{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Test des fonctionnalités de R avec Jupyter" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "ename": "ERROR", "evalue": "Error in parse(text = x, srcfile = src): :1:1: unexpected input\n1: %load_ext rpy2.ipython\n ^\n", "output_type": "error", "traceback": [ "Error in parse(text = x, srcfile = src): :1:1: unexpected input\n1: %load_ext rpy2.ipython\n ^\nTraceback:\n" ] } ], "source": [ "%load_ext rpy2.ipython" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1] 1\n" ] } ], "source": [ "x<-1\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "set.seed(123)\n", "\n", "# Draw 100 samples from a normal distribution with mean = 0 and sd = 1\n", "samples <- rnorm(100, mean = 0, sd = 1)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3dC5wVdd348d/usrtcXBETVK7e\nSCtNRExNMf7i4w0RjMpAe0AwUFHRRwtviVrCE6ZWZl7SNC191NRHKy8RallZXrInjUoESw0R\nETKQy7rs/GfmzDlnztnfHHZmfvCd+e3n/Xq5O2c53/ObOXM+u+csK6scAKkp6R0AbEBIgAGE\nBBhASIABhAQYQEiAAYQEGEBIgAGEBBhASIABhAQYQEiAAYQEGEBIgAGEBBhASIABhAQYQEiA\nAYQEGEBIgAGEBBhASIABhAQYQEiAAYQEGEBIgAGEBBhASIABhAQYQEiAAYQEGEBIgAGEBBhA\nSIABhAQYQEiAAYQEGEBIgAGEBBiQ7ZDuU6pZbPF7h3fvsds6mbU7f+CSe1nTZg6hU0cYXKlz\n94bogyVbIX1PKbW6sDlaqaNk75vfKc+a8gdeHqHUgGB78bQhTdsf9TPNhcCq+aN3bmrc/oAv\n/T3R4p0+8A57mY53BvZu8zfv9M9AcpWH8D1/P+u22+sL97Rq/rj2bRBSTB1CWnzttdd1uNby\nBvWXrbAzM5Tqfe0drcWLbXObVCmk37b4jws1r8OFwC8/pALd/zfJ4p1+UFTtZVr+4/0Wf3NL\nhOQb/IT3gU6d2uBKm7k3gintLW412Q5J69tqq4R0jFIzypdec78c1RdD2rC7UgMnH+x+5IWq\nC4FVbkfdJ11+4THuSMuKBIt3OqTKvUzNf7zvvNbbNB/SsePGHtLLfV//YNRMxKndzL2xlR4Q\nteUwpEO2zv3m7sF55Uvuw2raN4oh/Y9SO65ynBOU+kLVhcD3ler2f97Gg+4RfSPB4p0OqXIv\nUyt84bjc2zQfkndqN1zXQ6meb0bMRJzazdwbW+kBUVu2Qyregx/cNLpvt74j5r7jOGMKzw9m\nuR9978oD+zT2O/L7hef0zvf377n9mOeWun+43nFuVeqwD87eoZ/jtN99ZN9uLZ/4tnct96Mj\nnfuG9RhycauzaOx2vf7j5fDy4dubETwPKb76uHP3J7zdK4Q0Uamz3XePuE+r2isvBOYotWth\n62tXP/ia04mduEWpjzr3HLJtyxG/8cZKD52/ztijuWXEtz6ouhcCpb0sH27lvVLzgMM7VT4D\nh9epbd5yyiFV315hHf0Nh29RH5LjPFan1Om1T21plfJrpB7OAyO3bRn1pDdysVIHeu/dz1IN\noanSgh3vgV8dsV2vQxd0eLyZlIuQWkcFD5jdXg2F9McBwUcPXulNnOtvN1/vvnEv3aXUx6/2\n7+iTgmsd1+5/9dj73jrv0sylO3jv+v6rvHrF7VWH9Pd1TjmkjxVeR/zT/fOllRcC33Wfvzwa\nPrLN7sQPlep/lX+Vbo875YfZ/d0Lc4evr7wXAqW9LB9u5b1S84DDO1U+A9NOVGq6Uwqp8vZK\n6+hvOHyLUSE5xyvVr73mqS2tUg5pmxv8P6v/qbPZkDreA497L29Vwy86+TBMJBchuXfiXnf/\n9rEJSn3K+fND7pV+9PRSZ5V7f+16w//O7qbUGPc6z7ofHva9Oz+5jX/vepO7DGoctqfzE/fe\n/+5Lt7rXutf/6M4Djz+zt3uzx/SfdaA7cm1p8crbe/Vp90XR559+elPl7hVCcp/oP+y+a3Mf\nSL+ovBD4W4O7F8fe9OfiI3TzO3GPe6l58t1z3d0f0lo68KXu86Av/e25Tyl1YeW9ECjtZelw\nq+6VWgdcsVPlQzxxSZNq+HMxpI63V1hHe8PVh6kP6XZ3c1HNUxtepfhdu5ZT757vrjZoY3VI\n4anmDufR39Fdhl14pHulT8R+QMaQuZDKyiFNUepq913rxDP/e5Pzlio8Jb5cqW3/6fgnXD3v\nONOV2s79DLRuSCkkNfQNd+M7Y8Z4TwPdT4P/WfjoZ93P8+677kucjXsqNba0eNXtaV59FENq\nd5vxnye4D/MHKy6Urjq3cAh9xt78b6dTO+F9cKrjfwJVj5cO/EylRrnv3tlGtayvvBeKgr0s\nHW7VUdQ64IqdKh/iBOcc/yFYCElze/462huuPkx9SM+4m0/UPLXhVYKQ1Gnu+x+77x+pDik8\n1ay/B0au979Y1hv75qZGLkI6W6nBdywPrlS83/ZVaop3ua2PUlc4zkeDF/tfKYd0V+imz1Lq\nyMJHn3VPW7NSE90Pnu9+EStdo+r2aoS0zn8kuLZV6u6KC+XrPjqyrnAU293WqZ3wPvhH99IH\nLUpdVjrw3ZW6eL3rMO+rXcW9UBQK6S7NUdQ64IqdKh/iBOfd7ZRaGISkuT1/nVo3XDpMfUgv\nuZsP1Ty14VWKIb3k7YR7H1+6uZA0e+ydn1+475P9nV7nZC6kQUN83cMhvdjTe0juPu1+7+Vj\ncL+1dyt8LnOcg/1z6V5lrnfpx+WQCudnwbjdmv2H9OjCR72fAhhY+Fsf93n47sW1q2+vk1+R\nHqq4EL72m3fM+Lgf0/2d2Qn3g43+15n9lDqleODt9eVPK9+qvBeKQiEt1xxFjQOu3KnyIU5w\nnK8rtV+7H5Lu9vy7VX/DVYepD+lX7uavap3ailWCkAp3znA/kpoh6fbYe1awOIhxS8lcSNrv\n2j35scKjaZfflu63te67m/yrHuG+uHXa/cea67FSSA3+fe++7le9PrLvDhUn1/1Mf4P77rrQ\n46rq9mqF5LQUnsV94HbyZOWFKm9c1OB9N64TO+F+cDt/5FD3VUrxOmtDX5/nVN4LReWQ/MOt\nPooaB1y5U+VDdENaP1ipO+72zoDm9gp3q/aGtYfZ4dR+2//aUOPUdlil6s6pGVLUPfAGIXna\nf3vF0e5LTdV3bfgr0lX+n7mvdE9ynObgRwvuK4XkT65xP+NNcj91nrG5kKpvr1ZI7ifGG53C\nuVlWeaGkNfg+w5XeZ+5O7ETpSPfzXysFn13dDL8Z2oHQvVBUDqlZdxQ1Drhyp8qH6Ibk3OE+\nM7iv+BVJd3vaG9YfZodT+0mldqt5ajus4r1rL985FwfPI2+K+oqk22NCKv1p20N9vNeaxftt\nWOHx7rS6XxK+7jh7BK+RLqkMyXse8WLh9mqHVH17tUI6tfDa92Gl+lddKFjy6b26BX9r8X13\n/fWd2AnvGchi99IH2xSf2XvX+XDhL8zCgnuhqCqk6qOoccCVO1U+RC+kdvdmTvDPQMTtaW9Y\nf5jVp/Yu5b/QqXVqNSH5H/deQLp3zjz/++f+N/81r5Ei9piQ3Bf3c6cc73+lP9J7FrXcvdLT\n7oUr3KcR3nd2blaq7m+Oc7JSvd9xP88OqgxpQeFF8Z/dVxuH1Q6p6vZqhfSoUjusdNqPVuqs\nqgsF67dXaoh/1t52P4d+pDM74T1WLnAK3wZ7onQd92V7//fdx9mkUy54s/JeKKoOqeooahxw\n5U6VD3FC8If1/hmIuD3tDesPs/LUtt3Q5H7xWVX71OpCOtfx/47Au3O878f9xHH+0rNwqqum\nIvaYkBz/k8yER57/1eWNqvltp61RqZH3Pu6sdl/n7nH9/V9yn9Od6l5noTv78dtvPaBXZUj/\ndM/q2JceHrCnUts+83atkKpuryqk38ybN+/T7m247+53Nrl5DDjZfU7XfalTeSHgvVioO/jk\nk0Z5fxN4S2d2wv1gt8Y5T373Q0rt2Vba/SU9lDrkZ4+7C3+srfJeKKoOqeooahxw5U6Vz4Af\nknOU97rlqMjb096w/jDLp/bYceNGe39527jQqX1qq1dxA2poOvehq7ct3DlL3JejvWacv/0n\nC6e6aipijwnJvfDSwOAVd/2tjv9zmv5fdJT+BvvT672Jyf52z69XhuR9Unf1f62/94K9VkjV\nt1cZ0lfLL/vHOc7LhR/urrvd+6OKC4G53YrXbri0UzvhfrDPBf61uv8mtPv3Fb4Jpgb8pfpe\ncEr3U0VIVUdR64Ardqp8Bgoh/aleVf1kQ8Xt6W9Ye5jlUxsY+HToBrSntnqVH7rP5a4s3znO\naf720F+7d3p7xyn9HhOSd2n5V0fs2Nhzr+n+D4K+OX677rte6W6897UDejfufMLDhYlNV+3Z\n3O8zf3qk/PrU/3Dr1z/aY8Cp/3QW7Nlt4P/UDKnq9mqF5LwxfXBj3/HPFP6s4kJgycWf7NvY\n1PeQC/7auZ1wP9jLuWlY9z7H+8dY2v1FU3dt7rn3xas63AtOxV6GHrUVR1HrgCt2qnwGCiE5\np6jiz9rpbk9/w9rDLJ9a74vRzsfcsL7iBnSntnqVW5Tay7nNu3P+6H+4bd7QpgHT337TvcH3\nNVPaPe5SIZnwg9CL/hypfNghd6wJadG8Mz7v/Yz08UqNl96XBAgp56wJabH7CnT8U78+x/0K\n/nPpfUmAkHLOmpCcy4qvYb4ivSdJEFLO2ROSs/AzAxubh5z4lPR+JEJIOWdRSIAcQgIMICTA\nAEICDCAkwABCAgwgJMAAQgIMICTAAEICDCAkwABCAgwgJMAAQgIMICTAAEICDCAkwABCAgwg\nJMAAQgIMICTAAEICDCAkwABCAgwgJMAAQgIMICTAAEICDCAkwABCAgwgJMAAQgIMICTAAEIC\nDCAkwABCAgwgJMAAQgIMICTAAEICDCAkwABCAgwgJMAAQgIMICTAAEICDCAkwABCAgwgJMAA\nQgIMICTAAEICDCAkwABCAgwgJMAAQgIMICTAAEKSs2xBSsukjwAlhCRnWlOfVJqmSR8BSghJ\nzpQpsvMwiJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQ\nkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDk\nEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5KQNYcKoe9N51cxxwCEkSWlDGtq4WyotU80cBxxCkpQ2\npD32kF0fIYQkh5AsQkhyCMkihCSHkCxCSHIIySKEJIeQLEJIcgjJIoQkh5AsQkhyCMkihCSH\nkCxCSHIIySKEJIeQLEJIcgjJIoQkh5AsQkhyCMkihCSHkCxCSHIIySKEJIeQLEJIcgjJIoQk\nh5AsQkhyCMkihCSHkCxCSHIIySKEJIeQLEJIcgjJIoQkh5AsQkhyCMkihCSHkCxCSHIIySKE\nJIeQLEJIcgjJIoQkh5AsQkhyCMkihCSHkCxCSHIIySKEJIeQLEJIcgjJIoQkh5Askiak9iUL\nHnhg4evG9qWrISSLJA9p1Xn9lG/wFesM7lAXQkgWSRzSsl3V0Clz5s+/ZGJ/te8qk7vUZRCS\nRRKHNK3x3mCr7fq6WYb2pmshJIskDmmnqeXtEweZ2JUuh5AskjikxivL25c1mdiVLoeQLJI4\npCGfK2+P28XErnQ5hGSRxCHNqrtqQ2Fr7aVqtqnd6VIIySKJQ1o9XLWMnnLmzMmjeqqRa0zu\nUpdBSBZJ/vdIG68Z1uD9NVLjQTe3GdyhLoSQLJLqR4TWv/LCC4s3av5g7WWzS/7rc5orwCEk\nqxj5WbtVr1V94K1jjig5QG0wsYaFCMkiyUP6v2OHHHp94Und7Fq38hul+5oFQrJK4pB+3ax6\nNqpP+T8cREiJEJJFEoc0pvHB9g3XNB6w1iGkhAjJIolDGnSy93Zh07FthJQQIVkk+Y8IXeq/\nu0OdTUgJEZJFEoc08PjC+wvVfEJKhpAskjiks+uua/Xet09W55xFSEkQkkUSh7RysDrC32g/\nWylCSoKQLJL875HeOeOcYOv+3QkpCUKyyJb/V4QIKQohWYSQ5BCSRQhJDiFZhJDkEJJFCEkO\nIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJ\nDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUI\nSQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJF\nCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCS\nRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQ\nkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDk\nEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ\n5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmE\nkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZ\nhJDkEJJFCEkOIVmEkOQQkkUISQ4hWYSQ5BCSRQhJDiFZhJDkEJJFCEkOIVmEkOQQkkUISQ4h\nWYSQ5BCSRdKGtPHZJ5bWvgYhRSEkiyQO6atPeG9v7KOU2v/FWlckpCiEZJHEIanZ7pufquYT\nZhyier9a44qEFIWQLJIupKG9F7lv7687pcYVCSkKIVkkVUgr1EX+9vgBNa5ISFEIySKpQnpd\n3elvX9JY44qEFIWQLJIqpLbe8/ztqdvXuCIhRSEkiyQPaeJzi9+5cI/33c2/9Bpb44qEFIWQ\nLJI8pIIfO86PetU/W+OKhBSFkCySOKTbrp0za/L4UQsd5/oBP6l1RUKKQkgWMfAjQms2dfjQ\nP/bcraS/2pB+DSsRkkWM/KzdysVVH2j9wU0lX+YrUgRCsoiRkGbXuhWe2kUhJIsQkhxCsggh\nySEkiyQOaf+QnQgpCUKySOKQ6uubSxoIKQlCskjikGa3lL9Vx1O7RAjJIolDat1vRGtxm5AS\nISSLJP9mw6Ie5xc3CSkRQrJIiu/avfduceupeTWuRkhRCMki/CtCcgjJIoQkh5AsQkhyCMki\nhCSHkCxCSHIIySKEJIeQLEJIcgjJIoQkh5AsQkhyCMkihCSHkCxCSHIIySKEJIeQLEJIcgjJ\nIoQkh5AsQkhyCMkihCSHkCxCSHIIySKEJIeQLEJIcgjJIoQkh5AsQkhyCMkihCSHkCxCSHII\nySKEJIeQLEJIcgjJIoQkh5AsQkhyCMkihCSHkCxCSHIIySKEJIeQLBIO6aAb/7UFViCkKIRk\nkXBI3VSPiT/fZHoFQopCSBYJh7TyptENatDFiyOvnAghRSEki1S9Rlpxw/+rV4fe8m+DKxBS\nFEKySMdvNiy7dl/V87S/GVuBkKIQkkU6hLTuvgk91ODGxsvaDa1ASFEIySJVIf361G1Vj5Oe\ndF6foOYYWoGQohCSRcIhvf61oUrt953V3nb7Ef0MrUBIUQjJIuGQ6lXv054vXvhOnaEVCCkK\nIVkkHNLI29eVLyx+wNAKhBRFOqS9VUpfTre+VSpfI738jvfmD0ZXIKQo0iHt0X9BKkfyFa0s\nHFLrVPWk++46NaXN4AqEFEU8JJ4amhMO6Wo1Zqn77q8nqm8aXIGQohCSRcIh7XNcsHFsynu4\nAiFFISSLhEPqcXWwMb/R4AqEFIWQLBIOacezgo0zdjS4AiFFISSLhEOa2vNn3rvWm7t9weAK\nhBSFkCwSDmnZzmrwfxx36PZq538YXIGQohCSRSr+Hmn5aR9SSvX94psmVyCkKIRkkaofWm3/\n56trDa9ASFEIySL84ydyCMki4ZDa7z1u2McKDK5ASFEIySLhkK5SqmfvAoMrEFIUQrJIOKSB\nRy3ZAisQUhRCskg4pMbfbYkVCCkKIVmk4ivSM1tiBUKKQkgWCYf0pTO2xAqEFIWQLBIOac1R\nkx5btNhncAVCikJIFgmHFPqfiA2uQEhRCMki4WQmTp5WZHAFQopCSBbhJxvkEJJFqkL698ur\nTa9ASFEIySIVIT21v1KPOs7YX5hcgZCiEJJFwiH9vqnlKDekFTs1PR95/fgIKQohWSQc0pjB\nb7zlfUV6e/A4gysQUhRCskg4pA/Nc/yQnLl9DK5ASFEIySIVv/ryh0FIt/GvCG0NhGSRip+1\nuzgI6ZQhBlcgpCiEZJFwSNP7vOCFtOoiZfKH7ggpCiFZJBzSW4O6DVfDhjWrwcsNrkBIUQjJ\nIhV/j/T26d6/IrTD6W+bXIGQohCSRar/FaHli01+NfIQUhRCsgg/ayeHkCwSDml0yUiDKxBS\nFEKyiPb/R2rpb3AFQopCSBYJh/SB7/2Xzz/sPYMrEFIUQrKI9jXSBacZXIGQohCSRbQhPcNT\nu62BkCyiDennPQ2uQEhRCMki4ZBWF6x4chj/9vfWQEgW0f8rQncaXIGQohCSRSr+x76C8afz\nv5pvFYRkEX6yQQ4hWYSQ5BCSRcIh7fuJA8MMrUBIUQjJIuGQduyhlKpz/+vR4DG0AiFFISSL\nhENadejMP6x33vvlp4/kR4S2BkKySDikU4p3zNGnGlyBkKIQkkXCIfW9Ndj4Rj+DK9gb0vtL\n0plwcrr1CSlDwiE1XxlsfLnZ4Ar2hnS6SmmvdOsTUoaEQ9qvf+GXyP56h30NrmBvSFMmrkpl\nN+EQCMmgcEgPNahdjxh7xG6q7scGV7A4pJy/xiEkgyp/G8VR3d0nHE2HLzC5AiFFkQ6BkAyq\n+smGTW++8kab2RUIKYp0CIRkEL9oLDlCSjdvFX7RWHKElG7eKvyiseQIKd28VfhFY8kRUrp5\nq/CLxpIjpHTzVuEXjSVHSOnmrcIvGkuOkNLNW4VfNJYcIaWbtwq/aCw5Qko3b5U0v2isfcmC\nBx5Y+PpmrkVIUaRDICSDkv+isVXn9Sv8zwCDr1hX63qEFEU6BEIyqOKnv1+OMbhsVzV0ypz5\n8y+Z2F/tu6rGFQkpinQIhGRQOKTu/x1jcFrjvcFW2/V1s2pckZCiSIdASAaFQzrimE2dH9xp\nann7xEE1rkhIUaRDICSDwiEtn3j0Xc8v9m1+sPHK8vZlTTWuSEhRpEMgJIP0/4h+J/791SGf\nK2+P26XGFQkpinQIhGRQOJkTvzB1WmDzg7PqrtpQ2Fp7qZpd44qEFEU6BEIyKPG//b16uGoZ\nPeXMmZNH9VQj19S4IiFFkQ6BkAwqhXTd0/67F9/s7OTGa4Y1eM8CGw+6ueb/nE5IUaRDICSD\nSiGpwrew1cwYw+tfeeGFxbpM2n+zoOSbmQ1p1fPpjJ2Ubn3pEAjJoFQhFa2s/i7fkm7hfwcx\nqyF9Me0/8PjhdOtLh0BIBhkJaXatV1rZfWrX1Z+aEZJBhJSc9ANZep6QQggpOekHsvQ8IYUk\nDmn/kJ0IqSvOE1JI4pDq65tLGgipK84TUkg5pAPneNQB/rvND85uKX+rjqd2XXKekELKIVXY\n/GDrfiNai9uE1CXnCSmklMCdFToxuajH+cVNQuqS84QUkvhn7RznvXeLW0/Nq3E1QrJ1npBC\nUoTUSYRk6zwhhRBSctIPZOl5QgohpOSkH8jS84QUQkjJST+QpecJKYSQkpN+IEvPE1IIISUn\n/UCWniekEEJKTvqBLD1PSCGElJz0A1l6npBCCCk56Qey9DwhhRBSctIPZOl5QgohpOSkH8jS\n84QUQkjJST+QpecJKYSQkpN+IEvPE1IIISUn/UCWniekEEJKTvqBLD3/uVH3ptPpf9U3Bwgp\nOekHsvT80Po+qTR14nc15AYhJSf9QM77vFVPDQkpOekHYt7nCSkWQmJej5BiISTm9QgpFkJi\nXo+QYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJej5BiISTm9QgpFkJiXo+QYiEk5vUIKRZCYl6P\nkGIhJOb1CCkWQmJej5BiISTm9QgpFkJiXo+QYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJej5Bi\nISTm9QgpFkJiXo+QYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJej5BiISTm9QgpFkJiXo+QYiEk\n5vUIKRZCYl6PkGIhJOb1CCkWQmJej5BiISTm9QgpFkJiXo+QYiEk5vUIKRZCYl6PkGIhJOb1\nCCkWQmJej5BiISTm9QgpFkJiXo+QYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJej5BiISTm9Qgp\nFkJiXo+QYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJej5BiISTm9QgpFkJiXo+QYiEk5vUIKRZC\nYl6PkGIhJOb1CCkWQmJej5BiISTm9QgpFkJiXo+QYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJe\nj5BiISTm9QgpFkJiXo+QYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJej5BiISTm9QgpFkJiXo+Q\nYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJej5BiISTm9QgpFkJiXo+QYiEk5vUIKRZCYl6PkGIh\nJOb1CCkWQmJej5BiISTm9QgpFkJiXo+QYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJej5BiISTm\n9QgpFkJiXo+QYiEk5vUIKRZCYl6PkGIhJOb1CCkWQmJej5BiISTm9QgpZOOzTyytfQ1CYl6P\nkDxffcJ7e2MfpdT+L9a6IiExr0dI/uBs981PVfMJMw5RvV+tcUVCYl6PkPxBL6ShvRe5b++v\nO6XGFQmJeT1C8gfdkFaoi/zt8QOq/nD1mdNLxhES81pHfnh6Oo+nW9+oVCG9ru70ty9prPrD\nlSd/tuRwQmJeP7/NZ1PZJUtf0VKF1NZ7nr89dfsaV+SpHfNbZj5TTw2ThzTxucXvXLjH++7m\nX3qNrXFFQmJ+y8xbElLBjx3nR73qn61xRUJifsvM2xHSbdfOmTV5/KiFjnP9gJ/UuiIhMb9l\n5u0IqWzNppp/TEjMb5l520LaDEJifsvME1JGEFK+5wkpIwgp3/OElBGElO95QsoIQsr3PCFl\nBCHle56QMoKQ8j1PSBlBSPmeJ6SMIKR8zxNSRhBSvucJKSMIKd/zhJQRhJTveULKCELK9zwh\nZQQh5XuekDKCkPI9T0gZQXVapXoAAAnTSURBVEj5niekjCCkfM8TUkYQUr7nCSkjCCnf84SU\nEYSU73lCyghCyvc8IWUEIeV7npAygpDyPU9IGUFI+Z4npIwgpHzPE1JGEFK+5wkpIwgp3/OE\nlBGElO95QsoIQsr3PCFlBCHle56QMoKQ8j1PSBlBSPmeJ6SMIKR8zxNSRhBSvucJKSMIKd/z\nhJQRhJTveULKCELK9zwhZQQh5XuekDKCkPI9T0gZQUj5niekjCCkfM8TUkYQUr7nCSkjCCnf\n84RkyB1HpNN/ZLr1pR9IXX1+ZP+UD4A70q1fIc8hTdlndip9cv5A6vLzfdKd/31MfkXLdUg8\nNWM+BaNPDQmJ+a46T0gBQmI+DUIKEBLzaRBSgJCYT4OQAoTEfBqEFCAk5tMgpAAhMZ8GIQUI\nifk0CClASMynQUgBQmI+DUIKEBLzaRBSgJCYT4OQAoTEfBqEFCAk5tMgpAAhMZ8GIQUIifk0\nCClASMynQUgBQmI+DUIKEBLzaRBSgJCYT4OQAoTEfBqEFCAk5tMgpAAhMZ8GIQUIifk0CClA\nSMynQUgBQmI+DUIKEBLzaRBSgJCYT4OQAoTEfBqEFCAk5tMgpAAhMZ8GIQUIifk0CClASMyn\nQUgBQmI+DUIKEBLzaRBSgJCYT4OQAoTEfBqEFCAk5tMgpAAhMZ8GIQUIifk0CClASMynQUgB\nQmI+DUIKEBLzaRBSgJCYT4OQAoTEfBqEFCAk5tMgpAAhMZ+GNSFdtVs6LSPS7Zn0iWRedt6a\nkKYcfFMqfXN+IpmXnbcnJJ6aMS84T0gB6RPBfL7nCSkgfSKYz/c8IQWkTwTz+Z4npID0iWA+\n3/OEFJA+Eczne56QAtIngvl8zxNSQPpEMJ/veUIKSJ8I5vM9T0gB6RPBfL7nCSkgfSKYz/c8\nIQWkTwTz+Z4npID0iWA+3/OEFJA+Eczne56QAtIngvl8zxNSQPpEMJ/veUIKSJ8I5vM9T0gB\n6RPBfL7nMxNS+5IFDzyw8PXNXIuQmM/mfEZCWnVeP+UbfMW6WtcjJOazOZ+NkJbtqoZOmTN/\n/iUT+6t9V9W4IiExn835bIQ0rfHeYKvt+rpZNa5ISMxncz4bIe00tbx94qAaVyQk5rM5n42Q\nGq8sb1/WVPWHS/v2KWlRrRE3Ma2pTyr19cwzn1zTtKQPfo3EIQ35XHl73C5Vf7jpyQUlP/9h\n1E0sW5DOPfcwz3wKy5I++DUShzSr7qoNha21l6rZpnYHyKfEIa0erlpGTzlz5uRRPdXINSZ3\nCcif5H+PtPGaYQ3eXyM1HnRzm8EdAvIo1Y8IrX/lhRcWb6lf2gLkyJb/WTugCyAkwABCAgwg\nJMAAQgIMICTAAEICDCAkwABCAgwgJMAAQgIMICTAAEICDCAkwABCAgwgJMAAQgIMyHNIByl0\naQdJPwJD8hzSpLHPixrL+rLrT5J+BIbkOSSj/1Im67N+GoTE+qxvACGxPusbQEisz/oGEBLr\ns74BhMT6rG8AIbE+6xtASKzP+gYQEuuzvgGExPqsb0CeQ5o+nfVZPyPyHNKqVazP+hmR55CA\nzCAkwABCAgwgJMAAQgIMICTAAEICDCAkwABCAgwgJMAAQgIMICTAAEICDCAkwABCAgwgJMCA\nXIe06rzBTbuMe0ZuB1ovqN9fau3Vs4Y07jxtmdTysgfvZODkV8pzSO/uosZ85aRu3f8ktQOL\nhreIPZY2DlcTrpzauKvY/yUqefBOBk5+lTyHNFNd5769Xx0rtP57PUYsbpZ6LF2jvu6+vUed\nJ7S+6ME78ie/Wp5DOmd0q/u2vccQofXfPa/VEXssDWvZ4L3bo1+7zPqiB+/In/xqeQ6pYEPj\nIYKrSz2W1jeM9t9PUUtkdsAjGVKB7MkPy39I3/K/xkuReiy9ogr/qNsctUBmBzzyIcme/LDc\nh/RU06EfCC4v9Vh6Qc3031+lHpDZAY94SMInPyyPIa2e4bqqsH1X8/B3JdeXC+lM//189aDM\nDnikQ5I4+VHyGNIb3m+09p8bt1+qjv634Ppyj6XFarL//hL1C5kd8MiGJHPyo+QxpJL2qeqs\nNtldkHosbew2yn8/Uf1DZgc8oiFl4OSH5TqkWWqu9C6IPZYO7Pm++3ZT/0FC63tEQ8rAyQ/L\nc0j3q1nSuyD3WLpZXea+vUFdLrS+RzKkLJz8sDyHtLs6a7ZP6MdknnKXbtjJfbNSYPG2kWrc\n5Z+v2+d9gbU9ogfvyJ/8ankOSRW9JrP+vOL6iyVWX3P+kMYBM8W+ayV78PInv1qeQwIyg5AA\nAwgJMICQAAMICTCAkAADCAkwgJAAAwgJMICQAAMICTCAkAADCAkwgJAAAwgJMICQAAMICTCA\nkAADCAkwgJAAAwgJMICQAAMICTCAkAADCAkwgJAAAwgJMICQAAMICTCAkAADCAkwgJAAAwgJ\nMICQ8ulE9Yb0LiCMkLLtWPV0sLVpUHPo17USUsYQUrY9pKYEW4+qSaGPE1LGEFK2tQ3o9e/C\n1mfUU6GPE1LGEFLGXapu9t+vbNrTcX4//kONQ05+zSmENEatdrc+UKPdt8vPGNy4w7hn3a0N\n8z++7Tb7zN8kt8tdEiFl3Ov1B/rvr1VXO89373/FzRe09FvZIaQVQ3rPvnPuwGb3i9YpatIN\nN56gZsrudpdDSFk3Rr3svduneaXz3eFPulvXqes6hHR6t+fczddbRjhOz4O9q587oU1ul7si\nQsq6h9S57ttn1UmFi63rF6rzqkNq32H4W56j1Bqnd/+3JXe3qyKkrGsbuMNGx5mhfulu33HY\ndso1qzqk5aroz8631LZf+P6b0nvd5RBS5s1R9znreu/lbl2oRtz21DO3dAxpsRr2aIH7kYXj\ne6m6Y/8uvdtdDCFl3hsNRzt3qmscZ32PQWvcy49VhvS+/xVpWHhiw4LJdXtslNnbroqQsu+4\nhneO6v6u47ymTvAuXlgMabxa4V582ftmww7dvaacFaWZ09XvZXa2qyKk7HtYze3mfathXd1+\n7tsXB6gZhZBO9183fdn/rp26yN1csdNxzjP9f+DNzFR/kNzlroeQsq9tUA/1K2/jODXj7q/0\neaTbwLvWeiE9o/Z/4ncXjmxxQ3p7sDrl9rmDG3/ufLB30xev/+7U+kPbpXe7ayGkHLhMfcR/\nv2JS396HP+1cvs1Ob/k/InT7R3vsOP1f/Q91/+it0wd12+547+ncu+fs3rP3vnPXiO5x10NI\ngAGEBBhASIABhAQYQEiAAYQEGEBIgAGEBBhASIABhAQYQEiAAYQEGEBIgAGEBBhASIABhAQY\nQEiAAYQEGEBIgAGEBBhASIABhAQYQEiAAYQEGEBIgAGEBBhASIABhAQYQEiAAYQEGEBIgAH/\nH2LXXM5otb4RAAAAAElFTkSuQmCC", "text/plain": [ "Plot with title “Histogram of 100 Samples from a Normal Distribution”" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the histogram\n", "hist(samples, \n", " main = \"Histogram of 100 Samples from a Normal Distribution\", \n", " xlab = \"Values\", \n", " ylab = \"Frequency\",)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.4.1" } }, "nbformat": 4, "nbformat_minor": 4 }