From b74d5c663c14e2ffdf6eff73fe6c356275d88f52 Mon Sep 17 00:00:00 2001 From: bab8283069a600d78f3b5efe7e5079ad Date: Wed, 8 Apr 2020 21:55:25 +0000 Subject: [PATCH] Update toy_document_fr.Rmd --- module2/exo1/toy_document_fr.Rmd | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index a4622ab..8c444d0 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -31,8 +31,7 @@ theta = pi/2*runif(N) ``` ### Avec un argument “fréquentiel” de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ -([voir méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ ([voir méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: ```{r} set.seed(42) -- 2.18.1