...
 
Commits (17)
# Partie 1
## Sous-partie 1 : texte
Une phrase sans rien
_Une phrase en italique_
__Une phrase en gras__
Un lien vers [fun-mooc.fr](fun-mooc.fr)
Une ligne de `code`
## Sous-partie 2 : listes
__Liste à puce__
- item
- sous-item
- sous-item
- item
- item
__Liste numérotée__
1. item
2. item
3. item
## Sous-partie 3 : code
```
# Extrait de code
```
---
title: "Votre titre"
author: "Votre nom"
date: "La date du jour"
title: "À propos du calcul de pi"
author: "Pe"
date: "23 mars 2020"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
## En demandant à la lib maths
Mon ordinateur m’indique que $\pi$ vaut *approximativement*
```{r cars}
summary(cars)
pi
```
Et on peut aussi aisément inclure des figures. Par exemple:
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```{r pressure, echo=FALSE}
plot(pressure)
```{r}
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
```{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X2+Y2$ est inférieur à 1:
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
```{r}
4*mean(df$Accept)
````
---
title: "Votre titre"
author: "Votre nom"
date: "La date du jour"
title: "Exercice 2"
author: "Pe"
date: "23 mars 2020"
output: html_document
---
......@@ -10,24 +10,37 @@ output: html_document
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
## Savoir faire un calcul simple soi-même
Calculer la moyenne et l'écart-type, le min, la médiane et le max des données suivantes :
```{r}
liste = c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)
```
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
1. Quelle est la moyenne ?
```{r}
round(mean(liste), 2)
```
La fonction round(x, digits =2) permet d'afficher 2 chiffres significatifs
2. Quel est le minimum ?
```{r}
min(liste)
```
```{r cars}
summary(cars)
3. Quel est le maximum ?
```{r}
max(liste)
```
Et on peut aussi aisément inclure des figures. Par exemple:
4. Quelle est la médiane ?
```{r}
median(liste)
```
```{r pressure, echo=FALSE}
plot(pressure)
5. Quel est l'écart-type ?
```{r}
round(sd(liste),2)
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
---
title: "Votre titre"
author: "Votre nom"
date: "La date du jour"
title: "Exercice 3 module 2"
author: "Pe"
date: "23 mars 2020"
output: html_document
---
......@@ -10,24 +10,22 @@ output: html_document
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
## Réaliser un affichage graphique
Réaliser un affichage graphique (séquence plot + histogramme) des données de l'exercice précédent.
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
```{r cars}
summary(cars)
Reprenons la liste de l'exercice précedent :
```{r}
liste = c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)
```
Et on peut aussi aisément inclure des figures. Par exemple:
1. Séquence plot
```{r pressure, echo=FALSE}
plot(pressure)
```{r}
plot(liste, type="l", col="blue", panel.first=grid(), xlab = NA, ylab= NA)
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
2. histograme
```{r}
hist(liste, col="blue", panel.first=grid(), xlab = NA, ylab= NA, main = NA, nclass = )
```
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.