Update toy_document_fr.Rmd

parent fe9bdbe2
À propos du calcul de pi title: "À propos du calcul de pi"
Arnaud Legrand author: "Arnaud Legrand"
25 juin 2018 date: "25 juin 2018"
En demandant à la lib maths output: html_document
Mon ordinateur m’indique que π ---
vaut approximativement
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars}
pi pi
## [1] 3.141593 ```
En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation : ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r}
set.seed(42) set.seed(42)
N = 100000 N = 100000
x = runif(N) x = runif(N)
theta = pi/2*runif(N) theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1))
## [1] 3.14327 ```
Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1)
et Y∼U(0,1)
alors P[X2+Y2≤1]=π/4
(voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait:
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r}
set.seed(42) set.seed(42)
N = 1000 N = 1000
df = data.frame(X = runif(N), Y = runif(N)) df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1) df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2) library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
Il est alors aisé d’obtenir une approximation (pas terrible) de π
en comptant combien de fois, en moyenne, X2+Y2
est inférieur à 1:
4*mean(df$Accept) 4*mean(df$Accept)
## [1] 3.156 ```
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment