diff --git a/module3/exo1/influenza-like-illness-analysis.ipynb b/module3/exo1/influenza-like-illness-analysis.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f0f2319043257d3be895b68788b0a593c5f7c4d9
--- /dev/null
+++ b/module3/exo1/influenza-like-illness-analysis.ipynb
@@ -0,0 +1,2500 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence of influenza-like illness in France"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The data on the incidence of influenza-like illness are available from the Web site of the [Réseau Sentinelles](http://www.sentiweb.fr/). We download them as a file in CSV format, in which each line corresponds to a week in the observation period. Only the complete dataset, starting in 1984 and ending with a recent week, is available for download."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This is the documentation of the data from [the download site](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Column name | Description |\n",
+ "|--------------|---------------------------------------------------------------------------------------------------------------------------|\n",
+ "| `week` | ISO8601 Yearweek number as numeric (year times 100 + week nubmer) |\n",
+ "| `indicator` | Unique identifier of the indicator, see metadata document https://www.sentiweb.fr/meta.json |\n",
+ "| `inc` | Estimated incidence value for the time step, in the geographic level |\n",
+ "| `inc_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n",
+ "| `inc_up` | Upper bound of the estimated incidence 95% Confidence Interval |\n",
+ "| `inc100` | Estimated rate incidence per 100,000 inhabitants |\n",
+ "| `inc100_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n",
+ "| `inc100_up` | Upper bound of the estimated rate incidence 95% Confidence Interval |\n",
+ "| `geo_insee` | Identifier of the geographic area, from INSEE https://www.insee.fr |\n",
+ "| `geo_name` | Geographic label of the area, corresponding to INSEE code. This label is not an id and is only provided for human reading |\n",
+ "\n",
+ "The first line of the CSV file is a comment, which we ignore with `skip=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_file = \"syndrome-grippal.csv\"\n",
+ "\n",
+ "import os\n",
+ "import urllib.request\n",
+ "if not os.path.exists(data_file):\n",
+ " urllib.request.urlretrieve(data_url, data_file)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202524 \n",
+ " 3 \n",
+ " 22816 \n",
+ " 17621.0 \n",
+ " 28011.0 \n",
+ " 34 \n",
+ " 26.0 \n",
+ " 42.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202523 \n",
+ " 3 \n",
+ " 24564 \n",
+ " 19382.0 \n",
+ " 29746.0 \n",
+ " 37 \n",
+ " 29.0 \n",
+ " 45.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202522 \n",
+ " 3 \n",
+ " 18755 \n",
+ " 14333.0 \n",
+ " 23177.0 \n",
+ " 28 \n",
+ " 21.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202521 \n",
+ " 3 \n",
+ " 23760 \n",
+ " 18671.0 \n",
+ " 28849.0 \n",
+ " 35 \n",
+ " 27.0 \n",
+ " 43.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202520 \n",
+ " 3 \n",
+ " 20265 \n",
+ " 15814.0 \n",
+ " 24716.0 \n",
+ " 30 \n",
+ " 23.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202519 \n",
+ " 3 \n",
+ " 16264 \n",
+ " 12394.0 \n",
+ " 20134.0 \n",
+ " 24 \n",
+ " 18.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202518 \n",
+ " 3 \n",
+ " 18115 \n",
+ " 13975.0 \n",
+ " 22255.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202517 \n",
+ " 3 \n",
+ " 22150 \n",
+ " 17291.0 \n",
+ " 27009.0 \n",
+ " 33 \n",
+ " 26.0 \n",
+ " 40.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202516 \n",
+ " 3 \n",
+ " 28564 \n",
+ " 22550.0 \n",
+ " 34578.0 \n",
+ " 43 \n",
+ " 34.0 \n",
+ " 52.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202515 \n",
+ " 3 \n",
+ " 35721 \n",
+ " 29592.0 \n",
+ " 41850.0 \n",
+ " 53 \n",
+ " 44.0 \n",
+ " 62.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202514 \n",
+ " 3 \n",
+ " 37579 \n",
+ " 31232.0 \n",
+ " 43926.0 \n",
+ " 56 \n",
+ " 47.0 \n",
+ " 65.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202513 \n",
+ " 3 \n",
+ " 39673 \n",
+ " 33686.0 \n",
+ " 45660.0 \n",
+ " 59 \n",
+ " 50.0 \n",
+ " 68.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202512 \n",
+ " 3 \n",
+ " 52543 \n",
+ " 45627.0 \n",
+ " 59459.0 \n",
+ " 78 \n",
+ " 68.0 \n",
+ " 88.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202511 \n",
+ " 3 \n",
+ " 59469 \n",
+ " 52154.0 \n",
+ " 66784.0 \n",
+ " 89 \n",
+ " 78.0 \n",
+ " 100.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202510 \n",
+ " 3 \n",
+ " 60334 \n",
+ " 53048.0 \n",
+ " 67620.0 \n",
+ " 90 \n",
+ " 79.0 \n",
+ " 101.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202509 \n",
+ " 3 \n",
+ " 84531 \n",
+ " 74994.0 \n",
+ " 94068.0 \n",
+ " 126 \n",
+ " 112.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202508 \n",
+ " 3 \n",
+ " 136020 \n",
+ " 124824.0 \n",
+ " 147216.0 \n",
+ " 203 \n",
+ " 186.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202507 \n",
+ " 3 \n",
+ " 208952 \n",
+ " 195988.0 \n",
+ " 221916.0 \n",
+ " 312 \n",
+ " 293.0 \n",
+ " 331.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202506 \n",
+ " 3 \n",
+ " 273519 \n",
+ " 258159.0 \n",
+ " 288879.0 \n",
+ " 408 \n",
+ " 385.0 \n",
+ " 431.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202505 \n",
+ " 3 \n",
+ " 334395 \n",
+ " 318416.0 \n",
+ " 350374.0 \n",
+ " 499 \n",
+ " 475.0 \n",
+ " 523.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202504 \n",
+ " 3 \n",
+ " 350043 \n",
+ " 332885.0 \n",
+ " 367201.0 \n",
+ " 522 \n",
+ " 496.0 \n",
+ " 548.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202503 \n",
+ " 3 \n",
+ " 252772 \n",
+ " 238917.0 \n",
+ " 266627.0 \n",
+ " 377 \n",
+ " 356.0 \n",
+ " 398.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202502 \n",
+ " 3 \n",
+ " 257247 \n",
+ " 242991.0 \n",
+ " 271503.0 \n",
+ " 384 \n",
+ " 363.0 \n",
+ " 405.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202501 \n",
+ " 3 \n",
+ " 231549 \n",
+ " 214627.0 \n",
+ " 248471.0 \n",
+ " 345 \n",
+ " 320.0 \n",
+ " 370.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202452 \n",
+ " 3 \n",
+ " 201726 \n",
+ " 185870.0 \n",
+ " 217582.0 \n",
+ " 302 \n",
+ " 278.0 \n",
+ " 326.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202451 \n",
+ " 3 \n",
+ " 201697 \n",
+ " 187843.0 \n",
+ " 215551.0 \n",
+ " 302 \n",
+ " 281.0 \n",
+ " 323.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202450 \n",
+ " 3 \n",
+ " 136694 \n",
+ " 126369.0 \n",
+ " 147019.0 \n",
+ " 205 \n",
+ " 190.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202449 \n",
+ " 3 \n",
+ " 108487 \n",
+ " 99037.0 \n",
+ " 117937.0 \n",
+ " 163 \n",
+ " 149.0 \n",
+ " 177.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202448 \n",
+ " 3 \n",
+ " 87381 \n",
+ " 78687.0 \n",
+ " 96075.0 \n",
+ " 131 \n",
+ " 118.0 \n",
+ " 144.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202447 \n",
+ " 3 \n",
+ " 76286 \n",
+ " 67626.0 \n",
+ " 84946.0 \n",
+ " 114 \n",
+ " 101.0 \n",
+ " 127.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2090 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2091 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2092 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2093 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2094 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2095 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2096 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2097 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2098 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2099 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2100 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2101 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2102 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2103 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2104 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2105 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2106 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2107 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2108 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2109 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2110 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2111 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2112 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2113 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2114 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2115 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2116 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2117 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2118 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2119 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2120 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202524 3 22816 17621.0 28011.0 34 26.0 \n",
+ "1 202523 3 24564 19382.0 29746.0 37 29.0 \n",
+ "2 202522 3 18755 14333.0 23177.0 28 21.0 \n",
+ "3 202521 3 23760 18671.0 28849.0 35 27.0 \n",
+ "4 202520 3 20265 15814.0 24716.0 30 23.0 \n",
+ "5 202519 3 16264 12394.0 20134.0 24 18.0 \n",
+ "6 202518 3 18115 13975.0 22255.0 27 21.0 \n",
+ "7 202517 3 22150 17291.0 27009.0 33 26.0 \n",
+ "8 202516 3 28564 22550.0 34578.0 43 34.0 \n",
+ "9 202515 3 35721 29592.0 41850.0 53 44.0 \n",
+ "10 202514 3 37579 31232.0 43926.0 56 47.0 \n",
+ "11 202513 3 39673 33686.0 45660.0 59 50.0 \n",
+ "12 202512 3 52543 45627.0 59459.0 78 68.0 \n",
+ "13 202511 3 59469 52154.0 66784.0 89 78.0 \n",
+ "14 202510 3 60334 53048.0 67620.0 90 79.0 \n",
+ "15 202509 3 84531 74994.0 94068.0 126 112.0 \n",
+ "16 202508 3 136020 124824.0 147216.0 203 186.0 \n",
+ "17 202507 3 208952 195988.0 221916.0 312 293.0 \n",
+ "18 202506 3 273519 258159.0 288879.0 408 385.0 \n",
+ "19 202505 3 334395 318416.0 350374.0 499 475.0 \n",
+ "20 202504 3 350043 332885.0 367201.0 522 496.0 \n",
+ "21 202503 3 252772 238917.0 266627.0 377 356.0 \n",
+ "22 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "23 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "24 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "25 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "26 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "27 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "28 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "29 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2090 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2091 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2092 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2093 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2094 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2095 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2096 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2097 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2098 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2099 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2100 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2101 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2102 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2103 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2104 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2105 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2106 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2107 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2108 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2109 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2110 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2111 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2112 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2113 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2114 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2115 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2116 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2117 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2118 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2119 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 42.0 FR France \n",
+ "1 45.0 FR France \n",
+ "2 35.0 FR France \n",
+ "3 43.0 FR France \n",
+ "4 37.0 FR France \n",
+ "5 30.0 FR France \n",
+ "6 33.0 FR France \n",
+ "7 40.0 FR France \n",
+ "8 52.0 FR France \n",
+ "9 62.0 FR France \n",
+ "10 65.0 FR France \n",
+ "11 68.0 FR France \n",
+ "12 88.0 FR France \n",
+ "13 100.0 FR France \n",
+ "14 101.0 FR France \n",
+ "15 140.0 FR France \n",
+ "16 220.0 FR France \n",
+ "17 331.0 FR France \n",
+ "18 431.0 FR France \n",
+ "19 523.0 FR France \n",
+ "20 548.0 FR France \n",
+ "21 398.0 FR France \n",
+ "22 405.0 FR France \n",
+ "23 370.0 FR France \n",
+ "24 326.0 FR France \n",
+ "25 323.0 FR France \n",
+ "26 220.0 FR France \n",
+ "27 177.0 FR France \n",
+ "28 144.0 FR France \n",
+ "29 127.0 FR France \n",
+ "... ... ... ... \n",
+ "2090 59.0 FR France \n",
+ "2091 64.0 FR France \n",
+ "2092 97.0 FR France \n",
+ "2093 93.0 FR France \n",
+ "2094 80.0 FR France \n",
+ "2095 116.0 FR France \n",
+ "2096 149.0 FR France \n",
+ "2097 281.0 FR France \n",
+ "2098 395.0 FR France \n",
+ "2099 485.0 FR France \n",
+ "2100 544.0 FR France \n",
+ "2101 689.0 FR France \n",
+ "2102 722.0 FR France \n",
+ "2103 762.0 FR France \n",
+ "2104 926.0 FR France \n",
+ "2105 1113.0 FR France \n",
+ "2106 1236.0 FR France \n",
+ "2107 832.0 FR France \n",
+ "2108 459.0 FR France \n",
+ "2109 207.0 FR France \n",
+ "2110 190.0 FR France \n",
+ "2111 198.0 FR France \n",
+ "2112 224.0 FR France \n",
+ "2113 266.0 FR France \n",
+ "2114 219.0 FR France \n",
+ "2115 176.0 FR France \n",
+ "2116 163.0 FR France \n",
+ "2117 195.0 FR France \n",
+ "2118 308.0 FR France \n",
+ "2119 213.0 FR France \n",
+ "\n",
+ "[2120 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Are there missing data points? Yes, week 19 of year 1989 does not have any observed values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1883 \n",
+ " 198919 \n",
+ " 3 \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1883 198919 3 - NaN NaN - NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1883 FR France "
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We delete this point, which does not have big consequence for our rather simple analysis."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202524 \n",
+ " 3 \n",
+ " 22816 \n",
+ " 17621.0 \n",
+ " 28011.0 \n",
+ " 34 \n",
+ " 26.0 \n",
+ " 42.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202523 \n",
+ " 3 \n",
+ " 24564 \n",
+ " 19382.0 \n",
+ " 29746.0 \n",
+ " 37 \n",
+ " 29.0 \n",
+ " 45.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202522 \n",
+ " 3 \n",
+ " 18755 \n",
+ " 14333.0 \n",
+ " 23177.0 \n",
+ " 28 \n",
+ " 21.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202521 \n",
+ " 3 \n",
+ " 23760 \n",
+ " 18671.0 \n",
+ " 28849.0 \n",
+ " 35 \n",
+ " 27.0 \n",
+ " 43.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202520 \n",
+ " 3 \n",
+ " 20265 \n",
+ " 15814.0 \n",
+ " 24716.0 \n",
+ " 30 \n",
+ " 23.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202519 \n",
+ " 3 \n",
+ " 16264 \n",
+ " 12394.0 \n",
+ " 20134.0 \n",
+ " 24 \n",
+ " 18.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202518 \n",
+ " 3 \n",
+ " 18115 \n",
+ " 13975.0 \n",
+ " 22255.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202517 \n",
+ " 3 \n",
+ " 22150 \n",
+ " 17291.0 \n",
+ " 27009.0 \n",
+ " 33 \n",
+ " 26.0 \n",
+ " 40.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202516 \n",
+ " 3 \n",
+ " 28564 \n",
+ " 22550.0 \n",
+ " 34578.0 \n",
+ " 43 \n",
+ " 34.0 \n",
+ " 52.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202515 \n",
+ " 3 \n",
+ " 35721 \n",
+ " 29592.0 \n",
+ " 41850.0 \n",
+ " 53 \n",
+ " 44.0 \n",
+ " 62.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202514 \n",
+ " 3 \n",
+ " 37579 \n",
+ " 31232.0 \n",
+ " 43926.0 \n",
+ " 56 \n",
+ " 47.0 \n",
+ " 65.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202513 \n",
+ " 3 \n",
+ " 39673 \n",
+ " 33686.0 \n",
+ " 45660.0 \n",
+ " 59 \n",
+ " 50.0 \n",
+ " 68.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202512 \n",
+ " 3 \n",
+ " 52543 \n",
+ " 45627.0 \n",
+ " 59459.0 \n",
+ " 78 \n",
+ " 68.0 \n",
+ " 88.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202511 \n",
+ " 3 \n",
+ " 59469 \n",
+ " 52154.0 \n",
+ " 66784.0 \n",
+ " 89 \n",
+ " 78.0 \n",
+ " 100.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202510 \n",
+ " 3 \n",
+ " 60334 \n",
+ " 53048.0 \n",
+ " 67620.0 \n",
+ " 90 \n",
+ " 79.0 \n",
+ " 101.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202509 \n",
+ " 3 \n",
+ " 84531 \n",
+ " 74994.0 \n",
+ " 94068.0 \n",
+ " 126 \n",
+ " 112.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202508 \n",
+ " 3 \n",
+ " 136020 \n",
+ " 124824.0 \n",
+ " 147216.0 \n",
+ " 203 \n",
+ " 186.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202507 \n",
+ " 3 \n",
+ " 208952 \n",
+ " 195988.0 \n",
+ " 221916.0 \n",
+ " 312 \n",
+ " 293.0 \n",
+ " 331.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202506 \n",
+ " 3 \n",
+ " 273519 \n",
+ " 258159.0 \n",
+ " 288879.0 \n",
+ " 408 \n",
+ " 385.0 \n",
+ " 431.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202505 \n",
+ " 3 \n",
+ " 334395 \n",
+ " 318416.0 \n",
+ " 350374.0 \n",
+ " 499 \n",
+ " 475.0 \n",
+ " 523.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202504 \n",
+ " 3 \n",
+ " 350043 \n",
+ " 332885.0 \n",
+ " 367201.0 \n",
+ " 522 \n",
+ " 496.0 \n",
+ " 548.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202503 \n",
+ " 3 \n",
+ " 252772 \n",
+ " 238917.0 \n",
+ " 266627.0 \n",
+ " 377 \n",
+ " 356.0 \n",
+ " 398.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202502 \n",
+ " 3 \n",
+ " 257247 \n",
+ " 242991.0 \n",
+ " 271503.0 \n",
+ " 384 \n",
+ " 363.0 \n",
+ " 405.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202501 \n",
+ " 3 \n",
+ " 231549 \n",
+ " 214627.0 \n",
+ " 248471.0 \n",
+ " 345 \n",
+ " 320.0 \n",
+ " 370.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202452 \n",
+ " 3 \n",
+ " 201726 \n",
+ " 185870.0 \n",
+ " 217582.0 \n",
+ " 302 \n",
+ " 278.0 \n",
+ " 326.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202451 \n",
+ " 3 \n",
+ " 201697 \n",
+ " 187843.0 \n",
+ " 215551.0 \n",
+ " 302 \n",
+ " 281.0 \n",
+ " 323.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202450 \n",
+ " 3 \n",
+ " 136694 \n",
+ " 126369.0 \n",
+ " 147019.0 \n",
+ " 205 \n",
+ " 190.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202449 \n",
+ " 3 \n",
+ " 108487 \n",
+ " 99037.0 \n",
+ " 117937.0 \n",
+ " 163 \n",
+ " 149.0 \n",
+ " 177.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202448 \n",
+ " 3 \n",
+ " 87381 \n",
+ " 78687.0 \n",
+ " 96075.0 \n",
+ " 131 \n",
+ " 118.0 \n",
+ " 144.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202447 \n",
+ " 3 \n",
+ " 76286 \n",
+ " 67626.0 \n",
+ " 84946.0 \n",
+ " 114 \n",
+ " 101.0 \n",
+ " 127.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2090 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2091 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2092 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2093 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2094 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2095 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2096 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2097 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2098 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2099 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2100 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2101 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2102 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2103 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2104 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2105 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2106 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2107 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2108 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2109 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2110 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2111 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2112 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2113 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2114 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2115 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2116 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2117 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2118 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2119 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2119 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202524 3 22816 17621.0 28011.0 34 26.0 \n",
+ "1 202523 3 24564 19382.0 29746.0 37 29.0 \n",
+ "2 202522 3 18755 14333.0 23177.0 28 21.0 \n",
+ "3 202521 3 23760 18671.0 28849.0 35 27.0 \n",
+ "4 202520 3 20265 15814.0 24716.0 30 23.0 \n",
+ "5 202519 3 16264 12394.0 20134.0 24 18.0 \n",
+ "6 202518 3 18115 13975.0 22255.0 27 21.0 \n",
+ "7 202517 3 22150 17291.0 27009.0 33 26.0 \n",
+ "8 202516 3 28564 22550.0 34578.0 43 34.0 \n",
+ "9 202515 3 35721 29592.0 41850.0 53 44.0 \n",
+ "10 202514 3 37579 31232.0 43926.0 56 47.0 \n",
+ "11 202513 3 39673 33686.0 45660.0 59 50.0 \n",
+ "12 202512 3 52543 45627.0 59459.0 78 68.0 \n",
+ "13 202511 3 59469 52154.0 66784.0 89 78.0 \n",
+ "14 202510 3 60334 53048.0 67620.0 90 79.0 \n",
+ "15 202509 3 84531 74994.0 94068.0 126 112.0 \n",
+ "16 202508 3 136020 124824.0 147216.0 203 186.0 \n",
+ "17 202507 3 208952 195988.0 221916.0 312 293.0 \n",
+ "18 202506 3 273519 258159.0 288879.0 408 385.0 \n",
+ "19 202505 3 334395 318416.0 350374.0 499 475.0 \n",
+ "20 202504 3 350043 332885.0 367201.0 522 496.0 \n",
+ "21 202503 3 252772 238917.0 266627.0 377 356.0 \n",
+ "22 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "23 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "24 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "25 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "26 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "27 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "28 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "29 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2090 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2091 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2092 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2093 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2094 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2095 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2096 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2097 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2098 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2099 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2100 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2101 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2102 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2103 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2104 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2105 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2106 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2107 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2108 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2109 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2110 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2111 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2112 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2113 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2114 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2115 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2116 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2117 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2118 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2119 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 42.0 FR France \n",
+ "1 45.0 FR France \n",
+ "2 35.0 FR France \n",
+ "3 43.0 FR France \n",
+ "4 37.0 FR France \n",
+ "5 30.0 FR France \n",
+ "6 33.0 FR France \n",
+ "7 40.0 FR France \n",
+ "8 52.0 FR France \n",
+ "9 62.0 FR France \n",
+ "10 65.0 FR France \n",
+ "11 68.0 FR France \n",
+ "12 88.0 FR France \n",
+ "13 100.0 FR France \n",
+ "14 101.0 FR France \n",
+ "15 140.0 FR France \n",
+ "16 220.0 FR France \n",
+ "17 331.0 FR France \n",
+ "18 431.0 FR France \n",
+ "19 523.0 FR France \n",
+ "20 548.0 FR France \n",
+ "21 398.0 FR France \n",
+ "22 405.0 FR France \n",
+ "23 370.0 FR France \n",
+ "24 326.0 FR France \n",
+ "25 323.0 FR France \n",
+ "26 220.0 FR France \n",
+ "27 177.0 FR France \n",
+ "28 144.0 FR France \n",
+ "29 127.0 FR France \n",
+ "... ... ... ... \n",
+ "2090 59.0 FR France \n",
+ "2091 64.0 FR France \n",
+ "2092 97.0 FR France \n",
+ "2093 93.0 FR France \n",
+ "2094 80.0 FR France \n",
+ "2095 116.0 FR France \n",
+ "2096 149.0 FR France \n",
+ "2097 281.0 FR France \n",
+ "2098 395.0 FR France \n",
+ "2099 485.0 FR France \n",
+ "2100 544.0 FR France \n",
+ "2101 689.0 FR France \n",
+ "2102 722.0 FR France \n",
+ "2103 762.0 FR France \n",
+ "2104 926.0 FR France \n",
+ "2105 1113.0 FR France \n",
+ "2106 1236.0 FR France \n",
+ "2107 832.0 FR France \n",
+ "2108 459.0 FR France \n",
+ "2109 207.0 FR France \n",
+ "2110 190.0 FR France \n",
+ "2111 198.0 FR France \n",
+ "2112 224.0 FR France \n",
+ "2113 266.0 FR France \n",
+ "2114 219.0 FR France \n",
+ "2115 176.0 FR France \n",
+ "2116 163.0 FR France \n",
+ "2117 195.0 FR France \n",
+ "2118 308.0 FR France \n",
+ "2119 213.0 FR France \n",
+ "\n",
+ "[2119 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Our dataset uses an uncommon encoding; the week number is attached\n",
+ "to the year number, leaving the impression of a six-digit integer.\n",
+ "That is how Pandas interprets it.\n",
+ "\n",
+ "A second problem is that Pandas does not know about week numbers.\n",
+ "It needs to be given the dates of the beginning and end of the week.\n",
+ "We use the library `isoweek` for that.\n",
+ "\n",
+ "Since the conversion is a bit lengthy, we write a small Python \n",
+ "function for doing it. Then we apply it to all points in our dataset. \n",
+ "The results go into a new column 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "There are two more small changes to make.\n",
+ "\n",
+ "First, we define the observation periods as the new index of\n",
+ "our dataset. That turns it into a time series, which will be\n",
+ "convenient later on.\n",
+ "\n",
+ "Second, we sort the points chronologically."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data['inc'] = pd.to_numeric(sorted_data['inc'], errors='coerce')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We check the consistency of the data. Between the end of a period and\n",
+ "the beginning of the next one, the difference should be zero, or very small.\n",
+ "We tolerate an error of one second.\n",
+ "\n",
+ "This is OK except for one pair of consecutive periods between which\n",
+ "a whole week is missing.\n",
+ "\n",
+ "We recognize the dates: it's the week without observations that we\n",
+ "have deleted earlier!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A first look at the data!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 62,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYHMV5/7/vHHvq2F1d6EQCiUuYUwgwYGMwV3yAYxPjYCNjEn52SOzYcRJIQrCNsSF2jE0MxNjcdgwYYyNzWoj7RgKBEJKQQNdKQlppV9Jq75mp3x9d1VPdXX3MTM+xq/fzPPvsTHXXMdXd9dZ7VDUJIcAwDMMwpZKodgMYhmGYkQELFIZhGCYWWKAwDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEQqraDagk48ePFzNnzqx2MxiGYYYVS5cu3SGEmBB23j4lUGbOnIklS5ZUuxkMwzDDCiLaEOU8NnkxDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTC6EChYhuI6LtRPS2ltZGRIuIaI3836odu4KI1hLRaiI6S0s/loiWy2M3EBHJ9Hoiulemv0JEM7U8C2Qda4hogZY+S567RuatK70rGIZhmFKIoqHcAeBsV9rlABYLIeYAWCy/g4gOA3ABgLkyz01ElJR5bgZwKYA58k+VeQmALiHEbADXA7hOltUG4CoAxwOYD+AqTXBdB+B6WX+XLINhGIapIqECRQjxLIBOV/K5AO6Un+8EcJ6Wfo8QYkAIsQ7AWgDziWgygDFCiJeE9c7hu1x5VFn3Azhdai9nAVgkhOgUQnQBWATgbHnsNHmuu/4Rx2vrO7H6g+5qN4NhGCaUYhc2ThJCbAUAIcRWIpoo06cCeFk7r12mDcnP7nSVZ5MsK0NEuwGM09NdecYB2CWEyBjKGnGc/78vAQDWX/uJKreEYRgmmLid8mRIEwHpxeQJKsvbIKJLiWgJES3p6OjwO41hGIYpkWIFyjZpxoL8v12mtwOYrp03DcAWmT7NkO7IQ0QpAGNhmdj8ytoBoEWe6y7LgxDiFiHEPCHEvAkTQreiYRiGYYqkWIGyEICKuloA4EEt/QIZuTULlvP9VWke6yaiE6QP5CJXHlXW5wA8Kf0sjwM4k4hapTP+TACPy2NPyXPd9TMMwzBVItSHQkS/BXAqgPFE1A4r8upaAPcR0SUANgI4HwCEECuI6D4A7wDIALhMCJGVRX0NVsRYI4BH5R8A3ArgbiJaC0szuUCW1UlEVwN4TZ73PSGECg74VwD3ENH3Abwhy2AYhmGqCFkT/n2DefPmieG22/DMyx8GwE55hmGqBxEtFULMCzuPV8ozDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEAgsUhmEYJhZYoDAMwzCxwAKFYRiGiQUWKAzDMEwssEBhGIZhYoEFCsMwDBMLLFAYhmGYWGCBwhTM/z7zHmZe/jCyuX3n1QcMw4TDAoUpmOsXvQsAGMzkqtwShmFqCRYoNcy+9PIzhmGGPyxQGIZhmFhggVLD1KqCQlTtFjAMU4uwQGGKRqBGJR7DMFWBBUoNU6vDNYFVFIZhvLBAYYqmVk1yDMNUBxYoNQxHeTEMM5xggcIwDMPEAguUGqZW9RMV5VWr7WMYpjqwQGGKhk1yDMPosECpYWp1vFYxXjXaPIZhqgQLFKZoalXgMQxTHVig1DC8cJBhmOEEC5RhzOZdfTjgioexcuue6jSA5R3DMBolCRQi+iYRrSCit4not0TUQERtRLSIiNbI/63a+VcQ0VoiWk1EZ2npxxLRcnnsBiIrjoiI6onoXpn+ChHN1PIskHWsIaIFpfyOWiXMpLRoxQfICeC3r26sTIMk8vKwBsUwjIOiBQoRTQXwdQDzhBCHA0gCuADA5QAWCyHmAFgsv4OIDpPH5wI4G8BNRJSUxd0M4FIAc+Tf2TL9EgBdQojZAK4HcJ0sqw3AVQCOBzAfwFW64NpXoCrv0sg+FIZhdEo1eaUANBJRCkATgC0AzgVwpzx+J4Dz5OdzAdwjhBgQQqwDsBbAfCKaDGCMEOIlYcWh3uXKo8q6H8DpUns5C8AiIUSnEKILwCLkhRBTZjjKi2EYE0ULFCHEZgA/BrARwFYAu4UQfwYwSQixVZ6zFcBEmWUqgE1aEe0ybar87E535BFCZADsBjAuoKwRRa1rALwOhWEYnVJMXq2wNIhZAKYAaCaiLwZlMaSJgPRi87jbeSkRLSGiJR0dHQHNYyLDK+UZhjFQisnr4wDWCSE6hBBDAB4A8GEA26QZC/L/dnl+O4DpWv5psExk7fKzO92RR5rVxgLoDCjLgxDiFiHEPCHEvAkTJhT5U6tDVKc3KwoMw9QCpQiUjQBOIKIm6dc4HcBKAAsBqKirBQAelJ8XArhARm7NguV8f1WaxbqJ6ARZzkWuPKqszwF4UvpZHgdwJhG1Sk3pTJm2T1HtNyeyIGMYRidVbEYhxCtEdD+A1wFkALwB4BYAowDcR0SXwBI658vzVxDRfQDekedfJoTIyuK+BuAOAI0AHpV/AHArgLuJaC0szeQCWVYnEV0N4DV53veEEJ3F/pZapdYHbA4bZhhGp2iBAgBCiKtghe/qDMDSVkznXwPgGkP6EgCHG9L7IQWS4dhtAG4rsMkjkkoP7LZixPKEYRgNXilfw4SN19V+ES/LE4ZhdFigjAAqbRqzV8qzRGEYRoMFSg0Tus6j2l55hmEYDRYoTNGwU55hGB0WKDVMrQ/XxZi8OroH8Fe/eAk79g7E3yCGYaoKCxSmYEp5p/ydL67Hq+s68X+vVHaHZIZhyg8LlBomqgZQLU2mlL282PvDMCMPFijDmGoNyvZuw7Vuk2MYpqKwQKllRuCAzY58hhm5sEAZAQxHTYEjnhlm5MECpYap9dn8cBRkDMOUDxYowxiq0qZapbxTnoUQw4xcWKDUMKEL5ascK1WKcCC2eTHMiIMFClMw/E55hmFMsECpYXjAZhhmOMECpYYpZeFgJSimfbX9ixiGKQUWKCOAaskdFg4Mw+iwQKlhQl+wVSW/tr2XF0sUhmE0WKAwJcBhwwzD5GGBUsPU7uBb+hsbOWqYYUYeLFBGALUreBiG2ZdggVLDhK1Ep4jnlYtiaq317WQYhikeFijDmGqbjVgzYhhGhwVKLVOjA3b+jY2lvGCLnSgMM9JggcIUDWsoDMPosECpYWp1vC7pjY0heXb3DaG7f6iIghmGqTYsUArgyVXb8OamXdVuhofhqCn4+X+O/O6fceR3/1zZxjAMEwupajdgOPGVO5YAANZf+4mK1Ffz29eXSYfKDUMByTAMayhMCRSjGbGsYJiRCwuUGqZW12zEEa7MMV4MM/JggcIUzXD03TAMUz5KEihE1EJE9xPRKiJaSUQnElEbES0iojXyf6t2/hVEtJaIVhPRWVr6sUS0XB67geT7YYmonojulemvENFMLc8CWccaIlpQyu+oVUIHbHs9SGVRvpta1aAYhqkOpWooPwPwmBDiEABHAlgJ4HIAi4UQcwAslt9BRIcBuADAXABnA7iJiJKynJsBXApgjvw7W6ZfAqBLCDEbwPUArpNltQG4CsDxAOYDuEoXXPsKJYXvxkBRPhRWaxhmxFK0QCGiMQA+AuBWABBCDAohdgE4F8Cd8rQ7AZwnP58L4B4hxIAQYh2AtQDmE9FkAGOEEC8Ja7S5y5VHlXU/gNOl9nIWgEVCiE4hRBeARcgLoRHDSB56q71tDMMw8VOKhnIAgA4AtxPRG0T0KyJqBjBJCLEVAOT/ifL8qQA2afnbZdpU+dmd7sgjhMgA2A1gXEBZTAUZyQKPYZjCKUWgpAAcA+BmIcTRAHogzVs+mOakIiC92DzOSokuJaIlRLSko6MjoHm1R62bh4p6p3xt/ySGYUqgFIHSDqBdCPGK/H4/LAGzTZqxIP9v186fruWfBmCLTJ9mSHfkIaIUgLEAOgPK8iCEuEUIMU8IMW/ChAlF/Mzap9LOcYohGKDaizIZhomfogWKEOIDAJuI6GCZdDqAdwAsBKCirhYAeFB+XgjgAhm5NQuW8/1VaRbrJqITpH/kIlceVdbnADwp/SyPAziTiFqlM/5MmTaiCF0pX2VHBGsbDMPolLr1yj8A+A0R1QF4H8DFsITUfUR0CYCNAM4HACHECiK6D5bQyQC4TAiRleV8DcAdABoBPCr/AMvhfzcRrYWlmVwgy+okoqsBvCbP+54QorPE38JEJC/GijB5xdkQhmFqipIEihBiGYB5hkOn+5x/DYBrDOlLABxuSO+HFEiGY7cBuK2Q9jK1A0d5MczIg1fK1zC1blKq9fYNFz5784v49M+fr3YzGKZkeLfhkUC1FjYWk4eFkIelG7qq3QSGiQXWUGqYsOgtFbZb8a1XpL2quN2G9y2JsqmzF8vbd1e7GQxTEVhDGcZUe2guZZ1MtSPUKsUp//UUgMq9Q4dhqglrKDVM6HhdZYlSbYHGlMZTq7ZjIJMNP5FhIsICZRgzHM1H1fSh/Pjx1XjxvR3Va0AN8eq6Tlx8x2v47z+/W+2mMCMIFig1TNSxt1pbtJRSbTUMXj9/ai3++pevhJ+4D7BtTz8AYHNXX5VbwowkWKAMY6odMTUcNSTGYiibAwCkk8PLlzXz8ofxzXuXVbsZjA8sUGqYMM2jWsO57U+vQXnSP5TF9u7+ajej5lECpS41/IaAP7yxudpNYHwYfncTY1N9DaV4yhXkdeGvXsH8axaXp/ARxGBGaSg8BDDxwXdTDRMe5FUdiWLvNlyDGkqtLhKstVcRZHNWe5KJ4WXyYmobFijDGDVGVXqoqrGxcViQ4z5j9gFYoNQwUQfuqr1TvpjdhoepNNq+px9vbtpVdP5cjf3ufWVhKVNZWKAMY6o9RA23sOFSOOP6Z3HujS8UnT9bJhXljY1dWP1Bd9H5a0zOMcMc3nqlpgl52qs8GuxLY9HuvqGS8pfrUn3mphcBFL61S/6tm/vSVWTKDWsoMSGEwA2L12DzrsotFKv2UFDUO+XL0I7hQLbGVIFqaogf/8kzuO+1TVVsAVMuWKDExHsdPfjJonfx1buXxlZm2BhUrTEqlnfKV9iGX23fTa35UBTVaNba7XvxL79/q/IVM2WHBUpsWE9mz2CmSjVXsL7aHBsDqXabRa669XuoklO+2oKdKS8sUIrA/FDEMG131xOxHVV7SIfR2BBXU4vt61o1eZlatXPvAD7YXZ7dBmqsG5iYYad8EeQE4N4CKQ4zUKFU+9ksLmy4DA2JVG88FZuufbR81b5aToIWpx77/ScAlOcdLrXVC0zcsIZSBKYQ0IR8QuMcOGrVhxJH/ZW2uMTVVZlccbarHK9sBMAmr5EOC5QiMAmNvPmpcu0Qrv+Vopa3XvEjrrYWu56kduVJZRtWu/3AxAELlCIwCRSVFmdcf+SyhpELpVLrHtwz4bjqHcqOFB9KlZzybPQa0bBAKQLTLFXuBo4iLSJFUW3zQUnvlI+xHSbcTYurq4r9zbVm8qqWllljcpWJGRYoRWASGuXYWiPyXl4VnvUNh0HBrUXGJ1Aqm69c2FFew0igVHsCxYTDAqUITOaLckTx6EWaHqZqP19Fmbwq1GZ3NXEJ3WKvc61FeVWLUq5DjSl5jAEWKEVgNnlZaZWMXqq2PbqWx8hymbxG2qBW6XuolP5jDaX2YYFSBKYbW2ktcQoU/WEPepYq/Zzlf2PxFZe7ye6BMraFjUWWVGtDYfV8KKyhjGRYoBSB0eSlNJQKRs/YL9iq2mLBePPGOQN1FxWXyal4H0ptjYbVi/IqJW9t9SHjhQVKEVTK5OXwoZiOx1dVURQXNhxwLM5ta8pm8qp2r8dLpX9NKXuajbCuH5GULFCIKElEbxDRQ/J7GxEtIqI18n+rdu4VRLSWiFYT0Vla+rFEtFweu4HkVrREVE9E98r0V4hoppZngaxjDREtKPV3FIIxykuZvCrYjvwrgIdflJcxyKD0YrWy3BIlpnKL1VDiqT4+qrR/fSn3KguU2icODeUbAFZq3y8HsFgIMQfAYvkdRHQYgAsAzAVwNoCbiCgp89wM4FIAc+Tf2TL9EgBdQojZAK4HcJ0sqw3AVQCOBzAfwFW64Co3xoWNUsgkyuSVNw/Aw9cpb8pazm1rqh3lVasMp7Dhkdb3I5GSBAoRTQPwCQC/0pLPBXCn/HwngPO09HuEEANCiHUA1gKYT0STAYwRQrwkrFHzLlceVdb9AE6X2stZABYJITqFEF0AFiEvhMqOyYdip1Vh5lctp3zcm0PGavIqU9kjbh1KxaO8ajeQgymdUjWUnwL4FwC6EWiSEGIrAMj/E2X6VAD6a9raZdpU+dmd7sgjhMgA2A1gXEBZFcG06jnvlI+PUB+KTPzzO9vQ2TMYY83RiN0pH+e2NZ6tV+IqN6aCqkylX3CmKKX7WEOpfYoWKET0SQDbhRBRX1FouoNFQHqxeZyVEl1KREuIaElHR0ekhprQByijhmI75ctl8go+fv2id8tSbxClRewY0mIcL9wyP67BqPhyamswtO/nCjerJA2lil34xzc2Y9mmXdVrwDChFA3lJACfJqL1AO4BcBoR/RrANmnGgvy/XZ7fDmC6ln8agC0yfZoh3ZGHiFIAxgLoDCjLgxDiFiHEPCHEvAkTJhT3S+G8mY1RXuVYKR/ytFc7FLW4+v3zxPpzyhTlVVtioXiq9juG6cLGf7x3Gc678YWq1T9cKFqgCCGuEEJME0LMhOVsf1II8UUACwGoqKsFAB6UnxcCuEBGbs2C5Xx/VZrFuonoBOkfuciVR5X1OVmHAPA4gDOJqFU648+UaWVDv5WD1lCUy5BgEi7Dcf1JvozyBhl4FzZWV0OJkq0aA2bFw4ZLyTtSpPkIphzrUK4FcAYRrQFwhvwOIcQKAPcBeAfAYwAuE0JkZZ6vwXLsrwXwHoBHZfqtAMYR0VoA34KMGBNCdAK4GsBr8u97Mq1sOExeAbsNl2sdShiF1pvJ5vC7JZtqahfcOJtSa7sNRyHuSyGEwOZdfT4H8+dUklJMXuxDqX1ieQWwEOJpAE/LzzsBnO5z3jUArjGkLwFwuCG9H8D5PmXdBuC2YttcKPqtHBTlVa4VyGYndvHc9sI6/OCRVcgJgc8fN6OgvHFs21H2lfIR6iuq3DKuQ8kJgWSM989dL23AVQtX4OGvn4y5U8a62lOdwTnuUHOmtuCV8hHRH4TAKK9Y9/KK3qZC6eodAgDs2Ft8dFjsYcNFt8RUj7O0+JzysRRjJO4J+Mvv7wQAbNjZ61tXpQdp1lBGNixQIqIPngMZ71L5crwPJYxSZpnphCX5hrLF74VRzPMdtLq/lG053NRalFeUbHEPmDlbaza0J0L+cpjDSiqS5UnNwwKlCHoHs560/G7D8akoYQ+0frjQWtNJ69JXWqAE5S2rU17on2szdDXusu21tgE3Ry3tYh1GjTWHMcACJSL6w9U7mPEcL8fCRr/64yAlBUqmiHekl2YHL1/YsENQBGgopSiTRWsoEYbDuDUUVZppkhPF5FUOExObvEY2LFCKYGDIYPKyNZT46gn1oZRQdjqpTF4lzNZLqN+Ut9QBI+cvT4aFhhK7QAk0eYXXVZa1VTFrtYyZbXv6Me/7i7B2e3dF62WBEhHHwkbj5pDxCxRH/aYBoIQnTG1iWcwglo/yindgLnW80NvjLj8uDaXoF2xFyBb3eJk3eQVoKAENK8cAXkqRrKFE58/vbMOOvYO47YX1Fa2XBUpE9IEkE/Q+lBiNXs5ZtalNxROH4Cum/kCnfInjhX5Z3INP0LFi64ibOIMSAM3kFeEcE7Vm8mJ5Ep3GtLWRe/+Q199bTligRCQsbDhrzwYr1CC4nPJFVlxSJE/cTuQSC9QHK6/Jy197KYRi+6saUV62yctwawjPBy/liFxkk1dlYIFS4+j3sklDKY9T3n+ALJW8yav4MuJ+WVLpTnn9s7+GUkq7y6mhlMspb3xHT4S6yvFbnYK9sAqqtRizlnaTiEoqBh9pMbBAiYh+85s1lPhVlLDnrZQHrEq7lwdSusmrAj6UMkZ5xf3o278zSENxp5cw4EdBL7HQ6+CYFFRQXRmOvhs1iaj01josUIogcPv6YsvMCXR0D/geN26mGMO9UulXsgZlidqWvsEs/ubOJdjU6VwBHlh2TD6U+B3nuqCrYJSXjy/LEXxSZpNXob83LrNloQxDBQVy3XLF284CJSL6dTE9aKVGeV332Cocd80Tjhdlhd0LpTnl1Qym+DJKqd8kIKPe/ItXbcMTK7fh2kdXufJH01BKcX4Xa/7w6+ewwIs4CPKvuessRYOIQq4EARoUFl5OhqOGEkckZjGwQIlI2MwtGzAbjMITK7cBADp7zFqK6bYo5V7JvwK2eGJfKR+xQNX/yYSzt3VB4R4EnGsea8eH4hzA49ZQgo4J4zlOoWwuYOGbW3Ds1YvQZ9gxopA2Ff5zy6fNBTE8BYqcMFa4XhYoUdGuTJBTvliS8gbQd0KpxH1crlXvxdQXtS1KoKRcAiUoyqva61B8y4upXcayZVtNA6K/DyX/2a89Nz21Fjt7Bv23xg8gLg3FL++vnnsfn/qf5wtuVxDV2KcvLtjkVaPoA0mQU97vAm7c2eux+euo2bbfzWteh1L83ZK3glTWhxJUa9TylEBPBAkUT5RXPLPbuIV8KY7mMAd6Lud/zK8qvW/8VsoPyllPJlfawplCB7so2s33H16J5Zt3F1RuR/cAzrr+Wd/nc1jKE+UjY5NXbeIweRmd8uo88wX8yI+ewin/9ZRv+SaBErQ3lW9aRNQCzOr5UEzlFWbycmsowuez+3s19pPy9aHooeExD7C2hmIY94XrHBN+WrfSpocypWmohWso5TF5LXxzC1Zv68ZtL6wz1zsMJYrqn0pb61igRES/LkanfIiGEoYaHAvZP0k/s9BggCgvydqwswdvte8qrOCIlLJS3s+HEuSUDxXOEYn7AS0p6snnc7688HKDfSjmPKrfhwI0lEeWb8X27n5Dm7TyC1RwyhXAYPsTI2htwwV17Su9docFSkTCXwEsZwRFXkD1kGY0J4pzwDANwMXPbvNOef+MH/3R0/j0z1/wL6SIBy1wRlyqUz7AfOS0v0eqxkjcuw1H8Vn4lhlxzYjRh+JzfpgmDmgCxfBeIADoGcjg737zOi669VVv+SHtCqIQDaUQrSIsImoYKiisoQwnggRKsWblRIWjMqq1l5ed12ii0Y/7l56JoqG48ugDjN9g9B9/XI4Hl232rddqV+DhgnGavAodYM2ftcJ9j6n71b2KPsqgrZKfebfDeFwJovYur9M+rnU3YYN8kPbkJuzZG44aiurnSredBUpEopu8SruAfmq9OczWW38p9VUkr3D88y0vaMB4Y2MXAFOUl3/bokQI/frljfjGPcv8K0bxGqi/OcX8OVKZjq15Crsn1aCfcI0AUYT6qPoUAGDRO9uC22cKFChJIwtvm6KQLUfCzL/DUaDYJi/WUGoT/cIE7TZc7AUsZiGS8+Evrt5Kb0MSnCPYrAhYm9099NZWAEDSNRo6TECeFeDFmwd1Sgxs8lDS3lZhEw7539SV+b3ngtbymOs9bMoYAMBxs9qMx4PNTaVoZNGvYcb1JtKBTBa3PPseBg1mujDz73AMG2aTV40TFjYcl4bit4lh2Iy+0JmzylvMjNuOECs4pzaIhM5eg80tgCHKK2CAjUP4BrUrDL9cenrcYbT5QcU0AbL+u02fIoJQz5t3g4+bjpay2t3ZVyFTE9fhXz23Dj94ZBV+t3ST51wK2Sh1GCoo7JSvebTrErSXV7EDjhqkC8lfUshpYaf71lt4Xv/6HQ5hv/U4Ws5CorxiW4dSdE6f8gJW9wPWTPv+pe3GwTvM5KWKM5q8pKrl3pYlilBX6b4CJ2B2XIqZtpDFqe6ylT/H1OZwp/zwkyjrOnoA8MLGmkW/LmYfivN/wdibuZmncGHmgcJ3brWnMEVTzHMWlMcxO44QceMVKPpnEflYIRT/PpRwAWk65a6XNuDbv3sT97zmnVmH+ZxUUtZgpssP+s6MUUyDqi4/gRJkFixlZ4BCfCjusvcOZAAAdUnvkBe2Jms4mryuf+JdAMCevqGK1ssCJSJhs2c1gyz15vOfmQe3qVDJEDR7jVxGyPE7XliHz978ojGP0USjz9b9BistY5CGEpSvJO0s5rEl7L5SA+EWwzYnoftuBTnlc45TtDKD2wNo97pPZ9jCyhgo4C0nKoUII/dvVj4VU5sToU756G2Mkyv/+DbuM0wkonDGYZMAALMnjoqzSaGkKlrbMCbMtqxu1GIFihoaix34ymnyEkL4vJc8uJTv/Okd3zxGE00E+71uIirIh1KC81unkMsrIlxL/XqbQl2b6qw37/UMZrzlh7QrL7xNA7v5Ojh8hUWavJSgMAcKhGtAfgjH5zANxXk8yO9DJutAQFmV4u6XNwAA/uq46QXnndrSCMC7PVG5YQ2lCAIXNoY6C0MeBJ/NIc0T0BIeTntACSfOt74FaSiO2XqEh9vjUA6M8tLLiNTU0Pp1Xl3XicdXfOBbpx/6KRlDP6elicZ0TDhHWA9Buzf4rZuK0k9hJi9TFKS5/MIuhHMtUci5Hs3LXwiGBZkMRx+K2m+t0tvGsIYSEf2eMu42rG7YkJsvmxP26zmNxwMGRU+bDPVHJSDYykMml0OdNvcoaR+wgDyOwcbHDh/kmC11HUoU/HL+1S9eAgCsv/YTxnP9qnTcVwZnRyJo9qz/3oKd8j4aiqMPfbTEMKd8mQSK434PGSjdx9VXo7ALM3nFHCpeCVR4dKX9P6yhRCRs8FYXzuQAdZznc9faarfPLKwQ4RKFODSUoravh3+9hTrlvY53f3ON45jhGkWdyRW0TijCufo5gyaBkvAPaQ2LesoLFO8xv3VTjt2GQ6K4wkxEYde46EAShE9m3MeDojDzK+XDteLhAguUGid8Ly/rf9jN53eB82HD5jrNbTJ/jkJ+JW14RvfMOW9zLqxOqz7nf9MxwH+ADzLzBfmfgsxh7rxBFBbW7f/NlGoyawW9G9ySsno1AAAgAElEQVSpAfkfL+R1C86Jk6nF+XvYz7Rl3+NGIajVVYITpVAfSt7k5T033Ck//ATKUEAQQjlhgRKRsGicMEdlUF7Hcb9B0WjxCB4kAWDH3gEsfHOLIa9vsR7cA4cpgCAIfUCzBUrIoO43WAUNSEECNsgcBkR/8Ap5PiP5ULRzhgo0eYVFPQXt55S/JsIn3X/AD12HEnCPZzX1sHANxfzZfK5f27x9nJ/khN9ztcTmXX14evV247Fhp6EQ0XQieoqIVhLRCiL6hkxvI6JFRLRG/m/V8lxBRGuJaDURnaWlH0tEy+WxG0iGFBFRPRHdK9NfIaKZWp4Fso41RLSg2N9RDMGbQ4bMnHxMYiaTV9hoH+aUBYBL7lyCr//2Dce76q28/rNIN+6BLlHg++hNfiHzQj0tT4SwYc/sOkACh9nuo9rJC4ryihDR5Izy8p5Ehjd5mtoS7EPx5s2bgPzb4xsWHLKI1y+CDHCaTwv3oUTP63dvmPtRtdevrNqUKJ+84Tl8+fbXjMeU+XTYCBQAGQD/JIQ4FMAJAC4josMAXA5gsRBiDoDF8jvksQsAzAVwNoCbiCgpy7oZwKUA5si/s2X6JQC6hBCzAVwP4DpZVhuAqwAcD2A+gKt0wVUOwiKQom69EupD8THNmHI5zRPmcjd3WW+hc79dL0hTcOMxxZiEXwBZg4YSZPO3jkcRKGazhqn8MH9DVA2lkG3TI2ko2mezUz7I5BU8+bD9VSafnzAfi6IFqGaaTHTWcVW2/zGrfO8J727rxszLH8ayTd738ISZy/R9ujzaq+wL03UOuieB8Pt8255+/Oq590sKRy+0TgDo6rUWLQb1xbARKEKIrUKI1+XnbgArAUwFcC6AO+VpdwI4T34+F8A9QogBIcQ6AGsBzCeiyQDGCCFeElbP3OXKo8q6H8DpUns5C8AiIUSnEKILwCLkhVBZCHNW2k75In0opuN+IcTm9gUfd5MfbMLPdQujvMkrWl3OQUT9Nz3YwX1snZP/HCg0PFE++kDvPyEIJeQ0v23T/bLpbTGZvBTm/tKPm8r2z2uvFXGlhw341jm5wONBfan/RtNpyoTzkMlMGzIpeG5Nh+/xIAuCn3ANqkvnst+8ju8/vBLv7+gJPrEAgkKvo5yrBPKwESg60hR1NIBXAEwSQmwFLKEDYKI8bSoAfdlnu0ybKj+70x15hBAZALsBjAsoy9S2S4loCREt6egwv78hCvplKeV9KH4PmykUVz8z7A2H/gOWs3xT3jDcUV75zfSiFaLf8HZ0mXFGnSeKyStodu0W7GGDb1Rtq5Cgi8J9KP6CzqQM+Gmz7uOmn6auidc0FCx49bb4+1BUmwz1hpi8UnIHadMg6XgeDIXr65L8FjYGhfwX65TfLbc38dPYiqEQQWDaQTlZxBtg46BkgUJEowD8HsA/CiH2BJ1qSBMB6cXmcSYKcYsQYp4QYt6ECRMCmhdMmIYSdR1K2Mwj6/NAm2+w8Iffb8fZfJRXYHMAeB8U4VOmH/pgHRRyGsXkFTSDDuqvMA0l6gMcdpouFKL4UPR0k8krl/PvrzDzlEoKul/dfZF19KG5zWHbDAUt8g0TuGm5RsukrRXyci7P1itB/SiP+WmIYXXZm0sWEUbvRyEvCDMJFMWw0lCIKA1LmPxGCPGATN4mzViQ/1UYQjsAfQ+BaQC2yPRphnRHHiJKARgLoDOgrLLh8KEEmbxMM6sAU4xC3ZSOB047brq/Imkoqn0+NuUoWob75lY5ot6rGYcQkO0J6Sd/DcX8WW+Xu86wfH5pJsIGjYI1FK08s4Yi/5uEQlhElvA/5rsOJWT3Yz1vlN0M3Aw5ory856l33ITtDGDK2zeole16XoKeT5VkWgdkKsuN8nMVuwByU2cvvnLHa+jVttfJFqDtDBgEStDvLSelRHkRgFsBrBRC/EQ7tBDAAvl5AYAHtfQLZOTWLFjO91elWaybiE6QZV7kyqPK+hyAJ6Wf5XEAZxJRq3TGnynTykbY7Ei//n6rdIHwC+y3ziLImWh98SvPXK9Kj3K7+anyxazdyM+4TeeFlx10HRyakI9W5f4cVl9QG03oWobj8kSwz5sGtCCNLmyhX5Dgz5ul3PdqiJBC+CLeoPehOE1e3uNBW085nfLe43sHhrRzXZpXoECx0vxm+uVYo6Rz7aOr8OSq7XhyVT4EuBANxe3j1NtSaYFSytYrJwH4EoDlRKTem/pvAK4FcB8RXQJgI4DzAUAIsYKI7gPwDqwIscuEEFmZ72sA7gDQCOBR+QdYAutuIloLSzO5QJbVSURXA1Axc98TQnSW8FtC0a+L0Q7rMsUkNKucflELcdqXouK7y/Du2SQc/4PwmGLUrLkIDSXIHOLcHNJcVtCgEuRDCY3yiqyiBJ835HP9/IvzClvT8TABbBQoEYSRtw/Dr0F+I1TzCUHvQ+kfytqfg/rH7DMMFqA9A/myCxEoKq1nMOs5ZirLTcIO7S5u8DYtFC6kLNOEr1oaStECRQjxPMy+DAA43SfPNQCuMaQvAXC4Ib0fUiAZjt0G4Lao7S0VdYOnEmSOFHEJDb1jg6KPPOXog4RehtFJGfyA6WX4Oamj3HDu9RHqWzE+lMDw6ggPVNAMOshkpg+O5dRQsg4fCoyf4ZMeJOjC2mwagP1Ww+vlun+32i7fdMyd19eHEmCu6R8KXtho2NTaeL6pbZmARZNqUhOk6bd39hrrDbs11Juog6L0giBDaHghDn73BFcIkTctF6k1FQuvlI+IuldTSQqMFNHPVUTRUEw3VSEmL1/bvo/gUN+eWm2OfHPe3O41LAFCwUDGKFC850UxeUXdHNJ9jbIB+YDo9u+w36ybKiL5UETwvWH7UIxtjvabCvGh/Ovv39LKDL4GfsI1aBDrz/hrETrmQ977SMcUTWi3SQnQgGfX5IvQ8/qhIij9fDBh2O+0D7h/g/BbYwYMIx/KvoYasNOJRKDaDHgfqKxjcA7RUBxOef8Zt3U8j999I+zjzhP075sMMzO9PrezOF+muc6gsoKczJHehxIgdBwrqd1+LJ9+teuLKBzDTnO0W//od3303xNgSg2L8goSGsGvW3Cmb+rMv8grTEMx2e71NpsYcGgohQ12oYEVAQJWtdU0UGdtgVKsyUvWUWTYsGl7HT9zogl3vc5IPRYoNYm6RulUwscp738Rw94bDuRnKc6wYW/9pjYBwEfmjPdpt3lQCXuW9QfPd+CIOCA4hG3AABmmkbnzuU9xttk8Q7XKCG5jEKEaisMpH15mmFYW5Fx1mry8+K01ATQ/R0Ab/ca0sDVXQcJ5MKv7UAx1BnSZ83kI1lC8ARvqv/99N5QVPqbF4HqVdaF0k1c+rZB3EAXe6yxQahN1g6YSPiavgIsYZcZgx7KbJ7i++dRbC1W4pRuVy8/k5Yd+vncdiretUcsKNnmFPwhBA/CQZrJwz/CCtmwBovuDCtFQopgkw7bsD3JwR139bzzmo6H4le9oU5gPJWAQ0yOpgsxWphLCBKjJV5cv13/3XT1f0OJS67O3XvXsFitQ3OUA4ROcnOP59L/XCzGdxQELlIioa+TrlA8YsKJsZ2E6N8y+LiACnZh6uz3ZQ4RcxvGQudeh+GsZJswCxfR7zHl0ggSDPhgEzdpMA6yf/dzbxjANJXjQcxM2m1RNNS/I856nowaaII26cD9GPq//jtD+ZQ6FhA2bFneayjX1VcZHmAMh5j/t5L4hr9krbDKiorwGizR5me7HMOH09Xve0M4tfryJGxYoEVEXJp1K+Ggo+c9BIat+94lt8vJ5KIwzdqGpyz7Dl98K/iAHtrsd3igSZ9lhmFZfh0V5RVuH4jymP4RBWqKpaPXGxTDCJny+D7NPPudCQv/ywtahBAU5BPkb3McuOXlWvm4/s2NAm6w2G5MBhGsoQTPzsDUsQZO6TIBA0ZO27ekPPG4WKNb/oBXrQagSHSbfkBvtobe22p/dJmn9K2soNcjGnb14Si46ihI2HBjl5edsVv8dan3wAyTgH7ftLtdr8tIFhv9KW8AU5eXfJhNZR+STHIwCthG32uQnIPV2OM/RH2jPSvkQH0qvzxqEoDaa0Psqil8mzByai9hfxkCDgIHftBXJGxu7cOvz64zlm/L6apFBJq+s914wlW0iTMvMBgicwIWNWtqfV3zgOe5cK+Rtl4ryCtKuglDFBwXCBOEX0ZigYbQOZV/i49c/Yw9WqUTC19adTBCyOeGN8oogUEzbWYTNWIQQ4e8m8dEm9K9BC6OAgFcARzZ5ecsNdcpHGKzcD/dgwGCedWgCxT9kRsXKRxA6TDA+5YWZU3KG+yJ/fnC7gkJl1TFdCOsrtd3lG9vkdy8HmrxySJBVtmlw9os+A8L70+GU9zF5hml6rc11vm3yy4+YfCh6yHkpCxuVYGtIJ9kpX4voD10qSb6zHOUgD9o6PeylRc4FeOYydEJ9KDA//GEmL11r8Q8PDa7blD9osZ2e5L8GQj/feY7+QAetQynlvRVhGx46fmuEWaZju5gAc4xp9hu+HZB/X9vbjWjlNtYlneeECIxinfL1qaRvm4MG5SCTljvNz+RlXkOW/9yjLew0HTfVqx7BQrQKHZXLMYkrKGzYea7yBzamk2zyqnVSCfJ9eOuSVnd6Z8f+MyeFHd3i81D4rUMh7bMJ2zwVYPIyxbwHrkOJ4NDVMTmPjVuvRPA1BZ0zmPGf4RX64iu/Oo2OZId50CxcfB3cIaY41cfb9gwE1usuXwgROCtXx/QBvCntEighPpKiNofM5lCfTsjzTGUHtFn3kYVch4JMXtqzq6/k148H1RtXlJf+nBWyOaRbaCiB0lSfZKd8rZNMkOemyuUEdvUOISW33vY4yUIEg57uXNhoLsM+LvIRJmGjpOfh1zWUEJOXJ2zYblNglfn8BlU+zIRTVNhwkMkrZFAIIkxT9AtgKNSHEhQ92LF3wHf1t7uNVjvN57mPD2Xyx5rqUsZzvHlL1VDUsGPSUPw1iaB1JoDbT6b3TbBwzeUE0klCOknGKK+wjUWVD8UkjKKQXyuWz1+IcHKPN2qBZlM6xRpKrZNKelfKP/DGZgD5V3K6Z/SOhzvE0ekoOmQgywmBRND2rDCr0+7ywqO8zE75yHt5GQSq+T7Xzosw+3W3ezAgbDhojUIYYRMCvxBr/T7oNwxUVrvyn4O218nmhCe02elT8Bc2Qdub6yYvpTnk6/a5V0PeVx4oULJCM3kZjsu2mkx8YU55v61XwoR8Tk7MGtJJ43Vy+t+8bVZzuuufeLcoc6rKod8vUcPY3fmAfB821iUhRGkm3kJhgVIgyk+iXyR3qKFnK4QIs1bTa1XDdt/NyUAA61wzfuYph1M+ZJB071FU6DoUvT+CdjmO5JR3DO7Odg1mcqhLJmRwhPNYKbH5+kBvspP7XV/98z/f/2Zo2WHaz16XfT8bYFJzChTTIGkdHwowE/pfA+1zyGTEzWAmiwbb5GXSUMK3SAF8Fnr6mLzCnr+csNZzWQIl2ORlXMeipW3d7Q07jopeTlgIcipB+Owx04xtsk1e0idWyUgvFigFYr9aM8Av4naoRRMo3uNhA2wup5m8fMhrKOZ0IHw26P8+lMCqjWUFv99D/2wuPCg6bSibQzpJUqC42lDCLC0ohBpwBTD4+FCU9uomaIcFd93uQca5SNCZV6/bNEiaNJSgl5L5tSlsMuJmqAQNRTfPhftQzFqjn0BJJggN6YRRQwkzefmZqaOirrv+mwcCTF5D2RwyOYHRDSlPPkDTUKRPrJJmLxYoBZIyvKvZbe90D3SDDmdidA1Fvw/8ttZIhLhQbKe8cA8W0QcF/3Uo0W5Uk//CHGSQT9vtNwAHzBaHsjnUpRJIGTSUUkxeYQOoflzfTTeSD8UhbL3H9XvLLVCCBjLdZGLUULQoL/d+bwdOaAYQcK8WoFW5heRgJmdrKEErxE397Oxbg5AUIvTdIqY+zuas8PtGH5OXc6Ljza+/3mGoiMWNJr/RgNaOHzyy0nG+aqMSKG6tOe+UT8k2s0CpWcY0pgE4B/B+t23bNQAHmRXsPAanYdg+T7rJKwxPlFeI9uMMYXTlNZQRhGmAMXWDXt7mXX3eE7R8acNrBAYzOaSTCSTJe8zp/PaW22ZYf2A63+Qs1ScQuzRBGGVmGLYORS/bbXoM2q69T1uoOWAy48i8QuSvjyrv139zvOMcN9mcf0Sj1WZvmLhiKBscNqxm5iatWB/sjX6hrEBatsux15XDQmAyaVk7TjSkk0anfJi5VC+zmC3sTTsh6+Xc8uz7jvNVG0dJgaG37z/+uBxf/fVSAPmoPdZQapgWKVDURbx/abvngrsHYEc4oM/FVQNVFHu8QjkTgXDHW9DeVqZBUp/VFqOh+L0sKL/ZoVlAKrr7vesB9HanDcERg1kpUJLe3QzCFjbqQt8TTeXzW9xtAoCu3kFjuh9hIeXBGoq/D0W/fv0BGopVh9RQZF1KWASZvOpkpJZpsBoKuG8Hs3kNxSTY1W809V2YQMnkhB1B5liT5Hj+vHUKIZBMwNcpH0XoUwnbr6j2OSYPAeWoCcIopaFoHfnrlzfafafWFVVycSMLlAKZ3NIIIP9A3vfaJvvYdZ/9EACDTTMb/lIhNbPVr32QjVylRdVQ3JFaYZEv+gzXO4h6tSk3flFiQRqKYkxDCnv6zSYvVW5DOun5TVt39WMwmzPuCO18H4qXgQAtUq/HtOBMr6tQDWXIFpDmBbP6TNU9iHb25Oty5+wbzAsHk4Zi8s2o9qaS/k7znNZe/btOJqDNg5kc6u2Zs8FPIvOa+rl/KGc7mgd8Bn6T38B0/+kok5efU17vBtMtn8kJWxsoZi3KoG3m85886Lg1FD8f5xjX5LcSsEApgL89ZZY9e1PvONEH9JnjLNuz26b5vT+9Y3822oaHsvaM3G9bar9tKsKivPw2rnPW482t723lMXnZGopPpXCr77pgVP+9mVXSmMa0r4aiHrr6VMLT7pfe34mO7gF7CxydoJXyQgip3ah1RG5hpNVfkIYSPrgozag+lTQ7mgNmrVc/lL+v3AOlGnTGNqXNGoo2mx90acfpJIHIxwEt8hqi/t3xm/TwV9fAP5TNYUyDNdCZtIy8U948yRnb6J83kxNoMAzspqAQHaXpN6TMTvmw/dYy2ZytDRSnoXhNXu7ft2Fnj/1ZtbG5zuyUV7itKZWABUoBzJk42h6g1U2mC5Rmg00TANbvzL8R0TRDuvGptfZnh3kl5EEQAqFOefLZWjuTy28VYxJySkNpTCd937cQZGZzrMcw7DAb9CrWMQ1pdIdoKPU+uz4DMPpQ1OI1qx7n+erhHdto+VHcM3rnNQmO8tqurWiP8gY/XUCGbUUSZJ/3aChy0GlpTPtqKGoQdDvCkwlCgsi8Z508R5m8zOty8vXpPolMNoecsDRQwLw2J8wpHyRQsrm8OU0XamEmZyEEEgnLRGRqk2NiZ+iT/qEcRkshWej2K0PZnD15ywSYN3+y6F0AQFfPID798xcAWO1NJ8kz4VPYYcPslK8tTpFvQzx/3jRP2LC+sFA9oH57XwHmG26DJnAyjgchWFWPYvJSg747+sR6+Pzb2ztoaQhjGlOehyzoTYD2OT6/I2hhoyq3tTlAQ8kqgZI0Dg4nzR5n9qEIgVTCbMrp6LaEwNhGa6DrGXTWHfYCJtWOKWMbsGZ7tydqSrXLhBL0DWnz79E1J/cgo6J8TL9JXbPWpjrj4JsTAg0p56xa1Z9KWIENJvkVSaBofeTQdGX6aFugBGko3mN9g1mMaUyDyGzyGszk7NX+pnuuLuXz+m4hTV4ps1PeueW+5zAGMllbSBZq8vry7a9i1QfdAFxaveuaKVOqHqzSkE5iVH0Ke32eFTU2Fftq4mJggRKBaz97BJ7551NBRLZ9WQ3C+kCdTnhnR2ow+vKHZwIAvqeZKQDrwVn45hYAwGGTx/ja8k3bqyvbLxC0my1km7w+FGXyMJq85IM1cXQD2rucEVfq/MA9m3y2kbA1lIDZb0tTnWcRn95uwFrV7Z7FNtclcch+Y5BKeI/pGpm76isffBsA8F6HZVbodQmUoBBq/fi0tiYMZYVmE7fSx4+q8525qvL8NJRMVtiar/sazp44yh7Y3TdAv27y8olc8tNQEmRtgmpcnyTbGBTlpdenD9D5FdwppBJkbJcSMn7lNqaTqE8lzOayrEBzvZwkOdbXyD42BHKoupJEUkMxBKiEbLmvayiFRnm9sHZnvp2OlfJZzGhrwhmHTZJ1WH2lPxeN6STamuvQ2ZM3s+ok5dgQ9dUMccACJQJTWxqxv/SPKDWyZ8C6SErFvujE/fN7eWk3lbJfqxvdzTVajHldKuGIzhnK5jWQ3X1eE5AQsIWCyV6v3/zuwSgn8vZmP6c8EXDQpNGeHViDt0/Jt12hZuFCCDvd7C+w2tjWVIfewazPgksrrSGV9PzmAbnGIZUgz+/NZoW9tYi7XHffqmvrrhMIXoeifAMqv0pvqkv5bqWh2lkXYPJStnL3rLVvMGvfj+5mKZNlS2MaA5kc3Ivzctq9k/ehWAENRIS6VMI4OKoJUpCGoguRfm0wU+XVJf0d4GrA9HPKN6QTqE+ZTVNDmZztlHdsw6O02rRZoAxmrPVL9T4LG3WToTu7EAL9maytdRX7ki3AFSgh11Rd//mjAOStH/q92pBOoK25Djt7BjCUzeE27V02ALD/uCYAwPsde4tuU6GwQCkQ9XCrWeyL71kzjCs/eZgtUHSbproBJo5uMJb36HLrhT6nzBmP+lTCcUMOZKwZ2Yy2Jqz6YI8nb07kwzdNM2DToK7IZLUQS8PDu7NnEG1NdWiq85oB1IwvyIeiD9omu/jAUBYzL38YP3p8lae9rU3WwGzSUvw0lIxcPVyfShrbPKg5g90DpRokVX/8Qe7Nptg7oAt5b1+prXfGKJOZbLcynY1tTPsONCoaq7k+ZRzshrL5yCZ3GQOZnB1d5N7L6z05iKj3ewwYzDaqXDWwZ7QgD/e9qNep5zWZS/uGcnY5+nXQhWdDOmEMFlB9Ztptty9EQ1ELW9Mu7cq+Z1JJoz9hQAqUhlQSA5mcdzFmgA/FWhiqLzKMLlC6XJqFyjuYyeGR5R8glSCMqk/hwweOs81aezSB0lhnaShdPUO49fl1HuvHzPHWJNj0FspywQKlQJT5Yd0Oyzyibux0MmGH8ekO5a4eJVDq8ZWTZtkPIgD88Y3N+EBe7P6hrNRQrPK27u7D7S+sx96BDA6aNNrhZwGsWceSDV359QCGB/Dk6560P5tWWduzTEPeju4BTBhdL7ejcPpy/MxoOroPZMi2i+fr2Skfphufes/RJsAyebnLUOR9KM7Zpuq3+lQCTXUp9Lq0jMFMztd2r4pRkUt3vLjecXzVVkuY1yW9kWUA8Pf/Z73fu022W5kYdu61fuN+YxuMq9UBa0NBq27vLtaAJWTVPefejqN/KJs3tbiu7y+fs2arysy3WtrpgfwgP35UPYC8AMxoGnGdz6CthLzK6+5LIQSefbfDvja6QFGTsPpU0lfL6LE1FLNAaUgnUZ/2M3lZ65DSyYRrHYqmBfpoKPWphK0FuMvWtQL3MfX7x9hO+egCZadLoKg+e3i5ZQJXvpXm+pTd73pbWhrr0NZcj509g7j20VVwowIY9vj4WMoBC5QCUaarb9yzDA+83g4AGC0f+Ka6FFqb0lizLa9ivra+E4A1SLY1p9E7mLUf/n+8d5l9HhGhXs6QAODSu5bax8YawmhP++9nAFgO1ASZZ4rbu/MRR+4bvXcwawtAb1iwwNrte6VASaI/k7W1EV0rcJuGdN7T1Gx75qX5C0wmPKUpqVXrJoFib81dl3LZnKUpLJ1Ec33S41gfyGTRJG33+uC+u3cIyzfvBgBc85nDjb/l8geWAwAmjqlHZ6/ZXg0A49QALevesXcAYxqse8LPcapIJRIeU9z27n68s3WPPSv2mLyGspg4xqrTL4jhhbU7AAA/eny1naYG9kljLK15l7wWSgMA5PoVkwbhEihuTXCXa8sc3X6/qdPyxU1vazQ6kwcy2fwiS9c92TuYQUf3ACaPbZTPidssKbB1Vz8mjKqXJk/hOAbISYhBQ1HmpQY5wXL/pg7tOXKbf1VwQN6Hki//0eVbHeG+brpc95J6DvX6AGt8UQJFaSgXnzRTaihpTzmKdNLSBP0iJssBC5QCUbNYAPjWfdYOsheesL+ddtT0Fntm0TuYwVULVwCwIpfGyhnsrj7vDZAkkmYG6wadN7MVADCttRGj6pO+TmrAWojmZ8ZRuAfw3X1DaGmqQzpJnoFqU2cf1u3owUfmTEBD2toC271WAUDgjfqNe/LCUj1kSrCowQhwhl0rAdEiTV7u8jd19uLHf7Zm9I2uqCg1wNgayqBXQ6lLJSxziTar1k2JHz1oAi48fgbG+WzDMn9mG9bv6PE1X40bJTWUgbyGMn50Pdqa69HVO+gxEeqDYlNd0tPmG5+0wsnfat9t/wad/qEsJoxWAsV8LS6YPwMAcOT0sXaaat+hk8eACFizzbpfewYytjY0rbUJ73d4B8O8hlJnt0FnU5elSZ/pciYD+YFy4ugGTBrb4DHFqAlKgrwTIPWCsWmtjZ5rCFjP2mA2h0ljGlCXcmoo9hsM65JGbXwgk0V9KmlrKO7f1NE9gAOk+cgtuJdt2gUgb+5U12gwk8PXfvM6zvnZc576FL9f2u74vnR9Jz501eNYubXbkT6qIWXX29k7iJamNK761FwAQFtzvdFUqh6rWeNH4Y2Nu3zbEDcsUApkRluTJ03dTACw/7hmbNzZAyEEFi7bYqdPb22yFxrt7h3yPDCJBBy24cZ0EkTAM//8MTTXp9AzkDH6LHoHM0gnyGOK2e6a5dyv3bxLN3Tina17MLYxjZamOuzSZjiZbA6fuMF6CA6ZPNr2KyjVXhdcfqr006vz7ybfb0yDPfPOC5T8gG3aAlImTksAABlESURBVEaZvNxCVN8kL5V0Ot7VYNxYJzUULe/za3ZgY2cv6lMJ1EuNy/QbkgkyDuyKQyaPRk4AW7TQTX2QV4O7avfDy7fi/Y4eO8rL3V9vbtptfx6lzUIB6zqo8//ymKmeuoQQ6B/K2XW6y25pSuOLJ8zAWXP3A+AU4nm/Xj3GNqaxq3cIHd0DeHDZFvtaHbLfaKz6oNtzz6lBf5yPyUutkfjM0Vab9R0XdvQMyLx1Rq1babWTxzZ6Bskde628utaso0zCDXVJpF2mSX1luUlD6e7PYFR9yg5ScUf5dXQPYJYUKG4N5dK7LUtCsytcuV0K1qAIqydWbnN87xnMonsggz/JqM//+cLRAKzAit19Q8jmBDZ39WGq3K0DAOZMHOUp92MHT8AT3/ooAOD4WW1YuXVPxd6JwgKlQJrrU/jUkVPsBxlw3mQz2prQM5jFzp5B+90ICbLyqZn3n97cgs2uUNwEEerTeUdoz0AGYxrSSCYIzfXWm9dMduPewSzSqYRH7d28q9dzruKzN78EwJrVjmuuw469+byrPuhGt/w9M8c123WqQVQNEK1NaezpGzLeqF++/TX7s27vVrPKCVqAwiH7jbY/d/dnMKYhZfs63AOOMscA1mr6Pf1W/T0DGXs3gtamOo+G8sVbX0FX75Bt1tBnt7rmlk5ajv6+oaz9EF5wi9VXo+tTOGJaC4D8LFz1IQAcOW0sZslIwN7BjD0wtzalbdOSms0CwJ9XfIC/+oVV9hdPmIFRDSnHfXTeTS/YwQE/+tyRSCcJvUP54/nFmGnUpRIOZy1gaSGj6tO2z07vDzU4jx9dj4mj67FuRw/ueNHyuWyR9+wz73YAcE5EAGDvgFWPn8lLsd/YBs/xHd2DaKpLoqkuhVH1Kfs+U6gJ2PGz2lz7bwm8JINfxo+qx+iGFPb0OfP+5c0vWvUNZpBKkmPio+5Zv+CI7v4MxjSm0KosCJrZrncwg70DGVuguCc5ykc1d+oYAHl/4aNvf2Cf81b7Lnzmphdw90vr7bRdvYPYsXfQnizoZHICx89qw6eOnAIgv93Tqg/2oL2rD9Na8wLl+APaPPn/9iMH4IAJlqCZ1tqInsEszrvxhYoIFRYoRfDRgyY47Jxzp+TNCSpUb8POXnsQfud7ZwOAfcPe8ORaXPirVxxlWttnp7C7b8jaimUgY/s41H+1v5U+8HziiMnY1TuEB17fjMVyxrNmW7ctNJ769qn2Ghg3vYNZjBtVh86e/G/RzRBTWxqxXgYfqLKXbLB8QrPGNyOTE553nevmgj/83YfR2pSPk3/oLWvA0IWxLjR29Q5ibFPaFihvtucH4Pc69tpvxjxwQjPGNVuz/qff7cANi9fYA2CrjEzrGczIMGVtVg+gPp10CGZdO0smCEdMs67lH5dtxk+fWIOX37d+72eOmYoD5UO6SjNJ/PrljQCAv/vYbNtc1DOYtX/zt848GHOnWIPNgttetfOpmS0AXHHOoQ7H6+ZdfXh7c94Ul0wQprc2YcMOS5AJIXDIlY8BsMKnp7Y0YmNnXsjdv7Qdg9kcmuusiKgEOTUFde+OH1WHw6eOxXsdezFBCojzjrIGsYMmWYJeDwbp7h/CN++1zLyTpcDQr/flv3/L/nzo5DGoTyVsgfLgss247YV19qRgVH3S4UMRQuDulzcAsDTBwWzOfn4eXr7VXik+fnQd2pqcay9e39hlC4oEEUbXO3daUD6iCaPrkckJj6bX3T+E0Q1p23enl71e9rkaoN0+oiktjfj4oZMwd8pYJCi/TED3WX365y/gjY27cOWDK+y0k697yvqt+43GqqvPxiUnz3KUqwQyABy7v2X+/vXLG9De1YepLXkrSX0qaS98VRwzo9X+PK3VOvfN9t14s303ys2wFihEdDYRrSaitUR0eaXq/YhcOa/4iw9Ntj8rgfKr597Hlt19OGp6i61KT9fMZWrF619K00CCrNDhgUwOL72/Ez2aQFGazfxrFmPl1j32gPAfnzgUX/vogXaZahanVGYAmDmuyR7A39zktKV+99y5GNdc71h9q7aJ+f3XTkQiQfibUw5wtF1FNB0305oZqaADALhvySZ7oPvup+fi6BmtyORyeH7tDvQPZW3/x4kHjkNLUxqN6SS27u6zZ/NPv9uBoYzAuGarvbe/sN7WIE6XQQgAsPifTrUf/otvfw3vbM0Pvq3NaTTVpSCEZY7RZ+aPLt+KBAHPrenALc++ByGEY2afTibwmaOnYdKYetz54nr8bPEa+9iUlkZMGF2PqS2NuOaRlfjFM+/hPx98247SOmzyGDtgo3cgg7e3WA/vhFF1mDw2P6PUo60UzfXWjH0oKzCQyWKHNlk5eoalFc0c34wNUmjobwWcNKYBU1oa7GjBgUwW3/6dNeiPakiBiDwam/LxjR9Vj+mtTfhgTz9ufsaKtvuXsw8BAFz32SMAOHeCUMJT1Qs4F9zdo22U2pC2fBJKkCmfmopsGlWfRp8MHd/dN4RfaDt2n3iA9Xyp+/X1DV32sbamOrQ2O820f3nTi/bn84+djnGj8lp3V88grn7oHYyuT9mDqzJpDWZyuOTOJRjKWps7qhBrXdtfKidQR0wbi8ljG7Bec7Lv6R/Cxs5eHLO/dY2mtTY5tlkykc0JZLI5e/IwtjFtRa6lnEPxFM2spczsv311E/qGspjS4lyCoLYM+t1XT8QPPvMhe7wBgAPku20Ay79bboatQCGiJIAbAZwD4DAAXyCiwypR98QxDfjmxw8yHlM37aNvf4AX1u50zHZUGJ+OUlmPntGKY+RM5OLbX8PjK7bZ21OrmTEAnPOz5+xB7KBJo0FEeOwfTwFg3eCvvL/TnpGddshEEBFOmm09oOfe+AI2yhv+inMOwYETRmHi6Hps2zOAx6SK/lb7LrQ2pe1ZjtIWfvT4asdg+I2Pz0FdKoHn1nSgbzCLgUzWLgMAviCdwUpBeOD1/NqOQ/YbjWX/eSa+8+nDkBPA6m3d+OEjK7Grdwgf7Ol3OOp/t2STUVXX31/y3BorkqkxncR+YxowSg7su/oG8YOH836XnLBWw3f1DuEHj6zCjU+ttQXWE9/6iH3eUdNbPL6B2fIajJfC+YePrsJdL22wj09tabRn37949n3bETp74mjb2QsAZ/30Wfzkz6ttO7jakmU/OUA/++4Ou00TRtfjp3JhW30qgZVb96B/KIvnZeQWAJw1dxLGNdfj/Y4evNW+yw5VBmCbTEY3pLCxsxdD2RxeXLvDDotuSCcxva0JQuSd3kqLbqxL4oAJzXjm3Q50dA/g1XWdDjNqa1MarU1pvLbeGuz1e+PlK04HYL2PY+9AxrhAVV/o+1b7Ljvs9TufOgzT26y+Wda+C7mcsNv7xRNmIJW0FvP1DGbRM5DBSm0yccuXjsXYpjTGaavH1TXqHshgkoyIU/fpO1v34MlV2+3fq8K+1S7OPQMZXPngCjSmk5g7ZQxmTxzliF48V/qLlNn2oEmjsXLLHmRz1nb2umlKcdvz6zD73x8FYGmI6hqdMmeC4zzdT9KQTuL8Y6fZ3+fPcpq57r5kPr776bk4bmYb/vr4GY5jB00ajVu+dCyW/ecZnraUg1T4KTXLfABrhRDvAwAR3QPgXADvBOaKiX84bTauf+JdfELTTgDr4o/W7MO6jwAAfnnRPPztXUvs7586cgqOmNaCgyeNRiJBjp1y1VqXw6eOxbfOOMhW+x9c5jQdHbLfGDSmk7hvSTvuW9KOKWMbcOCEZty6YB4A58zkIz+yVO2p8mb/6qkH4lfPr7NfygNYYZ1qU0klBNu7+nDWT58FYD24TXUpNNfl69RZ+Pcn2Wtcbr7wGJz646fxb3+wQm9v//JxtjlFPUSfuOF5O+/NFx4DALjpwmPwd795Hd9/eCW+rwmFr58+BwBsLUbxoalj8buvnohUMmHvanDiD590nPPvf3EoHnhjsz0IKY0JsAZ+RZ9LmHz9tNk4/dCJAIC0Ye+05/7lY46ZfGfPIP5HRmiptx/+7IKj7Fn6DfLYP5w2G/905sEALDMPAMe9sfDvT7K1GyWgDrnyMcyfqSYhLUglExgrnbbKIQ4AN/71MbafY0pLI55YuQ1z5EAGAB8/1IrCOvHA/B5jx8xocQi/Ew4Yh/97ZSOOu+YJx+/9/LzpSCUTOGvufrjntU0OjRjIm2sSCcIDr2+2JxMN6QRWXX0OAGvbGMWXbs2bAj9/3Ax794lfPPM+fvFMXnP5/nnW6yGUuW3uVY/joElWObcumIfTDrGuUUtTHTZ29mLm5Q/bee++ZD4Om2yZHi9/YDmeebfD4ef47DHT7N9+3WOrsG7HXrvPj57RAiLCgRNG4Y4X1+Pulzdgb3/Gfj6Pmm5Nvo7dvxVPrNyGA//tEQDAJSfPQu9gFifPHo+25jqc8l9POXbGePLbp9p7j5144Dj8/msfxrJNu3D1Q+/YplfF9849HBs7e3H41LG2L09x6OQxOFT+NhNnysCMSjBsNRQAUwFs0r63y7SKkEgQ3vrOmfjpBUd5jj39z6fan7/z6bmOY2ccNglfPMGaRfzyonloqkvh0Mlj7AHpuX/5mH3u/V890f789dPn2JEbgGVX19XZOZPyD+iW3f04clqLLRQA4Olvn4pmbbBQD/T4UfW4+KSZjjZedups+3NzfQrHzWx1HP+w1Hi+dYZXSzvzsEmOG37/cU04Ugq0BDmF25SWRtu/AFh9c44U0Occvp9tO1b84e8+jG9+3BIoB+83Ghdqs7G/PGaqrerrZSrW/fAv8LcfOQAP/cPJOF0OPAq1Ml/h7o9vfPwguy+VSUjxhfnTHaZM9wRD5Tv3qKn4/LzpjmOfPGKK/Xm2IVpHaS0AcPV5+TUyr67vxNSWRjzwtQ8DAE52mWCBvOnV9HsA4JcXHQvAmgnfcfFxOOGANtxz6YmOc77runcB4L8+dwSu+5xlDjvf9XsOnTwG73zvLPv7qQc7Z91/+vuT7c/zZnqdyS9dcRoa65IgIrjl9u0XH2d//shB+XLflWu+Tj90kt3XXzpxf0feL394Jk6ZMwHjRtXbA7USJmMaUnjpitNsc5fiviXtWLN9L+bParO1RKUZXPnHt3HdY5ZG9fS38+bXs+ZOcpRx6sETcdnHZuPI6S2Y3taEyz5mmacvPmkmXr7idHsxpOLY/Vtx8Ydn4sXLT/MIjca6JO79fyfiyk9WxAhTNFSpcLK4IaLzAZwlhPgb+f1LAOYLIf7Bdd6lAC4FgBkzZhy7YcMGT1nlYOmGLuzYO2CHberkckK+uc68v1cQO/cOYOXWbs8g0jeYxa3Pv4+Obuv4DV842uHYAywH5J0vrscR01scjjvAClNNygVhdSnvPGPvQAZbdvVhzsRRDkG1dyCDK//4Nrr7h/D10+fg8CljHbN19XvvfGk9jpvZhsOnOmdefYNZPPTWFjy3Zgeu+ItDHP6G7v4hrN2+F0+s3IbTDpnkETAAsH1PP97eshsfO3iio10DmSzSiQSeX7sDJ80e79mVWQiBc372HA6aNBrXfOZwe2Ga3q5v3/8mPj9vumMAU3mfWr0da7btxReOn+EYGLI5gfc69mLJ+i7MGt/s0AD0Plu/o8fTFwOZLNq7+rBw2RZ8/rjpDju6KvsLv3wZr67rxOJ/+qjDFNrRPYAHXm/HT59Yg6+fPgdf/egBjv54dV0nXnxvB+bPasOs8c2Ofg5iT/8Q3u/owRsbrV0ZLjzeOVjv6h3Ec2t2ICcEPnXEFMe17x/KYu32vcjmBGa0NXkG7RfX7sBAJofNu/pw9IwWR3CLEMJ+t01nzyBmu+47ANi4sxcPLd+CAyeMMj5nL67dgY69A452rdiyG3e/tAH7jW3AJ4+Ygolj6h3Xb1NnL25YvAZnzt0POSHw8UMn5d85JAQeXLYFb2zswtjGND568ETPPfn8mh3ICoGZ45psTVknlxOe52M4QERLhRDzQs8bxgLlRADfEUKcJb9fAQBCiB/65Zk3b55YsmSJ32GGYRjGQFSBMpxNXq8BmENEs4ioDsAFABZWuU0MwzD7LMPWKS+EyBDR3wN4HEASwG1CiBUh2RiGYZgyMWwFCgAIIR4B8Ei128EwDMMMb5MXwzAMU0OwQGEYhmFigQUKwzAMEwssUBiGYZhYYIHCMAzDxMKwXdhYDETUDeADAEH7OI8NOD4DwEafY2F5g46VmjeoXeWsl/sqnrzcV9GPc19FPx5XX40H0CyEmOBzbh4hxD7zB2AJgFtCzvE9DqCjhLyl1BuW17ddZa6X+4r7ivtqhPcVgCVB5eh/+6LJ608lHA97OXNQ3lLqDcsb1K5y1st9FU9e7qvox7mvoh8vZ18Z2ddMXktEhP1oypW/XNRiu2qxTUBttqsW2wTUZrtqsU1AbbYrrjYVUs6+pqHcUuX85aIW21WLbQJqs1212CagNttVi20CarNdcbUpcjn7lIbCMAzDlI99TUNhGIZhysQ+L1CI6DYi2k5Eb2tpRxLRS0S0nIj+RERjZHqaiO6U6SvVO1jksaeJaDURLZN/E031laFNdUR0u0x/k4hO1fIcK9PXEtEN5H5DUfXaFWdfTSeip+T1WEFE35DpbUS0iIjWyP+tWp4rZJ+sJqKztPRY+ivmNlWtr4honDx/LxH93FVWVfoqpE3V7KsziGip7JOlRHRaDfRVUJti6ysHUcPBRuofgI8AOAbA21raawA+Kj9/BcDV8vNfA7hHfm4CsB7ATPn9aQDzqtCmywDcLj9PBLAUQEJ+fxXAiQAIwKMAzqmRdsXZV5MBHCM/jwbwLoDDAPwXgMtl+uUArpOfDwPwJoB6ALMAvAcgGWd/xdymavZVM4CTAXwVwM9dZVWrr4LaVM2+OhrAFPn5cACba6CvgtoUW1852hh3gcPxD8BMOAfJPcj7l6YDeEd+/gKscLoUgHHygraV4wIV0KYbAXxRO28xgPny5lulpX8BwC+q3a5y9JWrfQ8COAPAagCTZdpkAKvl5ysAXKGd/7h82MvSX6W0qdp9pZ33ZWiDdzX7yq9NtdJXMp0A7IQ1Qah6X7nbVM6+2udNXj68DeDT8vP5sAZKALgfQA+ArbBWoP5YCNGp5btdqo9XFqvWFtGmNwGcS0QpIpoF4Fh5bCqAdi1/u0yLm0LbpYi9r4hoJqxZ2SsAJgkhtgKA/K9U+qkANmnZVL+Upb9KbJOiWn3lRzX7Koxa6KvPAnhDCDGA2ukrvU2K2PuKBYqZrwC4jIiWwlItB2X6fABZAFNgmSb+iYgOkMcuFEJ8CMAp8u9LFWrTbbBu0iUAfgrgRQAZWDMSN+UI6Su0XUAZ+oqIRgH4PYB/FELsCTrVkCYC0qvZJqC6feVbhCGtUn0VRNX7iojmArgOwP9TSYbTKtpXhjYBZRqvWKAYEEKsEkKcKYQ4FsBvYdm0AcuH8pgQYkgIsR3ACwDmyTyb5f9uAP8HS/iUvU1CiIwQ4ptCiKOEEOcCaAGwBtZgPk0rYhqALXG2qch2xd5XRJSG9YD9RgjxgEzeRkST5fHJALbL9HY4NSXVL7H2V0xtqnZf+VHNvvKl2n1FRNMA/AHARUIINWZUta982lS28YoFigEV8UBECQD/AeB/5aGNAE4ji2YAJwBYJc0642WeNIBPwjIFlb1NRNQk2wIiOgNARgjxjlR9u4noBKnOXgTL5horhbYr7r6Sv+1WACuFED/RDi0EsEB+XoD8b18I4AIiqpemuDkAXo2zv+JqUw30lZEq95VfOVXtKyJqAfAwLF/YC+rkavaVX5vKOl7F7ZQZbn+wZtVbAQzBmk1cAuAbsBzu7wK4Fnmn8ygAvwOwAsA7AP5ZpjfDimJ6Sx77GWSUTgXaNBOWU24lgCcA7K+VM0/eKO8B+LnKU812laGvToZlQngLwDL59xewgiYWw9KKFkMGT8g8/y77ZDW0iJu4+iuuNtVIX60H0Algr7zmh9VAX3naVO2+gjWZ6tHOXQZgYjX7yq9NcfeV/scr5RmGYZhYYJMXwzAMEwssUBiGYZhYYIHCMAzDxAILFIZhGCYWWKAwDMMwscAChWFqBCL6KhFdVMD5M0nb+Zlhqk2q2g1gGMZabCaE+N/wMxmmdmGBwjAxITfsewzWhn1Hw1rseRGAQwH8BNbC2B0AviyE2EpET8Pa4+wkAAuJaDSAvUKIHxPRUbB2HWiCtSDuK0KILiI6FtY+ab0Anq/cr2OYcNjkxTDxcjCAW4QQR8Da2v8yAP8D4HPC2u/sNgDXaOe3CCE+KoT4b1c5dwH4V1nOcgBXyfTbAXxdCHFiOX8EwxQDaygMEy+bRH7fpF8D+DdYLzdaJHcIT8LavkZxr7sAIhoLS9A8I5PuBPA7Q/rdAM6J/ycwTHGwQGGYeHHvZdQNYEWARtFTQNlkKJ9hagY2eTFMvMwgIiU8vgDgZQATVBoRpeX7KXwRQuwG0EVEp8ikLwF4RgixC8BuIjpZpl8Yf/MZpnhYQ2GYeFkJYAER/QLW7q//A+uVvjdIk1UK1gvHVoSUswDA/xJRE4D3AVws0y8GcBsR9cpyGaZm4N2GGSYmZJTXQ0KIw6vcFIapCmzyYhiGYWKBNRSGYRgmFlhDYRiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEAgsUhmEYJhZYoDAMwzCx8P8B/0M4gYy5PVIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A zoom on the last few years shows more clearly that the peaks are situated in winter."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Study of the annual incidence"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Since the peaks of the epidemic happen in winter, near the transition\n",
+ "between calendar years, we define the reference period for the annual\n",
+ "incidence from August 1st of year $N$ to August 1st of year $N+1$. We\n",
+ "label this period as year $N+1$ because the peak is always located in\n",
+ "year $N+1$. The very low incidence in summer ensures that the arbitrariness\n",
+ "of the choice of reference period has no impact on our conclusions.\n",
+ "\n",
+ "Our task is a bit complicated by the fact that a year does not have an\n",
+ "integer number of weeks. Therefore we modify our reference period a bit:\n",
+ "instead of August 1st, we use the first day of the week containing August 1st.\n",
+ "\n",
+ "A final detail: the dataset starts in October 1984, the first peak is thus\n",
+ "incomplete, We start the analysis with the first full peak."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Starting from this list of weeks that contain August 1st, we obtain intervals of approximately one year as the periods between two adjacent weeks in this list. We compute the sums of weekly incidences for all these periods.\n",
+ "\n",
+ "We also check that our periods contain between 51 and 52 weeks, as a safeguard against potential mistakes in our code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And here are the annual incidences."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 65,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAD8CAYAAABU4IIeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG35JREFUeJzt3X+Q1HV+5/HnCweHjYsKCC4/1OFqORN07zROoVveD3HDj81tqXvn7rEa5SpWYVy3ypypU6hw5Z6Si1xdrTnirdFa3bjrD/Q2S0likCBCnZcQYCg1ikoGbwkSWWfIoGCq4HbkfX/0Z7Snne7p6f729LdnXo+qru7+9Ofz6c98GPo9n1/fVkRgZmaWlQnNboCZmY0tDixmZpYpBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFNtzW7AaDrnnHOio6Oj2c0wM2spe/bsORIR06vNP64CS0dHB11dXc1uhplZS5H0dyPJ76kwMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObDkQM+xE3zz4R30HD/R7KaYmdXNgSUH1m3tZveBPta92N3sppiZ1W1cnWPJmwtXb+Jk/6lPnj+x8yBP7DxIe9sE9q35ahNbZmZWO49YmujluxZyzSWzmDSx8M8waeIErr1kFi/fvbDJLTMzq50DSxPNOHMSk9vbONl/iva2CZzsP8Xk9jZmTJ7U7KaZmdXMU2FNduSjk9x4+QXcsOB8ntp1kF4v4JtZi1NENLsNo6azszN8rTAzs5GRtCciOqvN76kwMzPLlAOLmZllyoHFzMwy5cDSAnwy38xaiQNLC/DJfDNrJd5unGM+mW9mrcgjlhzzyXwza0UOLDnmk/lm1oocWKrQzMXzgZP5G759JTdefgG9H50c9TaYmY2ET95XYfWG13ly10FuXHA+a77+pQa0zMwsv0Z68t6L9xV48dzMbOQ8FVaBF8/NzEauqsAi6YCk1yW9KqkrpU2VtEVSd7qfUpR/laT9kvZJWlKUflmqZ7+kdZKU0tslPZPSd0rqKCqzPL1Ht6TlRelzU97uVPb0+rtjMC+em5mN3EhGLAsj4pKiebaVwNaImAdsTc+RNB9YBlwELAW+L+m0VOYhYAUwL92WpvRbgKMR8UXgAWBtqmsqcA9wObAAuKcogK0FHkjvfzTVkTkvnpuZjUxVi/eSDgCdEXGkKG0fcFVEHJY0E9geERdKWgUQEb+f8m0GvgscALZFxC+n9G+l8rcO5ImIHZLagJ8D0ykEqKsi4tZU5mFgO7Ae6AW+EBH9kr6cyn8yOhqKL5tvZjZyjbpsfgB/IWmPpBUp7dyIOAyQ7mek9NnAu0VlD6W02elxafqgMhHRD3wITKtQ1zTgg5S3tC4zM2uianeFXRkR70maAWyR9HaFvBoiLSqk11KmUl2DG1MIhCsAzj///KGymJlZhqoasUTEe+m+B9hAYb3j/TQFRrrvSdkPAecVFZ8DvJfS5wyRPqhMmgo7C+irUNcR4OyUt7Su0rY/EhGdEdE5ffr0an5cMzOrw7CBRdIZkiYPPAYWA28AG4GBXVrLgefS443AsrTTay6FRfpdabrsuKQr0m6wm0vKDNR1PfBSFBZ/NgOLJU1Ji/aLgc3ptW0pb+n7m5lZE1UzFXYusCHtDG4DnoqIFyTtBp6VdAtwEPgGQETslfQs8CbQD9weER+num4D/hj4HLAp3QAeBX4saT+FkcqyVFefpPuA3SnfvRHRlx7fDayXtAZ4JdVhZmZN5ku6mJlZRY3aFWZmZlYVBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFjMzy5QDi5mZZcqBxczMMuXAYmZmmXJgMTOzTDmwmJlZphxYzMwsUw4sZmaWKQcWMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZNVXPsRN88+Ed9Bw/0eymWEYcWMysqdZt7Wb3gT7Wvdjd7KZYRtqa3QAzG58uXL2Jk/2nPnn+xM6DPLHzIO1tE9i35qtNbJnVyyMWM6uoUVNVL9+1kGsumcWkiYWPoUkTJ3DtJbN4+e6Fmb6PjT4HFjOrqFFTVTPOnMTk9jZO9p+ivW0CJ/tPMbm9jRmTJ2X6Pjb6PBVmZkMajamqIx+d5MbLL+CGBefz1K6D9HoBf0xQRDS7DaOms7Mzurq6mt0Ms5bQc+wEa/78Lf5i78858YtTTJo4gSUXfYHf/Te/4lHFOCNpT0R0Vpu/6qkwSadJekXSn6XnUyVtkdSd7qcU5V0lab+kfZKWFKVfJun19No6SUrp7ZKeSek7JXUUlVme3qNb0vKi9Lkpb3cqe3q1P4uZDc9TVVarkayx3AG8VfR8JbA1IuYBW9NzJM0HlgEXAUuB70s6LZV5CFgBzEu3pSn9FuBoRHwReABYm+qaCtwDXA4sAO4pCmBrgQfS+x9NdZhZhgamqjZ8+0puvPwCej862ewmWQuoaipM0hzgceD3gDsj4muS9gFXRcRhSTOB7RFxoaRVABHx+6nsZuC7wAFgW0T8ckr/Vip/60CeiNghqQ34OTCdQoC6KiJuTWUeBrYD64Fe4AsR0S/py6n8J6OjoXgqzMxs5Bo1FfYHwF3AqaK0cyPiMEC6n5HSZwPvFuU7lNJmp8el6YPKREQ/8CEwrUJd04APUt7SuszMrImGDSySvgb0RMSeKuvUEGlRIb2WMpXqGtwYaYWkLkldvb29Q2WxFudLgpjlSzUjliuBayQdoDAFdbWkJ4D30xQY6b4n5T8EnFdUfg7wXkqfM0T6oDJpKuwsoK9CXUeAs1Pe0roGiYhHIqIzIjqnT59exY9rrcaXBDHLl2EDS0Ssiog5EdFBYc3jpYj4DWAjMLBLaznwXHq8EViWdnrNpbBIvytNlx2XdEXaDXZzSZmBuq5P7xHAZmCxpClp0X4xsDm9ti3lLX1/GycuXL2JjpXP88TOg0QUzll0rHyeC1dvanbTzMa1ek7e3w8sktQNLErPiYi9wLPAm8ALwO0R8XEqcxvwA2A/8A4w8AnwKDBN0n7gTtIOs4joA+4DdqfbvSkN4G7gzlRmWqrDxhFfEsQsn0Z08j4itlPYlUVE/APwlTL5fo/CDrLS9C7g4iHSTwDfKFPXY8BjQ6T/XwpbkG2cqvacRc+xE3zn6Vd48IZLc3kGI+/tMxspXyvMWlo15yzyvgaT9/aZjZQv6WJjVum1rgbk5bLseW+f2YCGXdLFrNXkfQ0m7+0zq5UDi41Zeb/WVd7bZ1YrXzbfxrS8X5Y97+0zq4XXWMzMxrAsdh16jcXMxhVf0qeyZuw69FSYmbW04g/ONV//UrObkxuj8Q2g5XgqzJrOBwStFt6uXVmW3wDqqTBrOT4gaLXwdu3Kmrnr0FNh1jTNHKqPJo/IGsPbtYfXrF2HHrFYw5VbXB0vf3F6RNY4/urkyh6+qZM1113M/Flnsua6i3n4pqpns+riEYsNq96/uMstro71vzjHy4ismYo/KNdc95nr21qTOLDYsGrddVPNB+tYPiD48l0Lyy6emo1lDixWVr1/cVfzwTqW/+Ic6yMys3K8xmJl1bsG4g/W1lgD8AFDy5pHLFZWFoFhLE91VaMVRmQ+YGhZ8wFJq+jWH3cxffKkQYFhtHaWWGP5gKFVa6QHJB1YzMapLE9m29jmk/dmVhWvgVmjeI3FbBwb72tg1hieCjMzs4o8FWZmZk3lwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFrNh+CKNZiPjwGI2DH8DpNnI+OS9WRn+Bkiz2njEYlZGvd9HYzZeObBY7jVrjcMXaTSrzbCBRdIkSbskvSZpr6T/ktKnStoiqTvdTykqs0rSfkn7JC0pSr9M0uvptXWSlNLbJT2T0ndK6igqszy9R7ek5UXpc1Pe7lT29Gy6xPKmmWscrfANkGZ5M+xFKNOH/xkR8ZGkicD/Ae4A/i3QFxH3S1oJTImIuyXNB54GFgCzgBeBfxoRH0valcr+NfDnwLqI2CTp28A/i4jfkrQM+HpE/HtJU4EuoBMIYA9wWUQclfQs8NOIWC/pj4DXIuKhSj+LL0LZWvxFVGb5kPlFKKPgo/R0YroFcC3weEp/HLguPb4WWB8RJyPiZ8B+YIGkmcCZEbEjCtHsRyVlBur6CfCVFNCWAFsioi8ijgJbgKXptatT3tL3tzHCaxzZ8HZpG21VrbFIOk3Sq0APhQ/6ncC5EXEYIN3PSNlnA+8WFT+U0manx6Xpg8pERD/wITCtQl3TgA9S3tK6Stu+QlKXpK7e3t5qflzLCa9xZMPbpW20VbXdOCI+Bi6RdDawQdLFFbJrqCoqpNdSplJdgxMjHgEegcJU2FB5LL/8RVS183Zpa5YRnWOJiA8kbQeWAu9LmhkRh9M0V0/Kdgg4r6jYHOC9lD5niPTiMocktQFnAX0p/aqSMtuBI8DZktrSqKW4LhtDHr7p02ndNddV+nvGSr1818Ky32lv1kjV7AqbnkYqSPoc8GvA28BGYGCX1nLgufR4I7As7fSaC8wDdqXpsuOSrkhrJDeXlBmo63rgpbQOsxlYLGlK2nW2GNicXtuW8pa+v5kxelOJeV/DyXv76pXHn6+aNZaZwDZJfwPsprDG8mfA/cAiSd3AovSciNgLPAu8CbwA3J6m0gBuA35AYUH/HWBTSn8UmCZpP3AnsDLV1Qfcl953N3BvSgO4G7gzlZmW6miKPP7DmsHobJfO+xpO3ttXrzz+fP7O+wys3vA6T+46yI0LzmfN17+Uef1meZT37eB5b1+9RvPnG+l2YweWOoz1X1yzSnqOnSi7hpOHnXt5b1+9RvPny/wci5VX7TkLT5VZI/mSN0PLe/vqleefz4GlDtX+w+ZxDtTGDl/ypry8t69eef35PBVWp1t/3MX0yZMGnbMY2CLrqTJrJP9+2WjxGksFo32tsFaZ4+05doLvPP0KD95waa7aZZW1yu9Xq/P/D6+x5Eqe50CLeaquNbXK71er8/+PkfM3SDZYni9J4kt+tL48/361Ov//qJ2nwsYxT6WYlef/H5/yVJhVzVMpZuX5/0ftHFjGgUrnHPK6XdEsD/z/ozaeChsHfMkZM6vHSKfCvHg/hnnxsTreTmqWLU+FjWH+at/qeDupWbY8YhnDvPhYmUd0Zo3hEcsY58XH8jyiM2sMj1jGOH+1b3ke0Zk1hgOLjWs+uW6WPW83NjOzinzy3szMmsqBxczMMuXAYpZz/mrrxnL/Zs+BxSznfICzsdy/2fPivVlO+auHG8v9Wz0v3puNET7A2VhZ9a+n0j7LgcWsTo36YPEBzsbKqn89lfZZPiBpVqfiD5asv5bABzgbq57+9bXmyvMai1mNPEdfnbH6tQTj6auLvcZiNkq8BlKdsTpV5KnK8jwVZlYjf7BUNh6mijxVOTQHFrM6+IOlvJfvWlh2qmis8NXDh+bAYlYHf7CU5xHd+OU1FjNrGH/RXP1a8ZyMd4WZmeXY6g2v8+Sug9y44PzMt7NXK/NdYZLOk7RN0luS9kq6I6VPlbRFUne6n1JUZpWk/ZL2SVpSlH6ZpNfTa+skKaW3S3ompe+U1FFUZnl6j25Jy4vS56a83ans6dX+0GZmo6XWEceFqzfRsfJ5nth5kIjC5oeOlc9z4epNDWppdqqZCusHficifgW4Arhd0nxgJbA1IuYBW9Nz0mvLgIuApcD3JZ2W6noIWAHMS7elKf0W4GhEfBF4AFib6poK3ANcDiwA7ikKYGuBB9L7H011mJnlSq3brVt5O/uwi/cRcRg4nB4fl/QWMBu4FrgqZXsc2A7cndLXR8RJ4GeS9gMLJB0AzoyIHQCSfgRcB2xKZb6b6voJ8GAazSwBtkREXyqzBVgqaT1wNXBD0ft/l0LgMjNrunq3W7fy5ocRLd6nKapLgZ3AuSnoDASfGSnbbODdomKHUtrs9Lg0fVCZiOgHPgSmVahrGvBByltaV2mbV0jqktTV29s7kh/XzKxmWYw4WnXzQ9XbjSV9HvgT4Lcj4lhaHhky6xBpUSG9ljKV6hqcGPEI8AgUFu+HymNmlrUsRhytup29qhGLpIkUgsqTEfHTlPy+pJnp9ZlAT0o/BJxXVHwO8F5KnzNE+qAyktqAs4C+CnUdAc5OeUvrMjPLhVYdcdRr2BFLWut4FHgrIr5X9NJGYDlwf7p/rij9KUnfA2ZRWKTfFREfSzou6QoKU2k3A39YUtcO4HrgpYgISZuB/1q0YL8YWJVe25byri95fzOzXGjVEUe9qhmxXAncBFwt6dV0+3UKAWWRpG5gUXpOROwFngXeBF4Abo+Ij1NdtwE/APYD71BYuIdC4JqWFvrvJO0wS4v29wG70+3egYV8ChsF7kxlpqU6rAla8QCXmTWOD0ha3fJwgMvMGmekByR9rTCr2Xi4eq2ZjZyvFWY1a+UDXGbWOA4sVrNWPsBlZo3jqTCri7+PxMxKefHezMwq8nfem5lZUzmwjAE+R2JmeeLAMgbUelluM7NG8OJ9C/M5EhsPeo6d4DtPv8KDN1zqHYctwiOWFuZzJDYeeETeejxiaWE+R2JjmUfkrcsjlhY3Xi/LbWOfR+StyyOWFjdeL8ttY59H5K3LgcXMcstXdmhNPnlvZmYV+eS9mZk1lQOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFjMzy5QDi5mZZWrYwCLpMUk9kt4oSpsqaYuk7nQ/pei1VZL2S9onaUlR+mWSXk+vrZOklN4u6ZmUvlNSR1GZ5ek9uiUtL0qfm/J2p7Kn198VZmaWhWpGLH8MLC1JWwlsjYh5wNb0HEnzgWXARanM9yWdlso8BKwA5qXbQJ23AEcj4ovAA8DaVNdU4B7gcmABcE9RAFsLPJDe/2iqw8zMcmDYwBIR/xvoK0m+Fng8PX4cuK4ofX1EnIyInwH7gQWSZgJnRsSOiAjgRyVlBur6CfCVNJpZAmyJiL6IOApsAZam165OeUvf38zMmqzWNZZzI+IwQLqfkdJnA+8W5TuU0manx6Xpg8pERD/wITCtQl3TgA9S3tK6PkPSCkldkrp6e3tH+GOamdlIZb14ryHSokJ6LWUq1fXZFyIeiYjOiOicPn16uWxmZpaRWgPL+2l6i3Tfk9IPAecV5ZsDvJfS5wyRPqiMpDbgLApTb+XqOgKcnfKW1mVmZk1Wa2DZCAzs0loOPFeUvizt9JpLYZF+V5ouOy7pirRGcnNJmYG6rgdeSuswm4HFkqakRfvFwOb02raUt/T9zcysydqGyyDpaeAq4BxJhyjs1LofeFbSLcBB4BsAEbFX0rPAm0A/cHtEfJyquo3CDrPPAZvSDeBR4MeS9lMYqSxLdfVJug/YnfLdGxEDmwjuBtZLWgO8kuowM7McUGEAMD50dnZGV1dXs5thZtZSJO2JiM5q8/vkvZmZZcqBxczMMuXAYmbWRD3HTvDNh3fQc/xEs5uSGQcWM7MmWre1m90H+lj3Ynezm5KZYXeFmZlZ9i5cvYmT/ac+ef7EzoM8sfMg7W0T2Lfmq01sWf08YjEza4KX71rINZfMYtLEwsfwpIkTuPaSWbx898Imt6x+DixmZk0w48xJTG5v42T/KdrbJnCy/xST29uYMXlSs5tWN0+FmZk1yZGPTnLj5Rdww4LzeWrXQXrHyAK+D0iamVlFPiBpZmZN5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpapcbXdWFIv8HdlXj6Hwtce55XbVx+3rz5uX31avX0XRMT0aisbV4GlEkldI9mnPdrcvvq4ffVx++oz3trnqTAzM8uUA4uZmWXKgeVTjzS7AcNw++rj9tXH7avPuGqf11jMzCxTHrGYmVmmxmxgkfSYpB5JbxSl/XNJOyS9LulPJZ2Z0idKejylvyVpVVGZ7ZL2SXo13WY0oX2nS/phSn9N0lVFZS5L6fslrZOkLNqXcRsz70NJ50nalv699kq6I6VPlbRFUne6n1JUZlXqp32SlhSlZ96HGbev6f0naVrK/5GkB0vqanr/DdO+PPTfIkl7Uj/tkXR1UV156L9K7Rt5/0XEmLwB/wr4VeCNorTdwL9Oj38TuC89vgFYnx7/EnAA6EjPtwOdTW7f7cAP0+MZwB5gQnq+C/gyIGAT8NUctjHzPgRmAr+aHk8G/haYD/w3YGVKXwmsTY/nA68B7cBc4B3gtEb1Ycbty0P/nQH8C+C3gAdL6spD/1VqXx7671JgVnp8MfD3Oeu/Su0bcf9l1tF5vAEdDP5QPMan60rnAW+mx98C/pTCF59NS/8IUxv1S1lD+/4n8BtF+bYCC9Ivz9tF6d8CHs5TGxvdh0Xv9xywCNgHzExpM4F96fEqYFVR/s3pP3PD+7Ce9uWl/4ry/QeKPrjz0n/l2pe3/kvpAv6Bwh8Rueq/0vbV2n9jdiqsjDeAa9Ljb1D4YAT4CfCPwGHgIPDfI6KvqNwP0xDwP2cxTK2hfa8B10pqkzQXuCy9Nhs4VFT+UEprpJG2cUDD+lBSB4W/uHYC50bEYYB0PzBsnw28W1RsoK8a3od1tm9As/uvnLz033Dy1H//DnglIk6Sz/4rbt+AEfXfeAssvwncLmkPheHh/0vpC4CPgVkUpiF+R9I/Sa/dGBFfAv5lut3UhPY9RuEXrgv4A+CvgH4Kf1mUavQ2v5G2ERrYh5I+D/wJ8NsRcaxS1iHSokJ6JjJoH+Sj/8pWMURaM/qvktz0n6SLgLXArQNJQ2RrWv8N0T6oof/GVWCJiLcjYnFEXAY8TWEeGwprLC9ExC8iogf4S6Azlfn7dH8ceIpCEBrV9kVEf0T8x4i4JCKuBc4Guil8kM8pqmIO8F6j2ldjGxvWh5ImUvhP82RE/DQlvy9pZnp9JtCT0g8xeAQ10FcN68OM2peX/isnL/1XVl76T9IcYANwc0QMfPbkpv/KtK+m/htXgWVgN4OkCcBq4I/SSweBq1VwBnAF8Haa1jknlZkIfI3CVNCotk/SL6V2IWkR0B8Rb6ah7HFJV6Th6c0U5lIbZqRtbFQfpp/3UeCtiPhe0UsbgeXp8XI+7Y+NwDJJ7Wmqbh6wq1F9mFX7ctR/Q8pR/5WrJxf9J+ls4HkK62h/OZA5L/1Xrn0191/Wi0R5uVH4a/ow8AsKfxXcAtxBYWH+b4H7+XQR+vPA/wL2Am8C/ymln0Fhd9PfpNf+B2mnzii3r4PCottbwIsUrjQ6UE9n+od+B3hwoExe2tioPqSwAyhSva+m269T2HyxlcJoaStpE0Yq87upn/ZRtPOmEX2YVfty1n8HgD7go/T7MD9n/feZ9uWl/yj8EfaPRXlfBWbkpf/Kta/W/vPJezMzy9S4mgozM7PGc2AxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDL1/wERgRmeflUJDAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A sorted list makes it easier to find the highest values (at the end)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2021 743449\n",
+ "2014 1600941\n",
+ "1991 1659249\n",
+ "1995 1840410\n",
+ "2020 2010315\n",
+ "2022 2060304\n",
+ "2012 2175217\n",
+ "2003 2234584\n",
+ "2019 2254386\n",
+ "2006 2307352\n",
+ "2017 2321583\n",
+ "2001 2529279\n",
+ "1992 2574578\n",
+ "1993 2703886\n",
+ "2018 2705325\n",
+ "1988 2765617\n",
+ "2007 2780164\n",
+ "1987 2855570\n",
+ "2016 2856393\n",
+ "2011 2857040\n",
+ "2023 2873501\n",
+ "2008 2973918\n",
+ "1998 3034904\n",
+ "2002 3125418\n",
+ "2009 3444020\n",
+ "1994 3514763\n",
+ "1996 3539413\n",
+ "2004 3567744\n",
+ "1997 3620066\n",
+ "2015 3654892\n",
+ "2024 3670417\n",
+ "2000 3826372\n",
+ "2005 3835025\n",
+ "1999 3908112\n",
+ "2010 4111392\n",
+ "2013 4182691\n",
+ "1986 5115251\n",
+ "1990 5235827\n",
+ "1989 5466192\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 66,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Finally, a histogram clearly shows the few very strong epidemics, which affect about 10% of the French population,\n",
+ "but are rare: there were three of them in the course of 35 years. The typical epidemic affects only half as many people."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 67,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFJlJREFUeJzt3XmUZGV5x/Hv4wzCQLOZkUYHZNxiREZAGhWJ2IM74M4RFRA86miiQHA8CXJUooaIC+aoccm4Hxf6KJi4YFwCaXALMoPLiCh4YBQGAVl1gIgjT/5474RyYOjuquq+XW99P+fMmapbt+q+z1vVv7r3vffWjcxEkjT47tN2AyRJ/WGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiqxcC4Xtnjx4ly6dOlcLvLP3HrrrWy33XatLb9tw14/2AfWP5j1r1mz5vrMvP9U881poC9dupTVq1fP5SL/zOTkJOPj460tv23DXj/YB9Y/mPVHxK+mM59DLpJUCQNdkiphoEtSJQx0SaqEgS5JlZgy0CPi4xFxXUT8tGPa/SLiWxFxWfP/zrPbTEnSVKazhv5J4BmbTTsJOCczHw6c09yXJLVoykDPzPOBGzeb/BzgU83tTwHP7XO7JEkzFNO5pmhELAW+mpl7NfdvzsydOh6/KTPvcdglIlYAKwBGR0f3m5iY6EOzu7NhwwZGRkZaW37bBqH+tetvmdXXH10E195+9+nLluw4q8udLwbhMzCbBrX+5cuXr8nMsanmm/UzRTNzFbAKYGxsLNs8S2tQzxLrl0Go/9iTzp7V11+5bCOnr737x37dkeOzutz5YhA+A7Op9vq7Pcrl2oh4AEDz/3X9a5IkqRvdBvqXgWOa28cAX+pPcyRJ3ZrOYYtnAN8HHhERV0XEy4HTgKdGxGXAU5v7kqQWTTmGnpkv3sJDT+5zWyRJPfBMUUmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ilegr0iDgxIi6OiJ9GxBkRsU2/GiZJmpmuAz0ilgDHA2OZuRewAHhRvxomSZqZXodcFgKLImIhsC1wde9NkiR1IzKz+ydHnACcCtwOfDMzj7yHeVYAKwBGR0f3m5iY6Hp5vdqwYQMjIyOtLb9tg1D/2vW3zOrrjy6Ca2+/+/RlS3ac1eXOF4PwGZhNg1r/8uXL12Tm2FTzdR3oEbEzcBZwBHAz8AXgzMz8zJaeMzY2lqtXr+5qef0wOTnJ+Ph4a8tv2yDUv/Sks2f19Vcu28jpaxfebfq60w6d1eXOF4PwGZhNg1p/REwr0HsZcnkKcEVm/jYz/wh8EXhCD68nSepBL4H+a+DxEbFtRATwZOCS/jRLkjRTXQd6Zl4AnAlcBKxtXmtVn9olSZqhuw8mzkBmngKc0qe2SJJ64JmiklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaKn30NXnWb7up6SZodr6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklSJngI9InaKiDMj4ucRcUlEHNCvhkmSZqbXS9C9F/h6Zh4eEfcFtu1DmyRJXeg60CNiB+Ag4FiAzLwDuKM/zZIkzVRkZndPjNgHWAX8DNgbWAOckJm3bjbfCmAFwOjo6H4TExM9NbgXGzZsYGRkpLXlt2269a9df8sctKYdo4vg2tvvPn3Zkh3nvjGNuezvzvrbrLktg5oBy5cvX5OZY1PN10ugjwH/AxyYmRdExHuB32Xmm7b0nLGxsVy9enVXy+uHyclJxsfHW1t+26Zb/9KTzp79xrRk5bKNnL727hum6047tIXWFHPZ3531t1lzWwY1AyJiWoHey07Rq4CrMvOC5v6ZwGN6eD1JUg+6DvTMvAa4MiIe0Ux6MmX4RZLUgl6PcjkO+GxzhMvlwMt6b5IkqRs9BXpm/giYclxHkjT7PFNUkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekSvR6gQupCjVfR1XDwzV0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ileg70iFgQET+MiK/2o0GSpO70Yw39BOCSPryOJKkHPQV6ROwGHAp8tD/NkSR1KzKz+ydHnAm8HdgeeH1mHnYP86wAVgCMjo7uNzEx0fXyerVhwwZGRkZaW37bplv/2vW3zEFr2jG6CK69ve1WtKez/mVLdmy3MS0Y1AxYvnz5mswcm2q+ri8SHRGHAddl5pqIGN/SfJm5ClgFMDY2luPjW5x11k1OTtLm8ts23fqPrfiCySuXbeT0tcN7bfTO+tcdOd5uY1pQewb0MuRyIPDsiFgHTAAHR8Rn+tIqSdKMdR3omfmGzNwtM5cCLwLOzcyj+tYySdKMeBy6JFWiL4OJmTkJTPbjtSRJ3XENXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoM78UVB8DSPl/bc+WyjVVfL1Saytr1t7T2N7DutENnfRmuoUtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ilug70iNg9Iv47Ii6JiIsj4oR+NkySNDO9XIJuI7AyMy+KiO2BNRHxrcz8WZ/aJkmaga7X0DPzN5l5UXP798AlwJJ+NUySNDORmb2/SMRS4Hxgr8z83WaPrQBWAIyOju43MTHR8/K6tWHDBkZGRmb8vLXrb5mF1sy90UVw7e1tt6Jdw94H86X+ZUt2bGW51914S2v191Lz8uXL12Tm2FTz9RzoETECnAecmplfvLd5x8bGcvXq1T0trxeTk5OMj4/P+HlLW7pKeL+tXLaR09f2Mso2+Ia9D+ZL/etOO7SV5b7/s19qrf5eao6IaQV6T0e5RMRWwFnAZ6cKc0nS7OrlKJcAPgZckpnv6V+TJEnd6GUN/UDgaODgiPhR8++QPrVLkjRDXQ8mZeZ3gOhjWyRJPfBMUUmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUifavRTVN/bgM3MplGzm2ksvJSdLmXEOXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekSvQU6BHxjIj4RUT8MiJO6lejJEkz13WgR8QC4APAM4E9gRdHxJ79apgkaWZ6WUN/LPDLzLw8M+8AJoDn9KdZkqSZiszs7okRhwPPyMxXNPePBh6Xma/dbL4VwIrm7iOAX3Tf3J4tBq5vcfltG/b6wT6w/sGsf4/MvP9UMy3sYQFxD9Pu9u2QmauAVT0sp28iYnVmjrXdjrYMe/1gH1h/3fX3MuRyFbB7x/3dgKt7a44kqVu9BPqFwMMj4sERcV/gRcCX+9MsSdJMdT3kkpkbI+K1wDeABcDHM/PivrVsdsyLoZ8WDXv9YB9Yf8W63ikqSZpfPFNUkiphoEtSJQx0SaqEgT5NEbEkIpa03Y62RMRDIuLEiDi47ba0YdjrB/tgEOo30KcQEUsj4jzg68C7IuKJbbdprkXEXwPfovxmz6sj4m9abtKcGvb6wT4YlPoN9HsQEdt03H0McGFmLqMconl8RCxr5runs2UHXkQcHBEPbm4HcDBwSma+EjgdOCQixjser8qw1w/2waDWb6A3ImKHiPhwRFwKvDsi9mgeeh7w6+b2BPBL4BWbnjbHzZxVEbFnRPwE+EfgExFxcJbjWvcEdgXIzAuA7wEv2/S0Nto6G4a9frAPBr1+A/0uzwC2obxxdwBvjohFlM2sZwFk5h+AM4EnNvfvbKep/RERu0XEDh2TjgDOysyDKF9eL4mIhwOfo+mDxr8De0XE1oPcB8NeP9gHtdU/VIEexcKIeHlEfDsiToiIhzYPPwy4IzM3Av8C3AQcBXwTeEBE3K+Z71Lgyog4YM4L6JOIeGREfA34DvDWiNj0s8f/C2zb3P48cA1wKGVt5C86tlpupPxq5t5z1+r+Gfb6wT6otf6hCvRm0+lJwEuBdwJbAx9pHr4GuK75xr2S8mY9lPIG/4y7fgJ4K+CGZvrAiIjtOu7uA1yVmUuBc4F3N9NvBP4QEdtn5o3AZcADKbV+D3hdM999gT8B62a/5f0x7PWDfTAM9Vcd6BFxQES8IyKObe4H8Ejg65n5lcx8J7BHRDwBWE/5Zn5k8/RLgJFm2r9SdoI8i/JlMAr8eE6L6UJE7BwRn4yIC4HTIuL+TR8sA74bEZGZXwZujohDKVsf2zeP09zfBbiTstWyS0R8BDgD2JiZ1811TTMx7PWDfTBs9Vcb6BHxKOBDwO+BF0bE6yj1LgF+37Fn+pPASygBvRF4QjP9Isqe7dsy83zgJOBY4EDgbZl553zau70FB1FqOoSy4+ZkYAfKj6ntmnf9kM+nKH3wA0p/PRMgM7/fvMbCzLwEeBVwMfDPmfky5r9hrx/sg+GqPzMH/h9lTfoVlM2ohc209wAnNLfHgPcBhwNPAb7R8dzdKZteUAL8h5QrK+0LfAl4QMe80XatW6h/AeWDdh5laGhxM/3zwPHN7QcDpzWP708ZO1zQ0X+/bV5nCWXr5LXAJ4APAtu1XaP12wfWP/W/gV9Dj4i9KTsunwOcAryxeWg95bqnUL5Rvwu8ADgH2DUiHh0RW2UZL18fEU/MzHMpP6/5DuCLwBmZ+ZtNy8rmnZ+HDgOeDbwFOICyfwDKETqbtjiuBL4NPDMzL6SsrSwHyMwNwAXA/pm5HjiaMqx0DfDGzLx1juro1rDXD/bBsNcP9HYJulZExL7ArZl5aTPpscClmXlsRDwGODUixoBJ4OkRsW1m3hYRPwZeSDmW9HPAK4H3RcTtwFrgiub1Pgx8LjNvmbuqptaM9WVE7E/ZNPw2cHaWQyn/Erg8M8+NiCsoZ7Q+DVgDPC8iFmfm9RFxGXBrRDwIeD9wVETsQrna1A2UzU0yczWwes6LvBfDXj/YB8Ne/3QMzBp6RDwsIr5DGfN+c0S8tHnoTmBds7Z9EWVT6QDgNu465Ajgj5RNql0pa+E/bV7rPOD6zLwKylr4PA7zg4CPU/a4PwV4ezPLncClEbEoM6+g9MGjKWOBV1OOrYWyV34B5X0/i9IPRwL7AatyHh1P2ykiFjT1P4myCTxU9QM0tWWUsxOH8TOwwzDXP21tj/ls6R+wHXBAx/3DgPc2tx9H+fbcAziGspm1pHnscMp4+abHzmumb0MZblnc8Zr7Avdtu9Yt1L8t8Gru2prYCvg74DXN4zsDP2lqOIIyNri0o69WUa5wfhhlC2RHyj6Cr3XWDNyn7Vrv5f1/BeWPbiVlR9bQ1N/Rvu2BsylXBAM4cVj6oPkbOKb5uz1r2Orv5t+8XEOPiJOBy4GvRcRoM/nplGPDyXLq7Q+A4yjHkO5OOWYcylj5PpSjUz4F3BQRn6bs7PwF8P9jYZn5w8y8Y/YrmpmI2BX4KjAOfJqyE+f5lC2PjQCZeRNlp+3xlHHCXbjrkMvzKcfb35GZXwU+RjnD9QOUvfl/3LSsnIdrJM3xwudQ/vg+AjyNsv9jf8qaWNX1b2YR5XyJh0bEYsrnfAHU3QcRsRVl39fhwLsy8wXNQ/tumqfm+rvW9jfKFr6ZxymbSx8FVjbTXkcZL9s0z57Alc3tU4G3djx2IbBvc3tryiFL+7dd1wzqXwQ8ruP+sZSdPMcAP+iY/kDg6ub2ayinKu/cPP8rwIM65l08F23vYx/s1HH77yl/tEcOS/0d7T4GeBfwJuDllNPPLxyGPqAcmHDkZtOOAC4Yhvq76rO2G7CFN3LToURHcNeQyU7AzcA2HfNdSPnG3gn4AmUT6z8p38Bbt11HD/XHpn/N/cd09MMNlONnN837rU3hD/wT5YifG4B/aLuOPvTDDpT9HNcCb23u3wCM1l5/x3v/MsrQ2/OBzzbTrh+SPjiMcmLP6ZSDHN5MGUq9Edil9vq7+Tcvh1wy80/Nzf8Cto+IvTPzZsq4+as6Zr0I2L557DjKsMp/ACuy7PkeSNnomHQCZW0FyvjfiQBRfl/mV8CmQyvfQtmSWZKZ75ij5s6azPwdZWjt8ZSd2S+kDJu9Kopq6+94/w+hDDudA+wWEW+k7OxfAXV/BrIMlVxBCeejgUcBz6V8Bl5d+2egG/HnuTH/RMQHKePhr2+O8vhbSrDvTDlh6JCOL4DqRMRulPG/4zLz0ig/JraC8uFeAvwo5+MZa30WEftQvsy/Txkn3YtyqFm19UfECGW4ZWtKzX9FORnmZMqa+8Opvw+2zczbmtt7Uz7736Wcml/9Z2CmBiHQ96EctfJkyof6Nspp+LcDH87Mi1ts3qyL8vsxTwLeQBlPvYqyiXkE8PMsh2pWLyJ2p3yxvTgzb4iIo4CLM/OHLTdt1kS50Mq/UXbgnUE55O7kzHxa83j1fdApyi8dfhQ4IjNvHLb6p2MQAv1FlEP3bgPeRtnjXc9e6SlExHeBh1B+1e1q4C2Z+ZNWGzVHImJHyhf5Syg7wVcBH8jMP97rEyvVnAzzfGAiM69puz1zISK2plyrYNOQy4eAD2b5mWttZl4HekQ8mnIa/pmUHUID9ZO1vWoO3TqFMo74mUHeL9CNiFhIGWb5A6X+oXr/N4mIBcCdOZ//WGdRRLyKcrjqp4f1MzBd8zrQJUnTNy+PcpEkzZyBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkirxfxo0Erf7i0deAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}