diff --git a/module2/exo5/exo5_fr.ipynb b/module2/exo5/exo5_fr.ipynb
index 26ad6d94fa840f788a57621b06dc6af83a848391..ceef0b8ef5c8edf6b9e89640e76b088af6254f42 100644
--- a/module2/exo5/exo5_fr.ipynb
+++ b/module2/exo5/exo5_fr.ipynb
@@ -40,7 +40,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {},
"outputs": [
{
@@ -261,33 +261,33 @@
""
],
"text/plain": [
- " Date Count Temperature Pressure Malfunction\n",
- "0 4/12/81 6 66 50 0\n",
- "1 11/12/81 6 70 50 1\n",
- "2 3/22/82 6 69 50 0\n",
- "3 11/11/82 6 68 50 0\n",
- "4 4/04/83 6 67 50 0\n",
- "5 6/18/82 6 72 50 0\n",
- "6 8/30/83 6 73 100 0\n",
- "7 11/28/83 6 70 100 0\n",
- "8 2/03/84 6 57 200 1\n",
- "9 4/06/84 6 63 200 1\n",
- "10 8/30/84 6 70 200 1\n",
- "11 10/05/84 6 78 200 0\n",
- "12 11/08/84 6 67 200 0\n",
- "13 1/24/85 6 53 200 2\n",
- "14 4/12/85 6 67 200 0\n",
- "15 4/29/85 6 75 200 0\n",
- "16 6/17/85 6 70 200 0\n",
- "17 7/29/85 6 81 200 0\n",
- "18 8/27/85 6 76 200 0\n",
- "19 10/03/85 6 79 200 0\n",
- "20 10/30/85 6 75 200 2\n",
- "21 11/26/85 6 76 200 0\n",
- "22 1/12/86 6 58 200 1"
+ " Date Count Temperature Pressure Malfunction\n",
+ "0 4/12/81 6 66 50 0\n",
+ "1 11/12/81 6 70 50 1\n",
+ "2 3/22/82 6 69 50 0\n",
+ "3 11/11/82 6 68 50 0\n",
+ "4 4/04/83 6 67 50 0\n",
+ "5 6/18/82 6 72 50 0\n",
+ "6 8/30/83 6 73 100 0\n",
+ "7 11/28/83 6 70 100 0\n",
+ "8 2/03/84 6 57 200 1\n",
+ "9 4/06/84 6 63 200 1\n",
+ "10 8/30/84 6 70 200 1\n",
+ "11 10/05/84 6 78 200 0\n",
+ "12 11/08/84 6 67 200 0\n",
+ "13 1/24/85 6 53 200 2\n",
+ "14 4/12/85 6 67 200 0\n",
+ "15 4/29/85 6 75 200 0\n",
+ "16 6/17/85 6 70 200 0\n",
+ "17 7/29/85 6 81 200 0\n",
+ "18 8/27/85 6 76 200 0\n",
+ "19 10/03/85 6 79 200 0\n",
+ "20 10/30/85 6 75 200 2\n",
+ "21 11/26/85 6 76 200 0\n",
+ "22 1/12/86 6 58 200 1"
]
},
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -322,7 +322,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {},
"outputs": [
{
@@ -355,6 +355,14 @@
" \n",
"
\n",
" \n",
+ " 0 | \n",
+ " 4/12/81 | \n",
+ " 6 | \n",
+ " 66 | \n",
+ " 50 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
" 1 | \n",
" 11/12/81 | \n",
" 6 | \n",
@@ -363,6 +371,54 @@
" 1 | \n",
"
\n",
" \n",
+ " 2 | \n",
+ " 3/22/82 | \n",
+ " 6 | \n",
+ " 69 | \n",
+ " 50 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 11/11/82 | \n",
+ " 6 | \n",
+ " 68 | \n",
+ " 50 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4/04/83 | \n",
+ " 6 | \n",
+ " 67 | \n",
+ " 50 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 6/18/82 | \n",
+ " 6 | \n",
+ " 72 | \n",
+ " 50 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 8/30/83 | \n",
+ " 6 | \n",
+ " 73 | \n",
+ " 100 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 11/28/83 | \n",
+ " 6 | \n",
+ " 70 | \n",
+ " 100 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
" 8 | \n",
" 2/03/84 | \n",
" 6 | \n",
@@ -387,6 +443,22 @@
" 1 | \n",
"
\n",
" \n",
+ " 11 | \n",
+ " 10/05/84 | \n",
+ " 6 | \n",
+ " 78 | \n",
+ " 200 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 11/08/84 | \n",
+ " 6 | \n",
+ " 67 | \n",
+ " 200 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
" 13 | \n",
" 1/24/85 | \n",
" 6 | \n",
@@ -395,6 +467,54 @@
" 2 | \n",
"
\n",
" \n",
+ " 14 | \n",
+ " 4/12/85 | \n",
+ " 6 | \n",
+ " 67 | \n",
+ " 200 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 4/29/85 | \n",
+ " 6 | \n",
+ " 75 | \n",
+ " 200 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 6/17/85 | \n",
+ " 6 | \n",
+ " 70 | \n",
+ " 200 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 7/29/85 | \n",
+ " 6 | \n",
+ " 81 | \n",
+ " 200 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 8/27/85 | \n",
+ " 6 | \n",
+ " 76 | \n",
+ " 200 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 10/03/85 | \n",
+ " 6 | \n",
+ " 79 | \n",
+ " 200 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
" 20 | \n",
" 10/30/85 | \n",
" 6 | \n",
@@ -403,6 +523,14 @@
" 2 | \n",
"
\n",
" \n",
+ " 21 | \n",
+ " 11/26/85 | \n",
+ " 6 | \n",
+ " 76 | \n",
+ " 200 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
" 22 | \n",
" 1/12/86 | \n",
" 6 | \n",
@@ -416,22 +544,38 @@
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
+ "0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
+ "2 3/22/82 6 69 50 0\n",
+ "3 11/11/82 6 68 50 0\n",
+ "4 4/04/83 6 67 50 0\n",
+ "5 6/18/82 6 72 50 0\n",
+ "6 8/30/83 6 73 100 0\n",
+ "7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
+ "11 10/05/84 6 78 200 0\n",
+ "12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
+ "14 4/12/85 6 67 200 0\n",
+ "15 4/29/85 6 75 200 0\n",
+ "16 6/17/85 6 70 200 0\n",
+ "17 7/29/85 6 81 200 0\n",
+ "18 8/27/85 6 76 200 0\n",
+ "19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
+ "21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "data = data[data.Malfunction>0]\n",
+ "#data = data[data.Malfunction>0]\n",
"data"
]
},
@@ -448,12 +592,12 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF9JJREFUeJzt3X2UXXV97/H3d5IACYlAg02VQAFJsVyBCOFJtDfx6Qa7JPUCBbyCl940ZUlul9y2htvVa6m1a1V8qHpFY+SiQldNVRBom14e1Ii0IASM4UHBuYBhEhogBshASGYy3/vH2bN7Mkxmzhlmz5lzeL/WmpWz9/mdne939pz5zN5nn9+JzESSJICuVhcgSZo8DAVJUslQkCSVDAVJUslQkCSVDAVJUqmyUIiIqyPiqYh4YC/3R0R8PiK6I2JDRJxQVS2SpMZUeaTwNWDxCPefAcwrvpYBX6qwFklSAyoLhcy8HfjlCEOWANdkzV3AgRHxuqrqkSSNbmoL/+9DgCfqlnuKdU8OHRgRy6gdTTB9+vQTDz300AkpsFEDAwN0dXXmyzOd2pt9tZ9O7W2i+nrkkUeeyczXjjaulaEQw6wbds6NzFwFrAJYsGBBrlu3rsq6mrZ27VoWLlzY6jIq0am92Vf76dTeJqqviPhFI+NaGbs9QP2f/HOBzS2qRZJEa0PhJuDC4iqkU4HnMvNlp44kSROnstNHEfENYCFwcET0AH8OTAPIzJXAGuA9QDfwInBRVbVIkhpTWShk5vmj3J/AJVX9/5Kk5nXeS/mSpDEzFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklSqNBQiYnFEPBwR3RFx2TD3HxAR/xARP4mIByPioirrkSSNrLJQiIgpwJXAGcAxwPkRccyQYZcAD2Xm8cBC4NMRsU9VNUmSRlblkcLJQHdmPpqZu4DVwJIhYxKYFREBzAR+CfRXWJMkaQSRmdVsOOJsYHFmLi2WLwBOyczldWNmATcBbwRmAedm5j8Ns61lwDKAOXPmnLh69epKah6r3t5eZs6c2eoyKtGpvdlX++nU3iaqr0WLFt2bmQtGGze1whpimHVDE+g/AeuBtwNvAG6NiB9m5vN7PChzFbAKYMGCBblw4cLxr/YVWLt2LZOtpvHSqb3ZV/vp1N4mW19Vnj7qAQ6tW54LbB4y5iLg+qzpBh6jdtQgSWqBKkPhHmBeRBxRvHh8HrVTRfU2Au8AiIg5wNHAoxXWJEkaQWWnjzKzPyKWAzcDU4CrM/PBiLi4uH8l8JfA1yLifmqnm1Zk5jNV1SRJGlmVrymQmWuANUPWray7vRl4d5U1SJIa5zuaJUklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVKo0FCJicUQ8HBHdEXHZXsYsjIj1EfFgRPygynokSSOb2sigiHhTZj7QzIYjYgpwJfAuoAe4JyJuysyH6sYcCHwRWJyZGyPiV5v5PyRJ46vRI4WVEXF3RHyo+EXeiJOB7sx8NDN3AauBJUPGvB+4PjM3AmTmUw1uW5JUgcjMxgZGzAN+DzgHuBv4ambeOsL4s6kdASwtli8ATsnM5XVjPgtMA/4DMAv4XGZeM8y2lgHLAObMmXPi6tWrG+tugvT29jJz5sxWl1GJTu3NvtpPp/Y2UX0tWrTo3sxcMOrAzGz4C5gCnAVsAn4K/Az4z3sZew5wVd3yBcD/HjLmC8BdwP7AwcDPgd8YqYYTTzwxJ5vvf//7rS6hMp3am321n07tbaL6AtZlA7/nG31N4TjgIuC3gVuB92bmfRHxeuBO4PphHtYDHFq3PBfYPMyYZzLzBeCFiLgdOB54pJG6JEnjq9HXFL4A3Accn5mXZOZ9AJm5GfizvTzmHmBeRBwREfsA5wE3DRlzI/C2iJgaETOAU6gdgUiSWqChIwXgPcCOzNwNEBFdwH6Z+WJmXjvcAzKzPyKWAzdTO+10dWY+GBEXF/evzMyfRsT/BTYAA9RONzV1lZMkafw0Ggq3Ae8EeovlGcAtwFtGelBmrgHWDFm3csjyJ4FPNliHJKlCjZ4+2i8zBwOB4vaMakqSJLVKo6HwQkScMLgQEScCO6opSZLUKo2ePvow8K2IGLx66HXAudWUJElqlYZCITPviYg3AkcDAfwsM/sqrUySNOEaPVIAOAk4vHjMmyOCHObdx5Kk9tXom9euBd4ArAd2F6sTMBQkqYM0eqSwADimeKu0JKlDNXr10QPAr1VZiCSp9Ro9UjgYeCgi7gZ2Dq7MzDMrqUqS1BKNhsLlVRYhSZocGr0k9QcR8evAvMy8rZi8bkq1pUmSJlpDrylExO8D3wa+XKw6BLihqqIkSa3R6AvNlwCnA88DZObPAT9PWZI6TKOhsDNrn7MMQERMpfY+BUlSB2k0FH4QEX8KTI+IdwHfAv6hurIkSa3QaChcBjwN3A/8AbXPSNjbJ65JktpUo1cfDQBfKb4kSR2q0bmPHmOY1xAy88hxr0iS1DLNzH00aD/gHOBXxr8cSVIrNfSaQmZurfvalJmfBd5ecW2SpAnW6OmjE+oWu6gdOcyqpCJJUss0evro03W3+4HHgd8d92okSS3V6NVHi6ouRJLUeo2ePvofI92fmZ8Zn3IkSa3UzNVHJwE3FcvvBW4HnqiiKElSazTzITsnZOZ2gIi4HPhWZi6tqjBJ0sRrdJqLw4Bddcu7gMPHvRpJUks1eqRwLXB3RHyH2jub3wdcU1lVkqSWaPTqo7+KiH8G3lasuigzf1xdWZKkVmj09BHADOD5zPwc0BMRR1RUkySpRRr9OM4/B1YA/7NYNQ3426qKkiS1RqNHCu8DzgReAMjMzTjNhSR1nEZDYVdmJsX02RGxf3UlSZJapdFQ+GZEfBk4MCJ+H7gNP3BHkjpOo1cffar4bObngaOBj2bmrZVWJkmacKMeKUTElIi4LTNvzcw/ycw/bjQQImJxRDwcEd0RcdkI406KiN0RcXYzxUuSxteooZCZu4EXI+KAZjYcEVOAK4EzgGOA8yPimL2M+wRwczPblySNv0bf0fwScH9E3EpxBRJAZv7hCI85GejOzEcBImI1sAR4aMi4/w5cR23CPUlSCzUaCv9UfDXjEPacRbUHOKV+QEQcQu1y17czQihExDJgGcCcOXNYu3Ztk6VUq7e3d9LVNF46tTf7aj+d2ttk62vEUIiIwzJzY2Z+fQzbjmHW5ZDlzwIrMnN3xHDDiwdlrgJWASxYsCAXLlw4hnKqs3btWiZbTeOlU3uzr/bTqb1Ntr5Ge03hhsEbEXFdk9vuAQ6tW54LbB4yZgGwOiIeB84GvhgRv9Pk/yNJGiejnT6q//P9yCa3fQ8wr5gjaRNwHvD++gGZWc6fFBFfA/4xM29AktQSo4VC7uX2qDKzPyKWU7uqaApwdWY+GBEXF/evbKpSSVLlRguF4yPieWpHDNOL2xTLmZmvGenBmbkGWDNk3bBhkJn/taGKJUmVGTEUMnPKRBUiSWq9Zj5PQZLU4QwFSVLJUJAklQwFSVLpVRMKW3t38pMnnmVr785WlyKpSVt7d7Kjb7fP3wnwqgiFG9dv4vRPfI8PXPUjTv/E97hp/aZWlySpQYPP38eefsHn7wTo+FDY2ruTFddt4KW+Abbv7OelvgE+ct0G/+KQ2kD983d3ps/fCdDxodCzbQfTuvZsc1pXFz3bdrSoIkmN8vk78To+FOYeNJ2+gYE91vUNDDD3oOktqkhSo3z+TryOD4XZM/flirOOY79pXczadyr7TeviirOOY/bMfVtdmqRR1D9/p0T4/J0AjX7ITls7c/4hnH7UwfRs28Hcg6b7AyW1kcHn79133sG/nPlWn78Ve1WEAtT+4vCHSWpPs2fuy/RpU3wOT4COP30kSWqcoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqRSpaEQEYsj4uGI6I6Iy4a5/79ExIbi618j4vgq65EkjayyUIiIKcCVwBnAMcD5EXHMkGGPAf8xM48D/hJYVVU9kqTRVXmkcDLQnZmPZuYuYDWwpH5AZv5rZm4rFu8C5lZYjyRpFJGZ1Ww44mxgcWYuLZYvAE7JzOV7Gf/HwBsHxw+5bxmwDGDOnDknrl69upKax6q3t5eZM2e2uoxKdGpv9tV+OrW3iepr0aJF92bmgtHGTa2whhhm3bAJFBGLgP8GvHW4+zNzFcWppQULFuTChQvHqcTxsXbtWiZbTeOlU3uzr/bTqb1Ntr6qDIUe4NC65bnA5qGDIuI44CrgjMzcWmE9kqRRVPmawj3AvIg4IiL2Ac4DbqofEBGHAdcDF2TmIxXWIklqQGVHCpnZHxHLgZuBKcDVmflgRFxc3L8S+CgwG/hiRAD0N3LOS5JUjSpPH5GZa4A1Q9atrLu9FHjZC8uCrb076dm2g7kHTWf2zH3HbWw76dS+qtK9ZTvbXuyje8t2jpozq9XlqE1VGgoamxvXb2LFdRuY1tVF38AAV5x1HGfOP+QVj20nndpXVT56w/1cc9dG/ujYfi79m9u58LTD+NiSY1tdltqQ01xMMlt7d7Liug281DfA9p39vNQ3wEeu28DW3p2vaGw76dS+qtK9ZTvX3LVxj3XX3LmR7i3bW1SR2pmhMMn0bNvBtK49d8u0ri56tu14RWPbSaf2VZX1Tzzb1HppJIbCJDP3oOn0DQzssa5vYIC5B01/RWPbSaf2VZX5hx7Y1HppJIbCJDN75r5ccdZx7Deti1n7TmW/aV1ccdZxw77Q2szYdtKpfVXlqDmzuPC0w/ZYd+Fph/lis8bEF5onoTPnH8LpRx3c0JU3zYxtJ53aV1U+tuRYLjz1cO6/9y5uu/RUA0FjZihMUrNn7tvwL8JmxraTTu2rKkfNmUXPjGkGgl4RTx9JkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpVGkoRMTiiHg4Iroj4rJh7o+I+Hxx/4aIOKHKeqRmbe3dyU+eeJatvTtHHbvusa185paHWffY1nHbZjNju7dsZ9uLfXRv2T7q2GZUVW+zNezo2z3qdru3bOfb657o2O9BFdsdampVG46IKcCVwLuAHuCeiLgpMx+qG3YGMK/4OgX4UvGv1HI3rt/Eius2MK2ri76BAa446zjOnH/IsGM/cNVd3NFdC4PPf6+btx01m2uXnvqKttnM2I/ecD/X3LWRPzq2n0v/5nYuPO0wPrbk2DF2Xn29Y6nhD3+zj0s/8b29bnfwezCoE78H473d4VR5pHAy0J2Zj2bmLmA1sGTImCXANVlzF3BgRLyuwpqkhmzt3cmK6zbwUt8A23f281LfAB+5bsOwf6Wte2xrGQiDfti99WVHDM1ss5mx3Vu27/HLEOCaOze+4r+Wq6p3rDXsztzrdl8t34Px3O7eRGZWs+GIs4HFmbm0WL4AOCUzl9eN+UfgrzPzjmL5u8CKzFw3ZFvLgGXF4tHAw5UUPXYHA8+0uoiKdGpvI/YV06bPmHrQ634jurqmDK7LgYHd/duefCT7drxYP3bKrINfP2X/A1/2x8zuF559cvf2ZzaPZZvNjO2accDsqa957eEAu198jikzDgCg//mnHx948bmRz2WNoKp6x1rDYG/Dbbf+e1CvTb4H4/azOIpfz8zXjjaostNHQAyzbmgCNTKGzFwFrBqPoqoQEesyc0Gr66hCp/bWyX31P/dUx/UFndvbZPtZrPL0UQ9waN3yXGDzGMZIkiZIlaFwDzAvIo6IiH2A84Cbhoy5CbiwuArpVOC5zHyywpokSSOo7PRRZvZHxHLgZmAKcHVmPhgRFxf3rwTWAO8BuoEXgYuqqqdik/bU1jjo1N7sq/10am+Tqq/KXmiWJLUf39EsSSoZCpKkkqEwBhHxeETcHxHrI2Jdse7yiNhUrFsfEe9pdZ3NiogDI+LbEfGziPhpRJwWEb8SEbdGxM+Lfw9qdZ3N2ktfnbC/jq6rf31EPB8RH273fTZCX52wzy6NiAcj4oGI+EZE7DfZ9pevKYxBRDwOLMjMZ+rWXQ70ZuanWlXXKxURXwd+mJlXFVeMzQD+FPhlZv51MX/VQZm5oqWFNmkvfX2YNt9f9YppZTZRmybmEtp8nw0a0tdFtPE+i4hDgDuAYzJzR0R8k9rFNscwifaXRwoCICJeA/wW8H8AMnNXZj5LbSqSrxfDvg78TmsqHJsR+uo07wD+X2b+gjbfZ0PU99UJpgLTI2IqtT9ONjPJ9pehMDYJ3BIR9xZTcAxaXsz2enWrDwHH4EjgaeCrEfHjiLgqIvYH5gy+d6T491dbWeQY7K0vaO/9NdR5wDeK2+2+z+rV9wVtvM8ycxPwKWAj8CS192XdwiTbX4bC2JyemSdQm+X1koj4LWozvL4BmE9th3+6hfWNxVTgBOBLmflm4AXgZdOdt6G99dXu+6tUnBI7E/hWq2sZT8P01db7rAixJcARwOuB/SPiA62t6uUMhTHIzM3Fv08B3wFOzswtmbk7MweAr1CbJbad9AA9mfmjYvnb1H6Zbhmcubb496kW1TdWw/bVAfur3hnAfZm5pVhu9302aI++OmCfvRN4LDOfzsw+4HrgLUyy/WUoNCki9o+IWYO3gXcDD8SeU36/D3igFfWNVWb+G/BERBxdrHoH8BC1qUg+WKz7IHBjC8obs7311e77a4jz2fMUS1vvszp79NUB+2wjcGpEzIiIoPaz+FMm2f7y6qMmRcSR1I4OoHZq4u8y868i4lpqh7UJPA78QbvN4xQR84GrgH2AR6ld7dEFfBM4jNoP9TmZ+cuWFTkGe+nr87T5/gKIiBnAE8CRmflcsW427b/PhuurE55jfwGcC/QDPwaWAjOZRPvLUJAklTx9JEkqGQqSpJKhIEkqGQqSpJKhIEkqVfbJa9JEKy7F/G6x+GvAbmpTXEDtDYa7WlLYCCLi94A1xfsppJbzklR1pMk0a21ETMnM3Xu57w5geWaub2J7UzOzf9wKlOp4+kivChHxwYi4u5iH/4sR0RURUyPi2Yj4ZETcFxE3R8QpEfGDiHh0cL7+iFgaEd8p7n84Iv6swe1+PCLuBk6OiL+IiHuKefRXRs251N6M9ffF4/eJiJ6IOLDY9qkRcVtx++MR8eWIuJXa5H5TI+Izxf+9ISKWTvx3VZ3IUFDHi4g3UZsW4S2ZOZ/aadPzirsPAG4pJjjcBVxObfqBc4CP1W3m5OIxJwDvj4j5DWz3vsw8OTPvBD6XmScBxxb3Lc7MvwfWA+dm5vwGTm+9GXhvZl4ALAOeysyTgZOoTcx42Fi+P1I9X1PQq8E7qf3iXFebcobp1KZQANiRmbcWt++nNp1xf0TcDxxet42bM3MbQETcALyV2vNnb9vdxb9PhwLwjoj4E2A/4GDgXuCfm+zjxsx8qbj9buA3I6I+hOZRmyZBGjNDQa8GAVydmf9rj5W1Dzqp/+t8ANhZd7v++TH0xbccZbs7snjBrpjH5wvUZmfdFBEfpxYOw+nn34/gh455YUhPH8rM7yKNI08f6dXgNuB3I+JgqF2lNIZTLe+O2mc9z6A2J/6/NLHd6dRC5pliht2z6u7bDsyqW34cOLG4XT9uqJuBDxUBNPi5xtOb7El6GY8U1PEy8/5idsrbIqIL6AMupvZRiI26A/g7ah/ycu3g1UKNbDczt0btc6IfAH4B/Kju7q8CV0XEDmqvW1wOfCUi/g24e4R6vkxtVs31xamrp6iFlfSKeEmqNIriyp43ZeaHW12LVDVPH0mSSh4pSJJKHilIkkqGgiSpZChIkkqGgiSpZChIkkr/HzHofwgP0tIHAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
@@ -474,6 +618,76 @@
"plt.grid(True)"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF+FJREFUeJzt3Xu4XXV95/H3NxcgIeEi4EFJKCARn6iAHORSdUqE0oROSa1hCu0A0qEZZkxnoGNLHH3obehTwRYroqkihdjWPCCUi6QDgSdKxxKuQm4QPAJCCISLCAkBkpDv/LFWFjun57IPOevsRXi/nmc/7PVbv7335xzO3p+stddeOzITSZIARnU6gCSpOSwFSVLFUpAkVSwFSVLFUpAkVSwFSVKltlKIiCsi4tmIWN7P+oiIr0ZET0QsjYgj6soiSWpPnVsKVwLTB1g/A5hSXmYD36gxiySpDbWVQmbeAfx8gCkzgflZWALsERHvqSuPJGlwYzr42PsBT7Ysry7Hnu49MSJmU2xNMG7cuO7JkyePSMB2bNmyhVGjmvvWTNPzQfMzNj0fmHE4ND0fbF/GRx555PnM3GfQiZlZ2wU4AFjez7qbgY+3LN8OdA92n93d3dkkixcv7nSEATU9X2bzMzY9X6YZh0PT82VuX0bg3mzjdbuTtbgaaP0n/yRgTYeySJLo7CGpNwJnlEchHQO8lJn/bteRJGnk1PaeQkR8FzgO2DsiVgN/AowFyMx5wELgJKAH2ACcVVcWSVJ7aiuFzDxtkPUJfLaux5ckDV2z32qXJI0oS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEmVWkshIqZHxKqI6ImIuX2s3z0iboqIByNiRUScVWceSdLAaiuFiBgNXAbMAKYCp0XE1F7TPguszMzDgOOAv46InerKJEkaWJ1bCkcBPZn5aGZuBBYAM3vNSWBiRAQwAfg5sLnGTJKkAURm1nPHEbOA6Zl5drl8OnB0Zs5pmTMRuBH4ADAR+O3MvLmP+5oNzAbo6urqXrBgQS2Z34r169czYcKETsfoV9PzQfMzNj0fmHE4ND0fbF/GadOm3ZeZRw46MTNruQCnAJe3LJ8OXNprzizgEiCAg4HHgN0Gut/u7u5sksWLF3c6woCani+z+Rmbni/TjMOh6fkyty8jcG+28dpd5+6j1cDkluVJwJpec84Crisz95Sl8IEaM0mSBlBnKdwDTImIA8s3j0+l2FXU6gngeICI6AIOAR6tMZMkaQBj6rrjzNwcEXOAW4DRwBWZuSIizinXzwP+ArgyIpZR7EI6PzOfryuTJGlgtZUCQGYuBBb2GpvXcn0NcGKdGSRJ7fMTzZKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSarUWgoRMT0iVkVET0TM7WfOcRHxQESsiIgf1plHkjSwMe1MiogPZebyodxxRIwGLgN+FVgN3BMRN2bmypY5ewBfB6Zn5hMR8e6hPIYkaXi1u6UwLyLujoj/Xr6Qt+MooCczH83MjcACYGavOb8DXJeZTwBk5rNt3rckqQaRme1NjJgC/B5wCnA38PeZuWiA+bMotgDOLpdPB47OzDktc74CjAU+CEwE/jYz5/dxX7OB2QBdXV3dCxYsaO+nGwHr169nwoQJnY7Rr6bng+ZnbHo+MONwaHo+2L6M06ZNuy8zjxx0Yma2fQFGA58GngIeAh4GfqufuacAl7csnw5c2mvO14AlwK7A3sBPgPcPlKG7uzubZPHixZ2OMKCm58tsfsam58s043Boer7M7csI3JttvM63+57CocBZwK8Di4DfyMz7I+K9wJ3AdX3cbDUwuWV5ErCmjznPZ+YrwCsRcQdwGPBIO7kkScOr3fcUvgbcDxyWmZ/NzPsBMnMN8MV+bnMPMCUiDoyInYBTgRt7zbkB+EREjImI8cDRFFsgkqQOaGtLATgJeDUz3wCIiFHALpm5ITO/09cNMnNzRMwBbqHY7XRFZq6IiHPK9fMy86GI+L/AUmALxe6mIR3lJEkaPu2Wwm3ACcD6cnk8cCvwywPdKDMXAgt7jc3rtXwxcHGbOSRJNWp399Eumbm1ECivj68nkiSpU9othVci4oitCxHRDbxaTyRJUqe0u/voXOCaiNh69NB7gN+uJ5IkqVPaKoXMvCciPgAcAgTwcGZuqjWZJGnEtbulAPBR4IDyNh+JCLKPTx9Lkt6+2v3w2neA9wEPAG+UwwlYCpK0A2l3S+FIYGr5UWlJ0g6q3aOPlgP71hlEktR57W4p7A2sjIi7gde3DmbmybWkkiR1RLul8Kd1hpAkNUO7h6T+MCJ+CZiSmbeVJ68bXW80SdJIa+s9hYj4feB7wN+VQ/sB19cVSpLUGe2+0fxZ4GPAywCZ+RPA71OWpB1Mu6XwehbfswxARIyh+JyCJGkH0m4p/DAi/jcwLiJ+FbgGuKm+WJKkTmi3FOYCzwHLgP9K8R0J/X3jmiTpbardo4+2AN8qL5KkHVS75z56jD7eQ8jMg4Y9kSSpY4Zy7qOtdgFOAd41/HEkSZ3U1nsKmflCy+WpzPwK8Mmas0mSRli7u4+OaFkcRbHlMLGWRJKkjml399Fft1zfDDwO/KdhTyNJ6qh2jz6aVncQSVLntbv76A8HWp+ZfzM8cSRJnTSUo48+CtxYLv8GcAfwZB2hJEmdMZQv2TkiM9cBRMSfAtdk5tl1BZMkjbx2T3OxP7CxZXkjcMCwp5EkdVS7WwrfAe6OiH+m+GTzp4D5taWSJHVEu0cfXRgR/wJ8ohw6KzN/XF8sSVIntLv7CGA88HJm/i2wOiIOrCmTJKlD2v06zj8Bzgc+Xw6NBf6hrlCSpM5od0vhU8DJwCsAmbkGT3MhSTucdkthY2Ym5emzI2LX+iJJkjql3VK4OiL+DtgjIn4fuA2/cEeSdjjtHn305fK7mV8GDgEuyMxFtSaTJI24QbcUImJ0RNyWmYsy848y83PtFkJETI+IVRHRExFzB5j30Yh4IyJmDSW8JGl4DVoKmfkGsCEidh/KHUfEaOAyYAYwFTgtIqb2M+9LwC1DuX9J0vBr9xPNrwHLImIR5RFIAJn5Pwa4zVFAT2Y+ChARC4CZwMpe8/4AuJbihHuSpA6K4qCiQSZFnNnXeGZeNcBtZgHTt540LyJOB47OzDktc/YD/oniqz2/DXw/M7/Xx33NBmYDdHV1dS9YsGDQzCNl/fr1TJgwodMx+tX0fND8jE3PB2YcDk3PB9uXcdq0afdl5pGDTszMfi/A/gOtH+S2pwCXtyyfDlzaa841wDHl9SuBWYPdb3d3dzbJ4sWLOx1hQE3Pl9n8jE3Pl2nG4dD0fJnblxG4N9t47R7sPYXrt16JiGuHWEyrgckty5OANb3mHAksiIjHgVnA1yPiN4f4OJKkYTLYewrRcv2gId73PcCU8hxJTwGnAr/TOiEzq/MnRcSVFLuPrkeS1BGDlUL2c31Qmbk5IuZQHFU0GrgiM1dExDnl+nlDSipJqt1gpXBYRLxMscUwrrxOuZyZudtAN87MhcDCXmN9lkFmfqatxJKk2gxYCpk5eqSCSJI6byjfpyBJ2sFZCpKkiqUgSapYCpKkiqUgSW8DPWvX8eKGTfSsXVfr41gKktRwF1y/jBMuuYPVL27ghEvu4IIbltX2WJaCJDVYz9p1zF/yxDZj8+98orYtBktBkhrsgSd/MaTx7WUpSFKDHT55jyGNby9LQZIa7OCuiZxx7P7bjJ1x7P4c3DWxlsdr95vXJEkd8uczP8wZxxzAsvuWcNt5x9RWCOCWgiS9LRzcNZE9x4+ttRDAUpAktbAUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVKm1FCJiekSsioieiJjbx/rfjYil5eXfIuKwOvNIkgZWWylExGjgMmAGMBU4LSKm9pr2GPArmXko8BfAN+vKI0kaXJ1bCkcBPZn5aGZuBBYAM1snZOa/ZeaL5eISYFKNeSRJg4jMrOeOI2YB0zPz7HL5dODozJzTz/zPAR/YOr/XutnAbICurq7uBQsW1JL5rVi/fj0TJkzodIx+NT0fND9j0/OBGYdD0/PB9mWcNm3afZl55KATM7OWC3AKcHnL8unApf3MnQY8BOw12P12d3dnkyxevLjTEQbU9HyZzc/Y9HyZZhwOTc+XuX0ZgXuzjdfuMW+pctqzGpjcsjwJWNN7UkQcClwOzMjMF2rMI0kaRJ3vKdwDTImIAyNiJ+BU4MbWCRGxP3AdcHpmPlJjFklSG2rbUsjMzRExB7gFGA1ckZkrIuKccv084AJgL+DrEQGwOdvZ5yVJqkWdu4/IzIXAwl5j81qunw38uzeW6/DC+tdZ/eKrTNpzHHtN2HkkHlKShs3tK5/hmRdf5faVz3D81H1re5xaS6EpbnjgKc6/diljR41i05YtXPTpQzn58P06HUuS2nLiJT/gkbWv8L8+vJkvzL+PQ7p25ZbzjqvlsXb401y8sP51zr92Ka9t2sK61zfz2qYt/PG1S3lh/eudjiZJg7p95TM8svaVbcZWrX2F21c+U8vj7fClsPrFVxk7atsfc+yoUax+8dUOJZKk9t26cu2QxrfXDl8Kk/Ycx6YtW7YZ27RlC5P2HNehRJLUvhOndg1pfHvt8KWw14SduejTh7LL2FFM3HkMu4wdxUWfPtQ3myW9LRw/dV8O6dp1m7FDunat7c3md8QbzScfvh8fO3hvjz6S9LZ0y3nHFUcfrfox3z7jIx59NBz2mrCzZSDpbev4qfvyg2fHcVyNhQDvgN1HkqT2WQqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpEqtpRAR0yNiVUT0RMTcPtZHRHy1XL80Io6oK8v19z/J2Vfdw/X3P1nXQ+gt6Fm7jhc3bKJn7bpOR5Ea7cKblvPwM+u48KbltT5ObaUQEaOBy4AZwFTgtIiY2mvaDGBKeZkNfKOOLMf85SLOvXoptz30LOdevZRj/3JRHQ+jIbrg+mWccMkdrH5xAydccgcX3LCs05GkRjpo7s1860c/Y9MbW/jWj37GQXNvru2x6txSOAroycxHM3MjsACY2WvOTGB+FpYAe0TEe4YzxPX3P8kzL2/cZuzplze6xdBhPWvXMX/JE9uMzb/zCbcYpF4uvGk5W3qNbSnH6xCZWc8dR8wCpmfm2eXy6cDRmTmnZc73gb/KzP9XLt8OnJ+Z9/a6r9kUWxIAhwCr2s0xZs/3vm/UzuP36D2+5fUNv9j84pqfDvHH6svewPPDcD91aWS+UeN332vMbvscAPDGhpcYPX53ADa//NzjWza89EIns/Whkb/DXsy4/RqZb+w+B3w4Ro/ZCbZ9ruQbmzdueu7xoWxe/1Jm7jPYpDFvLWZboo+x3g3Uzhwy85vAN4cj1HCLiHsz88hO5+hP0/NBkXHzS882NuPb5Xdoxu3T9HwwMs+VOncfrQYmtyxPAta8hTmSpBFSZyncA0yJiAMjYifgVODGXnNuBM4oj0I6BngpM5+uMZMkaQC17T7KzM0RMQe4BRgNXJGZKyLinHL9PGAhcBLQA2wAzqorT40auVurRdPzQfMzNj0fmHE4ND0fjEDG2t5oliS9/fiJZklSxVKQJFUshSGIiD0i4nsR8XBEPBQRx0bEuyJiUUT8pPzvnh3OeF5ErIiI5RHx3YjYpZMZI+KKiHg2Ipa3jPWbJyI+X572ZFVE/FoHM15c/n9eGhH/HBF7tKxrRMaWdZ+LiIyIvTuVsb98EfEHZYYVEXFRp/L1lzEiDo+IJRHxQETcGxFHdSpjREyOiMXla8uKiPif5fjIPl8y00ubF+Aq4Ozy+k7AHsBFwNxybC7wpQ7m2w94DBhXLl8NfKaTGYH/ABwBLG8Z6zMPxelQHgR2Bg4EfgqM7lDGE4Ex5fUvNTFjOT6Z4mCOnwF7dypjP7/DacBtwM7l8rub9jsEbgVmlNdPAn7Qwd/he4AjyusTgUfKHCP6fHFLoU0RsRvFH9W3ATJzY2b+guJUHVeV064CfrMzCStjgHERMQYYT/G5j45lzMw7gJ/3Gu4vz0xgQWa+npmPURyVdhQ16ytjZt6amZvLxSUUn6FpVMbSJcAfs+2HPkc8Yz/5/hvFGQteL+c826l8A2RMYLfy+u68+TmpTvwOn87M+8vr64CHKP6hN6LPF0uhfQcBzwF/HxE/jojLI2JXoCvLz1aU/313pwJm5lPAl4EngKcpPvdxa5MylvrLsx/QelKq1eVYp/0e8C/l9cZkjIiTgacy88Feq5qS8f3AJyLiroj4YUR8tBxvSj6Ac4GLI+JJiufO58vxjmaMiAOAjwB3McLPF0uhfWMoNj2/kZkfAV6h2JRrjHJf40yKTcn3ArtGxH/ubKohaeu0JyMpIr4AbAb+cetQH9NGPGNEjAe+AFzQ1+o+xjrxexwD7AkcA/wRcHVEBM3JB8XWzHmZORk4j3JPAB3MGBETgGuBczPz5YGm9jG23RkthfatBlZn5l3l8vcoSmJtlGd2Lf/7bD+3HwknAI9l5nOZuQm4DvjlhmVkgDyNOu1JRJwJ/Efgd7PciUtzMr6PovwfjIjHyxz3R8S+NCfjauC6LNxNcXLPvRuUD+BMiucJwDW8ufulIxkjYixFIfxjZm7NNaLPF0uhTZn5DPBkRBxSDh0PrKQ4VceZ5diZwA0diLfVE8AxETG+/BfZ8RT7JZuUEfrPcyNwakTsHBEHUnzPxt0dyEdETAfOB07OzA0tqxqRMTOXZea7M/OAzDyA4gXiiPLvtBEZgeuBTwJExPspDs54vkH5oHgR/ZXy+ieBn5TXRzxj+Zz9NvBQZv5Ny6qRfb7U+W76jnYBDgfuBZZS/MHvCewF3E7xx3Q78K4OZ/wz4GFgOfAdiiMTOpYR+C7F+xubKF64/stAeSh2ifyU4vToMzqYsYdif+0D5WVe0zL2Wv845dFHncjYz+9wJ+Afyr/F+4FPNu13CHwcuI/iKJ67gO4O/g4/TrH7Z2nL391JI/188TQXkqSKu48kSRVLQZJUsRQkSRVLQZJUsRQkSZXavnlNarqIeANYRvE8eAg4M7f9TIL0juOWgt7JXs3MwzPzQ8BG4JzWlVEYsedIRIweqceS+mMpSIV/BQ6OiAPK89l/neIDV5Mj4sSIuDMi7o+Ia8pz0xARfxURK8vvXPhyOXZKFN9l8WBE3FGOfSYivrb1gSLi+xFxXHl9fUT8eUTcBRwbEd3lyePui4hbtp7eQBoploLe8crTjM+g2JUEcAgwP9888eEXgRMy8wiKT7T/YUS8C/gU8MHMPBT4P+VtLwB+LTMPA05u4+F3pTi//9EUn6i9FJiVmd3AFcCFw/EzSu3yPQW9k42LiAfK6/9Kcd6Z9wI/y8wl5fgxFF9m8qPi1DTsBNwJvAy8BlweETcD3y/n/wi4MiKu5s0TrQ3kDYoToEFRRh8CFpWPNZritAzSiLEU9E72amYe3jpQvhi/0joELMrM03rfuPzqxuOBU4E5FOf2OScijgZ+HXggIg6nOPV261b5Li3XX8vMN1oea0VmHrt9P5b01rn7SBrYEuBjEXEwFN9jEBHvL99X2D0zF1J8Ucvh5fr3ZeZdmXkBxRlBJ1OcrO7wiBgVEZPp/9uxVgH7RMSx5X2NjYgP1vnDSb25pSANIDOfi4jPAN+NiJ3L4S8C64AbImIXin/hn1euuzgippRjt1OcfROK785exptnDO3rsTZGxCzgqxGxO8Xz8yvAimH/waR+eJZUSVLF3UeSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpMr/B7ZTo8X/XbLnAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "data[\"Frequency\"]=data.Malfunction/data.Count\n",
+ "data.plot(x=\"Pressure\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
+ "plt.grid(True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Test du Chi-deux : Chi2 = 317.08509556162534, p-valeur = 4.1270772491122487e-54\n"
+ ]
+ }
+ ],
+ "source": [
+ "#(in)dépendance entre température et pression\n",
+ "from scipy.stats import chi2_contingency\n",
+ "# Créez un tableau de contingence à partir de vos données\n",
+ "contingency_table = np.array([data[\"Temperature\"], data[\"Pressure\"]]).T\n",
+ "\n",
+ "# Effectuez le test du chi-deux\n",
+ "chi2, p, _, _ = chi2_contingency(contingency_table)\n",
+ "\n",
+ "# Affichez les résultats\n",
+ "print(f\"Test du Chi-deux : Chi2 = {chi2}, p-valeur = {p}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "hideCode": false
+ },
+ "source": [
+ "Les variables températures et pression sont dépendantes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -500,7 +714,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
@@ -509,10 +723,10 @@
"\n",
"Generalized Linear Model Regression Results\n",
"\n",
- " Dep. Variable: | Frequency | No. Observations: | 7 | \n",
+ " Dep. Variable: | Frequency | No. Observations: | 23 | \n",
"
\n",
"\n",
- " Model: | GLM | Df Residuals: | 5 | \n",
+ " Model: | GLM | Df Residuals: | 21 | \n",
"
\n",
"\n",
" Model Family: | Binomial | Df Model: | 1 | \n",
@@ -521,16 +735,16 @@
" Link Function: | logit | Scale: | 1.0000 | \n",
"
\n",
"\n",
- " Method: | IRLS | Log-Likelihood: | -2.5250 | \n",
+ " Method: | IRLS | Log-Likelihood: | -3.8368 | \n",
"
\n",
"\n",
- " Date: | Sat, 13 Apr 2019 | Deviance: | 0.22231 | \n",
+ " Date: | Wed, 06 Dec 2023 | Deviance: | 2.8461 | \n",
"
\n",
"\n",
- " Time: | 19:11:24 | Pearson chi2: | 0.236 | \n",
+ " Time: | 09:39:06 | Pearson chi2: | 4.18 | \n",
"
\n",
"\n",
- " No. Iterations: | 4 | Covariance Type: | nonrobust | \n",
+ " No. Iterations: | 6 | Covariance Type: | nonrobust | \n",
"
\n",
"
\n",
"\n",
@@ -538,10 +752,10 @@
" | coef | std err | z | P>|z| | [0.025 | 0.975] | \n",
"\n",
"\n",
- " Intercept | -1.3895 | 7.828 | -0.178 | 0.859 | -16.732 | 13.953 | \n",
+ " Pressure | 0.0119 | 0.018 | 0.678 | 0.498 | -0.023 | 0.046 | \n",
"
\n",
"\n",
- " Temperature | 0.0014 | 0.122 | 0.012 | 0.991 | -0.238 | 0.240 | \n",
+ " Temperature | -0.0697 | 0.050 | -1.381 | 0.167 | -0.169 | 0.029 | \n",
"
\n",
"
"
],
@@ -550,24 +764,24 @@
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
- "Dep. Variable: Frequency No. Observations: 7\n",
- "Model: GLM Df Residuals: 5\n",
+ "Dep. Variable: Frequency No. Observations: 23\n",
+ "Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
- "Method: IRLS Log-Likelihood: -2.5250\n",
- "Date: Sat, 13 Apr 2019 Deviance: 0.22231\n",
- "Time: 19:11:24 Pearson chi2: 0.236\n",
- "No. Iterations: 4 Covariance Type: nonrobust\n",
+ "Method: IRLS Log-Likelihood: -3.8368\n",
+ "Date: Wed, 06 Dec 2023 Deviance: 2.8461\n",
+ "Time: 09:39:06 Pearson chi2: 4.18\n",
+ "No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
- "Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n",
- "Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n",
+ "Pressure 0.0119 0.018 0.678 0.498 -0.023 0.046\n",
+ "Temperature -0.0697 0.050 -1.381 0.167 -0.169 0.029\n",
"===============================================================================\n",
"\"\"\""
]
},
- "execution_count": 4,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -578,7 +792,7 @@
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
- "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
+ "logmodel=sm.GLM(data['Frequency'], data[['Pressure','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
@@ -605,12 +819,12 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmYFPd95/H3d7rn6LmZ4T7EIWHQhTgGsIQtD7IlkB5bx0ayhB050obFfhLZ8e5jNtY+ycpJrGeTB2cfebOOZVYmiu21kONISHZYg+RoLFvWAQgMRohDCMEAEjdzMGfPd/+omtEwDEzPMEd38Xk9zzzdVfWrqt+3Gz5d/evqanN3REQkWrKGugMiItL/FO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBPYa7ma0ysyNm9vvzLDcz+19mtsfMtprZ7P7vpoiI9EYqR+5PAosvsPxWYGr4twz47sV3S0RELkaP4e7uLwMnLtDkDuAHHngNKDWzMf3VQRER6b14P2xjHHCg03R1OO9w14Zmtozg6J5EIjFnwoQJfdphW1sbWVnR+LhAtaSnqNQSlTpAtbTbtWvXMXcf0VO7/gh362Zet9c0cPeVwEqAiooK37hxY592WFVVRWVlZZ/WTTeqJT1FpZao1AGqpZ2ZvZdKu/54GawGOh+CjwcO9cN2RUSkj/oj3J8HvhCeNfNR4LS7nzMkIyIig6fHYRkzewqoBIabWTXwCJAN4O6PA2uB24A9wBngwYHqrIiIpKbHcHf3JT0sd+BP+61HIpIRWlpaqK6uprGxcVD2V1JSwo4dOwZlXwMtlVry8vIYP3482dnZfdpHf3ygKiKXoOrqaoqKipg0aRJm3Z1X0b9qa2spKioa8P0Mhp5qcXeOHz9OdXU1kydP7tM+onFekYgMusbGRsrLywcl2C81ZkZ5eflFvStSuItInynYB87FPrYKdxGRCNKYu4hkrFgsxrXXXtsxvWbNGiZNmjR0HUojCncRyViJRIItW7acd3lrayvx+KUZcxqWEZFIefLJJ7nnnnv4zGc+wy233ALAihUrmDt3LjNmzOCRRx7paPvoo48ybdo0PvWpT7FkyRK+9a1vAVBZWUn75VGOHTvW8W4gmUyyfPnyjm1973vfAz68nMDdd9/N9OnT+fznP09wljhs2LCBG264geuuu4558+ZRW1vLokWLznpRWrBgAVu3bu3Xx+HSfEkTkX71Vz/bzluHavp1m1eNLeaRz1x9wTYNDQ3MnDkTgMmTJ/Pss88C8Oqrr7J161bKyspYv349u3fv5o033sDduf3223n55ZcpKChg9erVbN68mdbWVmbPns2cOXMuuL/vf//7lJSUsGHDBpqamliwYEHHC8jmzZvZvn07Y8eOZcGCBbzyyivMmzePe++9l6effpq5c+dSU1NDIpHgC1/4Ak8++SSPPfYYu3btoqmpiRkzZvTDo/YhhbuIZKzzDcvcfPPNlJWVAbB+/XrWr1/PrFmzAKirq2P37t3U1tZy1113kZ+fD8Dtt9/e4/7Wr1/P1q1b+elPfwrA6dOn2b17Nzk5OcybN4/x48cDMHPmTPbt20dJSQljxoxh7ty5ABQXFwNw1113sWDBAlasWMGqVat44IEHLu6B6IbCXUQuWk9H2IOtoKCg47678/DDD/PFL37xrDaPPfbYeU83jMfjtLW1AZx1rrm78w//8A8sWrTorPZVVVXk5uZ2TMdiMVpbW3H3bveRn5/PzTffzHPPPcdPfvIT+nqF3AvRmLuIRNqiRYtYtWoVdXV1ABw8eJAjR45w44038uyzz9LQ0EBtbS0/+9nPOtaZNGkSmzZtAug4Sm/f1ne/+11aWloA2LVrF/X19efd9/Tp0zl06BAbNmwAgm+mtra2ArB06VK+8pWvMHfu3I53Gf1JR+4iEmm33HILO3bs4PrrrwegsLCQH/3oR8yePZt7772XmTNnMnHiRD7+8Y93rPO1r32Nz372s/zwhz/kpptu6pi/dOlS9u3bx+zZs3F3RowYwZo1a86775ycHJ5++mm+/OUv09DQQCKR4MUXXwRgzpw5FBcX8+CDA3StRXcfkr85c+Z4X7300kt9XjfdqJb0FJVaBrKOt956a8C23Z2ampoB3f4jjzziK1asGNB9tKupqfGDBw/61KlTPZlMnrddd48xsNFTyFgNy4iIDLIf//jHzJ8/n0cffXTAfjpQwzIiIsA3vvGNQdvX5z73uXM+4O1vOnIXkT5z7/bnkqUfXOxjq3AXkT7Jy8vj+PHjCvgB4OH13PPy8vq8DQ3LiEifjB8/nurqao4ePToo+2tsbLyosEsnqdTS/ktMfaVwF5E+yc7O7vOvBPVFVVVVx7dMM91g1KJhGRGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQSmFu5ktNrOdZrbHzL7ezfISM/uZmf3OzLab2YP931UREUlVj+FuZjHgO8CtwFXAEjO7qkuzPwXecvfrgErg780sp5/7KiIiKUrlyH0esMfd97p7M7AauKNLGweKzMyAQuAE0NqvPRURkZRZT79cbmZ3A4vdfWk4fT8w390f6tSmCHgemA4UAfe6+791s61lwDKAUaNGzVm9enWfOl1XV0dhYWGf1k03qiU9RaWWqNQBqqXdwoULN7l7RU/tUvmBbOtmXtdXhEXAFuAm4HLgBTP7tbvXnLWS+0pgJUBFRYVXVlamsPtzVVVV0dd1041qSU9RqSUqdYBq6a1UhmWqgQmdpscDh7q0eRB4xgN7gHcJjuJFRGQIpBLuG4CpZjY5/JD0PoIhmM72A58EMLNRwDRgb392VEREUtfjsIy7t5rZQ8A6IAascvftZvalcPnjwN8AT5rZNoJhnD9392MD2G8REbmAVMbccfe1wNou8x7vdP8QcEv/dk1ERPpK31AVEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEpRTuZrbYzHaa2R4z+/p52lSa2RYz225mv+rfboqISG/Ee2pgZjHgO8DNQDWwwcyed/e3OrUpBf4RWOzu+81s5EB1WEREepbKkfs8YI+773X3ZmA1cEeXNp8DnnH3/QDufqR/uykiIr1h7n7hBmZ3ExyRLw2n7wfmu/tDndo8BmQDVwNFwLfd/QfdbGsZsAxg1KhRc1avXt2nTtfV1VFYWNinddONaklPUaklKnWAamm3cOHCTe5e0VO7HodlAOtmXtdXhDgwB/gkkABeNbPX3H3XWSu5rwRWAlRUVHhlZWUKuz9XVVUVfV033aiW9BSVWqJSB6iW3kol3KuBCZ2mxwOHumlzzN3rgXozexm4DtiFiIgMulTG3DcAU81sspnlAPcBz3dp8xzwcTOLm1k+MB/Y0b9dFRGRVPV45O7urWb2ELAOiAGr3H27mX0pXP64u+8ws18AW4E24Al3//1AdlxERM4vlWEZ3H0tsLbLvMe7TK8AVvRf10REpK/0DVURkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIJSCnczW2xmO81sj5l9/QLt5ppZ0szu7r8uiohIb/UY7mYWA74D3ApcBSwxs6vO0+7vgHX93UkREemdVI7c5wF73H2vuzcDq4E7umn3ZeBfgSP92D8REekDc/cLNwiGWBa7+9Jw+n5gvrs/1KnNOODHwE3A94Gfu/tPu9nWMmAZwKhRo+asXr26T52uq6ujsLCwT+umG9WSnqJSS1TqANXSbuHChZvcvaKndvEUtmXdzOv6ivAY8OfunjTrrnm4kvtKYCVARUWFV1ZWprD7c1VVVdHXddONaklPUaklKnWAaumtVMK9GpjQaXo8cKhLmwpgdRjsw4HbzKzV3df0Sy9FRKRXUgn3DcBUM5sMHATuAz7XuYG7T26/b2ZPEgzLKNhFRIZIj+Hu7q1m9hDBWTAxYJW7bzezL4XLHx/gPoqISC+lcuSOu68F1naZ122ou/sDF98tERG5GPqGqohIBCncRUQiSOEuIhJBCncRkQhSuIuIRFBKZ8uIDJQ1mw+yYt1ODp1qYGxpguWLpnHnrHFD3S1JkZ6/9KVwlyGzZvNBHn5mGw0tSQAOnmrg4We2ASggMoCev/SmYRkZMivW7ewIhnYNLUlWrNs5RD2S3tDzl94U7jJkDp1q6NV8SS96/tKbwl2GzNjSRK/mS3rR85feFO4yZJYvmkYiO3bWvER2jOWLpg1Rj6Q39PylN32gKkOm/UM3nW2RmfT8pTeFuwypO2eNUxhkMD1/6UvDMiIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQSmFu5ktNrOdZrbHzL7ezfLPm9nW8O+3ZnZd/3dVRERS1WO4m1kM+A5wK3AVsMTMrurS7F3gE+4+A/gbYGV/d1RERFKXypH7PGCPu+9192ZgNXBH5wbu/lt3PxlOvgaM799uiohIb5i7X7iB2d3AYndfGk7fD8x394fO0/5rwPT29l2WLQOWAYwaNWrO6tWr+9Tpuro6CgsL+7RuulEt6SkqtUSlDlAt7RYuXLjJ3St6ahdPYVvWzbxuXxHMbCHwx8DHulvu7isJh2wqKiq8srIyhd2fq6qqir6um25US3qKSi1RqQNUS2+lEu7VwIRO0+OBQ10bmdkM4AngVnc/3j/dExGRvkhlzH0DMNXMJptZDnAf8HznBmZ2GfAMcL+77+r/boqISG/0eOTu7q1m9hCwDogBq9x9u5l9KVz+OPDfgXLgH80MoDWVMSERERkYqQzL4O5rgbVd5j3e6f5S4JwPUEUG25rNB1mxbieHTjUwtjTB8kXTAM6Zd+escYOy74HYTyr+Ys02nnr9AF+9poU/fngtS+ZP4Jt3XjskfZGhkVK4i2SCNZsP8vAz22hoSQJw8FQDy//ld2DQkvSOeQ8/sw2gX4O3u30PxH5S8RdrtvGj1/Z3TCfdO6YV8JcOXX5AImPFup0d4dqupc07gr1dQ0uSFet2Dvi+B2I/qXjq9QO9mi/RpHCXyDh0qmFA2l7M9vp7P6lInue7K+ebL9GkcJfIGFuaGJC2F7O9/t5PKmLW3VdTzj9foknhLpGxfNE0Etmxs+ZlZxnZsbNDLZEd6/igdSD3PRD7ScWS+RN6NV+iSR+oSmS0f3A5FGfLnG/fQ3G2TPuHpu1j7DEznS1zCVK4S6TcOWtct4E6GCF7vn0PhW/eeS3fvPNaqqqqeOfzlUPdHRkCGpYREYkghbuISAQp3EVEIkjhLiISQQp3EZEIyrhwb2hOcvRM21B3Q0QkrWXcqZAv7TzC8pcbWPn2r1g4fSSV00ZQMbGMnHjGvU6JiAyYjAv3WZeVsmR6Dgda8/inV95l5ct7KciJccMVw7nxIyP4xNQRXFaeP9TdFBEZUhkX7mNKEiyalE1l5Xzqmlr57Z5j/GrXUap2HuWFtz4AYGJ5Ph+7Yjgfu2I4119eTml+zhD3WkRkcGVcuHdWmBvnlqtHc8vVo3F33j1Wz8u7jvKbPcd4bssh/u/r+zGDq8cWc8Plw7l+SjlzJ5dRmJvRZYuI9CgyKWdmTBlRyJQRhTywYDItyTZ+d+AUv33nOK/sOcaTr+xj5ct7iWUZ14wtZv6UcuZPLqNiYhkl+dlD3X0RkX4VmXDvKjuWRcWkMiomlfGVT06loTnJm/tP8uo7x3n93eMdYW8G00YVMXdSGRWThlExqYxxQ3CZVhGR/hTZcO8qkRNjwRXDWXDFcAAaW5Js3n+KDftO8Ma7J3jmzWp++Np7AIwuzmPOxGHMuqyUWZcN4+qxxeR1uZyriEg6u2TCvau87BjXX17O9ZeXA9CabOPt92vZuO8Eb+4/xab3TvJv2w4DkB0zrhxTzMwJpcwYX8rMCSVMGV5IVpZ+/EBE0tMlG+5dxWNZXDOuhGvGlfDAgmDekZpG3tx/is0HTrL1wGn+dVM1P3g1OLovzI1z1dhiZowr4drxJVw9toTJwwuIKfBFJA0o3C9gZHEei68ZzeJrRgOQbHP2Hq1jy4FTbDt4mm0HT/PD196jqTX4xmwiO8aVY4q4amwxV40p4coxRUwfXUwiR0M6IjK4FO69EMsypo4qYuqoIu6pCH6yrDXZxjtH6/l9GPZvHa7huc2H+NFr+wEwg0nlBUwbVcS00UVMH13ER0YXMbEsn3hM36oVkYGhcL9I8VgW00YHwf0Hc8YD4O5Un2zgrcM17Dhcw873a3n7/VrWvfU+7T9AnxPLYsqIAkpoZGtyN1NHFnLFyEImlhfoUgoictEU7gPAzJhQls+EsnwWXT26Y35Dc5J3jtbx9vu17P6glt1H6tj6Xh2vv7Cro00sy7isLJ8pwwuYMqKAycMLmRzeH1mUi+kX7EUkBQr3QZTIiXV8aNuuqqqKeTd8jL1H63nnaB3vHKljz9E69h6t5zd7jnWM50Mwpj+xPJ9J5QVMHJ7PxLICJpbnc1lZPmNK8jTMIyIdFO5pID8nfk7oA7S1OYdrGnn3aD17j9Wx79gZ9h2vZ/eRWv797SM0Jz8M/liWMa40wYSyBBOG5TN+WILxw/IZNyzBuNIEo4rzdCaPyCVE4Z7GssLAHlea4GNTh5+1LNnmvF/TyHvH69l//AwHTp5h/4kGDpw4w4s7jnCsrums9rEsY3RxHuNKE4wpzWNMSYKx4e2YkjxGl+RRlp+jc/dFIkLhnqFinYL/hsvPXd7QnOTgqQYOnmqg+uQZDp9q7Jh+c/9JDp86TGubn7VOdswYWRQE/ajiXEYV5zGyKI+RRbmMLM5lZFEeI4pyKU1k60VAJM0p3CMqkRPjivAMnO60tTnH6ps4fKqRw6cb+aDmw9sPahp5+/1aXt51jLqm1nPWzY4Z5QW5jCjKZXhhDsMLcykvzOX0By2c2nyQ8sIcygpyKC/IpawgR2f/iAwBhfslKivLwqPyPK6bcP529U2tHKlt4khNI0dqmzha28SR2iaO1QV/R+ua2HG4luP1TbQknafe3nLONopy4wwryGFYQQ5l+dkMyw/uD8vPpjQ/h9JwXkkim9L8bEoS2RTmxnVmkMhFULjLBRXkxpmcG2fy8IILtnN31r5YxZUz53K8vpnjdc0cr2/iRF0zx+ubOVHfzMkzzRyta2LXB3WcPNPMmebkebcXyzJKEkHQF7ff5sUpTmRTnJdNUcf9OEV5cYrCeYW5cYpysynMi+sDZLmkKdylX5gZBdnt19RPbZ3GliQ1DS2cPNPCyTPNnG5o4VR4G9xvoaaxldMNLdQ0tFB98gw1DS3UNLSedabQ+SSyYxSGgV+YG6cgNxbehn85sfA2Tn5ujIKcOImc4HbPySSj368hPztOXk4W+TlxEtkxvWBIxlC4y5DJy46Rlx1jZHFer9dtbElS09hCbWMrNQ0t1DW1UtvYSl1ja8f8+qZW6sK/+qZW6puSHDrVSH3zh9MNLed/98Drvz5nVk48i/ycGInsGInwNi/7w9u87KwPb+Nnz8vNjpEXzyI3O0ZuPCv8i5Gb3el+OD8nnM6JZ+kFRfokpXA3s8XAt4EY8IS7/22X5RYuvw04Azzg7m/2c19FOnS8MBRd3HaSbc6Z5lYampPUNbVypjnJmeYkr218k6nTrw6mW5I0NAfLGsLljS3B/KaW4AWivrmV4/XNNLUEyxpb22hoTtLYmuy45MTFimcZ+Tkx6puSJN2JZxmjS4LvLxw+1Uhzso3ceBbTRhVxurGF/cfPcPWwNh78xb/xkdGFfOIjI4lnGdmxLLJjwe2OwzW8tPMopxtaKE1k8+kZY5g/pZw395/kuS2HOFHfTHlBDvfNm8DCaSOJx7KIZxmxLCM7Zrz09lGe+PVePqhtYnRxHg8tvILfHTzJv248SBuQBSyZP4FH75pxTj1rNh9kxbqdHDrVwNjSBMsXTQM4Z96ds8altG537S5l5j38yzOzGLALuBmoBjYAS9z9rU5tbgO+TBDu84Fvu/v8C223oqLCN27c2KdOV1VVUVlZ2ad1041qSU/9VYu705xso6m1jaaWNhpbkjS1BrfNyeC2audRnnxlX0pDTV21H9Of739xYdypaw1axbIMg3NOgR0s7S8KsSyjzZ3Glp7rNWDcsATlBTnU1tZSVlrCyTPNvHusns5lZBlcOaaYcaUJYllGlhlZWUaWEdy34H4sy7BO97PMsI42nLOeWfCYdSzPCtobndvQsc3O053X6zqvtnonD9zxyT49jma2yd0reny8U9jWPGCPu+8NN7wauAN4q1ObO4AfePBK8ZqZlZrZGHc/3Ie+i0SGmYXDLTE4z+jT8n/Z2qdgh/OHersvXpnk77fFOxrv+R+34e60JJ1PrHiJw6cbz1knC+iuN+UFOay4ZwatSSfZ5vy3Z7dx8kxLSv00YNmNU0i6k0w6T72xP6X1HDha28QVIwtpbQiGxQ6caKDr61Obw64Pakm2BX1rc6fNCW+dtrbgfrLNcYJTgZPuuAf3neBdXNIdnHBZML+/3nl1dtvkbB7o/82eJZUj97uBxe6+NJy+H5jv7g91avNz4G/d/Tfh9C+BP3f3jV22tQxYFk5OA3b2sd/DgWN9XDfdqJb0NGi15Iy+Ys5AbTt55jSx/A8va9H8/p5NF7Pfi1m/H9YdDhy70Lqd95HmLubf10R37/G0hVSO3Lv7NKfrK0IqbXD3lcDKFPZ54Q6ZbUzlbUkmUC3pKSq1mNnG1tNHMr4OiM5zAoNTSypfHawGOn/NZTxwqA9tRERkkKQS7huAqWY22cxygPuA57u0eR74ggU+CpzWeLuIyNDpcVjG3VvN7CFgHcGpkKvcfbuZfSlc/jiwluBMmT0Ep0I+OHBdBvphaCeNqJb0FJVaolIHqJZe6fEDVRERyTy6XJ+ISAQp3EVEIijtw93M8szsDTP7nZltN7O/CueXmdkLZrY7vB021H1NhZnFzGxz+N2ATK5jn5ltM7MtZrYxnJeptZSa2U/N7G0z22Fm12diLWY2LXw+2v9qzOyrGVrLfw7/v//ezJ4KcyDj6gAwsz8L69huZl8N5w14LWkf7kATcJO7XwfMBBaHZ+R8Hfilu08FfhlOZ4I/A3Z0ms7UOgAWuvvMTufrZmot3wZ+4e7TgesInp+Mq8Xdd4bPx0xgDsHJDc+SYbWY2TjgK0CFu19DcCLHfWRYHQBmdg3wnwi+6X8d8Gkzm8pg1OLtX7PNgD8gH3iT4Po1O4Ex4fwxwM6h7l8K/R8fPpE3AT8P52VcHWFf9wHDu8zLuFqAYuBdwpMLMrmWLv2/BXglE2sBxgEHgDKCM/p+HtaTUXWE/byH4GKL7dN/CfzXwaglE47c24cytgBHgBfc/XVglIfn0oe3I4eyjyl6jOCJ7XzpjkysA4JvIK83s03hZSUgM2uZAhwF/ikcLnvCzArIzFo6uw94KryfUbW4+0HgW8B+4DDB92bWk2F1hH4P3Ghm5WaWT3DK+AQGoZaMCHd3T3rwVnM8MC98q5NRzOzTwBF3z5RrX/RkgbvPBm4F/tTMbhzqDvVRHJgNfNfdZwH1ZMDb/QsJv2x4O/AvQ92XvgjHn+8AJgNjgQIz+8Oh7VXfuPsO4O+AF4BfAL8Dzv1h4gGQEeHezt1PAVXAYuADMxsDEN4eGcKupWIBcLuZ7QNWAzeZ2Y/IvDoAcPdD4e0RgnHdeWRmLdVAdfhuEOCnBGGfibW0uxV4090/CKczrZZPAe+6+1F3bwGeAW4g8+oAwN2/7+6z3f1G4ASwm0GoJe3D3cxGmFlpeD9B8MS/TXDJgz8Km/0R8NzQ9DA17v6wu49390kEb5n/3d3/kAyrA8DMCsysqP0+wXjo78nAWtz9feCAmU0LZ32S4HLWGVdLJ0v4cEgGMq+W/cBHzSzfzIzgOdlB5tUBgJmNDG8vA/4DwXMz4LWk/TdUzWwG8M8En5hnAT9x9782s3LgJ8BlBP8Y7nH3E0PX09SZWSXwNXf/dCbWYWZTCI7WIRjW+LG7P5qJtQCY2UzgCSAH2Etw+YwsMrOWfIIPI6e4++lwXsY9L+Epz/cSDGFsBpYChWRYHQBm9mugHGgB/ou7/3IwnpO0D3cREem9tB+WERGR3lO4i4hEkMJdRCSCFO4iIhGkcBcRiaBUfiBbZFCFp4n9MpwcDSQJLhEAMM/dm4ekYxdgZv8RWBueNy8y5HQqpKQ1M/sGUOfu30qDvsTcPXmeZb8BHnL3Lb3YXtzdB+Wr6HLp0bCMZBQz+yMLru+/xcz+0cyyzCxuZqfMbIWZvWlm68xsvpn9ysz2mtlt4bpLzezZcPlOM/uLFLf7TTN7g+C6Rn9lZhvC63M/boF7CS5H/XS4fo6ZVXf6ZvVHzezF8P43zex7ZvYCwcXK4mb2P8N9bzWzpYP/qEoUKdwlY4QXjLsLuCG8kFyc4FIOACXA+vBiZs3ANwi+tn4P8NedNjMvXGc28Dkzm5nCdt9093nu/irwbXefC1wbLlvs7k8DW4B7Pbieek/DRrOAz7j7/cAyggvKzQPmElyE7bK+PD4inWnMXTLJpwgCcGNwyRESBF+1B2hw9xfC+9sILhPbambbgEk+H1TKAAABYElEQVSdtrHO3U8CmNka4GME/w/Ot91mPrzUAsAnzWw5kAcMBzYB/6+XdTzn7o3h/VuAK82s84vJVIKvpIv0mcJdMokBq9z9L8+aaRYnCOF2bQS/4NV+v/O/864fMnkP223w8IOp8Lot/xuY7e4HzeybBCHfnVY+fGfctU19l5r+xN1/iUg/0rCMZJIXgc+a2XAIzqrpwxDGLRb8Zmo+wTXDX+nFdhMELxbHwqti/kGnZbVAUafpfQQ/dUeXdl2tA/4kfCFp/x3URC9rEjmHjtwlY7j7tvBqgS+aWRbBVfa+BBzqxWZ+A/wYuBz4YfvZLals192Pm9k/E1ze+D3g9U6L/wl4wswaCMb1vwH8HzN7H3jjAv35HsGVAbeEQ0JHCF50RC6KToWUS0Z4Jso17v7Voe6LyEDTsIyISATpyF1EJIJ05C4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhH0/wGLppqAELX+vwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -705,7 +919,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,