"Mon ordinateur m’indique que $\\pi$ vaut approximativement"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
"print(pi)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la __méthode__ des aiguilles de [Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
"## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$, alors $P[X^2+Y^2\\leq 1] = \\pi/4$ ( voir méthode de [MonteCarlo](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait :"