From 783b661c3afa66fa8e3c5fbd67ee9ce2f94b7a57 Mon Sep 17 00:00:00 2001 From: Mona Lisa Date: Fri, 17 Nov 2023 16:20:32 +0100 Subject: [PATCH] =?UTF-8?q?Ma=20version=20compl=C3=A8te=20du=20Rmd?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module2/exo1/toy_document_fr.Rmd | 55 +++++++++++++++++++++----------- 1 file changed, 37 insertions(+), 18 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 386c9ca..4ef3fcc 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,34 +1,53 @@ --- -title: "À propos du calcul de pi -" -author: "Votre nom" -date: "La date du jour" +title: "À propos du calcul de pi" +author: "Minh HUYEN" +date: "`r Sys.Date()`" output: html_document --- - ```{r setup, include=FALSE} -knitr::opts_chunk$set(echo = TRUE) -``` -## Quelques explications +knitr::opts_chunk$set(comment = NA, echo=FALSE, message = FALSE, warning = FALSE, include = FALSE) +options(kableExtra.auto_format = FALSE) + +rm(list=ls()) +``` -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +# En demandant à la lib maths -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: +Mon ordinateur m'indique que $\pi$ vaut *approximativement* -```{r cars} -summary(cars) +```{r, echo=T, include=T} +pi ``` +# En utilisant la méthode des aiguilles de Buffon -Et on peut aussi aisément inclure des figures. Par exemple: +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r pressure, echo=FALSE} -plot(pressure) +```{r, echo=TRUE, include=TRUE} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) +``` +# Avec un argument “fréquentiel” de surface + +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X2+Y2≤1]=π/4$ + (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait: + +```{r, echo=TRUE, include=TRUE} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X2+Y2$ est inférieur à 1: -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +```{r, echo=TRUE, include=TRUE} +4*mean(df$Accept) +``` -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. -- 2.18.1