Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
b93063ff68a076b1495708a8aef87244
mooc-rr
Commits
57614716
Commit
57614716
authored
Oct 21, 2025
by
b93063ff68a076b1495708a8aef87244
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Tracer des donnés sous forme de courbe et d'un histrogramme
parent
7560c986
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
105 additions
and
25 deletions
+105
-25
Calcul de la moyenne, max, min, mediane d'une liste de nombre.ipynb
...la moyenne, max, min, mediane d'une liste de nombre.ipynb
+0
-0
Tracer de figure à partir d'une liste de nombre.ipynb
...xo3/Tracer de figure à partir d'une liste de nombre.ipynb
+105
-0
exercice.ipynb
module2/exo3/exercice.ipynb
+0
-25
No files found.
module2/exo2/
exercic
e.ipynb
→
module2/exo2/
Calcul de la moyenne, max, min, mediane d'une liste de nombr
e.ipynb
View file @
57614716
File moved
module2/exo3/Tracer de figure à partir d'une liste de nombre.ipynb
0 → 100644
View file @
57614716
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"numbers = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pylot as plt"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl0I1eZ9/+9suSW1V5kxW27baftTjrdSTo7ednChCQQCAlnAgwzWdhhJhyYEAZ4+Q3bvMNvBgiHl8MMDMPvJayBkMA7rEmAkBVICJOQNNmcVi/pbru9ymq3vMu2rPv749F1lUq1SqWq6vL9nONjW2vVV1VfPfXc5z6Xcc4hkUgkkvAS8XsDJBKJRFJfpNFLJBJJyJFGL5FIJCFHGr1EIpGEHGn0EolEEnKk0UskEknIsTR6xtjJjLGHGGN7GWODjLEPlm7/NGNslDH2VOnnyvpvrkQikUicwqzq6BljWwFs5ZzvYYy1AHgSwBsA/A2Aec75F+u/mRKJRCKplqjVAzjn4wDGS3/PMcb2Auit94ZJJBKJxB0sI/qyBzM2AOD3AM4C8GEA7wQwC+AJAB/hnB/Xec4NAG4AgEQi8aLt27cjFouhUCiAc47GxkasrKygoaEBjDEUCgU0NjZidXW14n4AWFtbW7+NMYZYLIaVlRVEo1Fwzivuj0ajWF1dRTQaRbFYRLFYXL8/EomgoaHB9P5IJIJCoYBYLIa1tTXT+53sUz6fRywWC9U+Vfs5ieeHaZ+q/ZwaGhqwtrYWqn2q9nMS7xmmfar2c3rmmWeynPMtDry93IftGj1jrBnA7wB8lnP+U8ZYF4AsAA7gX0HpnXebvcYFF1zA9+zZU+22hoqlpSU0NTX5vRmBQGqhILVQkFooMMae5JxfWO3zbVXdMMZiAH4C4Aec858CAOd8knO+xjkvAvgGgBdbvc7Kykq12xk6hoaG/N6EwCC1UJBaKEgt3MNO1Q0D8C0AeznnX1LdvlX1sDcCeM7Ga1WzjaGksbHR700IDFILBamFgtTCPSwHYwFcBOBtAJ5ljD1Vuu0TAK5jjJ0HSt0cAfBeyzeL2nm7jUFHR4ffmxAYpBYKUgsFqYV72Km6eQSAXij+K6dvtrq66vQpoWVsbAytra1+b0YgkFooSC0UpBbu4enMWBnRK8hoRUFqoSC1UJBauIenRl8sFr18u0CTz+f93oTAILVQkFooSC3cQxq9T8zPz/u9CYFBaqEgtVCQWriHp0YvR9EV+vv7/d6EwCC1UJBaKEgt3MNTo5d19AqyRlhBaqEgtVCQWriHp0YficiuyIJ4PO73JgQGqYWC1EJBauEenjqv6NsgAZLJpN+bEBikFgpSCwWphXt4avSyjl5hYmLC700IDFILBamFQtC0GB/3ewuqR9bR+0RnZ6ffmxAYpBYKUguFoGlxwQXAyIjfW1EdsrzSJ2TpmILUQkFqoRAkLRYWgIkJYG7O7y2pDmn0PrG4uOj3JgQGqYWC1EIhSFqIAqATdQ6XrKP3CVkjrCC1UJBaKARJiyNH6PfSkq+bUTWyjt4nZI2wgtRCQWqhECQtpNE7eTNZR79OIpHwexMCg9RCQWqhECQtpNE7eTNp9Os0Nzf7vQmBQWqhILVQCJIWQ0NAJCJz9LYoFApevl2gyWQyfm9CYJBaKEgtFIKkxZEjwPbtMqK3RSwW8/LtAk13d7ffmxAYpBYKUgsFr7S4/XZgbc38MUeOAKefLo3eFmtWam4gcrmc35sQGKQWClILBa+0+Nu/pRp5IxYXgdlZYGBApm5sIevoFeSiCgpSCwWphYIXWqyuUpRu9p0yPAxs2wYkEjKit4Wso1cIUo2w30gtFKQWCl5oMTNDv82M/sgRoL8faGqSRm8LWUevEKQaYb+RWihILRS80MKu0Q8MAPG4NHp7bybLK9cJUumY30gtFKQWCl5o4cTom5pkjt7em0mjX0cuqqAgtVAImhYPPAD4VRXthRZOjV5G9DaQdfQK2WzW700IDFILhSBpwTnw5jcDe/f68/5eaGHH6IeGpNE7QtbRK/T09Pi9CYFBaqEQJC2OHiUD9MvcvNDCyWCszNHbREb0CkGK3PxGaqHglRbvfjfVhpvx9NP02y9z8yqib2w0NvqlJeD4cWDrVpmjtw3n3Mu3CzSyAklBaqHglRY//an1aknC6P1qC++FFjMzVCMvInstw8PAySdTnxuZurGJrKNXkPXSClILBS+04JyieauJp08/TQbnl7l5VUff32+shcjPAzJ1YxsZuSnIemkFqYWCF1osLJDZG0WxgqefBs4+2z9z80KL2Vlzoxf5ecC71M3SEl1xuYmnRt/Q0ODl2wWa1tZWvzchMEgtFLzQQuTmzSL6hQVK7Zx3nn+pGy+0EKkbM6MXEb1XqZtsFrjpJndf01OjZ4x5+XaBJhqN+r0JgUFqoeCFFnaM/tlnqVtja6t/Eb0XWlilbvww+nye0kRuIqtufGJ6etrvTQgMUgsFL7QQRm+Wunn6aeDcc6mRl18RvRdaqI1er1ZEbfRe5ehPeKOXg7EKvb29fm9CYJBaKHihhZ2IXhi9n5UmXmgxMwN0dgINDfr7qR6M9SpHn8/Te7mJp0a/urrq5dsFmsnJSb83ITAETYsrrgAOHPDnvb3Qwo7RP/OMvxH9ygowMeGeFsvL+ouLzMwAbW1AMlmpx/Iy5cu3bqX/ZerGJrKOXkH25lcImhZPPgn49d3jhRazs0AsZpy6KRYVo/cjop+eBnbtAh59dJNrr/n3fw/ccUfl7TMzNA6RTFbqMTwM9PVRtA/QxKpCwXo1qlrxxegZYyczxh5ijO1ljA0yxj5Yuj3FGLuPMXag9Lvd6rVk6kahr6/P700IDEHSIp+nKM6vvLQXWszO0iQgswHItjYglfI+oi8Wgbe+FRgfB1ZWOl173aNH6UdNoUBfYs3N+hH90aOkk4AxMuB6p2+WlvyJ6AsAPsI5PwPASwH8PWPsTAAfA/AA5/w0AA+U/jdF1tErDA8P+70JgSFIWojZon7lpb3QYnbWvKRQ5OcB7yP6z30OmJsD3vUu4PBh95YSnJqiHzWzs0BLC00Ka2ur1GNiQknbCLzQw5eInnM+zjnfU/p7DsBeAL0ArgZwa+lhtwJ4g9VryTp6hWQy6fcmBIYgaeG30XuhhTB6o9SN2ui9jOjvvx/42teAH/0I2LIFWFnZ7NprZzL0o0bk5wH9iD5MRu+oUJUxNgDgfACPAejinI8D9GXAGNO9zmKM3QDgBoC60aXTafT09CCbzWJlZQX9/f0YGhpCa2srotEopqen0dvbi8nJSRSLRfT19WF4eHj9BMjlcti2bRtGRkYQiUTQ1dWF0dFRpFIpFAoFzM7Orr9mY2MjOjo6MDY2ho6ODuTzeczPz6/fH4/HkUwmMTExgc7OTszPz2NxcXH9/kQigebmZmQyGXR3dyOXyyGfz6/f39zcjHg8jmw263ifRlSNRsKyT9V+Tvl8HolEou779NGPRvDP/xxFsWi8TwcO9ANowuHDE1hcbPX82EskEkin03X+nJaxdWsM09NNSKcPVOzTI48A11xTxNjYArLZAhYWepFOH6jrsXfgwDCuv34HbrllHrOz42hqGsDBg0tIp0dqPvY6O7uQyWzG6OgqxsaOrX9OTz01gaamHszOLgNYw8hIDCMjufV9GhxcxJYtDLlcZH2fotEWPPfcMDo6eup2Pg0NtSAaPQnp9EH3vvg557Z+ADQDeBLAm0r/5zT3H7d6jd27d3MJsXfvXr83ITB4pUVPD+dPPGH+mJtv5hzg/Ktf9WSTKvBCi+uu4/yWWzhvatK/f/t2ztNp+vvhhzm/6KK6bxKfnOS8o0P5/zvf4fwv/zLnymvncvSZnnde+e2//S3nr3gF/f2P/8j55z5Xfv/b3sb5rbeW33bWWZw//bQrm2XIl7/M+Qc+UH4bgCe4Ta/W+7FVdcMYiwH4CYAfcM5FF4ZJxtjW0v1bAWSMni+Qg7EK27Zt83sTAoNXWuRy1o28RkaousKv1I0XWszMAN3dwOoqlTGqmZ2lFMeOHfS/Vzn6paXy2vH2dmB11Z2lBKemgE2bKnP0dlI33d3lt52oqRs7VTcMwLcA7OWcf0l1150A3lH6+x0AfmH1WnIwVmHEqkfsBsILLVZXKddsx+h37PDP6L3QYnaWDK6trTJPv28fsHOnUlLoVY5ea27t7cDkpDt+MTVF7Rympspnv0qjL+ciAG8DcBlj7KnSz5UAPg/gcsbYAQCXl/43Rfa6UZDr5yp4oYWdlYQAKqk77TT/yiu90GJ2Vqkd1+qRyZQPQPoZ0c/OuqNFJkNlkps2lS+2Ir7wAPtG70UbhHqUV1oOxnLOHwFg5NCvcvJmcilBha6uLr83ITB4oYU4ie1E9Jdd5l9E74UWwuj1IvpMhloCCPyM6Ofn3fGLqSmq4tmyhf4W5q6N6NVarK7SsXLSSeWv5UUbhHyettVNZD96nxgdHfV7EwKDF1rYMfrlZVo2bmDAP6P3QguriF5tMn5G9MePu/Pa4surs7O8xNIsdTM1BXR0KCksQZhTN64h29EqpFIpvzchMHihhZ3UzdgYpS2am/1J3fzrvwJDQ+7NBv3614F77y2/Tawu1dKiP+1fG9E3NZEW9e5eojW3RAIoFpkr0bM2oheojV47YWp8vDJtA3iTujnhjZ7LXjfryJbNCl5oYSeiHxmh3iZ+9HfhnCYLPf+8e+NYDz4IPPZY+W35PEWpmzbpzwbVGn00So+vdz9CrbkxBrS1FV2J6qemnEf0evl5wLvUzQndvXKt3t2ATiBm1aNCGxwvtBD5VjtGn0h4b/TpNJmLW5UmgPG0f7Fwk1HqplNzUSGi+nqiTd0AQEtLwRWjF+kovYjeSAszo5cRvQWyjl4haAtiP/dcZU21V3i1CPTAgPliG35G9A89RL8bGtxLY2Uy1kav1UNEv2q8+OLTM7ctW2KWRr9/P/XGMUPs05YtxhF9PE5XVSJal0ZfA3IwViFoC2Jfdx3w6KP+vLcXWuRyZPRmEb3oVuhFBKvlwQeB888Hjh61cC0HWBm9ndQN4I256UX0mzYtWhr9+98PfP/75o8REX1np3GOnrHyqN7I6E/U8kq5ZqxPBOnqZm2NFtrwq3bcCy2s1gYF/Ivoi0Xgt78F3vhGYGHBnZLCtTVqt6xn9EZ5ac6VgUs1XpRY6kWx7e3c0ugHB4EnnjC+n3PSwWowFrBn9F7l6E9oo5dVNwodHR1+b8I6Q0NUWuiX0XuhRS5n3+i9ztE/+yz1ft+9G1hZcecMP3aMfjtJ3czMkJFt0qz34Ve6oqtrk6nRT0+TIT/5pPFjZmdpf+Jx88FYwL7RO9HiV78C7rrL/uOBEBi9XEpQYWxszO9NWCedpt9+Gb0XWuRylJZZWKAFJ/RQR/ReavHggzRJK5kEMhl30puZDLB9O0Wz6mI3s9SNtoZe4EVEr5e6aWiYNf1iHhykdJfZ1ah6n9QR/doaHQstLcpj1V98bhn9XXcBP/uZ/ccDITD6oEX0S0v1rw82IkgR/b599DvMEf3MDE3CaW0tnwYvWF0lU+zu9j51ozb6xUV3ls/LZKjn/KZN5VG7WdWNXn4e8C+i7+mJm0b0zz8PXHABcMYZ1ENfD/XgsjB6zmkAd/Pm8glRdnP0TlI3hw87X3/4hC+vDNraoG96E/C73/nz3nkvlpO3yb59/gxACtzUYnpavwojl6MTWa+kEKAJMp2dVDfuZeqmUAAefhi45BKKsN2qNLVTUqhtgWBk9H5F9InEiqnRDw4CZ54JXHihcZ5eHdFv2kTvMTNTmbYBlCuc+XmK+NXRvsDpl97hw8DBg/YfD4Qgog+a0e/f7940a6fMz8978j6PP2492SWdBs45hy5l/cBNLT7zGeCrX6283crojx6ltA2gDLh5cbW3Zw+llDo7RerAnYIFYdpaoz+RInqrqpvBQRrXMDN6bbmoKLHUM3qhx+QkRfN6tSNOtCgWafzr+HHrElA1J7zRB6nSpFikk9uvKNarOvp3vtN8sAqgiP7888OhxdgYRedaxIltZPQjI8pC0JEIEIvVv7oCUNI2AG3f/HzElS8YO0bf2koGJOKvoEX0O3duccXo1eMOosRSXX0kEMeGUdoGcFZeOT5Or3naacALL9h7DhCC8sog1dGPj1Ok61fzKq/q6Kenza9aZmboZPezNa+bWuitDVos0j6KRl56k6bEQKzAq/TNgw8Cl15Kf0ejwKZNHG5c4KgnCRkZfUMD5alFtKk3WQrwL6JfWhozPHaPHaPn9PaS2R8+DF3dtF9eQg+ziN7M6J2UVx4+TAPip51mP09fLNLERW3lU614avRB6sEuvMUvo4+7/ZWtA+dk9NPTxo8RC0341cgLcFeLyUn6UTM3R8bd0GAe0auN3gtzW1ujSWqvfKVyW2tr0bKVsh3sRPRAuR5+RvT6M2Ojhkb//POUn2eMVgQ7+2zgqacqH6eN6O2kbqyM3u5xceQIGf2OHfbz9MvLZPJuTzny1HkbtD0/fcRvo3dt0V8TFhboqsUsot+3j1bf8arvuB5uaqEX0c/M0ElM72Xf6Outh+gK2d6u3JZMssAZvV8zY7dtazE8dsVArMAofaMtGRWpGy+MvpqIvh75eWAD19EPD9Nvv4x+YmKi7u8hInkzo0+ngV27/DV6t7QoFOiSXmv0YiAWsG/0XqRu9MytqWnZtB+PXdRGn80qt2uNXl15E7SIfm5uQnddW0DJzwte9CJ9ozcbjFXrALifoxdG7ySir0dpJbCB6+iHhoCeHv+MvlPvjHIZYfRWqRu/jd4tLbJZmmF6/Hj5pKhczrjvuMCP1I3eSd3REfU1otebMOVXRN/V1YlkUj9Q0Rq9UURvNBhrFNHPzPibow9FRB+k8sqhIUpZ+GX0XpRX2onog5C6cUsLsd5pKlUexVqlbgoFyut7vVaqfu34as1Gn8/Ta7e12Tf6QkF/6TzaJn8i+vn5ecOVprRGf+aZVEWnnoeg17vHyxz94cPUSK+nh97PzmEujd5l/Db6RQ9cdXqaygSNjH5tjS4pTzvNX6N3S4vJSaCri37UA7JWqZuJCTI4dfWvXz3Ym5pWak7diHQFY/pGrzY4kbo5dozGCvSG0fy6ullcXNQ1+myWBi17epTbolHg3HNpXoJAr3ePWdWNuNqbmCj/0lcjZsZalcCurlJl37ZtVK576qn20jf1KK0EQlpH/5Wv6NdSCzgnoz/jjHDUjhsh1j81MvqhITKEzZu9NfqbbgK++EU6KYtF97SoZm1QQGlPrMarHL32pO7ra645olfn2tVGv7xMequNT+hhlJ8HvKuj12rR39+va/TPP0/RvLYyRZu+0dsns9RNIkEGPTFhrEUkQgHB8rL5/hw9SlcFsVIzUrt5+lBE9F7V0X/3u9QR0Ihcjj6w7u5w19FPT1MkYZSjFwOxgHdGzznwH/9Bl7VveQsZ0S9+MWn9RBtMTtIJ2tVVbvRWEf3wMEVeavxK3RSLx10xepGu2LyZNF9YUOYSqA1S5KXNjN6pFnfeCXznO862Wc/ghoaGdI1eW3EjuPBC4I9/VP7Xa7nc0UG3q8dtBKInfWureR27HT1EaaXAbp4+FEbvVR393Jz5SkJDQ3Ri+7GSkCCRSNT9PaanKZIwiujFQCxAhuCF0S8vU0T0n/8J7N0L/M3fAPv2tVo/0QaZDJl8Z6d56kZ7bBgZvRd5ab3BWLdSN0B5+kabnweUdIWV0TvR4p57qD2vE/THKxKGRq/Ozwuuugp44AHl8XqDy5s20bE+NFRp9AAdH0b5eYEd3xADsYINFdF7ZfSzs9ZG39/vr9E3NzfX/T1ERG9m9KefTn97FdEvL5cfyFu2AEtL7hzZ1aZu9Izer/LKzs5GV1M3gLnRCz2MZsUCzrXYt8/ZlP+1NRoM1mZ2m5ubHRn9SScBV1wB3H47/W+0T1u2UJVVtUZvp8RSa/ROIvoTvryyYNQI3GXm5sy7AAbB6DPaYu86MD1NJYOFgn5JmDp1I7SodyOvfL78sjiVAsbG3GkqY2cwtrWVqh/UdQFHjwYrdVNrRG827V/P6O2kbpwEAek0Gb3dY0lEsdqceyaTcWT0APDudwPf+hb9rZe6AZT9rCWityqx3NARfSzmzjJpZhQKdAKZnSzDw/4bfbfV0eQC09MU5Yjaci3qiD4SIQOudyMvbUSfSgHLy+5c3RhF9Op8bCRC7R7UgYCfOXrtST0wkLSM6B9/3LzYwElEbyd14ySin5ujYy0SKS9xNcPI3Lq7uyuMfmyMvqSNqmJe9SqqIPrzn433SZi/VgvA3dTNwIDyf2+v0gLZjFAY/draWt3fQwgZ9NRNzo1ZMRZMT5OR6kVFoplZb69ymx/10qkUMDXlzpWe0WCsuo4eqEzfGKVu/CivjETMV1VaXqZ1FG6+2fgx1aRujCZLAc7OE9E7accO++kbo3RFLperOHYffxx48YuNe8E0NFDH1m9/2zii37KF8vR68zeTSTp+zKgmRx+JAKecYq1JKMorvaijF5347Bi912uDqvFi4RG10Wsrb0S6Qn3CeGX02tSNG2sCcF4e0RulboByo19YoOBAawhOg4BHHgF+8ANn26xncLHYoumx+73vkWb/9/8aL4no1OitUjdOjgsxwH/qqfaN3sjc8vl8hdE/9hjwkpeYv9673gXccQcd43r71Nmpn7YBgI9+FHj7281f32qVqaUl2mZ1nT9gL08fiojeizp6YfRWOXpRdROGOvrbbqMfLdPTZPJ6Zjo+Xnn564XR66VuFhdrP7Ln5qhmOZFQUjciR6wtpVO3QRA19NoI0anR33MPmYsT9CL6s87qM4zoCwXg85+nhVVOPhl46CH9x1WTuhFXQ3o4Gb8R4z5OjN7I3PTq6O0Y/cAAcN559OVrFNEbGf3OnbWnboS/aGtP7OTpQ2H0XtTRW0X0In/vx9qgatyso3/0UTqo1eTzNPlj82b91I3e7L9Eov6rTOlF9Nls7Vd6aqNKJMj0Z2fJnLSTY9QRvV7aBnAeBBw6RCuWOUHP6Ccnh8C5fsT4ox9Rqu3ii4HrrtP/YhFXNtpp/0ZGv2kTpTtGRoyNPhol07LTk1CM+ziN6PVSN9o6+rU1mhD14hdbv+Z73kO/nUb0drDyDW3aRrBhInovyitnZ2mwzcjoxZJxkYi3S8apyWSAhgadBSmrZHISGB0tv+34cTJRxvSNfny8MnLxI6JvbwdmZxssP4OpKfOBLFFDLxBRfT5Pn7X6Pe0YvdO03qFD9OOkQateyqKlpbliLVeABiA/9zngk5+k/6+5BvjZzyq/ENRXNgIzowcU09O7T2A3KKomdWNkbtryyr176TNOpaxf841vBF79av2I/qyzgIsusrdteliVVxoZvd2I/oQvr/TC6OfmyMiNUjciP0/bQyeF1XRmN7nrLro8/NnPaggpNExOUkSmRuTnAf0cvV+pG+1JHYvRqkpWa2recAPw5S8b369NPYgBWb0ZkOpJU3qllYDzq71Dh0i/w4ftP0cvko3H47q1/j//OT32Na+h/3t7KT2hnZikN6hqZfTJpNIbxwg7x0axSBGrMPpaW/PG43E0N9P5ubpKA7FWaRvlucB99yktCNSccw614KgWq/JKI6MfGFDWwTAiFBG9F3X0wuiNInq10QPepW/W1oBPfQp4//uBV7wCOHrUvTc1i+gB/Ry9UerGi4heO728tXXNtJVyPk8n7R/+YPwYvYh+crKy4gZwP3UzN0dXGy9/ubP0jZ7BZbNZXaO/+WaK5tVmfP31lekbvUlCaqM3qh236hRt5zwZHqZjrbmZBiJnZ+11bDQajM1ms+ttCY4ft5ef9wKtFgsLwL/9G7VfWF2tLK0UnHSSectwICRG70UdvR2jV5/YXhn9X/81GdUTT9AaoZy7M+0fIJMTHf0E2og+KKkbvQO5oyNiegL87ncUwf73f5dPdFKjHYC0iujdTN2ICG7nTmdGrxfR9/T0VKRuZmepkdfVV5c/9q/+Crj33vKrV73qmbY20n1qyjh1Y2X0do6NdLp8Xsb27XSlY4VRRN9TKlsRx29Qjf7xx4EvfAF43/uol8499+hH9K2tpKFZes+38krG2LcZYxnG2HOq2z7NGBtljD1V+rnSzpt5FdF3dcFwZRoxWUrgldHfcw81e+rqogN3YsKdgel8nn76+mgyiSDIqRttRN/cvGJq9HffTSVzySTlgPXQpm6cRPTazpWA877jp5xCRm93gQlA3+j1IvqDBym/q818plK03uzPf67cpmf0jJEBvfCCeerGDDt6qHsnAfbz9GYRPUDH78gIaXvuudavV2+0OfqREeCyy2jN2hdeAH78Y1rxSovReJkaPyP67wK4Quf2f+Ocn1f6sdXCiHsw6jk3B7S0UJSil6f3I3UjqijESW20nF01CIPr6ytP36iNPmipG+2B3Nq6amj0nJPRX3UVpUYefVT/cUaDsdoaekDRv1jUb1EMODsuDh1SjN5pRK/VYmVlpeL4OHCAKjb0eMtbgP/zf5QrHbPZoBMTxkZvNFlK4DSiB+wbvZG5iSq99nZqVnbWWeZdJb1Cm6NXH0MdHdRvx2h57FTKPH3jm9Fzzn8PwCKzZA+v6uiF0eulb7RG74W5FQr0wYuZeMkksLrqTvdK0d+lt9fY6LVRxOIiXe3o9eP2I6Lv7U0YHvx795KJnXWWudE7HYwVjbyam6kEVYsTLao1er2URX9/f8WxKyJ6Pd78Zhr/Ef1dqpn2f/rpxr1jBHpffFp9aono9VI3Yq5JeztdEQchbQNUamEULOjhl9HXsojrjYyxtwN4AsBHOOe6FySMsRsA3ABQ74p0Oo2enh5ks1msrKygv78fQ0NDaG1tRTQaxfT0NHp7ezE5OYlisYi+vj4MDw8jWQrLcrkctm3bhsHBMRSLEZx55haMjo4ilUqhUCjg6NHNOOusJmzaVMTgYBZbtrRibGwMHR0dWFjIY3S0Bx0dy0inhxCPxxGL9SGdHsWOHS2Yn5/H4uLi+jYlEgk0Nzcjk8mgu7sbuVwO+Xx+/f7m5mbE43Fks1nTfTp6NId4/DQcPPgCisUi4vGTMTa2homJ+bJ9GhkZQSRH7MfuAAAgAElEQVQSQVdXV9k+zc7Orr9mY2MjOjo61vdpcBDYvDmO7u449uyZxktesohkMokXXuC44IJGDA8fQza7jOnpHUin9yGRSGBqqhUnnZTAzMxi2T4tLs5jeXkTstkVy32y+zlp9+nYsT4UChzp9Oj6a66utmBs7CSk00fQ0dGBfD6P+fl59Pf349vfnsPFF8cxM1PE1q3H8fDD2zA8PFrxOY2P92JhYQi5XKq0TxGMj/fiwIFjaGhoQja7vL5P8/OzmJzswP79ZIpjY9MV+5TLAUtLpyKd3me5T+n0drzoRfNYWJhCNrsLe/bsRzIZK/uc1Ps0NETH3vx8HyYnj2J6um392CsUClhd7cLQUCOmp9eQyWQwOHgKzj13Ful0VvfY+/d/78PrX9+EXbsOY3x8ACefnMHYGMr2icyjBdHoItLp8s/pve+lfTp40PjYW1sr4PDhBczOJjA2NoaZmU5ccUUbfvWrQzjvvD4MDQ1hcHAHtm5dQDo9js7OTrS0FPD005uxtBQxPZ/m5k7FwsIsRkaWys6nwcFBtLe3o6VlB/785yje/e7jyGRWqz727JxPep9TMpnExMQEOjs7MT8/j+PHY5ib24J0+iASiQQOHerG2WdnkMs1W3pEPB7FM88cw/nnd+ieT7lcFFNTU1hc7Cjbp5rhnFv+ABgA8Jzq/y4ADaArgs8C+Lad1znnnHO4W3zmM5x/+MOVt7/xjZz/139xfvHFnD/0UPl9Y2Ocd3WV3/aa13D+61+7tlm6ZDKcd3Qo/x86xHlf36orr/2Nb3D+rndx/r//N+cf+pBy+zXXcH7HHfT30hLnsRjnxSL9/8gjnL/sZZWv9YUvcP6Rj7iyWYb8r//F+ac/XX7bpz6VM3zfv/gLzn/1K/p7dZXzlhbOs9nKx7W3l9/+/POc79rF+cc/zvlnP1v+2EOHOB8Y4PwnP+H86qv13zefJ83scPrpnD/3HP29ezfnTz1l/3mDg+W3jY6O8v/4D87f/37ltosu4vy3vzV/rU99ivM3vYnzyy7j/L77Ku//wAc4j0SUY8Ap11/P+W23Kf//5jecA5zfdBP9PzPDeSLB+dqa8pj9+znfvt36tf/5n+lHy+joKOec8098gt7rwIHqtt1tvv990kNwzjmc79lj77lveQvn3/ue8f0vehHnf/pT5e0AnuA2PNbop6qqG875JOd8jXNeBPANADbmqgHMrFDXIZkMdanTIlbR0Uvd6DU58mo9TO0koZkZdwqe1KkbdS29aH8A0HtHo8qltl7FDeBf6iaVYroDVNPTNMB1ySX0fzRKsyL/+7/LH7eyQp+72F9AGYzVS92Iaf9GFTcA9UYvFIz7yQiKxfLVhJykb/RSFtFotOLYNcvRCz75SWrf+4c/GKdutKtLOUF7bIyOUi76Bz+g1NL+/bSN6gHj/n56nNUkMqPB2Ggp1ynaeJx6anXb7jYnYuqmKrdhjKmH8d4I4Dmjx6pxs+omm9UXTOToW1uDZfRqc2ttBRYWGNxo5imM3mwwFijP0+tV3ADOV5l66illkQe76A3GRqOzup/lPfeQyavNUC9PLz5Xtcm0t1MN99RU5WBsaysdJ0eOGBs9Y/ZKLMfH6fXFTFSnRq/VYnp6umwwVtSiG7XlFcTjwDe+QV96et0XhdFXi/Y8GRujCVsf/jDwiU9UDsQC9GXZ02NvkpBejn66dFCcdJJ5x0qvUWuxsEDbf9JJ9p5rZfR+llfeAeCPAHYxxkYYY+8B8AXG2LOMsWcAXArgQ3bezM3B2GPHzI1er+rGL6PXmlskQiedWeM1u9gZjAXKSywnJtyJ6O++G/jmN51tr15Ev2NHSvez/OUvgde/vvw2PaPXa8gVidBnfeBApdFHo7Svzz9vHonZOTbEQKzAidHrGVxvb2+Z0YuBWDsm9xd/QYZbD6PXi+h7eoB/+AeaKPT975cPxArsDMgamVtvqYf2m99MlUVBQV1eKVqq2P0SCmxEzzm/jnO+lXMe45z3cc6/xTl/G+f8bM75OZzzv+ScmyyDoLDqpBGIBVYRfZBTNwDQ3FxwpT2vMPqeHmVRBqDS6NUllkYRvVOj37fPuK7dCL2IvljM6n6W995L6QE1L30pTTpTH0pGlSadnWT0RrNBn3nGOKIH6m/0+k3NJsuOXbOKGz127tS/ffv28rUHnKLVYnSUXi+RAP7lX+iz0kb0gD2jNzK3yVKv6ZaW8ko5v1GXVzpJ2wABNno34S7W0Z9oqZvK5lVrrtTSi2g2HidDm5qicrv5+XKDs5O6cWr06TR9uTi5MtHTorW1UPFZzszQ56I9iZJJOumfeUa5TVtDL+jqov3RK1xIJkk7M6O3o0e1Rm+0TmqxWCyL6O3k5+1wwQWUCqsWrRZjY8oXx9vfTldeel0l7fS8MUrdeLF+RTWoPUMavQ71SN2ovzs4J9Nxkrrxa9r/li0xVyN6QEnfiAFIbc7azdQN5xTNb9vmrHZcr9fNGWd0Vxz8Q0PUL0TvklibvjHqpW61Nmg0at57vJqIfssWMnC9QgE1IprX7l9fX19Zv3ynEX290IvoxcIaDQ3UrE9vsLSW1E1fX1/1G1xHtKkbt4xeTKw84Y1+Zsadwdh8ngwjFivvn760RLfFYsFL3WjNrbFxseaIXlSbiIEgUXmjTdsA7qduJibogHzpS52lb/QO5KmpYXBe/jkcOaLfGAogo//d75T/jSJ6YfRGEX1fn/EMRqA6o2fMXisEI3MbHh5GSwt9DoWCexF9raibvBUKdC7ZWfbYzpKCRhH98PCw8w31gHqlbgoFCs70ljisFU+NfnHRnT04dozMTdsNTpRWAsEz+sqIvqHmiH5qiqZci8hdVN7oGb1I3aytkX56EbAToxdVFqefTn/bRe9Lr709WXECmBn9VVcBTz6pDNAZRfRdXcpi4FqSSfO0DVBd6gawl74xMrdkMlk2WB+UiF5dgTQ5ScednR6FPT0UFJhh9KXn2mQhl6lX6qZe0TxQ28xYx7i1Nng2SwdaQwOJJk5YkZ8H9KtaglJ1Q9vHa47o1WkbQEndDAzoG/3evRT9plL6UYOTFabEdPddu8qbalmhpwWgnAAi73vkiPEA3JYt1PtElF6aDca2temnf5JJ6wVnrI6NxUVKsWivjuwYvdG0f0FbG5nI3Fzl2qN+oI7o1WkbK0Qpqxn1NLh6UIvRi7UQisXKJnX1Kq0EPO9H785g7LFjZPTab0e10Qc9oncjdaM1+r4+49SNyNEbpW0A5xH9rl3uRPS5XM5RRA9QFH3ffVTD/cc/Gg/GGgWFXV3WkbKdJeMGBipP2FqMPlc6KJJJumo59dRg1I+rI3r1QKwVmzbRF6rZ4j5WWgQNkaPn3LnRR6N0halXwFDPLzxPjd6ttxMRvROjX1srX4xD4JfRDwy01Zy6MYrozXL0el0rBU6MXqwNunMnpRfsFkjoRfTbtm1zbPQAfdHccw9F7nppmFNPNS43/OhHgY9/3Pz1rSZM6aVtgNqMfltpR5JJ4E9/CkZ+Hig/T0RppV2s5owYGdw2q9yaT8Ri9OWbzdJvp+vPGqVvQmP0q6vuRPTZLOXntV0ZtakbtdFPT9MHok1Z+GX0a2vH6pK6MYvojx83bn8A0AHMub11T0VE39xMn4XdcTM9LUZGRioOflF1Y8XZZ9OApV6b3Z07jUsKGxsrSxu1WK0yZWT0p5xivaSg0WX6SKmPRVsbzRcIitGrgwAnqRvAntHrfemNaNfHDBBNTXTcOYnmBaE3+rU1d65BjSJ6UVoJ0ME1P69EmnppG8C/qptkkrse0asHY9V9XwB7qRsx7d8qql9aoisD0d9l1y776Rs9LSKRSFlV0OwsPa6jw95r1gurY8PI6LXHnh5G5ibWVRYTuoIwEAuUa+EkdQNY5+mNvvS8WGO6Wpqa6KqtGqPXWwgIqN/C4IDHRl8sumP0dnL0DQ1kWmLNSjOj92OxjYGBpGFEzzkdRF//OvCcSRchrdG3tVGK6siR6lI3gD2jP3iQTF5cHe3aZb/EUk+Lrq6uss9SrBngd27ayugPHtQ3enHsmQ1sG6VuukofaDJJ5bNhiOhbWqqL6Lv0Bl4CQjxevdFvgIje3dSNmdED5ekbI6N3sjZoteh9gMvLE7pG/6lP0cHzqlcBP/wh5ZKN0Bo9YxRpPftspdGL2ZZjY+b1z3ZXElL3NXEyIKsX0VOvcOWztJOf9wIzLV54gbpovvzl+vdbmZuR0Y+WGhaJvG8QI3o3c/RikpDeylGj2hXvA0QtEf0GMPr6pm7UdfRA+exYv1M3lQOQrRWpG86BL36RqkmGh4Ff/xrYs8d4YE9r9AClbw4frjT6WEw5OGuN6MVArKDWiD6VSgXS6M2OjU98AvjQh4yX4LOTrtAz+lTpg0sm6f4glFYC5ceFm6mblRW6MtSbuJbSHsQBoh45+tCUV9od6LPCTuoGKK+8CZrRb968WhHRi6XtzjiDovN4HPjbvwW++lX919WbKCROQL1zJJUio/croi8WafafdqJNoVCoSN0E2egfe4z6vn/4w8bPrbbSRLTyTibtd630AqHFwgJ9WWvHgMwwu7oxy0u72dbcbeJxORhrSEOD/jquaj7zGVpR3Ww2nZ3ySiDYRr+yMoNi0XiRYcH73gfcdlvliVIo0L5r98nM6Nvb6YvWjYhebfR9faSzVXMz0edGa16zs7OBjOj10nqcA//zf1LHRtGDXo9qUzezpSedcgrwildUsdF1Ihql+QJHjtBVhpMvILMvPbModtaNPt51QviGNHodGhpgWVL4619TNHPhhRQ16eEkRx+U1I02Bzkw0F/WpRDQN/q+PuDVrwZuvbX89myWjFtbLir6QOlFXO3tpI/eYtgCq8VHRDMztdFHIvan/esdyP39/WWVCGazYr1Eb6D+zjvpS+0d7zB/brWpG7Eg9iWXAF/7mrPtrTdNTTQA7bTdsZkWZhF9fxAOAgPENkuj13uzCDeN6JeWaNWi224DbrkFeNOb6LeafJ7yei0t5uWVgLOI3sUOyhXo5aWHhobQ3m5t9ABw002UvlGX6+nl5wE6CVta9PuQtLdbN6KyiujHx2lftFcMdkosjQbdhoaGAhnRa4OAQgH4x38EvvAF82ZogHXqxsjoh6yWY/KRRIKM3um4gdnVjVlEH2QtmproHDC7qjPCzOhDUV7Z0GBu9I89BpxzDol35ZXA/fcD//RP5Y8R+XlR810oKOmPalI3DQ0UFa+s1LZvZui3QGhEMlk+4cvI6C+6iPb13nuV24w6Nvb2GudPUynrJemsjF47ECs4/XTrAVmjPjeNjY1obaX3PX6cfuv1rvEabepm7176sn3ta62fW23qxs1W3m5TS0RfTY4+yFrE49VF80B5J1k1oYnoo1Fmmrr5/e+Biy9W/j/rLBr8UX85iPw8QGavnh1bTeoGqH8tvd4H2NHRYSt1A9B+3nQT8KUvKVceRhH9+ecbL+/X3l670WsHYgV2I3q9A7mjo2P9s3zqqWDU0AOVx8X+/cCZZ9rbtmoHYzv8niVmgojo3TR6s4g+yFo0NdVm9KFO3TBWNI3of/97WvdSeTxNGFH39hb5eYFaNKOInvPyLwgtTmrpH30UuPlme48V6H2AY2NjFS0czBokveUtVL/84x/T/0ZGH4sBl1+u/xpdXdYHp52I3sjo7UT0eqmbsbExAPRZ7tkTjLQNUJm62b/fuHeOlmpz9EKLICJKCqtJ3Zjl6I3MLehaVGv0YjxKmy4OTXmlWUS/ukqpm4suKr9dO8gnUjcCrdFr6+hnZihqTiT0TQZwNiD7ve8BP/qRvccK9HLTTiJ6gPqyfPObwAc/SPtrZPRm3Hgj8OlPmz/GyOiLRZrA9V//RVcNWuwstmEVxQqjD8oYXC1GX23qJshRbCJB8zu8St0EWYvOTv2Axw7xOKWLtedZaPrRmw3G7tlDJWXa/LLW6LWRuZ2I3ixtA9g3es6BX/5SWZfVakBOoPcB5vP5ssHYtTUqKTU7iV72MuCv/opmyxYKVG/vBDsHUSJReVL+6lfU6XHTJuC736XyVy3NzbQPRlE7YDwYmy8NsqRSwJ//TGuQBgHtl97+/cC73mXvudUOxubV9bYBo6mJzgGnEX21qZsga/FP/1RbAYfwLXUFXGhSN5GIcerm4YfL8/MCPaPXpm6OHyfjW14uHwUXB5hbRv/MM2RUW7daL4+mRm8Qcn5+vmwwdmKC9sVq/Olzn6NB6vvucx7R20FrbpOTwLXXUt34Y49RWsgoR212iQ4YD8bOlxoSpVKU59/IqRuhRRAR55bbqRujiD7IWgC1jSPpNTYLjdE3NkYNUzfa/LzAbkQ/P09RpVp8tyP6u++m1e537wYGB60fL9D7APv7y+vo7S5g0NJC9dXj494Y/Qsv0JXD1VdbH9hW5mYU0Yt66VSKoqQgGv3x4/RFZVdzO428jOYUBBVRUui0BLDaiD7IWtSK3oBsaMorOS/oRvTFIvDII/pGLwZjxWWSUY5eW0MPBNvoRR29iOidrFRz1VXA7bdTVZLbaLsuHj6stCO2wsrcjCJ6US8tavODZvSc0zG4c6f9KC6MdfTV9t4REb1eqsPM3IKsRa0YGX0oIvpoVH9m7OAgpWP0Sv9SKaokyWTof6OIXpufB9xN3UxNUR31xReT0T//vPnj1eh9gPF4vKqIXnDddca58FrQRvROjd4qotc7kOOlG1Mp2qcg1NADNAYTi9EXlJO0DVB96iZerzPdBRIJ5wOxAJ338bj+IL+ZuQVZi1oJtdHHYg26Eb22fl6LOn1jVF6pZ/TqiN5sAN9OHf2vf02tCBobnUX0Yr1Mbe49mUxWHdHXk1qMvtrUTbK0sGsqRRU3QVpvQgQB+/c76w1fbdVN0miR2wDQ1FSd0QPGepilboKsRa3oGX1oyis5X9U1+ocf1k/bCNRGb5S60ZZWAopoIyPmEb2dOnqRtgFoFuj+/TQAbMXKCpm81rwmJiZqiujrhZ7R202lVJu6mSh1sBsY0C/d9BNxbFQT0Vdj9BNm3fx8pq+PJoxVg5EeZqmbIGtRK3qzY0MT0RsNxj7+OJUOGqGN6O2mbgA6wA4erC11s7JCVS6vex39v3mz/cobow+vs7OzrLwyyEbvZupGL6LvLOVqLrqIavWDhLjac2r0iQQdN0bBgNlxEVQ+8AHgIx+p7rlGV3tmUWyQtaiVUKduGFtbn6kqKBZpxqfZgu/C6JeWaGJVc7NynyhTMjL6tjYy5FqM/pFHaBvUFRd20zdGH978/Px6aqlYDKbRFwq0yITZZ6PGKnVjVV4ZRNRG7yR1wxgdp0Z6nIjllbVgdLV3IpdX1kKojZ7zImKx8ogxm6WDwKysSBj9sWOUn1dXPlhF9G1tdF8tRq9O2whqNfrFxUVEo/Te09Okg1UfGi9QG/3ICA2M2h30rbakcLHei/bWQFMTLQK+eTO1z3aCUbpibY0CFj1dg6xFLRhpYRbRh1ULIOTllY2NjWUdJQEyE6sBnh076GTLZCoHVdvaqIb++HFjoweqN/piEfjJT4A3vKH8didGb1Y73t5OFTzd3fZn2tYTtdE7SdsA9iZMmWkRRBIJ4OmnnaVtBGZ56Xhcv1QzyFrUQjU5+rBqAYQ8ol9ZWUEyWW70dhYaTiTIqPfsqTT6SITMfHjYOEff1GS+2IaZ0T/6KL3G2WeX3263xNLowxM1wskkzbgNQtoGqM3o7VTdmGkRRJqaqKNmNUZv9MVnlLYBgq1FLRhpYWZuYdUCCHnVTSQSQVtbeS396KiyKpIZO3cCf/xjeWmlIJWidUaNInqzaB4wN/rbbweuv77y9tNPp0k0VpU3RnnpRGk+eXs78OyzwTH6piY6+YrF6iJ6q9SNXkSfUPetCBhNTfRFXI+IXo8ga1EL1aRuwqoFEPKIPhKJVET0dlI3gGL0evXwqZRxRG/X6PXSgaur1Bb42msr70skaJbgwYPmr2304TWXRpSTyWAZfSRC25vPOyutBKrvddOsHl0PGIkEpQ3dNHqziD7IWtRCNambsGoBUIZhZYXOCUAZt6nXWiueGn2hUKgpot+719joh4Yq6+gBuq3aiP7++2l8wCiqtZOnNzL6TGmqrzB6Oxp4hUjfHDnifupGL6IXWgQRYUJepW6CrEUtmGlhFMWGVQugctEkEQTVa8EdS6NnjH2bMZZhjD2nui3FGLuPMXag9Ntg8bpyYrFYxWCsnRw9oJxoRkafz1cf0RtNmLrjDv20jaAWo+8uLd7a3k6DyUGJ6AHF6N1O3RhF9N1WC9n6SFMTnXynnur8udVE9EHWohaqiejDqoUglaJKQqC+aRvAXkT/XQBXaG77GIAHOOenAXig9L8la2trNaVuAOMcPaBv9Fdead1DXC+iX1wE7roL+Ou/Nn6eXaPXi2JzpcsaUbIXNKMXJZ9OprxX2+smZ7a+pM8kEtSWoZqTsBpzC7IWtVDNeEVYtRDs3EnjP0B9SysBG0bPOf89AO0Kh1cDuLX0960ANMWH+hSLxapTNwMD1BzJKKIH9I1+927g0kvNX1vP6O++G3jxi83b0tqpvDGKYsWiCmKhlaAZ/d69tE1OSj6rnRkb5AUmmpqcTZRSU026Isha1ILZzFgjgwurFoKrriKfAeof0Ve7wlQX53wcADjn44wxw7nKjLEbANwAAL29vcjnJzA1lcKhQyM4fryA1dXTMDGxD0tLrYhGo5ienkZvby8mJydRLBbR19eH4eFhJJNJnHLKSVhaGsHiYhdGRkYQiUTQ1dWFlZVFAF1YXJxEOn0c/f39GBoaQmNjIzo6OjA2NoaOjg7k83nMz8+v308dJJOYmDiO+fmTMTw8hsXFRfT39+OWWwp43etWMD3NkMlk0N3djVwuh3w+v/785uZmHDjQi8HBfTj55B5ks1msrKys39/a2opMphn5fBFzcw1l+7S6uoqJiQkwFkcs1obm5iXs36/s0+joKFKpFAqFAmZnZ6vYpwl0dnZifn5+fZ+GhoaQSCTQ3Nxsuk+xWBd+97sZnHxyEocODVfsk9HnND5+FLOzOzExMYlcLodt27aVfU65XBSLi0sYG8uX7RNjDLOzs3Xdp3g8jmw2i54e/c/JaJ/y+Tn09zdjYmJOd5/MPqdYbCuGh5eRzRbK9unAgWPgPIVcbqVin7q6upBOp+u6T+J8AuB4n6o99o4dm0Q2uxXT0wtl+7Sw0AfOV5FOV+4TYwzpdDqw+1Trsbdr1yg+9rHtGBs7hsHBeTQ29uPgwcO6+1QznHPLHwADAJ5T/Z/T3H/czuvs3r2bf//7nF9/Peecc753L+c7dnDbTE1xXixW3n7rrZwDnB87Zv+11Ozdy/nOncr/i4ucNzdznstZP7e11fxxX/kK5zfeqPeeeznnnP/855xv3+5wg+vM5Zdz/oY3cP53f+fsecUi5w0NnK+u6t9/3nmcP/lk5e1CiyCyuMj53Fx1z739ds6vuaby9h/8gPNrr9V/TpC1qAXtOSZobuZ8ZsboOeHUQs1553H+8MOcP/EE5+efb/w4AE9wGx5r9FNt1c0kY2wrAJR+2xoeF3X0IkdvN20j6OjQH5U2S93YQZu6OXCA0hZiVq0ZVl0Krcord+wAXvlKhxtcZxIJSkk5GYgFrPu7nIjllU1N5b2VnFBNuiLIWtSCLK/U5/Wvp/RNEAZj9bgTwDtKf78DwC9svZmmjt7uQKwVYsGKWKy652vr6PftowlRdrBj9Hp5abGowu7dwHe+42BjPSCRoPkB1az0ZFZiabXwSNioppFXmLXQHheFAk3MixokkMOqhZrAGD1j7A4AfwSwizE2whh7D4DPA7icMXYAwOWl/y3R1tHbLa20IpXSr6G3izaiT6eBXbvsPbfaiD6bzTrbSA9JJOgEdBrRA+Yllka9boKsRS1UMxs0rFps3kz7vbam3Ca+8Ixqx8OqhZr/8T+U1et8HYzlnF9ncNernL5ZLBYri+hHR+1HzmaceirwpS9V/3z12qCMUUR/+eX2ntvaCt3FVATLy0pljZqeahbf9Agx87xao3ca0QdZi1qopo4+rFpEIkpaT4wvWkWxYdVCTSRCJeA/+YmSgq7L+9TvpSvRRvRupW5iMeCtb63++dEo/ays0P/79smIPpGobu1Wq9TNRoroq5kZG1YtgEo9rJp4hVkLNVddRcupBjFHXxWcc7S0AAsLdAnndDC2nqijeidG39ZWndGviG+VAJJIUH6+munYVqmbE02LWhBBgHqhHcDc6MOqBVAZFFlNEgqzFmpe8xqlx1S9qLaOvioaGxsRiSjf7G7l6N1AGP3iIv2tl27Ro9qIPsi9thOJ6tI2gHEUK7p86g28BVmLWti0ib4stV9wG7UHu/ZcsYrow6yFmtZWqrwLTUQvvqHb2mgAIps1n3nqJcLonQzEAtVX3QS51/bppwOXXVbdc41SN0YDsUCwtagVvS++jdiPHqjUwiqiD7MWWt75TqrAqxeeRvQNpfn0ySQZaleXcWmV1wijd1JaCZCxjYwY32+UrmitpUyozmiXTXSCWUmhUcQSZC1qRQQC6sZ6ZpHsRtBCYDUYG2YttNQyxmgHjxcHp6RvWxs1AwtK2gZQaunrEdHrHczRoHzDuYzZSkJGEX1YtQD0jw+ziH4jaWGmAxBuLbzG86obgIz++eeDZ/QiovfC6Ke1y8uEBLPUjVH0FlYtAOepm7Br4SSiD7MWXuP54uAApW4GB4NTcQPUlrqpxuh7g/Qt5yJmqRujiD6sWgD6x4dZbjrsWjgprwyzFl7jqdGvrq4CoIh+795gRfSiB/v4uLOp/9UOxk5OTjrexhMBo9SNWUQfVi0A56mbjaSF1WBsmLXwGs/r6AGK6JeWghfRP/MMzbJ1khqsNqIvFovON/IEwCh1Y3aZHlYtAOPUzUbUQnuuZLPmrUvCrIXX+JK6EV0hgxTRNzUBTz3lLD8PWBu9UQ0a+w0AAA6rSURBVCTbF6RvORcxSt2YlVeGVQvAeUQfZi20X3oPPQRcfLHx48Oshdf4VkcPBM/o//zn6ozerNeNUSQ7PDzs7I1OEMyqboyi2LBqATjP0W8ULZaXgYcfNp+vEWYtvMZTo1fX0QPBM/rJSedN1lpaaHFvo6tMI4NzbeWYgGGWujGK6MOqBeC86ibMWqiN/g9/AM4807yRV5i18BpPjV7Q1kYtBkSXxCAgTjynEX1DA+3HwoL+/fXuMx00zFI3G0kHgdPUTZhRf+ndey/w2tf6uz0bCU+Nfq3UjHrLluoWtagn1Ro9YJynLxapx4vegihhXeFe9B3XXuGYfeGFVQug8tgoFqlLqtHVzUbR4je/oWZeZoRZC6/xZTD2/PPpGz1INDVRW167zczUGBm9GIDU6wK5bds25290AhCJkNnPz5ffbjYYG1YtAP1JQkbHBBBuLcR5MjkJHDkCvOQl5o8PsxZe48tgLGO0/muQSCSqi+YB8/UwjaLYEbMGOSc4eumbjaqFdszCqnY8zFqI4+L++4FLL7UuYw6zFl7jS6+bIHL22cCb31zdc6sx+kjEl+ERT9AbgDQbjA2zFk77u4RZi3icUld33WWdtgHCrYXXeNo1KFbt6t0ecNFF9FMN1Rh9V1D6M9cBPaM3G4wNuxZOjD7MWjBG58rddwM332z9+DBr4TW+pG7ChpnRG0Wxo6Oj9d0oH9ErsZRaEFb9XcKsBUBffFu32lvYJuxaeImnRh/WtqPVRPSpeq4E7DN6OXqziD7sWszNKcsJWkX0YdYCoHPFblll2LXwEl963YQNs6obI3MTLZvDiFGOfiNqEY3SlYyYZ2E1GBtmLQAqwnjd6+w9NuxaeIkvdfRho5qIftasQc4Jjl7qxqy8MsxaAOV6WEX0Ydfi5z8HrrzS3mPDroWX+FJHHzaqMfowL3zstLwyzFoA5ceHldFvBC3sFt+FXQsvkYOxLmDU2MzM3MK88LHT8sowawEoX3yFAnDggPlgbNi1cILUwj1kHb0LVFN1E9arG8A4dWNkcGHWAiA93vc+yk/fdhtwzTXGjw27Fk6QWriHp2UwYa26aWtzPhjbEbSpwS7iNHUTZi0A4GMfoyu+Sy+lPk9mhF0LJ0gt3MNT5xVLCYaNanL0Y2NjaDVbXucExmjClNHVTZi1AJx1aQy7Fk6QWriHrKN3gWqMPszRitGEqY2ohVOkFgpSC/fw1OjDugZkNUafz+fru1E+YpS6MYrow6yFU6QWClIL95BG7wLC2LTzwczMbV7bxzdEOO11E2YtnCK1UJBauIeso3eBWAxobKQaaTUbtXbcaeomzFo4RWqhILVwD1lH7xJ66RuzKDbMNcJGvW42ah29E6QWClIL9/DU6MPcX1rP6M2i2HiIF1BtbqYVptSprI2qhVOkFgpSC/eoqQyGMXYEwByANQAFzvmFZo9vaGio5e0CjVOjD/MK99Eo7ffiIi0rCJhH9GHWwilSCwWphXu4EWJfyjk/z8rkgfDW0QPOjX5iYqL+G+Uj6vQN5+YD02HXwglSCwWphXvIOnqXMDJ6I3Pr7Oys/0b5iLryZnUVaGigHz3CroUTpBYKUgv3qNV5OYB7GWMcwNc557doH8AYuwHADQCwdetWpNNp9PT0IJvNYmVlBf39/RgaGkJrayui0Simp6fR29uLyclJFItF9PX1YXh4eP0yLpfLYdu2bRgZGUEkEkFXVxdGR0eRSqVQKBQwOzu7/pqNjY3o6OjA2NgYOjo6kM/nMT8/v35/PB5HMpnExMQEOjs7MT8/j8XFxfX7E4kEmpubkclk0N3djVwuh3w+v35/c3Mz4vE4stksmppOwYEDOaTT0+v3z8wMIJ/PI52eqNinAwcOrFcVBHWfavmcGhuTmJriAI5icbEB8fgpSKf36e7TwsICotFo4PfJi88pFoshk8mEap+q/ZwOHz6MTCYTqn2q9nOqGc551T8Aekq/OwE8DeBis8fv3r2bh5Ubb+T8K18pv+2yyzi//379x+/du7f+G+Ujr3wl5w8+SH9nMpx3dBg/NuxaOEFqoSC1UADwBK/Bq2tK3XDOx0q/MwB+BuDFZo8Pax094DxHH/Ya4ZYWIJejv80GYoHwa+EEqYWC1MI9qjZ6xthmxliL+BvAawA8Z/acjVZHv1H70QPAJZcAP/wh/W2mAxB+LZwgtVCQWrhHLRF9F4BHGGNPA3gcwC855/eYvtkGrKM3imQTiUT9N8pH3vte4KGHgH37zHUAwq+FE6QWClIL96h6MJZzfgjAuU6esxGN3iiSbW5urv9G+UhzM3DjjcDnP0+/zSL6sGvhBKmFgtTCPTx13jCv6u60BUImk6n/RvnMBz4A3HknRfVmRr8RtLCL1EJBauEenhp9LBbz8u08xWlE393dXf+N8pn2duDv/g747GfNUzcbQQu7SC0UpBbu4anRr62tefl2nuLU6HOiJCXkfOhDwKFD5hH9RtHCDlILBamFe8h+9C7h1Og3yqIKXV0U1ZsZ/UbRwg5SCwWphXt42pNgI9XRFwrU48Wo68NGqhH+l38Bjh41vn8jaWGF1EJBauEesh+9S2iN3mwgFthYNcLJJHD22cb3byQtrJBaKEgt3EP2o3cJMdgorjatJgnJ0jEFqYWC1EJBauEe0uhdpK1NieqtjF4uqqAgtVCQWihILdxD1tG7iDp9Y2X02WzWm406AZBaKEgtFKQW7iHr6F1Ea/RmteM9PT3ebNQJgNRCQWqhILVwDxnRu4iM6KtDaqEgtVCQWriHp0bP1atFhxC10VtV3YS5AskpUgsFqYWC1MI9ZB29i5x8MvDJTwKPPUZNvcyMXtYIK0gtFKQWClIL95B19C7ypS8BX/4ywBg18zrtNOPHyhphBamFgtRCQWrhHp5G9A1Gq0OHhE2bgMsuo5/PfMb8sa2trd5s1AmA1EJBaqEgtXAPTyN6xpiXbxdooka9ETYgUgsFqYWC1MI9ZNWNT0xPT/u9CYFBaqEgtVCQWriHp0Yf9sFYJ/T29vq9CYFBaqEgtVCQWriHp0a/urrq5dsFmsnJSb83ITBILRSkFgpSC/eQdfQ+Eebe/E6RWihILRSkFu4hUzc+0dfX5/cmBAaphYLUQkFq4R6yjt4nhoeH/d6EwCC1UJBaKEgt3MNTow97Hb0Tksmk35sQGKQWClILBamFe4S7QbxEIpFIvDX6tbU1L98u0MgV7hWkFgpSCwWphXvIwVif2LZtm9+bEBikFgpSCwWphXvIwVifGBkZ8XsTAoPUQkFqoSC1cA/Z68Ynwr5+rhOkFgpSCwWphXvIpQR9oqury+9NCAxSCwWphYLUwj1k6sYnRkdH/d6EwCC1UJBaKEgt3MNTo5dtRxVSqZTfmxAYpBYKUgsFqYV7yF43PiFbNitILRSkFgpSC/eQdfQ+MStWEZdILVRILRSkFu4h6+h9Qi58rCC1UJBaKEgt3EMOxvqEXPhYQWqhILVQkFq4R01Gzxi7gjG2jzF2kDH2MRuPr+XtQoW8ulGQWihILRSkFu5RtdEzxhoA/CeA1wE4E8B1jLEzzZ4jq24UOjo6/N6EwCC1UJBaKEgt3KOWiP7FAA5yzg9xzlcA/BDA1WZPkEsJKoyNjfm9CYFBaqEgtVCQWrhHLSF2L4Cjqv9HALxE+yDG2A0Abij9u8wYe66G9wwTHQCyfm9EQJBaKEgtFKQWCrtqeXItRq+XcK8olOec3wLgFgBgjD3BOb+whvcMDVILBamFgtRCQWqhwBh7opbn15K6GQFwsur/PgDyWksikUgCRi1G/ycApzHGtjPGGgFcC+BOdzZLIpFIJG5RdeqGc15gjN0I4DcAGgB8m3M+aPG0W6p9vxAitVCQWihILRSkFgo1acFk/xmJRCIJN7Kzv0QikYQcafQSiUQScjwxeqetEsIEY+xkxthDjLG9jLFBxtgHS7enGGP3McYOlH63+72tXsEYa2CM/Zkxdnfp/w2pBWMsyRj7MWMsXTo+XraBtfhQ6fx4jjF2B2MsvlG0YIx9mzGWUc8xMtt3xtjHS166jzH2WjvvUXejr6ZVQsgoAPgI5/wMAC8F8Pel/f8YgAc456cBeKD0/0bhgwD2qv7fqFp8GcA9nPPTAZwL0mTDacEY6wVwE4ALOedngYo7rsXG0eK7AK7Q3Ka77yXvuBbA7tJzvlbyWFO8iOgdt0oIE5zzcc75ntLfc6CTuRekwa2lh90K4A3+bKG3MMb6AFwF4JuqmzecFoyxVgAXA/gWAHDOVzjnOWxALUpEATQxxqIAEqA5ORtCC8757wFMa2422verAfyQc77MOT8M4CDIY03xwuj1WiX0evC+gYMxNgDgfACPAejinI8D9GUAoNO/LfOUfwfw/wAoqm7biFqcAmAKwHdKaaxvMsY2YwNqwTkfBfBFAMMAxgHMcM7vxQbUQoXRvlflp14Yva1WCWGHMdYM4CcA/oFzviGXzmGMvR5AhnP+pN/bEgCiAC4A8P9xzs8HsIDwpiZMKeWfrwawHUAPgM2Msbf6u1WBpSo/9cLoN3yrBMZYDGTyP+Cc/7R08yRjbGvp/q0AMn5tn4dcBOAvGWNHQCm8yxhjt2FjajECYIRz/ljp/x+DjH8javFqAIc551Oc81UAPwXwcmxMLQRG+16Vn3ph9Bu6VQKj1Va+BWAv5/xLqrvuBPCO0t/vAPALr7fNazjnH+ec93HOB0DHwYOc87diY2oxAeAoY0x0JXwVgOexAbUApWxeyhhLlM6XV4HGsjaiFgKjfb8TwLWMsU2Mse0ATgPwuOWrcc7r/gPgSgD7AbwA4JNevGdQfgC8AnRp9QyAp0o/VwI4CTSafqD0O+X3tnqsyyUA7i79vSG1AHAegCdKx8bPAbRvYC3+XwBpAM8B+D6ATRtFCwB3gMYmVkER+3vM9h3AJ0teug/A6+y8h2yBIJFIJCFHzoyVSCSSkCONXiKRSEKONHqJRCIJOdLoJRKJJORIo5dIJJKQI41eIpFIQo40eolEIgk5/z+A8lmxqOjiwwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"ax.plot(numbers,color='b', linewidth=1)\n",
