk2/fgd++dhM+d9uVeG1yEbJE8MuXD9p9+YIOglBKqz+r2RdByLUAPk0pvZn9+08BgFL6V5XO2bNnD92/f3+LrlAgaBzTiyl4VRnBCvGC+XjhpLtHD01hJpbGe6/Z2KpLFLQxhJAXKKV7qj3PKdlKwwDOW/49BuAam65FIGgqA13L12kUDzJ622ViaqCg9TjCrQSgXC5eiaQhhNxJCNlPCNk/MzPTgssSCASCzsQpxmEMwKjl3yMAJoqfRCm9h1K6h1K6p7+//cf0CQQCgV04xTjsA7CdELKZEKICuB3AgzZfk0AgEHQsjog5UEpzhJDfA/AIABnA1ymlh6qcJhAIBIIm4QjjAACU0ocAPGT3dQgEAoHAOW4lgUAgEDgIYRwEAoFAUIIwDgKBQCAowREV0iuBELIE4GiNT+8GsNDAX9/o12vGa/YBmG3g6zn9Hjby9cS9Wx3i/q2cZt47/tobKaXVawEopWvyD4D9dTz3ngb/7oa+XpOuseb70w73sJGvJ+6duH92vV4z7129r90pbqUfOvz1mvWajcTp99DJ98/p79XJ9w5w/vt18v1b8bWtZbfSflpD86hORdyflSPu3eoQ92/lNPPe1fvaa1k53GP3BTgccX9Wjrh3q0Pcv5XTzHtX12uvWeUgEAgEguaxlpWDQCAQCJqEMA5rBELIKCHkCULIYULIIULIx9nxMCHkMULIcfZ3Dzvey54fI4R8qei1fosQ8ip7nf9lx/tpJSu4d28lhLxACDnA/n6z5bV2s+MnCCFfJISUazffVjT4/t1FCDlPCInZ9X5aSaPuHSHERwj5D0LIkf/b3v2FWFGGcRz/PrQWmJIVbmxELN30TyL7Q0pGRBQYBEFdJOGuRoElhHdZBHVRkFJiKrFKGfYHkajIiopaSCqpbpLSNrOVqI2lqMy/0I1PF+9zaDpzTutZZ5pz9vw+MJzZd+a8vO+zh31mZuc8E/08Wfrgi7xtSkt5C9AHXBHrM4HvSI9UXQ2sjPaVwKpYPx1YACwDNmT6ORv4EZgdP28Bbqx6fm0Wu7nAubE+B/g509cXwHzSM0jeBRZWPb8Oi9+86O9I1fPqpNgB04EbYv1U4OOyP3uVB0/LJH9x8CZwE+mLgH3R1gfsrdtvSV1yuBr4MPPzYuDZqufTjrGLdgN+B06Lfb7NbFsEbKx6Pp0Sv7r2rkgOZcQutj0D3FvmWHVZqQOZWT/pCONz4Bx3HweI194J3v49cJGZ9ZtZD3Ab/37Q0pQ2idjdDnzp7n+RHmc7ltk2Fm1d4yTj19WKip2ZzQJuBYbLHG/blOyWE2NmM4DXgBXufqjVS97ufsDM7gO2AceBncAFhQ+0DbUaOzO7FFgF3FxrarBb19zuV0D8ulZRsYsDuq3AOnffX9JwAf1DuqOY2TTSB+wVd389mn8xs77Y3gf8OlE/7v6Wu1/j7vNJp7f7yhpzu2g1dmZ2HvAGMODuo9E8RnqEbU3Dx9lORQXFrysVHLtNwD53X1v2uJUcOkTcFfM8MOLuazKbtgODsT5IuqY5UV+98XomcD/wXLGjbS+txi5O298BHnL3T2s7x+n/YTObF30OcALx7nRFxa8bFRk7M3ucVEhvRdnjBvQP6U5ZSHceOfAVsCuWW0h3Hw2Tjv6HgbMy7/kB+AM4QjrqvSTatwLfxHJn1XNrt9gBjwBHM/vuAnpj21XAbmAU2EB8kXQqLwXHb3V8Fo/H62NVz68TYkc6S3VgJNN+T5lj1zekRUQkR5eVREQkR8lBRERylBxERCRHyUFERHKUHEREJEfJQaQEZrbMzAZa2L/fzHaXOSaRVqh8hkjBzKzH3YeqHofIyVByEGkgiqS9RyqSNpdUankAuBhYA8wAfgOWuPu4mX1EqlN1LbDdzGaSKo8+ZWaXA0OkssujwN2ealxdCWwGjgGf/H+zE5mYLiuJNHchsMndLwMOAcuB9cAd7l77w/5EZv9Z7n69uz9d18+LwIPRz9fAo9H+AvCApxpXIm1FZw4izf3k/9S3eRl4mPQAlg+iquYpwHhm/231HZjZGaSksSOatgCvNmh/CVhY/BREJkfJQaS5+toyh4E9/3Gkf7SFvq1B/yJtQ5eVRJo738xqiWAR8Bkwu9ZmZtOi7n5T7n4QOGBm10XTYmCHu/8JHDSzBdF+V/HDF5k8nTmINDcCDJrZRlL1zPXA+8C6uCzUA6wF9kzQzyAwZGbTgf3A0mhfCmw2s2PRr0jbUFVWkQbibqW33X1OxUMRqYQuK4mISI7OHEREJEdnDiIikqPkICIiOUoOIiKSo+QgIiI5Sg4iIpKj5CAiIjl/A7pKELZjb95VAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-200:].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Period('1991-08-26/1991-09-01', 'W-SUN'),\n", + " Period('1992-08-31/1992-09-06', 'W-SUN'),\n", + " Period('1993-08-30/1993-09-05', 'W-SUN'),\n", + " Period('1994-08-29/1994-09-04', 'W-SUN'),\n", + " Period('1995-08-28/1995-09-03', 'W-SUN'),\n", + " Period('1996-08-26/1996-09-01', 'W-SUN'),\n", + " Period('1997-09-01/1997-09-07', 'W-SUN'),\n", + " Period('1998-08-31/1998-09-06', 'W-SUN'),\n", + " Period('1999-08-30/1999-09-05', 'W-SUN'),\n", + " Period('2000-08-28/2000-09-03', 'W-SUN'),\n", + " Period('2001-08-27/2001-09-02', 'W-SUN'),\n", + " Period('2002-08-26/2002-09-01', 'W-SUN'),\n", + " Period('2003-09-01/2003-09-07', 'W-SUN'),\n", + " Period('2004-08-30/2004-09-05', 'W-SUN'),\n", + " Period('2005-08-29/2005-09-04', 'W-SUN'),\n", + " Period('2006-08-28/2006-09-03', 'W-SUN'),\n", + " Period('2007-08-27/2007-09-02', 'W-SUN'),\n", + " Period('2008-09-01/2008-09-07', 'W-SUN'),\n", + " Period('2009-08-31/2009-09-06', 'W-SUN'),\n", + " Period('2010-08-30/2010-09-05', 'W-SUN'),\n", + " Period('2011-08-29/2011-09-04', 'W-SUN'),\n", + " Period('2012-08-27/2012-09-02', 'W-SUN'),\n", + " Period('2013-08-26/2013-09-01', 'W-SUN'),\n", + " Period('2014-09-01/2014-09-07', 'W-SUN'),\n", + " Period('2015-08-31/2015-09-06', 'W-SUN'),\n", + " Period('2016-08-29/2016-09-04', 'W-SUN'),\n", + " Period('2017-08-28/2017-09-03', 'W-SUN'),\n", + " Period('2018-08-27/2018-09-02', 'W-SUN'),\n", + " Period('2019-08-26/2019-09-01', 'W-SUN'),\n", + " Period('2020-08-31/2020-09-06', 'W-SUN'),\n", + " Period('2021-08-30/2021-09-05', 'W-SUN')]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "first_sept_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W') for y in range(1991,sorted_data.index[-1].year)]\n", + "first_sept_week" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + " year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_sept_week[:-1],first_sept_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG61JREFUeJzt3X+MXeV95/H3x4wzA9QmYxgT/wDsKg6KISnEV7a7yXZL3NpmU2GjQjIbGkaLJTfApqRaCezACi24ElSrTWtFYbFCwUD44bpFeLt4yWA2qrd1bI8DKRjiziQQ4+Aww44DJpKnjP3dP+5z6zuT8cy58+vec+fzkq7uud85z3Of4+OZ731+nHMVEZiZmWUxrdoNMDOz/HDSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJrqHYDxtsFF1wQCxYsqHYzzMxy5cCBA+9GRMtI+9Vd0liwYAEdHR3VboaZWa5I+lmW/Tw8ZWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmY1Znu90/wxQf30H38RLWbYnXIScOszmze1cn+N3vZ/EJntZtidajurtMwm6ouvWsnff2n/vX143sP8/jewzQ2TOPQpqur2DKrJ+5plHG33vJs9+1Xcc0Vc2maXvy1bpo+jTVXzGX3HVdVuWVWT5w0yrhbb3k2e2YTMxob6Os/RWPDNPr6TzGjsYHZM5rOWMYflKxSHp7C3XqrH+9+0McNyy7hy0sv5ol9h+kZIRmUf1DadO2nJqmVlmeKiGq3YVwVCoWo9N5T3e+fYNNzr/O9g7/gxIenaJo+jVWXfYw7v/DJYT+lmeXV4A9KJf6gNHVJOhARhZH28/AUo+vWm+WZ5z9stDw8lVTarTfLM39QstFy0kge/MrpXtmmtZdXsSVmk8MflGw0PKdhZmae0zAzs/HnpGFmZpllShqS/lTSQUmvSnpSUpOkWZLaJXWm5+ay/TdK6pJ0SNKqsvgSSa+kn22WpBRvlPR0iu+VtKCsTFt6j05JbeN36GZmVqkRk4akecCfAIWIuBw4C2gFNgC7ImIRsCu9RtLi9PPLgNXAtyWdlap7AFgPLEqP1Sm+DjgWER8Hvgncn+qaBdwNLAOWAneXJyczM5tcWYenGoCzJTUA5wBvA2uArennW4G1aXsN8FRE9EXEG0AXsFTSHGBmROyJ4uz7o4PKlOraDqxIvZBVQHtE9EbEMaCd04nGzMwm2YhJIyJ+Dvw34DBwFHgvIr4HXBgRR9M+R4HZqcg84K2yKo6k2Ly0PTg+oExE9APvAecPU5eZmVVBluGpZoo9gYXAXOBcSX80XJEhYjFMfLRlytu4XlKHpI6enp5hmmZmZmORZXjq94A3IqInIj4E/hb4N8A7aciJ9Nyd9j8CXFRWfj7F4awjaXtwfECZNAR2HtA7TF0DRMSWiChERKGlpSXDIZmZ2WhkSRqHgeWSzknzDCuA14EdQGk1UxvwbNreAbSmFVELKU5470tDWMclLU/13DioTKmu64AX07zH88BKSc2px7MyxczMxsS3hR+dEW8jEhF7JW0Hfgj0Ay8BW4DfALZJWkcxsVyf9j8oaRvwWtr/1og4maq7GXgEOBvYmR4ADwGPSeqi2MNoTXX1SroX2J/2uyciesd0xGZm+Lbwo+XbiNiU1/3+Cf7Tky/xrS9f6Rv2TQG+LfzQfBsRs4z8jY1Ti28LPza+y61NWf7GxqnJt4UfG/c0bMryJ86pq3Rb+Gdu+Sw3LLuEng/6qt2k3HBPw6Ysf+Kcuvz9OaPnpGFTmr+IyKwyXj1ldckroswq49VTNiHyckGUV0SZTQwPT1lFav2CKK+IMptYHp6yTPJyQVT3+yfY9NzrfO/gLzjx4Smapk9j1WUf484vfDL3w1QecrOJ5OEpG1d5WZ5azyuiPORmtcDDU5ZJnv4Y19uKKA+5WS1x0rDM8vLHuN7W4O++/aozDrmZTTYnDcus3v4Y50WeenlW/5w0zHIgL708q39ePWVmZl49ZWZm489Jw8zMMnPSMDOzzJw0zKooL/fyMitx0jCrIl/lbXnjJbdmVeCrvC2v3NMwq4K83MvLbDAnDbMq8FXellcjJg1Jl0p6uezxvqSvS5olqV1SZ3puLiuzUVKXpEOSVpXFl0h6Jf1ssySleKOkp1N8r6QFZWXa0nt0Smob38M3q57SVd7P3PJZblh2CT0f9FW7SWYjquiKcElnAT8HlgG3Ar0RcZ+kDUBzRNwhaTHwJLAUmAu8AHwiIk5K2gfcBvwAeA7YHBE7Jd0CfDoiviqpFbg2Ir4kaRbQARSAAA4ASyLi2Jna6CvCzfLB3w9SWybqivAVwE8i4mfAGmBrim8F1qbtNcBTEdEXEW8AXcBSSXOAmRGxJ4qZ6tFBZUp1bQdWpF7IKqA9InpTomgHVlfYZjOrQV45lk+Vrp5qpdiLALgwIo4CRMRRSbNTfB7FnkTJkRT7MG0PjpfKvJXq6pf0HnB+eXyIMmaWQ145lm+ZexqSPgJcA/z1SLsOEYth4qMtU9629ZI6JHX09PSM0DwzqyavHMu3SoanrgZ+GBHvpNfvpCEn0nN3ih8BLiorNx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlpYJDMrPJNpqVY75yvnZUkjT+A6eHpgB2AKXVTG3As2Xx1rQiaiGwCNiXhrKOS1qe5ituHFSmVNd1wItp3uN5YKWk5rQ6a2WKWQb+RbNaVenKMc9/1I5Mq6cknUNxbuE3I+K9FDsf2AZcDBwGro+I3vSzO4GbgH7g6xGxM8ULwCPA2cBO4GsREZKagMeAKyn2MFoj4qepzE3AN1JT/iwiHh6urV49ddpdz7zCd/cd5oalF7Pp2k9VuzlmFRs8/1Hi+Y/xl3X1lL+EqQ6N5hfNyx+tFnW/f+KM34/u/6fjy1/CNIWNZqLR3X+rRb5yvvb4hoV1qJJfNC9/tFrn70evLU4adSrrL9ru2686Y/ffrBY8+JXTIyab1l5exZYYOGnUray/aO7+m1klPKcxwfKw7NU3zjOzrLx6aoJ52auZ5UHW1VMenpognmA2s3rk4akJUumy1zwMY5mZOWlMkEonmH2dhJnlgYenJlCWZa8exjKzPPFE+CiM5y03fJsEywPfZqb++TYiE2g8h5J8nYTlgYdPrcTDUxWYqKEk3ybBapWHT20wD09VwENJllW9DOf4//zU4eGpCeChpKmtkmXR9TKc4//zNpiHpyrkoaSpqzwRnOnq/noczvH/eSvn4SmzEVTypVYezqmfobmpxsNTlhu1fjV8JVf3ezinfobmbGgenrIJk/UTZ5Zhn2qqNBFM1eGcehyas1/n4SmbMCPd4Xc032VeLX/8WActM5oGJILy7ywxD83lne9ya1WT9RNnnr410N8eNzIPzU0NntOwcZd1DsB/ZOqPv9Cr/rmnYeOukmQwVcf/61W1e2ReuTXxMvU0JH1U0nZJP5b0uqTfljRLUrukzvTcXLb/Rkldkg5JWlUWXyLplfSzzZKU4o2Snk7xvZIWlJVpS+/RKalt/A7dJlLWT5wPfqXAprWXs3juTDatvdzzBDYmXrk18TJNhEvaCuyOiO9I+ghwDvANoDci7pO0AWiOiDskLQaeBJYCc4EXgE9ExElJ+4DbgB8AzwGbI2KnpFuAT0fEVyW1AtdGxJckzQI6gAIQwAFgSUQcO1NbPRFuNvXkaVFFrRq36zQkzQR+B3gIICL+JSJ+CawBtqbdtgJr0/Ya4KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrR2qzmU0tlX5Tpo1eluGp3wR6gIclvSTpO5LOBS6MiKMA6Xl22n8e8FZZ+SMpNi9tD44PKBMR/cB7wPnD1DWApPWSOiR19PT0ZDgkM6snXlQxebIkjQbgM8ADEXEl8CtgwzD7a4hYDBMfbZnTgYgtEVGIiEJLS8swTTOzeuWVW5Mjy+qpI8CRiNibXm+nmDTekTQnIo6moafusv0vKis/H3g7xecPES8vc0RSA3Ae0JvivzuozPczHZmZTSnVXrlViTyv8hqxpxERvwDeknRpCq0AXgN2AKXVTG3As2l7B9CaVkQtBBYB+9IQ1nFJy9N8xY2DypTqug54Mc17PA+slNScVmetTDEzs9zK8yqvrNdpfA34blo59VPgP1JMONskrQMOA9cDRMRBSdsoJpZ+4NaIOJnquRl4BDgb2JkeUJxkf0xSF8UeRmuqq1fSvcD+tN89EdE7ymM1M6uqerg/l+89ZWY2SWr5/ly+NbqZWY2ph1Vevo2Imdkkyvutczw8ZWZmHp6qZ7X+TXdmVr+cNHIoz8v1zCzfPKeRI/WwXM/M8s09jRzxTdnMrNqcNHKkHpbrmeWN5xAHctLIGd+UzWxyeQ5xIC+5NTMbwlT7YicvuTUzG4PRzCFOhaEsJw0zsyGMZg5xKgxlecmtmdkZZL3lx1RaDu85DTOzMarlu9dm5TkNM7NJMpWWw3t4ysxsHOT97rVZeXjKzMw8PGVmZuPPScNyZSqsgzerZU4alitTYR28WS3zRLjlwlRaB29Wy9zTsFzwbeHNaoOThuXCVFoHb1bLMiUNSW9KekXSy5I6UmyWpHZJnem5uWz/jZK6JB2StKosviTV0yVpsySleKOkp1N8r6QFZWXa0nt0SmobrwO3/PFt4c2qL9N1GpLeBAoR8W5Z7M+B3oi4T9IGoDki7pC0GHgSWArMBV4APhERJyXtA24DfgA8B2yOiJ2SbgE+HRFfldQKXBsRX5I0C+gACkAAB4AlEXHsTG31dRpmZpWbjOs01gBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrx9BmMzMbg6xJI4DvSTogaX2KXRgRRwHS8+wUnwe8VVb2SIrNS9uD4wPKREQ/8B5w/jB1DSBpvaQOSR09PT0ZD8nMzCqVdcntZyPibUmzgXZJPx5mXw0Ri2Hioy1zOhCxBdgCxeGpYdpmZmZjkKmnERFvp+du4BmK8xXvpCEn0nN32v0IcFFZ8fnA2yk+f4j4gDKSGoDzgN5h6jIzsyoYMWlIOlfSjNI2sBJ4FdgBlFYztQHPpu0dQGtaEbUQWATsS0NYxyUtT/MVNw4qU6rrOuDFNO/xPLBSUnNanbUyxczMrAqyDE9dCDyTVsc2AE9ExP+WtB/YJmkdcBi4HiAiDkraBrwG9AO3RsTJVNfNwCPA2cDO9AB4CHhMUhfFHkZrqqtX0r3A/rTfPRHRO4bjNTOzMfCt0c3MzLdGNzOz8eekYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpllThqSzpL0kqS/S69nSWqX1Jmem8v23SipS9IhSavK4kskvZJ+tlmSUrxR0tMpvlfSgrIybek9OiW1jcdBm5nZ6FTS07gNeL3s9QZgV0QsAnal10haDLQClwGrgW9LOiuVeQBYDyxKj9Upvg44FhEfB74J3J/qmgXcDSwDlgJ3lycnMzObXJmShqT5wBeA75SF1wBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTEQE8OqhMqa7twIrUC1kFtEdEb0QcA9o5nWjMzGySZe1p/AVwO3CqLHZhRBwFSM+zU3we8FbZfkdSbF7aHhwfUCYi+oH3gPOHqcvMzKpgxKQh6Q+A7og4kLFODRGLYeKjLVPexvWSOiR19PT0ZGymmZlVKktP47PANZLeBJ4CPi/pceCdNOREeu5O+x8BLiorPx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlJcMhmZnZaIyYNCJiY0TMj4gFFCe4X4yIPwJ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruvSewTwPLBSUnOaAF+ZYmZmVgUNYyh7H7BN0jrgMHA9QEQclLQNeA3oB26NiJOpzM3AI8DZwM70AHgIeExSF8UeRmuqq1fSvcD+tN89EdE7hjabmdkYqPiBvn4UCoXo6OiodjPMzHJF0oGIKIy0n68INzOrA93vn+CLD+6h+/iJCX0fJw0zszqweVcn+9/sZfMLnRP6PmOZ0zAzsyq79K6d9PWfvoTu8b2HeXzvYRobpnFo09Xj/n7uaZiZ5dju26/imivm0jS9+Oe8afo01lwxl913XDUh7+ekYWaWY7NnNjGjsYG+/lM0Nkyjr/8UMxobmD2jaULez8NTZmY59+4Hfdyw7BK+vPRinth3mJ4JnAz3klszM/OSWzMzG39OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmY2YNCQ1Sdon6UeSDkr6ryk+S1K7pM703FxWZqOkLkmHJK0qiy+R9Er62WZJSvFGSU+n+F5JC8rKtKX36JTUNp4Hb2ZmlcnS0+gDPh8RvwVcAayWtBzYAOyKiEXArvQaSYuBVuAyYDXwbUlnpboeANYDi9JjdYqvA45FxMeBbwL3p7pmAXcDy4ClwN3lycnMzCbXiEkjij5IL6enRwBrgK0pvhVYm7bXAE9FRF9EvAF0AUslzQFmRsSeKH7H7KODypTq2g6sSL2QVUB7RPRGxDGgndOJxszMJlmmOQ1JZ0l6Geim+Ed8L3BhRBwFSM+z0+7zgLfKih9JsXlpe3B8QJmI6AfeA84fpi4zM6uCTEkjIk5GxBXAfIq9hsuH2V1DVTFMfLRlTr+htF5Sh6SOnp6eYZpmZmZjUdHqqYj4JfB9ikNE76QhJ9Jzd9rtCHBRWbH5wNspPn+I+IAykhqA84DeYeoa3K4tEVGIiEJLS0slh2RmZhXIsnqqRdJH0/bZwO8BPwZ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruuAF9O8x/PASknNaQJ8ZYqZmVkVNGTYZw6wNa2AmgZsi4i/k7QH2CZpHXAYuB4gIg5K2ga8BvQDt0bEyVTXzcAjwNnAzvQAeAh4TFIXxR5Ga6qrV9K9wP603z0R0TuWAzYzs9FT8QN9/SgUCtHR0VHtZpiZ5YqkAxFRGGk/XxFuZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZ1bDu90/wxQf30H38RLWbAjhpmJnVtM27Otn/Zi+bX+isdlMAaKh2A8zM7NddetdO+vpP/evrx/ce5vG9h2lsmMahTVdXrV3uaZiZ1aDdt1/FNVfMpWl68c900/RprLliLrvvuKqq7XLSMDOrQbNnNjGjsYG+/lM0Nkyjr/8UMxobmD2jqart8vCUmVmNeveDPm5YdglfXnoxT+w7TE8NTIYrIobfQboIeBT4GHAK2BIRfylpFvA0sAB4E/hiRBxLZTYC64CTwJ9ExPMpvgR4BDgbeA64LSJCUmN6jyXA/wO+FBFvpjJtwF2pOZsiYutw7S0UCtHR0ZH9X8DMzJB0ICIKI+2XZXiqH/jPEfFJYDlwq6TFwAZgV0QsAnal16SftQKXAauBb0s6K9X1ALAeWJQeq1N8HXAsIj4OfBO4P9U1C7gbWAYsBe6W1JyhzWZmNgFGTBoRcTQifpi2jwOvA/OANUDpU/9WYG3aXgM8FRF9EfEG0AUslTQHmBkRe6LYvXl0UJlSXduBFZIErALaI6I39WLaOZ1ozMxsklU0ES5pAXAlsBe4MCKOQjGxALPTbvOAt8qKHUmxeWl7cHxAmYjoB94Dzh+mLjMzq4LMSUPSbwB/A3w9It4fbtchYjFMfLRlytu2XlKHpI6enp5hmmZmZmORKWlImk4xYXw3Iv42hd9JQ06k5+4UPwJcVFZ8PvB2is8fIj6gjKQG4Dygd5i6BoiILRFRiIhCS0tLlkMyM7NRGDFppLmFh4DXI+K/l/1oB9CWttuAZ8virZIaJS2kOOG9Lw1hHZe0PNV546AypbquA15M8x7PAyslNacJ8JUpZmZmVZBlye3ngN3AKxSX3AJ8g+K8xjbgYuAwcH1E9KYydwI3UVx59fWI2JniBU4vud0JfC0tuW0CHqM4X9ILtEbET1OZm9L7AfxZRDw8Qnt7gJ9lPP5acwHwbrUbMc7q7Zjq7Xig/o6p3o4HJueYLomIEYdqRkwaNnkkdWRZJ50n9XZM9XY8UH/HVG/HA7V1TL6NiJmZZeakYWZmmTlp1JYt1W7ABKi3Y6q344H6O6Z6Ox6ooWPynIaZmWXmnoaZmWXmpDHBJP2VpG5Jr5bFfkvSHkmvSPqfkmam+EckPZziP5L0u2Vlvi/pkKSX02P2EG834SRdJOn/SHpd0kFJt6X4LEntkjrTc3NZmY2SulL7V5XFl6Rj7ZK0OV2/k+fjyeU5knR+2v8DSd8aVFfuztEIx5PXc/T7kg6kc3FA0ufL6prccxQRfkzgA/gd4DPAq2Wx/cC/S9s3Afem7VuBh9P2bOAAMC29/j5QqIHjmQN8Jm3PAP4ZWAz8ObAhxTcA96ftxcCPgEZgIfAT4Kz0s33Ab1O8XcxO4OqcH09ez9G5wOeArwLfGlRXHs/RcMeT13N0JTA3bV8O/Lxa58g9jQkWEX9P8YLFcpcCf5+224E/TNuLKd5mnojoBn4J1MTa7JKYnLseT5rxOp7JbfXwKj2miPhVRPxfYMA3/OT1HJ3peGrJKI7ppYgo3ULpINCk4l03Jv0cOWlUx6vANWn7ek7fX+tHwBpJDSregmUJA++99XDqUv+XagwTDKaJu+txVYzxeEryeI7OJK/naCR5P0d/CLwUEX1U4Rw5aVTHTRS/zOoAxa7pv6T4X1E86R3AXwD/SPFWLAA3RMSngH+bHl+Z1BYPoom96/GkG4fjgfyeozNWMUQsD+doOLk+R5Iuo/gldX9cCg2x24SeIyeNKoiIH0fEyohYAjxJcVyciOiPiD+NiCsiYg3wUaAz/ezn6fk48ARVHBLRxN/1eFKN0/Hk+RydSV7P0Rnl+RxJmg88A9wYET9J4Uk/R04aVVBasSFpGsXvP/8f6fU5ks5N278P9EfEa2m46oIUnw78AcUhrmq0fTLuejxpxut4cn6OhpTjc3SmenJ7jiR9FPhfwMaI+IfSzlU5RxM5y+5HQLEncRT4kOKngnXAbRRXS/wzcB+nL7JcAByiOCn2AsW7TkJxNcgB4J8oToL9JWnFThWO53MUu7//BLycHv+e4jct7qLYM9oFzCorcyfF3tQhylZ2UJzkfzX97Fulf4c8Hk8dnKM3KS7Y+CD9P12c83P0a8eT53NE8cPlr8r2fRmYXY1z5CvCzcwsMw9PmZlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpn9f/2Yi6a8X2tzAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2020 221186\n", + "2021 376290\n", + "2002 516689\n", + "2018 542312\n", + "2017 551041\n", + "1996 564901\n", + "2019 584066\n", + "2015 604382\n", + "2000 617597\n", + "2001 619041\n", + "2012 624573\n", + "2005 628464\n", + "2006 632833\n", + "2011 642368\n", + "1993 643387\n", + "1995 652478\n", + "1994 661409\n", + "1998 677775\n", + "1997 683434\n", + "2014 685769\n", + "2013 698332\n", + "2007 717352\n", + "2008 749478\n", + "1999 756456\n", + "2003 758363\n", + "2004 777388\n", + "2016 782114\n", + "2010 829911\n", + "1992 832939\n", + "2009 842373\n", + "dtype: int64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + " yearly_incidence.sort_values()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +3294,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 0bbbe37..c6f02f6 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -1,5 +1,13 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +24,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - -- 2.18.1