"ax.set_xlim([0, 100])\n",
"ax.set_ylim([0, 25])\n",
"ax.grid(linestyle='--', linewidth=0.5)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGSVJREFUeJzt3W9sZFd5x/Hf438Mk4nlWFN71na8mxaULaxISKO0ElWVCoEobxJegJoXNAik5QVUVOVFEW+IhJBQRWnfVFWDEpFKQIVEKBFCLVGESJEqRLIKyabrNisUG9vrMSNn5IzMYHt8+sKzPu5ydz0zZ33O3evvR1qtPX98n/n5zNm79z5zrjnnBAAolqHUBQAAbj4mdwAoICZ3ACggJncAKCAmdwAoICZ3ACigIyd3M7vTzH5kZpfM7FUz+0z39sfMbMXMXur++eDxlwsA6IUd1eduZqcknXLOXTCz2yW9KOlhSR+R1HLOfeX4ywQA9GPkqAc4565IutL9+k0zuyRp9rgLAwAM7sg99//3YLMzkp6XdE7SX0v6mKRNSS9I+qxz7o2M55yXdF6SyuXyH9x1110aHR3V7u6unHMaGxvT9va2hoeHZWba3d3V2NiYdnZ2fut+Sep0Oge3mZlGR0e1vb2tkZEROed+6/6RkRHt7OxoZGREe3t72tvbO7h/aGhIw8PDN7x/aGhIu7u7Gh0dVafTueH9/bymdrut0dHRQr2mQX9PV59fpNc06O9peHhYnU6nUK9p0N/T1W0W6TUN+nt6+eWXG8653+ljbu99cjeziqQfS/qSc+5pM5uW1JDkJH1R+4duPn6jn3Hfffe5Cxcu9FNfYf3617/WW9/61tRl5AJZeGThkYVnZi865+7v5zk9dcuY2aik70j6hnPuaUlyztWdcx3n3J6kr0l64Kifs7293U9thba4uJi6hNwgC48sPLII00u3jEl6QtIl59xXD91+6tDDPiTpYg8/a5AaC2lsbCx1CblBFh5ZeGQR5sgTqpLeI+mjkl4xs5e6t31e0iNmdq/2D8u8LumTR25spJfNnQzVajV1CblBFh5ZeGQRppdumZ9Iytrl/kG/G9vZ2en3KYW1urqq8fHx1GXkAll4ZOGRRZion1Blz91jr8QjC48sPLIIE3Vy39vbi7m5XGu326lLyA2y8MjCI4swTO6JtFqt1CXkBll4ZOGRRZiokztnv73Tp0+nLiE3yMIjC48swkSd3Olz9+jh9cjCIwuPLMJEndyHhlhh+KpSqZS6hNwgC48sPLIIE3W2vbpOAqSJiYnUJeQGWXhk4ZFFmKiTO33u3traWuoScoMsPLLwyCIMfe6JTE1NpS4hN8jCIwuPLMLQCpkIbV4eWXhk4ZFFGCb3RLa2tlKXkBtk4ZGFRxZh6HNPhB5ejyw8svDIIgx97onQw+uRhUcWHlmEoc89kXK5nLqE3CALjyw8sgjD5J5IpVJJXUJukIVHFh5ZhIk62+7u7sbcXK6tr6+nLiE3yMIjC48swkSd3EdHR2NuLtdqtVrqEnKDLDyy8MgiTNTJvdPpxNxcrjWbzdQl5AZZeGThkUUY+twT4UIEHll4ZOGRRRj63BOhh9cjC48sPLIIQ597IvTwemThXc2iVjsjM4v2p1Y7k/aFZ2BchIm6khetkB5tXh5ZeFezqNcXJblo263XLdq2esW4CEOfeyJciMAjC48sPLIIQ597Io1GI3UJuUEWHll4ZBGGPvdEZmZmUpeQG2ThkYVHFmHYc0+EvRKPLDyy8MgiTNTJ3bl4J4jyjs4hjyw8svDIIgx97onQw+uRhUcWHlmEoc89EXp4PbLwyMIjizBRJ/fh4eGYm8u18fHx1CXkBll4ZOGRRZiok7tZ/j4okcrISNTPj+UaWXhk4ZFFGLplEtnY2EhdQm6QhUcWHlmE4YRqIrOzs6lLyA2y8MjCI4swUSf3nZ2dmJvLtXq9nrqE3CALjyw8sghDn3sirG3vkYVHFh5ZhDlycjezO83sR2Z2ycxeNbPPdG+fNLNnzey17t93HPWzOCzjzc3NpS4hN8jCIwuPLML0sue+K+mzzrnfl/RHkj5lZu+Q9DlJzznn3i7pue73N0Sfu7e0tJS6hNwgC48sPLIIc+Tk7py74py70P36TUmXJM1KekjSU92HPSXp4aN+Fn3u3sTEROoScoMsPLLwyCJMX42kZnZG0rsl/VTStHPuirT/D4CZTV3nOeclnZf2V3lbWFjQzMyMGo2Gtre3dfr0aS0uLmp8fFwjIyPa2NjQ7Oys6vW69vb2NDc3p6WlpYNfdLPZ1Pz8vJaXlzU0NKTp6WmtrKxocnJSu7u72tzcPPiZY2NjqlarWl1dVbVaVbvdVqvVOri/VCppYmJCa2trmpqaUqvV0tbW1sH95XJZlUpF6+vrqtVqajabarfbB/dXKhWVSiU1Go2+X9Py8vJBRkV5TYP+ntrttsrlcq5f07ve9YB+9atf9vn2urVcvnw5V2NvbW1NzWbzxM4Rh1/TIKzXk5xmVpH0Y0lfcs49bWZN59zEofvfcM7d8Lj7uXPn3MWLFwcutkgWFhZ09uzZ1GXkwq2Qxf4H8GI2BMTfXt4aHm6FcRGLmb3onLu/n+f01C1jZqOSviPpG865p7s3183sVPf+U5LWj/o5nFD15ufnU5eQG2SBLIyLML10y5ikJyRdcs599dBdz0h6tPv1o5K+d9TP4oSqd/iwzElHFsjCuAjTyzH390j6qKRXzOyl7m2fl/RlSd82s09IWpL04aN+EGvLeFxP1iMLZGFchDlycnfO/UT7BwCzvLefjXGZPW96ejp1CblBFsjCuAjDeu6JrKyspC4hN8gCWRgXYaJO7izh6U1OTqYuITfIAlkYF2FYWyYRlj/2yAJZGBdhok7unU4n5uZybXNzM3UJuUEWyMK4CMN67olw8V+PLJCFcRGGE6qJcPFfjyyQhXERhmuoJsL/YjyyQBbGRRi6ZRKpVqupS8gNskAWxkUYLrOXyOrqauoScoMskIVxEYY990TYK/HIAlkYF2GiTu5cE9Frt9upS8gNskAWxkUYJvdEWq1W6hJygyyQhXERhj73ROjh9cgCWRgXYehzT4QeXo8skIVxESbq5M76zF6pVEpdQm6QBbIwLsJEnW2Hh4djbi7XuLK7RxbIwrgIQ597Imtra6lLyA2yQBbGRRj63BOZmppKXUJukAWyMC7C0AqZCG1eHlkgC+MiDJN7IltbW6lLyA2yQBbGRRj63BOhh9cjC2RhXIShzz0Reng9skAWxkUY+twTKZfLqUvIDbJAFsZFGCb3RCqVSuoScoMskIVxESbqbMvVzL319fXUJeQGWSAL4yJM1Ml9dHQ05uZyrVarpS4hN8gCWRgXYaJO7p1OJ+bmcq3ZbKYuITfIAlkYF2Hoc0+ECxF4ZIEsjIsw9LknQg+vRxbIwrgIQ597IvTweoNmUaudkZlF+YP4eI+EibqSF62QHm1e3qBZ1OuLktzNLea6mOBj4z0Shj73RLgQgUcWyMK4CEOfeyKNRiN1CblBFsjCuAhDn3siMzMzqUvIDbJAFsZFmCMndzN70szWzeziodseM7MVM3up++eDvWyMPXePvRKPLJCFcRGmlz33r0v6QMbtf++cu7f75we9bMy5WCe/8o/OIY8skIVxEebIyd0597ykjZuxMfrcPXp4PbJAFsZFmJBWyE+b2V9IekHSZ51zb2Q9yMzOSzov7a8VsbCwoJmZGTUaDW1vb+v06dNaXFzU+Pi4RkZGtLGxodnZWdXrde3t7Wlubk5LS0sHV0JvNpuan5/X8vKyhoaGND09rZWVFU1OTmp3d1ebm5sHP3NsbEzValWrq6uqVqtqt9tqtVoH95dKJU1MTGhtbU1TU1NqtVra2to6uL9cLqtSqWh9fV21Wk3NZlPtdvvg/kqlolKppEaj0fdrunDhgt72trcV6jUN+nt644039M53vrPv14Sb6/Lly7kae6+++qruuOOOEztHHH5Ng7BeDpWY2RlJ33fOnet+Py2pof0m4y9KOuWc+/hRP+eee+5xP//5zwcutkhWV1c5YdQ1aBb7Hy6K2ece87Bi/O3l7bAp7xHPzF50zt3fz3MG6pZxztWdcx3n3J6kr0l6oMcCB9lcIY2MRP38WK6RBbIwLsIMNLmb2alD335I0sXrPfYwumW8jY2bchqjEMgCWRgXYY78p9HMviXpQUlVM1uW9AVJD5rZvdr/f+Prkj7Zy8Y4oerNzs6mLiE3yAJZGBdhjpzcnXOPZNz8xCAb29nZGeRphVSv13X77benLiMXyAJZGBdhon5CNW8nbFJibXuPLJCFcRGG9dwTmZubS11CbpAFsjAuwrCeeyJLS0upS8gNskAWxkWYqJP78PBwzM3lWsiHE4qGLJCFcRGGBdYBoICiTu6dTifm5nKNK7t7ZIEsjIswnFBNZH5+PnUJuUEWyMK4CMMJ1USWl5dTl5AbZIEsjIswUSd31pbxuJ6sRxbIwrgIw2X2Epmenk5dQm6QBbIwLsJwWCaRlZWV1CXkBlkgC+MiTNTJnSU8vcnJydQl5AZZIAvjIgxryyTC8sceWSAL4yIMfe6JbG5upi4hN8gCWRgXYehzT4SL/3pkgSyMizCcUE1kcXExdQm5QRbIwrgIQ597IvwvxiMLZGFchKFbJpFqtZq6hNwgC2RhXISJOrlzmT1vdXU1dQm5QRbIwrgIw557IuyVeGSBLIyLMFEnd66J6LXb7dQl5AZZIAvjIgyTeyKtVit1CblBFsjCuAhDn3si9PB6ZIEsjIsw9LknQg+vRxbIwrgIE3VyZ31mr1QqpS4hN8gCWRgXYaLOtsPDwzE3l2tc2d0jC2RhXIShzz2RtbW11CXkBlkgC+MiDH3uiUxNTaUuITfIAlkYF2FohUyENi+PLJCFcRGGyT2Rra2t1CXkBlkgC+MiDH3uidDD65EFsjAuwtDnngg9vB5ZIAvjIgx97omUy+XUJeQGWSAL4yIMk3silUoldQm5QRbIwrgIE3W25Wrm3vr6euoScoMskIVxEebIyd3MnjSzdTO7eOi2STN71sxe6/59Ry8bGx0dDam1UGq1WuoScoMskIVxEaaXPfevS/rANbd9TtJzzrm3S3qu+/2ROp1OX8UVWbPZTF1CbpAFsjAuwhw5uTvnnpe0cc3ND0l6qvv1U5Ie7mVj9Ll7XIjAIwtkYVyEGXQ9gGnn3BVJcs5dMbPrfk7YzM5LOi9Js7OzWlhY0MzMjBqNhra3t3X69GktLi5qfHxcIyMj2tjY0OzsrOr1uvb29jQ3N6elpaWDRYSazabm5+e1vLysoaEhTU9Pa2VlRZOTk9rd3dXm5ubBzxwbG1O1WtXq6qqq1ara7bZardbB/aVSSRMTE1pbW9PU1JRarZa2trYO7i+Xy6pUKlpfX1etVlOz2VS73T64v1KpqFQqqdFo9P2adnZ2DtbOKMprGvT3ZGba3Nzs+zXh5rp8+XKuxp6ZaWFh4cTOEYdf0yDMOXf0g8zOSPq+c+5c9/umc27i0P1vOOeOPO5+7tw5d/HixaMediIsLCzo7NmzqcvIhUGzMDNJR4/fmyPmttJsr5e5ICbeI56Zveicu7+f5wzaLVM3s1PdjZ6S1NNpbVohPdq8PLJAFsZFmEFn22ckPdr9+lFJ3+tpY0zuB7gQgUcWyMK4CNNLK+S3JP2XpLvNbNnMPiHpy5LeZ2avSXpf9/sj0efuNRqN1CXkBlkgC+MizJEnVJ1zj1znrvf2uzH63L2ZmZnUJeQGWSAL4yIMn1BNhL0SjyyQhXERJurknrez8SmxQqZHFsjCuAjDeu6JsFa1RxbIwrgIw3ruiRRxrepa7YzMrO8/5XJ5oOfhZnrLQL+DQf7Uamd6qqiI75GYol6xenh4OObmcm18fDx1CTddvb6o+B/0wc3xG8X63dXrvf3eivgeiSnqnjt7W97ISNR/V4FbDu+RMHTLJLKxce1abAAO4z0ShhOqiczOzqYuAcg13iNhok7uOzs7MTeXa/V6PXUJQK7xHglDn3sirG0P3BjvkTAclklkbm4udQlArvEeCUOfeyJLS0upSwAS6a2n/rbbbovaV1809LknEnKFFeDWFq+nXuq9r75oWGAdAAoo6uTe6XRibi7XuLI7gOPECdVE5ufnU5cAoMA4oZrI8vJy6hIAFBhryyTC9WQBHKeoMwyX2fOmp6dTlwCgwDgsk8jKykrqEgAUWNTJnSU8vcnJydQlACgw1pZJhOWPARwn+twT2dzcTF0CgAKjzz0RLv4L4DhxQjURLv4L4DjR554I/4sBcJzolkmkWq2mLgFAgXGZvURWV1dTlwCgwNhzT4Q9dwDHKerkzjURvXa7nboEAAXG5J5Iq9VKXQKAAqPPPRH63AEcJ/rcE6HPHcBxijq5s4a5VyqVUpcAoMCC2lfM7HVJb0rqSNp1zt1/o8cPDw+HbK5QJiYmUpcAoMBuRm/inzrnGr08kD53b21tjQkewLGhzz2Rqamp1CUAKLDQ2dZJ+qGZOUn/7Jx7/NoHmNl5Secl6dSpU1pYWNDMzIwajYa2t7d1+vRpLS4uanx8XCMjI9rY2NDs7Kzq9br29vY0NzenpaWlg73cZrOp+fl5LS8va2hoSNPT01pZWdHk5KR2d3e1ubl58DPHxsZUrVa1urqqarWqdrutVqt1cH+pVNLExITW1tY0NTWlVqulra2tg/vL5bIqlYrW19dVq9XUbDbVbrcP7q9UKiqVSmo0Gn2/ptdee+2gY+Y4X9Pdd9+jRoOLceNkW1hYuOXmiMPz3iAs5AIaZjbjnFs1sylJz0r6S+fc89d7/Llz59zFixcH3l6RLCws6OzZs8e+nf3F2mJdJCXmtmJvr8ivLfb24r+2W/1CQWb24lHnNK8VdFjGObfa/Xtd0nclPXCjx9Pn7tHnDuA4DTy5m9ltZnb71a8lvV/SDXfL6XP36HMHcJxCjrlPS/pud432EUnfdM79+42eQJ+7Vy6XU5cAoMAGntydc7+QdE8/z2Fy9yqVSuoSABRY1Nl2d3c35uZybX19PXUJAAos6uQ+Ojoac3O5VqvVUpcAoMCiTu6dTifm5nKt2WymLgFAgZ349dxrtTMys2h/arUzkrhYBxDPW6K/v/Mg6noAeexzr9cXFfMDFfW6SaLPHYjnN4r1Hr/6/s4D1nNPhD53AMeJ9dwToRUSwHFick+Ei3UAOE70uSfSaPS0BD4ADIQ+90RmZmZSlwCgwNhzT4Q9dwDHKerkfquvqXwz0TkE4Did+D73+N7SvYAGAByfqJM7e6tSzA9U7OMfEuAkinpYZnh4OObmAODEijq5czgCAOKgWwYACijq5M4JVQCII+rkvrOzE3NzAHBi0ecOAAXEYRkAKCDWcweAAqLPHQAKiAXWAaCAok7unU4n5uYA4MTihCoAFBAnVAGggFhbBgAKiMvsAUABcVgGAAoo6uQ+MhL12iAAcGKxtgwAFBB97gBQQPS5A0ABcUIVAAooaHI3sw+Y2f+Y2WUz+1wPjw/ZHACgRwNP7mY2LOkfJf2ZpHdIesTM3nGj59AtAwBxhOy5PyDpsnPuF865bUn/KumhGz2By+wBQBwhu9Kzkn556PtlSX947YPM7Lyk891vf2NmFwO2eUxiHy4ySapKakTcXiQDbSsgi9y/tn4dyiLJuMzTtm7ieyTeazumw8939/uEkMk96xX8ViO7c+5xSY9Lkpm94Jy7P2CbhUEWHll4ZOGRhWdmL/T7nJDDMsuS7jz0/Zyk1YCfBwC4SUIm959JeruZ3WVmY5L+XNIzN6csAECIgQ/LOOd2zezTkv5D0rCkJ51zrx7xtMcH3V4BkYVHFh5ZeGTh9Z2Fsd4LABQPF8gGgAJicgeAAooyufe7TEHRmdnrZvaKmb00SIvTrczMnjSz9cOfdzCzSTN71sxe6/59R8oaY7lOFo+Z2Up3bLxkZh9MWWMMZnanmf3IzC6Z2atm9pnu7SduXNwgi77HxbEfc+8uU/C/kt6n/fbJn0l6xDn338e64Rwzs9cl3e+ci/Qhpvwwsz+R1JL0L865c93b/lbShnPuy91//O9wzv1NyjpjuE4Wj0lqOee+krK2mMzslKRTzrkLZna7pBclPSzpYzph4+IGWXxEfY6LGHvufS9TgOJyzj0vaeOamx+S9FT366e0P5gL7zpZnDjOuSvOuQvdr9+UdEn7n4A/cePiBln0LcbknrVMwUDFFoiT9EMze7G7PMNJN+2cuyLtD25JU4nrSe3TZvZy97BN4Q9FHGZmZyS9W9JPdcLHxTVZSH2OixiTe0/LFJww73HO3af9FTU/1f3vOSBJ/yTp9yTdK+mKpL9LW048ZlaR9B1Jf+Wc20xdT0oZWfQ9LmJM7ixTcA3n3Gr373VJ39X+oauTrN491nj1mON64nqScc7VnXMd59yepK/phIwNMxvV/mT2Defc092bT+S4yMpikHERY3JnmYJDzOy27okSmdltkt4vKYcrZUb1jKRHu18/Kul7CWtJ6upk1vUhnYCxYfvLKD4h6ZJz7quH7jpx4+J6WQwyLqJ8QrXbtvMP8ssUfOnYN5pTZva72t9bl/aXf/jmScrDzL4l6UHtL+dal/QFSf8m6duS5iUtSfqwc67wJxqvk8WD2v+vt5P0uqRPXj3uXFRm9seS/lPSK5L2ujd/XvvHmk/UuLhBFo+oz3HB8gMAUEB8QhUACojJHQAKiMkdAAqIyR0ACojJHQAKiMkdAAqIyR0ACuj/AOrKwKZGILOhAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig,ax = plt.subplots()\n",
"ax.grid(linestyle='--', linewidth=0.5)\n",
"ax.hist(numbers, histtype='bar', color='b', edgecolor=\"black\")\n",
"ax.set_xlim([0, 25])\n",
"ax.set_ylim([0, 25])\n",
"ax.set_axisbelow(True)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
module2/exo3/exercice.ipynb
deleted
100644 → 0
View file @
7560c986
{
"cells": [],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment