{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence du syndrome grippal" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence du syndrome grippal ont été téléchargées sur le site Web du [Réseau Sentinelles](http://www.sentiweb.fr/)à la **date du 06 janvier 2021**.\n", "Il faut passer par les menus \"Surveillance continue\" - \"Base de données\" - \"Accès aux données\"\n", "et cliquer sur l'onglet \"Télécharger\", puis choisir les données au format CSV pour la France Métropolitaine.\n", "Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1985 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "data_file = \"syndrome_grippal.csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", "| week | Semaine calendaire (ISO 8601) |\n", "| indicator | Code de l'indicateur de surveillance |\n", "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "\n", "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020205231816613646.022686.02821.035.0FRFrance
120205132161917370.025868.03327.039.0FRFrance
220205031684513220.020470.02620.032.0FRFrance
32020493129399923.015955.02015.025.0FRFrance
420204831380410641.016967.02116.026.0FRFrance
520204731908515285.022885.02923.035.0FRFrance
620204632480120503.029099.03831.045.0FRFrance
720204534251636857.048175.06556.074.0FRFrance
820204434456738521.050613.06859.077.0FRFrance
920204334373737523.049951.06657.075.0FRFrance
1020204233514529812.040478.05345.061.0FRFrance
1120204132787723206.032548.04235.049.0FRFrance
1220204032044316381.024505.03125.037.0FRFrance
1320203931981015900.023720.03024.036.0FRFrance
1420203832556221142.029982.03932.046.0FRFrance
1520203731848514649.022321.02822.034.0FRFrance
162020363103907646.013134.01612.020.0FRFrance
17202035399186842.012994.01510.020.0FRFrance
18202034360843090.09078.094.014.0FRFrance
19202033361063411.08801.095.013.0FRFrance
20202032359183330.08506.095.013.0FRFrance
21202031343512269.06433.074.010.0FRFrance
22202030381795442.010916.0128.016.0FRFrance
23202029386875860.011514.0139.017.0FRFrance
24202028383405701.010979.0139.017.0FRFrance
25202027340662406.05726.063.09.0FRFrance
26202026340392389.05689.063.09.0FRFrance
27202025328531488.04218.042.06.0FRFrance
28202024330581690.04426.053.07.0FRFrance
29202023341682468.05868.063.09.0FRFrance
.................................
185719852132609619621.032571.04735.059.0FRFrance
185819852032789620885.034907.05138.064.0FRFrance
185919851934315432821.053487.07859.097.0FRFrance
186019851834055529935.051175.07455.093.0FRFrance
186119851733405324366.043740.06244.080.0FRFrance
186219851635036236451.064273.09166.0116.0FRFrance
186319851536388145538.082224.011683.0149.0FRFrance
18641985143134545114400.0154690.0244207.0281.0FRFrance
18651985133197206176080.0218332.0357319.0395.0FRFrance
18661985123245240223304.0267176.0445405.0485.0FRFrance
18671985113276205252399.0300011.0501458.0544.0FRFrance
18681985103353231326279.0380183.0640591.0689.0FRFrance
18691985093369895341109.0398681.0670618.0722.0FRFrance
18701985083389886359529.0420243.0707652.0762.0FRFrance
18711985073471852432599.0511105.0855784.0926.0FRFrance
18721985063565825518011.0613639.01026939.01113.0FRFrance
18731985053637302592795.0681809.011551074.01236.0FRFrance
18741985043424937390794.0459080.0770708.0832.0FRFrance
18751985033213901174689.0253113.0388317.0459.0FRFrance
187619850239758680949.0114223.0177147.0207.0FRFrance
187719850138548965918.0105060.0155120.0190.0FRFrance
187819845238483060602.0109058.0154110.0198.0FRFrance
1879198451310172680242.0123210.0185146.0224.0FRFrance
18801984503123680101401.0145959.0225184.0266.0FRFrance
1881198449310107381684.0120462.0184149.0219.0FRFrance
188219844837862060634.096606.0143110.0176.0FRFrance
188319844737202954274.089784.013199.0163.0FRFrance
188419844638733067686.0106974.0159123.0195.0FRFrance
18851984453135223101414.0169032.0246184.0308.0FRFrance
188619844436842220056.0116788.012537.0213.0FRFrance
\n", "

1887 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202052 3 18166 13646.0 22686.0 28 21.0 \n", "1 202051 3 21619 17370.0 25868.0 33 27.0 \n", "2 202050 3 16845 13220.0 20470.0 26 20.0 \n", "3 202049 3 12939 9923.0 15955.0 20 15.0 \n", "4 202048 3 13804 10641.0 16967.0 21 16.0 \n", "5 202047 3 19085 15285.0 22885.0 29 23.0 \n", "6 202046 3 24801 20503.0 29099.0 38 31.0 \n", "7 202045 3 42516 36857.0 48175.0 65 56.0 \n", "8 202044 3 44567 38521.0 50613.0 68 59.0 \n", "9 202043 3 43737 37523.0 49951.0 66 57.0 \n", "10 202042 3 35145 29812.0 40478.0 53 45.0 \n", "11 202041 3 27877 23206.0 32548.0 42 35.0 \n", "12 202040 3 20443 16381.0 24505.0 31 25.0 \n", "13 202039 3 19810 15900.0 23720.0 30 24.0 \n", "14 202038 3 25562 21142.0 29982.0 39 32.0 \n", "15 202037 3 18485 14649.0 22321.0 28 22.0 \n", "16 202036 3 10390 7646.0 13134.0 16 12.0 \n", "17 202035 3 9918 6842.0 12994.0 15 10.0 \n", "18 202034 3 6084 3090.0 9078.0 9 4.0 \n", "19 202033 3 6106 3411.0 8801.0 9 5.0 \n", "20 202032 3 5918 3330.0 8506.0 9 5.0 \n", "21 202031 3 4351 2269.0 6433.0 7 4.0 \n", "22 202030 3 8179 5442.0 10916.0 12 8.0 \n", "23 202029 3 8687 5860.0 11514.0 13 9.0 \n", "24 202028 3 8340 5701.0 10979.0 13 9.0 \n", "25 202027 3 4066 2406.0 5726.0 6 3.0 \n", "26 202026 3 4039 2389.0 5689.0 6 3.0 \n", "27 202025 3 2853 1488.0 4218.0 4 2.0 \n", "28 202024 3 3058 1690.0 4426.0 5 3.0 \n", "29 202023 3 4168 2468.0 5868.0 6 3.0 \n", "... ... ... ... ... ... ... ... \n", "1857 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1858 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1859 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1860 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1861 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1862 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1863 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1864 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1865 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1866 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1867 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1868 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1869 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1870 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1871 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1872 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1873 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1874 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1875 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1876 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1877 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1878 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1879 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1880 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1881 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1882 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1883 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1884 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1885 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1886 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 35.0 FR France \n", "1 39.0 FR France \n", "2 32.0 FR France \n", "3 25.0 FR France \n", "4 26.0 FR France \n", "5 35.0 FR France \n", "6 45.0 FR France \n", "7 74.0 FR France \n", "8 77.0 FR France \n", "9 75.0 FR France \n", "10 61.0 FR France \n", "11 49.0 FR France \n", "12 37.0 FR France \n", "13 36.0 FR France \n", "14 46.0 FR France \n", "15 34.0 FR France \n", "16 20.0 FR France \n", "17 20.0 FR France \n", "18 14.0 FR France \n", "19 13.0 FR France \n", "20 13.0 FR France \n", "21 10.0 FR France \n", "22 16.0 FR France \n", "23 17.0 FR France \n", "24 17.0 FR France \n", "25 9.0 FR France \n", "26 9.0 FR France \n", "27 6.0 FR France \n", "28 7.0 FR France \n", "29 9.0 FR France \n", "... ... ... ... \n", "1857 59.0 FR France \n", "1858 64.0 FR France \n", "1859 97.0 FR France \n", "1860 93.0 FR France \n", "1861 80.0 FR France \n", "1862 116.0 FR France \n", "1863 149.0 FR France \n", "1864 281.0 FR France \n", "1865 395.0 FR France \n", "1866 485.0 FR France \n", "1867 544.0 FR France \n", "1868 689.0 FR France \n", "1869 722.0 FR France \n", "1870 762.0 FR France \n", "1871 926.0 FR France \n", "1872 1113.0 FR France \n", "1873 1236.0 FR France \n", "1874 832.0 FR France \n", "1875 459.0 FR France \n", "1876 207.0 FR France \n", "1877 190.0 FR France \n", "1878 198.0 FR France \n", "1879 224.0 FR France \n", "1880 266.0 FR France \n", "1881 219.0 FR France \n", "1882 176.0 FR France \n", "1883 163.0 FR France \n", "1884 195.0 FR France \n", "1885 308.0 FR France \n", "1886 213.0 FR France \n", "\n", "[1887 rows x 10 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_file, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
165019891930NaNNaN0NaNNaNFRFrance
\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", "1650 198919 3 0 NaN NaN 0 NaN NaN \n", "\n", " geo_insee geo_name \n", "1650 FR France " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020205231816613646.022686.02821.035.0FRFrance
120205132161917370.025868.03327.039.0FRFrance
220205031684513220.020470.02620.032.0FRFrance
32020493129399923.015955.02015.025.0FRFrance
420204831380410641.016967.02116.026.0FRFrance
520204731908515285.022885.02923.035.0FRFrance
620204632480120503.029099.03831.045.0FRFrance
720204534251636857.048175.06556.074.0FRFrance
820204434456738521.050613.06859.077.0FRFrance
920204334373737523.049951.06657.075.0FRFrance
1020204233514529812.040478.05345.061.0FRFrance
1120204132787723206.032548.04235.049.0FRFrance
1220204032044316381.024505.03125.037.0FRFrance
1320203931981015900.023720.03024.036.0FRFrance
1420203832556221142.029982.03932.046.0FRFrance
1520203731848514649.022321.02822.034.0FRFrance
162020363103907646.013134.01612.020.0FRFrance
17202035399186842.012994.01510.020.0FRFrance
18202034360843090.09078.094.014.0FRFrance
19202033361063411.08801.095.013.0FRFrance
20202032359183330.08506.095.013.0FRFrance
21202031343512269.06433.074.010.0FRFrance
22202030381795442.010916.0128.016.0FRFrance
23202029386875860.011514.0139.017.0FRFrance
24202028383405701.010979.0139.017.0FRFrance
25202027340662406.05726.063.09.0FRFrance
26202026340392389.05689.063.09.0FRFrance
27202025328531488.04218.042.06.0FRFrance
28202024330581690.04426.053.07.0FRFrance
29202023341682468.05868.063.09.0FRFrance
.................................
185719852132609619621.032571.04735.059.0FRFrance
185819852032789620885.034907.05138.064.0FRFrance
185919851934315432821.053487.07859.097.0FRFrance
186019851834055529935.051175.07455.093.0FRFrance
186119851733405324366.043740.06244.080.0FRFrance
186219851635036236451.064273.09166.0116.0FRFrance
186319851536388145538.082224.011683.0149.0FRFrance
18641985143134545114400.0154690.0244207.0281.0FRFrance
18651985133197206176080.0218332.0357319.0395.0FRFrance
18661985123245240223304.0267176.0445405.0485.0FRFrance
18671985113276205252399.0300011.0501458.0544.0FRFrance
18681985103353231326279.0380183.0640591.0689.0FRFrance
18691985093369895341109.0398681.0670618.0722.0FRFrance
18701985083389886359529.0420243.0707652.0762.0FRFrance
18711985073471852432599.0511105.0855784.0926.0FRFrance
18721985063565825518011.0613639.01026939.01113.0FRFrance
18731985053637302592795.0681809.011551074.01236.0FRFrance
18741985043424937390794.0459080.0770708.0832.0FRFrance
18751985033213901174689.0253113.0388317.0459.0FRFrance
187619850239758680949.0114223.0177147.0207.0FRFrance
187719850138548965918.0105060.0155120.0190.0FRFrance
187819845238483060602.0109058.0154110.0198.0FRFrance
1879198451310172680242.0123210.0185146.0224.0FRFrance
18801984503123680101401.0145959.0225184.0266.0FRFrance
1881198449310107381684.0120462.0184149.0219.0FRFrance
188219844837862060634.096606.0143110.0176.0FRFrance
188319844737202954274.089784.013199.0163.0FRFrance
188419844638733067686.0106974.0159123.0195.0FRFrance
18851984453135223101414.0169032.0246184.0308.0FRFrance
188619844436842220056.0116788.012537.0213.0FRFrance
\n", "

1886 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202052 3 18166 13646.0 22686.0 28 21.0 \n", "1 202051 3 21619 17370.0 25868.0 33 27.0 \n", "2 202050 3 16845 13220.0 20470.0 26 20.0 \n", "3 202049 3 12939 9923.0 15955.0 20 15.0 \n", "4 202048 3 13804 10641.0 16967.0 21 16.0 \n", "5 202047 3 19085 15285.0 22885.0 29 23.0 \n", "6 202046 3 24801 20503.0 29099.0 38 31.0 \n", "7 202045 3 42516 36857.0 48175.0 65 56.0 \n", "8 202044 3 44567 38521.0 50613.0 68 59.0 \n", "9 202043 3 43737 37523.0 49951.0 66 57.0 \n", "10 202042 3 35145 29812.0 40478.0 53 45.0 \n", "11 202041 3 27877 23206.0 32548.0 42 35.0 \n", "12 202040 3 20443 16381.0 24505.0 31 25.0 \n", "13 202039 3 19810 15900.0 23720.0 30 24.0 \n", "14 202038 3 25562 21142.0 29982.0 39 32.0 \n", "15 202037 3 18485 14649.0 22321.0 28 22.0 \n", "16 202036 3 10390 7646.0 13134.0 16 12.0 \n", "17 202035 3 9918 6842.0 12994.0 15 10.0 \n", "18 202034 3 6084 3090.0 9078.0 9 4.0 \n", "19 202033 3 6106 3411.0 8801.0 9 5.0 \n", "20 202032 3 5918 3330.0 8506.0 9 5.0 \n", "21 202031 3 4351 2269.0 6433.0 7 4.0 \n", "22 202030 3 8179 5442.0 10916.0 12 8.0 \n", "23 202029 3 8687 5860.0 11514.0 13 9.0 \n", "24 202028 3 8340 5701.0 10979.0 13 9.0 \n", "25 202027 3 4066 2406.0 5726.0 6 3.0 \n", "26 202026 3 4039 2389.0 5689.0 6 3.0 \n", "27 202025 3 2853 1488.0 4218.0 4 2.0 \n", "28 202024 3 3058 1690.0 4426.0 5 3.0 \n", "29 202023 3 4168 2468.0 5868.0 6 3.0 \n", "... ... ... ... ... ... ... ... \n", "1857 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1858 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1859 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1860 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1861 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1862 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1863 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1864 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1865 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1866 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1867 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1868 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1869 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1870 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1871 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1872 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1873 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1874 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1875 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1876 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1877 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1878 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1879 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1880 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1881 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1882 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1883 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1884 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1885 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1886 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 35.0 FR France \n", "1 39.0 FR France \n", "2 32.0 FR France \n", "3 25.0 FR France \n", "4 26.0 FR France \n", "5 35.0 FR France \n", "6 45.0 FR France \n", "7 74.0 FR France \n", "8 77.0 FR France \n", "9 75.0 FR France \n", "10 61.0 FR France \n", "11 49.0 FR France \n", "12 37.0 FR France \n", "13 36.0 FR France \n", "14 46.0 FR France \n", "15 34.0 FR France \n", "16 20.0 FR France \n", "17 20.0 FR France \n", "18 14.0 FR France \n", "19 13.0 FR France \n", "20 13.0 FR France \n", "21 10.0 FR France \n", "22 16.0 FR France \n", "23 17.0 FR France \n", "24 17.0 FR France \n", "25 9.0 FR France \n", "26 9.0 FR France \n", "27 6.0 FR France \n", "28 7.0 FR France \n", "29 9.0 FR France \n", "... ... ... ... \n", "1857 59.0 FR France \n", "1858 64.0 FR France \n", "1859 97.0 FR France \n", "1860 93.0 FR France \n", "1861 80.0 FR France \n", "1862 116.0 FR France \n", "1863 149.0 FR France \n", "1864 281.0 FR France \n", "1865 395.0 FR France \n", "1866 485.0 FR France \n", "1867 544.0 FR France \n", "1868 689.0 FR France \n", "1869 722.0 FR France \n", "1870 762.0 FR France \n", "1871 926.0 FR France \n", "1872 1113.0 FR France \n", "1873 1236.0 FR France \n", "1874 832.0 FR France \n", "1875 459.0 FR France \n", "1876 207.0 FR France \n", "1877 190.0 FR France \n", "1878 198.0 FR France \n", "1879 224.0 FR France \n", "1880 266.0 FR France \n", "1881 219.0 FR France \n", "1882 176.0 FR France \n", "1883 163.0 FR France \n", "1884 195.0 FR France \n", "1885 308.0 FR France \n", "1886 213.0 FR France \n", "\n", "[1886 rows x 10 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nos données utilisent une convention inhabituelle: le numéro de\n", "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", "de nombre entier. C'est comme ça que Pandas les interprète.\n", " \n", "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", "semaine. Il faut lui fournir les dates de début et de fin de\n", "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", "\n", "Comme la conversion des semaines est devenu assez complexe, nous\n", "écrivons une petite fonction Python pour cela. Ensuite, nous\n", "l'appliquons à tous les points de nos donnés. Les résultats vont\n", "dans une nouvelle colonne 'period'." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il restent deux petites modifications à faire.\n", "\n", "Premièrement, nous définissons les périodes d'observation\n", "comme nouvel index de notre jeux de données. Ceci en fait\n", "une suite chronologique, ce qui sera pratique par la suite.\n", "\n", "Deuxièmement, nous trions les points par période, dans\n", "le sens chronologique." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", "le début de la période qui suit, la différence temporelle doit être\n", "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", "d'une seconde.\n", "\n", "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n", "entre lesquelles il manque une semaine.\n", "\n", "Nous reconnaissons ces dates: c'est la semaine sans observations\n", "que nous avions supprimées !" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" ] } ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un premier regard sur les données !" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXeYHcWV9/89N0zQaGaUs0ASkgEhY4yEgAVjG7CEsdewC+xiG5AxXtb+8Tq8a3sNDgtrzC72a5t1xthke01yAIwJIichIZGVUM5hpJE0o4k31O+Prupb3beru++9fZN0Ps8zz+3pUFVdXV2nTqhqEkKAYRiGYUolVu0CMAzDMIcGLFAYhmGYSGCBwjAMw0QCCxSGYRgmEligMAzDMJHAAoVhGIaJBBYoDMMwTCSwQGEYhmEigQUKwzAMEwmJahegkowaNUpMmTKl2sVgGIapK5YtW7ZHCDE66LzDSqBMmTIFS5curXYxGIZh6goi2hTmPDZ5MQzDMJHAAoVhGIaJBBYoDMMwTCSwQGEYhmEigQUKwzAMEwmBAoWIbiOi3UT0jrZvBBEtJKI18ne4duwaIlpLRKuJaL62fzYRvS2P/ZSISO5vJKJ75f7FRDRFu2aBzGMNES3Q9k+V566R1zaUXhUMwzBMKYTRUO4AcI5r39UAnhJCzADwlPwfRDQTwMUAjpPX/JKI4vKaXwG4EsAM+afSvALAPiHEdAA3Afi+TGsEgGsBnAxgLoBrNcH1fQA3yfz3yTQYhmGYKhIoUIQQzwPodO0+D8CdcvtOAOdr++8RQgwIITYAWAtgLhGNB9AmhFgkrG8O3+W6RqX1AICzpPYyH8BCIUSnEGIfgIUAzpHHzpTnuvM/5Hli+U7s7uqvdjEYhmHyKNaHMlYIsQMA5O8YuX8igC3aeVvlvoly273fcY0QIg3gAICRPmmNBLBfnutO65BmIJ3BlXcvwyW3Lq52URiGYfKI2ilPHvuEz/5irvFLK79ARFcS0VIiWtrR0WE6rS5IZazb3Lqvr8olYRiGyadYgbJLmrEgf3fL/VsBTNbOmwRgu9w/yWO/4xoiSgBoh2ViM6W1B8Awea47rTyEELcIIeYIIeaMHh24FE1Nk85kAQCJmJdMZRiGqS7FCpSHAKioqwUAHtT2Xywjt6bCcr4vkWaxbiI6RfpALnNdo9K6EMDT0s/yOIB5RDRcOuPnAXhcHntGnuvO/5BGaSiJOEd7MwxTewQuDklEfwDwIQCjiGgrrMirGwHcR0RXANgM4CIAEEIsJ6L7AKwAkAZwlRAiI5P6AqyIsWYAj8o/ALgVwN1EtBaWZnKxTKuTiK4H8Ko877tCCBUc8A0A9xDR9wC8LtM45ElJDSXOGgrDMDVIoEARQnzScOgsw/k3ALjBY/9SALM89vdDCiSPY7cBuM1j/3pYocSHFSk2eTEMU8Ow7aSOUCYv1lAYhqlFWKDUEemspaHEiAUKwzC1BwuUOkIYg6MZhmGqDwuUOkSYp90wDMNUDRYodYTSUFhTYRimFmGBUoewQGEYphZhgVJHKFOXYInCMEwNwgKlDmFxwjBMLcICpY5gHwrDMLUMCxSGYRgmElig1CEcNswwTC3CAqWOUKauLMsThmFqEBYodQj7UBiGqUVYoNQROVMXSxSGYWoPFih1RL1EefWnMphy9SO48+WN1S4KwzAVhAVKHVLj8gT7e1MAgF88s7bKJWEYppKwQKkjbINXjasovLo+wxyesECpQ2pbnDAMc7jCAqWOUJpJjSsoNnVSTIZhIoIFSh2SrReJwjDMYQULlDqi3sQIu1IY5vCCBUodoRSTeumo600AMgxTGixQ6pBa76jrReAxDBMtLFDqiloXJU7Y1cMwhxcsUJjoYRWFYQ5LWKDUETziZximlmGBUkcoeVI/CgBLQIY5nGCBUofUejdNdSTyGIaJDhYodQSbvBiGqWVYoBxiPPTmdrz/u08glclWuygsABnmMKMkgUJE/5eIlhPRO0T0ByJqIqIRRLSQiNbI3+Ha+dcQ0VoiWk1E87X9s4nobXnsp0TWerVE1EhE98r9i4loinbNApnHGiJaUMp91AthVhm+7qHl2NebQldfqgIl8oa/ec8whydFCxQimgjgSwDmCCFmAYgDuBjA1QCeEkLMAPCU/B9ENFMePw7AOQB+SURxmdyvAFwJYIb8O0fuvwLAPiHEdAA3Afi+TGsEgGsBnAxgLoBrdcHFVNnPwvKEYQ5LSjV5JQA0E1ECwBAA2wGcB+BOefxOAOfL7fMA3COEGBBCbACwFsBcIhoPoE0IsUhYQ/C7XNeotB4AcJbUXuYDWCiE6BRC7AOwEDkhdMgSpp+uJXc4yxWGObwoWqAIIbYB+CGAzQB2ADgghHgCwFghxA55zg4AY+QlEwFs0ZLYKvdNlNvu/Y5rhBBpAAcAjPRJ65CmEJ9ENf0XLEgY5vCkFJPXcFgaxFQAEwC0ENElfpd47BM++4u9xl3OK4loKREt7ejo8CneoUEtfS2x1r8syTBMtJRi8jobwAYhRIcQIgXgTwD+DsAuacaC/N0tz98KYLJ2/SRYJrKtctu933GNNKu1A+j0SSsPIcQtQog5Qog5o0ePLvJWa4N6cXazHGGYw5NSBMpmAKcQ0RDp1zgLwEoADwFQUVcLADwotx8CcLGM3JoKy/m+RJrFuonoFJnOZa5rVFoXAnha+lkeBzCPiIZLTWme3MfUAPUi+BiGiZZEsRcKIRYT0QMAXgOQBvA6gFsADAVwHxFdAUvoXCTPX05E9wFYIc+/SgiRkcl9AcAdAJoBPCr/AOBWAHcT0VpYmsnFMq1OIroewKvyvO8KITqLvZe6oRAfSg106tUvAcMwlaRogQIAQohrYYXv6gzA0la8zr8BwA0e+5cCmOWxvx9SIHkcuw3AbQUWua4J10FX34nCJi+GOTzhmfJM5NTfIpYMw0QBC5Q6ot5G/nVWXIZhSoQFyiGGHTZczXko9Sb5GIaJBBYodUQYR7uSJ9mqCpTq5c0wTPVggVKPhOiwayLKq8QifP3+N/H48p3RFIZhmLLDAqWOqJelV6Li/mVb8a93L6t2MRiGCQkLlDrClhEhwqeqKU8OBWHGMEzhsEA5xFBO+Ww1nSgSds4zzOEFC5Q6ol466Frw3zAMU3lYoNQjYZzyNdCn10ARGIapICxQ6ohCOuhqagm1IMwYhqk8LFDqiRBrmpA8WNV5KNXLmmGYKsICpR7x6bGVU74m/C01UASGYSoHC5Q6ohAzVnXDhlmSMMzhCAuUQxT+pjzDMJWGBUodEUZI2GtD1oCWUP0SMAxTSVigHKLwTHmGYSoNC5Q6on7W8io981rQsBiGKQwWKHVEvcxDiYIaWDmGYZgCYYFyiEEybjibrV4ZolAuWENhmPqDBUodUUgnW9WZ8jWSBsMwlYUFyiFKLQzwS9EyaqH8DMMUBguUOqJe+thITF51c7cMwyhYoNQRoeahqO+h1MAQv5QS1EDxGYYpEBYohyjVnSkfRdhwBAVhGKaisECpK+plLa8I0ghxB/2pDPYcHCg9M4ZhIoEFSgGs2N6Fx97ZWe1ihKIWwm5LKUKYaxfctgRzvvdk8ZkwDBMpiWoXoJ4496cvAAA23vixquRfmA+lvGXxIxoNJZjFGzpLz4hhmMhgDaWOKKyfruY8FF56hWEOR1igHKLUQn9cimCpgeIzDFMgLFDqiHDL11s2r7p3yrNEYZi6oySBQkTDiOgBIlpFRCuJ6FQiGkFEC4lojfwdrp1/DRGtJaLVRDRf2z+biN6Wx35KckEqImokonvl/sVENEW7ZoHMYw0RLSjlPg4lbB9Kna+uyCYvhqk/StVQfgLgMSHEMQDeB2AlgKsBPCWEmAHgKfk/iGgmgIsBHAfgHAC/JKK4TOdXAK4EMEP+nSP3XwFgnxBiOoCbAHxfpjUCwLUATgYwF8C1uuA6VKmXTwAryh3lxTBMbVG0QCGiNgBnALgVAIQQg0KI/QDOA3CnPO1OAOfL7fMA3COEGBBCbACwFsBcIhoPoE0IsUhYw9K7XNeotB4AcJbUXuYDWCiE6BRC7AOwEDkhdMgTpq+t6sTGCkV5MQxTW5SioUwD0AHgdiJ6nYh+S0QtAMYKIXYAgPwdI8+fCGCLdv1WuW+i3Hbvd1wjhEgDOABgpE9ahzQFfWCrBrrk0pZeqX75GYYpjFIESgLAiQB+JYR4P4AeSPOWAfLYJ3z2F3uNM1OiK4loKREt7ejo8Cle7eNXKXnn1vvSKxGUg2GYylKKQNkKYKsQYrH8/wFYAmaXNGNB/u7Wzp+sXT8JwHa5f5LHfsc1RJQA0A6g0yetPIQQtwgh5ggh5owePbqI2/RMM5J0yoESNrVg8goj+ILSYBimfihaoAghdgLYQkRHy11nAVgB4CEAKupqAYAH5fZDAC6WkVtTYTnfl0izWDcRnSL9I5e5rlFpXQjgaelneRzAPCIaLp3x8+S+ipCpUgRVvXxgK1eGEq5licIwdUepS698EcDviagBwHoAl8MSUvcR0RUANgO4CACEEMuJ6D5YQicN4CohREam8wUAdwBoBvCo/AMsh//dRLQWlmZysUyrk4iuB/CqPO+7QoiKrcOREaKqa9bUvFO+RtJgGKaylNQvCiHeADDH49BZhvNvAHCDx/6lAGZ57O+HFEgex24DcFsh5Y2KamkohVDdiY2VXb5eCAGiUgxsDMNEAc+UL4LqmbysX7+uU3WstfCBrVKkWkFzbmrgVmuFKVc/gh88tqraxWAOU1igFEE2W+0SmLGFTb2bvAoKkWZ0fvnsumoXgTlMYYFSBJkqDYkLmylfxdWGKzyxsSa0sTKzZEMnf0yMqXlYoBRBtX0ote6Ut8tQglArZC2yWrjXcvNPv16EC371crWLwTC+sEApgmqNiENlWwMf2Kq0EaoWQqTLiQpy2LS3t8olCcf6joN4d1d3tYvBVAEWKEVQbQ0lDNWcx1Hp5evLfas/f3oNnl61q7yZ+JCug/amc+aPnsO8m56vdjGYKsCfAC6Cakd5hTq3fMUITUmrDdfEHVj88Il3AVTv08/pTLi64MmgTLVhDaUIqiZQCjn3cIryOsT70VTIsMJDvR6qwbRrHsFVv3+t2sWoG1igFEG1orzCkFvLq/plLGnplQLOLdWnJYTAls7a9U+E1VAOh2i3SpMVwCNv76h2MeoGFihFUK2vIRa2llf1iMaHUrl7/d3izfjAD57BG1v2l5hSeUhlQmooZS4HwwTBAqUIalpDkTPlq7vacOmZFyKzS83vlfV7AaBmtZSwAoU1FKbasEApgrrwodTAeLW0jr5yGkoqbXXYyXhtrgcWtr2xPGGqDQuUIqja0ishOgzVJVYz0rTenPIqLDcZL9/rsH1/H97ZdqCoa8PeHwsUptqwQCmCWjZ5Kep+HkrZTs5HmZTKKVD+7san8fGfvVjUtWFvL5IvZQqBP722FQPpTPDJDOOCBUoRVM/kVfuCLCoKEUql+g4GpckrUaMmr7D3F0WzfHLlbvzbfW/ipoVrSk+MOexggVIAMdnf+AmUe1/djGWb9lWoRGbq/5vyFfShSA2loYwaSimEN3mVXu8H+lIAgN1d/SWnVW2uvGsp/vvRldUuxmFFbb5BNUpcShQ/gfKNP75dtkX8wvQXZK/lVd9OlEL8VKV2pL2DlnknFqtNDSVshUahocRqof1ExBMrduHXz62vdjEOK1igFEBNfbwqgFooYmkxXpXTUPpSlkCphTrzInS5Iig/f/iSKQUWKAUQxuRVTgoLG64e9Rbl1TeoBEptSpSwpYpyoFOumhhIZ7B298Eypc5UGxYoBRCTw7eqfWArVNhw7WhRlSpCqT4bFTZc/RrzJrQPJYK8VPsp17P74v++jrN//Bz6UxxFdijCAqUAlECp1tIrYbBNFlWdKV/ZNKLq/GpABnsSVmBGMYhQ7adcVfHECuszAPW2JD8TDhYoBUBVN3mFz7eaGkrFo7xKzE6ZuipRZ8W0nbABCrUqEL2oZPusVVPmoQgLlAKI1YhTPswLUu+vUGHffilxteEi8iyWsOty6YS9vyg6ztxacOWtjEpq+SxPKgcLlAJQTvlqqevhwoarL/SiyLqQ8kdm8qqAGC6mrJX1oRSWZ7FU8hWq9gDwcIIFSgEEzUMp96hLpU4hYjvrfBpKVSLaKlFn5ezcovShlJtKmo3ZXVM5WKAUQNDovxbW+KqlD2yVQmFO+RJNXqLwPIvOq5hrqrA4ZLm1tUq2z2IFbb2/Q9WABUoB5OaheB8v+6irbj6wVVkdJSqnvFcnGnWnUkznVtEorzKHDSsqOfgqtl5YsykcFigFEBQ2XCk13q+Ts5deqeLbUG8TG/3S0asxCuEiivj0QSU1FDtsuNwCpQ5MXux7KRwWKAUQNLGx3KOuMKmXex5BpSjMhxJNlJdXB6ILkSj6wOI0lJDnRSFQSk8iFJXsq4s3eUVckMMAFigFEDQPpRYmPOZmylexEFF0vAXcQMkvvnD8OMsh9O3Sb6yYNMJeE4XfIzcgKW8DqqSGUoxWCLCGUgwlCxQiihPR60T0V/n/CCJaSERr5O9w7dxriGgtEa0movna/tlE9LY89lOS3m8iaiSie+X+xUQ0RbtmgcxjDREtKPU+wmBrKIaXodzhxJV0VJdCNBMby3NuoQnp9xKNQCn8mrDZRtP8KjMgqWRnzYKhckShoXwZgP7RgasBPCWEmAHgKfk/iGgmgIsBHAfgHAC/JKK4vOZXAK4EMEP+nSP3XwFgnxBiOoCbAHxfpjUCwLUATgYwF8C1uuAqF1UPG5Yvhl/YcKVs4OWmolFe8tfb5FVcmYx5FZVISA2ljsKG60GgsCAqnJIEChFNAvAxAL/Vdp8H4E65fSeA87X99wghBoQQGwCsBTCXiMYDaBNCLBLWG3GX6xqV1gMAzpLay3wAC4UQnUKIfQAWIieEykbQt0YqFbkSbqZ8FTWUKDregpaZKTEvFeXlpaFEbPIqZ9hwFOOZQ3NiY2WvO5wpVUP5HwD/DkC3Uo4VQuwAAPk7Ru6fCGCLdt5WuW+i3Hbvd1wjhEgDOABgpE9aZSUeZPLK1IBTXv7+199W1feKrgVVZTT17pWK0+RVeh7ldMpHUQ9UodVFK+pD4XkoFaNogUJEHwewWwixLOwlHvuEz/5ir3FmSnQlES0loqUdHR2hCmoiKMqr1lTkhXJl10oTjYZSufzCmrwODx9KYXkWS32EDUdbjmLJZAV+8uQaHOhNVbsogZSioZwG4BNEtBHAPQDOJKLfAdglzViQv7vl+VsBTNaunwRgu9w/yWO/4xoiSgBoB9Dpk1YeQohbhBBzhBBzRo8eXdydSoLmeJT7JQn1ktfAJ/eiqIWC1vKKID/ANA8lt7PYaCFHekW0kbAj5Robz/hSH2HDtVGhz6zajZuefBf/+fDyahclkKIFihDiGiHEJCHEFFjO9qeFEJcAeAiAirpaAOBBuf0QgItl5NZUWM73JdIs1k1Ep0j/yGWua1RaF8o8BIDHAcwjouHSGT9P7isruSgv7+NlFyhlTb22qMbERq8a1vdE4kMpIomwzSrKsOZyt7V6mClfI/IEg7LD6R2sfRN2ogxp3gjgPiK6AsBmABcBgBBiORHdB2AFgDSAq4QQqoa+AOAOAM0AHpV/AHArgLuJaC0szeRimVYnEV0P4FV53neFEJ1luBcH9jyUOljLCyheWXl3Vze6+lKYM2VEUddHMqO8oHNLjPKSl3t13LpWUq15KJVceiW3rpk5rQO9KcRiQGtTsuh8Kvs9lOKuqzUTdj0QiUARQjwL4Fm5vRfAWYbzbgBwg8f+pQBmeezvhxRIHsduA3BbsWUuBtW+MoYvHpXf5BWcfhQWr3k3PQ8A2Hjjx4q6PopaKEQohf0AlTEvmKO89E6lWk75sBUaZVizX1Lv++4TSMYJa244t+h8KjkJmNfyqhw8U74AVPuq2uKQIai+ByUaKqmh+KXj8KFUK2w47HkRBkMEpZUqMaKxHsKGqxl6r6OeRQ24RwNhgVIAqkMZSHvbMmtBoOhQlcRLhRcbjmC1YevX6/E5l14pLR8rr2Kc8iHPi2KFAmXyKjklfyr5rhSbl3NSa22927UKC5Qi6BlIe+6vBZurcGxXqzxRjOQraGNXv4GLQ1YpbDi0D6XwtPPTUOa/8tZ/PXxTPmpz5+EAC5QCUO2rZ8BbQyn7xMYQydeATIuEQvwiUS0O6VkOh4ZSJad8aB9KdUxyxrR8ylPZpVeKuy7qOUilwiavQww1UuwzzEAv//L1wenrZ9SzyasqPpQAp3wU91VMAEHYzqxaJjnT9X5JVTKAJYq1vKopUGrFlxMGFigFoNqUaVXhUqONIqEGRlIVj/Iq1YciS+zVaUTdqdT60iu5sOHSrgf877WSa4VFMQ+lBl6ruoAFSgGoNmUKeUyXWaKEMnlp26WqyNVdAr+Ac0seVTt/vY4BVbSjh8w3Uh9KmT5BEPRNoagIqyn5p5HbrgWTVz3AAqUAVCM1CY5aaHRRFiGK6JhiKSRUMqpb9kqnNjSUcNdEWe9Fd8Latte9qsdZbvNwFBpKrTjl7XehDiYFsEApANWmTB2taX5K1PlXiupGthRg6CnZ5GXhbfLS86lSlFdoDSU6raL4UX04zaCSUWRRfFO+FgaL9QALlEII8KGYZtBHln0ok1fupFLHM0XbniMQfVl7VBYux1KwO7cAp3zVlq8PeUkkQQMlmrz0q7zKE7QeXjkovh1r27XgH60DWKAUQCU1lF1d/UVd53AklliGai6qV0gaYc6946UNuOOlDf7peC0OGfEotaiJjWVM25SZKamgPJztz8PkFfCRuqiIYoWDqJ99ydS+xYsFSiHYPhTDfJOo7MJ/em0rTv6vp/Da5n3O/MOEDdeADyUKov5i43UPr8B1D68w5GVOx2GLj2L5+iKqNGxnFsXTClpt2KSd58oQTqMrdwcdRTBF1HOQiqUGRFloWKAUQLCGEo2K8upGa+HklTu6Cr5WL1npJq/iroviBcg55YPvopxRXpE75Yv6HkrItCP0oZhqPWjyblBklHIs+5V1w54ezL5+IV5Zv9c3Lz8czy2C4BKeKR8OFigFoBqYcfn6rH5u8S0wEbMei/vlDeVDiXAkVfyLGF3HFvW5/ul4OOUdzzSKPMp3VbQ+FG9SBQyaPMtjhw2br3tzy37s7RnEPUs2h84rL29tOwqnvF+b/t/Fm3HWj54tLpMQ1NM6YixQCkB1OCYNRe+ATefsPNCPdR0HffOJx6y3zmReCNu8Sp2HUlU1v4C8oyqmt8krYg2ljE75SnwArJDlhbyeoWqSfoOVWED7D5V3BIO7sAEZ3/zz21jX0VNUHo+9swOfuX1JqHLUgQulLB/YOmTJzZT3Hl7pL4CpAZ7y308B8P/WSCKmImEKN6FF6kOpk5FRZEtTeNxv1JPbikkitFO+8KQLTiNo8m7Q7PIwTvlc+y/+jqKIziv02aczWSTihY3RP/+71wLPqYkVOELCGkoB2CavEE75UjqfeNx7hCZCjFSiXPcnqCG/vG4P9h4cyC9DhKaXUKOyqOSJTzms7dLzqPnFIQPSCPShINw74DdYCdLQFW9u2Y/XXYEruXLkiCJaMUwapXwjxk9jq5eBHcACpSjMa3npNlf/NPxe3KTBh2Jf65uu/l9pSrL/WkwCn/rNYvzzLa+UlIc5fes3jNkuKoep10sd9Qe2yrl8fSXCtQfT/qMMx0RQj+M5p3xwWYI0lPN+8RL+4ZcvG8qhmZ8jMHmFSWKwhHkDfmWs5NctS4UFSgGoDsXU0J0mL/9G4PeyxAxmgcLfi9Iaol8Z1bG1u/P9QVF+6CnUuZF9sTGfoA5S8b2/rsC9rwY7kYsZLYftTyqhQQV1mpmAd8A2efkUVr1nT6/a7ZuXH07TW5EairYd5rkFCVs//DQ/JWzCRDxWG/ahFIB65KbRhMMpH2Q6yAok4lGVLEeUYxm/WyjFYRoq7wLODRrJbt3XGy5Pj2Qck9t88vntixsAAP980hEBeRRj8gqroZRfkAd1mpkALd12yvuZwyLwGTifW3FpFGruTJVQcMs35d0h1JGCwhpKIRTiQwlaqsF3xCNHIu5TwrQrZ6dS2ojGTyj6deLRmF7CJxI0ejz9+8+Ey9Njn3PEHbpI5jzK2DlUQkMZKFWgULDDPcr5NKWkV+hMeS+Bsru7H797ZVPgtb71UUcShTWUAlCmFfNaXuEboN8I3yQGbL+CT7pRNj2/e/BT0aOcrxFmhdWovpTpJcTqaXHISJ++IalCNBS/1Yb92lbU4dlRRHmFefZe+Vx51zK8sWU/zjxmDCYMazZe69cfqDqtfYMXaygFYWsoEQiUMKMO0xm+V2oHS56H4lPG8n/7JYT0lEQ1XybQ5FUBDcCLYr4pb+oAt3T24oU1Hea8ArIKMus4tHSvE2z/oE8aEVR0FAMB59IrYc7PP+ndXd0AgK7+lO+15dbYKgULlAJQj9XUmeqNIowPxYQtCNxO+QI/AVwqRZu8Isi7kHcoKn+O50x5R6cShY+iGB9K4eeZqmT+/zyPS281T6QLDCYJOq5pi76hsL4dqG8WoYhiIFCoycvr2fYOWp8L7+5P+17r14ZZoByiqOeaFcEhpkEDeL8XSpl5imlG0S69Yj7m9wIUWoZ/+vUi3Cqd2nYaBVwf1SKWlZkpX/g1YbPVy2ca9KgOzlRnQVkFzlMJaPi5sVJ5fQaFziHxLIeeRgiF3E95M5ll1eAx7XNxJZf6LxUWKAXhr4GkC9BQiukEVZJ+SeuHyvk9lKj8FgCwZEMnrv+rcyXgQvqAqASKV56FzkUIoriw4XDX6GcFPZ9ugwkm2FTrX4YgAUwhvocS9YoElXLK+0eueR9T34cJo6HUQdQwC5RC0NuLVwNxhA0HvNC+Ggrl5wdojmqfhuVwJPqWIBhfgeLTs0Ri8ioglVIEiuMLg57fQ8ltl1tDee7dDjz3br5/I2yu+r0E+TpM0VpBt1hIsInfqcXOog9LFAMB/bIwaRTzvqg5Z2GivOrB8sVRXgWgP0+vBlCID8Xf5KXyc/lQRGUbVpiJjZ5EYgO3fs0Rb9GYopzOW6/jpdvidfxMPQtus3wbeesEponpAAAgAElEQVS8FWHyCpqAaBI4QSatoDoICkxR6ftHeWnbWWEvFlkIeurRfFM+hIZShNZlmbdFyImNgUWoOqyhFID+snmpqA6TV8CbF8opn5d/QAHhFELl/B5KuZ2IIuAl0rMoxSkftLRK9E75Iq4pYumVoHWljMv6KLOqIc8ggRM0b0d4nOemkAnCxjQiGAgU+uyLMRFTGA1FPZM60FBYoBRAkIZSyIgmXNSIO3/h+A1zTSkUPQ8lgrxVGqYiOEagkQmUoOPRmmLCEt4pn9tOGUxaauFFo4ZSQB5eON8LswkxbNhwsebMKDTYQiPFivGh2E55H/VGte96iPZigVIAQuSW1vZqAIW8CGGc2u4zwoxUwra5tbsP4nkPe72O3z34+lAiNHmZj/tri8Xk4zmijtjkVVSUV9jzQvhQ4qQEineqhYQNewnYIA0lE6Jz1NMo9tnq91f8N+X17dI0FJOmpSI6w2j8h7RAIaLJRPQMEa0kouVE9GW5fwQRLSSiNfJ3uHbNNUS0lohWE9F8bf9sInpbHvspyVAQImokonvl/sVENEW7ZoHMYw0RLSj2PgpBCIGEXFreqz8tRKAUE4dfaHvyW0zu7B8/h8tuC/dhHy/856GEL6jpRQ3yFwVpi2FxaCBFzkMpREMq7/L1uW2T0z1oRBwUSRgkYIOc8qpjDbtce1Bwiwl9wFa8yatQDcV8zBzlZf2G8aHUw3dRStFQ0gC+KoQ4FsApAK4iopkArgbwlBBiBoCn5P+Qxy4GcByAcwD8kojUami/AnAlgBny7xy5/woA+4QQ0wHcBOD7Mq0RAK4FcDKAuQCu1QVXuRAAkvIDOqVqKL7LVRs605zJy6eMEY5iip2HUsgLHDQfwmzL1/MrRaB4b3ulbbqvQuz8xTyf8GHDwRpKLEBDsQV5iLIERTr6OeXDTpoNU7dedap/qthUf/t6BjHl6kfwyFs7DOnmtk1p9KcyuXP8NHpDfcdCrG2msvari2dX78aLa/YYj1eKogWKEGKHEOI1ud0NYCWAiQDOA3CnPO1OAOfL7fMA3COEGBBCbACwFsBcIhoPoE0IsUhYLeMu1zUqrQcAnCW1l/kAFgohOoUQ+wAsRE4IlQ0hgAYpUDyjvET4F8Hva4y2aSsvyktt+JRR267aPJQCOk3jt2UCRsrOSXwRaSgBTnmTMAgaPJRqNgt7icOHYng+QT6UXL2btDH93PxzAjUUZfIKGUEYZokfT00pxIz99XusTy/85oX1hnT9hSMALFyxy972FZKmYyF8KKo+/AYjn7n9VVxy62Lj8UoRiQ9FmqLeD2AxgLFCiB2AJXQAjJGnTQSwRbtsq9w3UW679zuuEUKkARwAMNInLa+yXUlES4loaUeHv88giKxm8vLqxBz240CTl08+hpcuTMilw+7rW4Jg/F6QqOahBJmRQn1gK6CuGxIxx6+Oviq01zMN49wN0iCctnjfU/PyDH2R6zSzhmL9mgYEtnklhCD3M2m5z7XOF3a6YSMIw5gzvdqiPvPclISyNgQJVyCc6TX/sQXfhz2x0c/klfV/JrVEyQKFiIYC+COArwghuvxO9dgnfPYXe41zpxC3CCHmCCHmjB492qd4wWSFQCLmo6EUFDbsp6FIs0DWvV+m7SdQIlzNy29EFHb5+kLCTB375XWm1Yb1ZIM0lEnDrVVevaYzBJpw9A7S8MgCNRRDeibyPv0ceEV+2qZ5KGpOR8pwM7a51ZCHXnyvdujn8wi61j6mlS1M8IpX/acCTG8A7HfZnEdwGnqbcpcjG6KNKqHm91mAoA/71RIlCRQiSsISJr8XQvxJ7t4lzViQv+qza1sBTNYunwRgu9w/yWO/4xoiSgBoB9Dpk1ZZESI3yg3qfEqZ2JgbxblHeLnfMLb4Uk1evmsThZyHElTMMCs3B+URpKFkfUZ4DtOZR8cSZOJxn+N5PMCs5sZdjtBOeW3bFDYcNCLOzcoO1saCTF7u40ERYvZ5Ieo8cE5YCA1FpW0Wrt7bOmptNK+y6oNGUxttlP1J76B58cic1ngICxTpy7gVwEohxI+1Qw8BWCC3FwB4UNt/sYzcmgrL+b5EmsW6iegUmeZlrmtUWhcCeFr6WR4HMI+Ihktn/Dy5r6wIASTjZiea027rn5b/CN97RKJrH0ZndoRtzs/PE/Z7KIFhqMb7CD/qD9JQbAHtOQjQ08m/3zDCMWjwUGi0kFu7KOaLjUYNhcL6ULzzyAQIcr97DavBOzSUEAMOL61Ivz9T/aVt4eldjjA+FH0VYfcp+jtiug8lUHTnfn45/MtQS5Sy9MppAC4F8DYRvSH3fRPAjQDuI6IrAGwGcBEACCGWE9F9AFbAihC7SgihavELAO4A0AzgUfkHWALrbiJaC0szuVim1UlE1wN4VZ73XSFEZwn3EoqsEFqUl//LFORMDLOsibujcpsMvB5elE3OX0MJ50MJ6kBNnXHQCquFaIN+cfxBI90wnUqwU947PRPulWfDPlNH+zCUSTZfo0AJmicSNGp3OuWdJ4QVrGF8KPo5Xs+tPxUc5eU3YALCmW4PagLFXVbnfXjn1Zi0Al27fJa3z/lUfYtbExQtUIQQL8JsVTnLcM0NAG7w2L8UwCyP/f2QAsnj2G0Abgtb3iiwnPLK5OUfNlzsyNy6Vv4anPLWMe9r9WxLXfsnTOSJKpc+56WQWcpBPhQTujO9NJOXlqfHSNdpfjGkX4BTPoyG4u4gw5rOwwi/QJOX8qEY8gxyNDvDhp3HHOYwv/avC4sQEzC9ytGnh/MasgpaniaM/yztE57s1Mi8r1cayrrdBwPLEcWimeWGZ8oXQFYAyZj5hUxnhWYS808rzBfa8k1e2vXGxlVYo/N7sV/btM94zG8UGYXJK2i5iULChp3ROuZRs3fkXpiRbviOKYz5yq09hDd56WXyPifY5BVQ7z4aCOCuQ+fxuxflvq3uH0EYLBidGkr+vfT5+Dbs6wIESph2nPYVoLlymTQUVYc9fj6UrPPcWoYFSkjUw1QmL68XQjeJeXUyjtGdT+MwjUiCRmVWHvr5xixCleNOrQNwo7+M7pGegPklc2OMnAoYlel7AzUUH1OLs079tc6i56Ho2yYtJ8SoPIgwgQoxZfIy+iasX7NfwXvbK1/38a37+nyvzR0LHixkfQY0gEtDMaShnPHG1RpCtGM/q0QYH4pq37pzP68chgFmLcICJSSqrSR9orwy2ZxA8RrROMwrITSUfJOXdo5JoGjbiRDLfhfbSPXON9+JnNsO0lBMZjX9GxDeEw6L01D8zBJenazfCNSUpt/xYkbcxQxMTYI4bpu8/EfMpvDzIN+V38RG3QQbdla5aWQftN6XHoZrFAZBJi8ta6NjP2N+tmHmpanH4CdQguYG6VRbi2GBEhLVWGyTl0GgqLBi7+Xtw8XXq0vdp+j/GkfuQuD4Se3GtPPzyk8njO/F0QG6OidHB16A9qATtMhgsSs7u88d1Doerw4meqe89zkOweaj8fkRRoMN8qEETaIL6iT9TIR6swq9OGRAOd3bisF01jciE8i9j6aShFp2J2sWXEGBA0BOAPgJFHVpOHMpC5S6QD1UNVPe24Er7KVZPEMqtX7X1+RlR3W4NZTgEY9AblHIMB2RV0OPh5AoYTvAoFGVydbvN+NaZmITZCLyc67qI1nvQYKejnf6fpPSgHBBCimfwUbYQWeY+Rvq0ZrCioM6ryD/htNE6DwW1zRm3yjHEIJRP8fr+Q+kM2hKxEFkvpegzjdMkI1foIE+0Aqab+U3D0WlG8YpH/SlznLDAiUktobiEzacEf4TH8O8KHpefs5us4aSm70bpiPyEkyxEAIl5fChlM/kZUojG6IuwqQ16HjpvXwowfMZPvqTF/zz1y4z+mH0+nSVI2x0TxgNJe4TVKKnYcoySHP0Ezgzx7f5XuuVhunenWYxbw2lIRFDjMicRkAcbpjgAF8fSggNRZVt095ec4CKbQL3LmcU/reoYIESgi2dvXhqpTXhv8HHR5LJZnOLRwaM3sKEDfvNQ/FrOIVEC3uVIxaiVegdrd+oKNAcZXpJhP85Bc2U9xFwA6lCNJTiXtYwi0PqQsQ9yz3sEu5Bnazj3CKXXglqwybf1ortXbj6T28DAMa1NfmbvEI4s4PmfCmBEicy1rmqrzDC03SOn48tzPuup7thj3focNDcoJSPP7PS8DflQ3DuT15A94ClkvovDgkkE+p7KSUIFNsh7TwnjD1fnxMSpv/zKkcyHkN/KuswUbjR799tOsiGeBHt/E0jv4B7LcwpLxCPETJZkffSqxcwHiNPIZ0JIQx03HNy3NeF6bzc96OCBfyeR35Z/UfUJnNPUOcVFPWml133T728Lre0elMyFt7kZShn0OTHwYwlUIjMA46gdhNWQ7Hblvu5hTR5tTTE0TOYwd6Dg5g+Jv+coFBup/mZTV41jxImAOyJjd4+EuEbVhwUmaJQHYjvPBQ/H4ox5Xy8yql2tTTE84555Z9n8jKc551OsMnLr4xAOKe86ozdnaDq9IYk44bIveB5KM7zPcoaYpHBtI8JMRMQ3mqn7ehkDecI7zzssgrnr5sgAZs1CJQhDbmxa1MyHuiUt1dFNmkoPgMawNI8GxMxxGPkU+dBq1kER4qldb+pT5SX3xIyE4ZZi5ceHPD2o9gWC0MafubnSsMCpUBUKK7nWl66ySvAHOD/PQirUeRFeYXpREXOBxJiQO1bTl+hF5EPxeiU10fCHueENf8BlsksaXhutkBpjBs+muadp4kg4RfG2e2+n7B28TAaitq/fX+f53FVB2FGw97vgCZQMrnIpSHa4KQxEfNtF+msQGMi7luOoImNSkOJERnbWJBTPpyGkosmc1eHnr4xiEYItDRawrbPsJ6Xqmej2U27QY7yqjPs5evz/BsC6zp6bJOY14MNraHIa/2ivEwviUAukifUd7B9/BN+ZXT6UNyalG4W8c/fNEoM+lhZoWHDpvlDqtMb0pAwaiiqwyi1PgE/J7Puy3EmYi9iGJC3HmUYFFW0q6vfUA7/zitIoOj7dA2lKZkTKA2JmO+6VNmsQGPSHPzil4++ryEeQ4z8hJIKGw7WGv3modiBOHlO+RCLXAqBoVKgmEKHg5ZecZqfWUOpK+zRiKuBPLPactq/tHYvAO8HG3atL3txyCJMXsqmGxbvFXblMZ/GGXoeSkAnbAxfDairQn0oqqN1T15UnVFzMm4YBOQGEWF8KN7CL7dtKqufT0rVb6A/Kpv7AFzQkjbdhsUIVf2EWRVA10A8j2sdvZ6eX+QV4Nb0gyc2er1rdpSXj8lLBWSYwuTDTGrVhbi7zsIsDpnJAi2NlrA1rTgc5ENJOTQUFih1hf3Cuh7unoODjv+9vkcRZsIWkGsUfkuv+Jk0bH+BMQfvNBW5L0OaVXVnx+K61xDhqwqTWUCvHq8yhBGu9vVCWzLHVe+2yavB24diLadD9nYQnqP2TPBzdy7T4axPXQguWrfXN+94jCxHdECwg0mgKOFl9hnkyuY1/0a/f9Mcn3iMfLW9bDYXfh/0ZUkAGPTyoWSyaEzEEScyto+giKgw/rN0Nqf95s9D8W7POrrJy6ihZJ2/eWXQEv/Ez1/yPqlCsEApkHjM4JR3/Ru0jIf/F+tMJq/8c9w4HdDe6QeZzrIiN5fF9PGhlE8nqf8XNKp3TP4y+Ji80gi7orFKR5lQ3PczYPtQEt6fks1mc4EYISS0V0ep35dpBJn2MSHqAmlzZ48x70xWIBEj305UZT+Q9u68cua14kxNuobsFCi57ZhP+dS5SqCECmLwKMdAKqNpKN75qPKZ/A6OwY6PhpILxHGX0X+Ok3WNsP1LfQaBEvSBraD5NJWEBUqBNBhMCvrDTsbJqIYrwny8Ks9Po22bvyMiAme6O305XiYvETxC9JmHEsYJrXBOLPQWEkFmpL0u7dB5nnWiybcwEBjlZY2oYz4zrp3ne6URbJLQBxvujkUXgvp3PvLykYOJWMxsUhqUgsRLGADBGoqev5eGks4KNEt/iZ6H6pxbmxKyfMbbQEZzyhtNhFo9emkaOae8WctW5TN1yH2DGdsfmfEZCJhMXmpQmYx7h6QDahAQQ1MyZnTKiwCBUm1HvA4LlBDoPgmlnvqts5WMxzz9D3rD97P725E2PkLL9JJkRe674Sajl3O5COcxIQSEyHXARhONj8krzBpICoemY3D4epq85K6RLQ3Y0tlrTF9dqgSku0PXTV6m5evjRIiRty1ePef25qR1fsDcDNPLr9fz3h6ngHSakXzWfMoKxMjSUIwr7Mp8TMvFBH3FsHcwbb8PXkJJmQiTcfIcLDz+lTMQDxDOGSHs74SEMVeZBm+NcTWx0TuNIA2ldzCD4UMaAAD9hvrKZM0BH6ptNCXMYdJCWP1LczJu1lBsn6rnYbvtHDFiiO3grxYsUEKg+7iVeqq/sD95cg2ukbOAASu02KuR6i+gX9hwyqCh6KYPT3u/3JcIMHn5hVyqdFVUjsnkNZDO2vn4mbyCfSiakHV8B9zfpKX2jWlrQs9gJvD7HiYBOZjJyg4w5j2x0dZQvE0nqlMa0WJ1PF7VFWbimf4cOnsGnMdCmF6sNKTJK+YXKpu1z/Ua9Ki2Z+rwewczGCaFp5dASUuTV0M85jiu8krGY8Emr0ywhqzvN0V5NSZjIJ8AACWcTc+kP5XBsCFJe9uzHFmBZkNEmvq/MRnzjVaLkRVlaI7ysn6Na5Jlc4MivwFHJWCBEgK98Z86bZS1T3u4v3lhvb19/+dPRUMiFmjy8tNQOuUI1Z1E0MxbVaZYQJSXY90od0SRTLdZCk7TC907kMYwOXoraS0vwz0FrRml0h0uX/iuvpRn+qps9v24EtvV1Y9URiAeJ89nonxSJke3EihKAAdNaA1j8up0aSjODzX5DUSySCbMobLZrHCapDzKor4caMqlbzDXyXo65TNSoCRinu09GSdfvwagTF4BPpSA5UYGZNiwn7nJNnkZNZQ0WhoSaEjEjKbGTFbYz94t2FS6jQlvcypgtZdYjNCUjAVGefmZuQFgaGMCqUz+jP1KwgIlBOr5nPvecRjT1gjA+WLrJrHpo4ciEfMWKN958J1cmj4jlm1y0lneUg4BTn3V8OIBExsda/+4XwKloUgbtqkD7BnIdSz5M+VzOQe5HQZNJq8AoaR2qTIcMAgU/aW2/neW9U+vbQNgTXz08mupEXeMyPNeVP2pVQVMq1ArgkxeQxrieT6hsGt0pTJWJ6qWAskrq7z3oU0JR9kVa3d32+eYOvLewYw9kBj0GA1nhOUTyBMo8h6UP8p3Yq9m8jINvPR2k0p7WwMaEjE0JePGjnogwIfSO5hBc0McTQlzZ5/OWPfr5TdV6Tb6LDUjhOXztDQU78g7U5COQgUlKHN8NdfzYoFSADPHt9nCQ3+4+oesmpJxJBPeo6INe3IROqYX5dfPr7O33UIjlc6tr+Vt8rJ+g+ahOMwFrrkEqkNsCphY1jOYtk0fflFJQRqKw+Rl8Jv4+VDam63OzShQss77Ma/C622WyNoCxbscysSgBFtvKr9TCKOhKGE2prUR2w84Z7GHmbENAINpK+IobnDKq46mVQoUt4bR2ZOrQ1Pn1ZfK2P4ir44rkxWIxSyflZfP0K98ehp+q3YD7tnhZqd8c0Pc6Owe1HwoXuakvlQGzcm4r1BKaSZTt4BW70VTwts/ByiTl/Sh+AgtwCdQwtUGgz6nUE5YoITgg+8ZDQD4woem26N/x/cYtCfdmIghGYvlvWz6izGipcH40N/d2Q0AGDW0MW80nc5m0eRjClBlCgob1l+OvJdAjaoMI3pFz0DabsDuFyFseDTgDPk0+Yi8XiRVzhEtVhlM6yCpUWKz7RNyJtbamMD0MUORiHuP6tMOp3x++mt2HZTlsARbj0c5wsxkVp3P9DGt2NLZ50gnnc1ixpihAPxH9oO2ycvbKa/qWjluB1xmHD040JRLrzaQMIUNJ2IxNMRjDnu+akeW+dAcNKDSCAoK8ZvMl85k7UgxP2e3M+rSQ6AMZjCkIY7mBrNAUYLLy8yt7tmkoQgh7CCa5gZzOVU9mgYTfYPOwJBq+lFYoITgv/7xvXju6x+yQzJj5GzEekOIxazRirtxKXX22x87Fp09g3hg2da8fPpTGfzlje0AgLOOGZNnt01lhN1oDg7kN5p8k5d5lKlwCzbbKd+gTF4mDSWDES0NSMTIoXkBThNCUKit3sHrprigb8eojkbVR49HfejnKTu3W0C2NiVwwuRh5tWGs9YzNflQPnfXUgC5iZNeEwZV5xk3BGtY+Vj7p4wcYt2PZv5IZQRGDm1AUzLmO/pMpbNoiJPR5KXyHmqbRpx1ppzC7z9imE+UVwZtzUkQeYcwKydzQyLuDBvWAkYa4zFjsIdKw2+RVb2sQH4bVoO5hkTMd+Sv7/fSIHImr7jRhzJo+2pieRMsdfOx3zI1camhmJzy6v6MAkXeh5+grxQsUEIwcVgzjhzZYv8/tDHh6MDa5Uj9qx95DwBrNr27c1LnN2uL5LlHJJff/qq93ZiM2aqsIpXJYnSr5cPZ15M/90J1XEHmAj8NJfcSKJOXWUNpbUpi6qgWHHR1omGjkgBzoIG+3+tFUseHNZs1A/08k1O+P51FU9LqEFLZbJ4AzGSzWuSU+WZam8yCTXVw1vIuJg3F2t8mO4VeLR016m9MxP0FSiabi6LyMnmlnSYvdyfZJ4VYS0PCOBDok51sa2MC3f35ZsZcWZ3CL5PN2tpJYzKWpx3ppLPWEjIJg18LyAmUYUOSedqDus+GeAxNPiYvvfxezyVn8sp/F/W8GhKWRpavoUj/nUFDUe2iKRnDEJ9yqvszyWB1XVszm7zqktampGMk2tFthXle9eHpACBHK86Huq/XEgAqrh0AOnudQmHRemtZjc+dPhVNyXjeS9efymBcexOGDUni7W0H8sqVC/m1HqtppKILMpP/wx7Re7wIPQNp9A5mMGpoI1oaE+hNuQWfv//Dca6H49ZKI7co419e34YpVz9i17M6DuTsxj0Gh2aegHTdb9+g1Wm0NMQhRL75rj+VEzh+M5KHyvWYfvD4qrxjyhw3vCVpFChqsUbV2ev3c7A/bY2UfSKBAKuTHdIQt5Zs93PKN3p3POrehzTEPQcCPQNppLMCQ5JxDBvSgP0efqt0Nhe15Ph4WUbYvsYgwdifyqAxEff0S+hliccIbU0+AiURw5BkHP2Gkb9uJvXSTpXJqzHAbKZMXvmDsyyI5Lw0L/9bKlfOJl+Tl7+G0m8LVxUswQKlrmhuiOOFNR0AnB2mCtdtbUqgyzVqV6GgI1oa8OtLZwNwahlfv/9Ne7svlUFjwhoVqZHiDx9fjXUdPYgRYeb4NqzryP+622PLdwLI+T+8zCvd/Sl86reL7f/dkTrKFGE75T3S2Ck7v3HtjWj2eGHDrLKq6BnUzQ7O6LMxrU0AgN++uAEAsF67Z1Uu9RKZfCgp246tBKTTHNefzqApGbcjZNza1kBa79zM96Ku37S3N290v2RDJwBgREujZ332pzL44RPvAgCmjrI04S2dOcd8x8EBjGlt9O2IV+3swoodXdjfm5JO7/xzVF3knPLeJq+25qSn8Pz2X6woxb09g9jc2YsH39ied699qTSGNMTR2pREl0MD0AVKzGjnz2YFDg6k0dac9HWo//LZdchkhefIXrWF5mTcN43u/rTmW3PebzYrLA2lIWE55Q31PiB9KF5RXqmMQDIWM2pa6lk2JiyNz6sNZ7LCfi6muUPqeLuHyeultXs8zevlggVKEazdfRC7uwfw7q5ue0Ljh44ebR8/YsQQrNnV7XhpFq7YBQAYNbQBI6UDd68930Tgfu2hx2OEpqQ1YlZC4efPrAUAbNvfh+FDGvKimnZ19eNbf7ZeeBVy6TUa3rTXOavcrUkpU0ubNOF4NeB3pHY0tq3J84XVhYiXWURn1c4uz+tSGWGHaCuUULDOzTmYY+Q0Eekos47qRJ0RblkIYWlj6rj7pR6QJjEvp+uyTZ32tgrc8ErjrkWbAAAT2puw5+BAXiesz4yfNNzyoajOeDCdRWfPIMa0NmFoY8I43+a3L1hCd9nmfUjEyPO5/e4Vqxy2D8WtociOaeTQBqQyIu9+n1pptWG/hUF7BqxRfVtTEnt7Bu177Uul0Sw/sqXMYV5aVPdAGkIAbU0J6VD3H203JePoc2nyK3dYgS3vGduKFtlR5y/cmEWv9ANa/zuPr5ef4500vBlNiRgGPITSjgN9GExnMba1ydNvms5kkfDxaan+oTERw9DGBAbS2bxnogZvo4aaB059qQwa4jF70rU+6Pj0bxfja/e/WTGthQVKCfQMpHHv0i0AgE+8b4K9f86U4egdzNhLgmzd14s7Xt4IABjZ0ojhshErDcXdSGJEtlBw224vPeVItDYl8py/Ow/kvm+hOscwAqWrz6VJSTPcuHZLO/AaET+5cjdGtDTgxCOGS2ei24eStcuwv9csUF7bvA+vb95v/6+r/OpF1fFaGyoZJ7vTcNPVn8JVv38NQE6T0Ufe/YNKG4ujpcFboOTML/kj0LuloACAaaOH4gcXHp93z7rwmDt1BPYcHETHQedM+P2a6bPN9ez2yHPHtDVidGtj3rUKVTfj25qM9fH7xZvttAAPk5cSKLJ9up3Ex08aBgD4xAm5tu72GfUMWJMBZ4wdio7uAVtYdven7Xs7YmQLhADe3d2dV0Y1AMlpKPn3oc6ZMnKIZQZ0lXPjXitI5KgxLZgwrBmpjMirN1U/prlU2/Zb79O0US3GKC9ldZgwrNnTKa+0X5NAUYOdxmTMnhvkfm4vvNshy9kg7z2/Pm5+bp0dbQZ4m7z295nXu4sSFihFMHfKCABwmLV034hy4KvO+3t/XWkfGzYkab+wqkHeJk06ihiRPRpXDXlESwMumj0JF82ZjNamRJ5pZqf2wSTbluolUFyr1SrNB0htM+IAABl+SURBVLBeqn+RUUtHyTDVPa4X8d5XN+PhN7fj2PGtaLJj9PNV/dFDrU7LND9k2/4+fPfhFY59+gzxwUwWw1uSjjk+fR7BBMl4TAZJ5L9oj7y1w64XNaNef+mVn2JIQzzvhRZC4OE3t6OrP41G5bQPmDCmhJLu/9A77WmjrTrd0OF8Bgc0AWSvOSave/jN7bL8DZZA6fYWKA/J8y6U7UNvm0IIR4f4PikYvHwoyThpAQbOOj1qdAvamhI4acoIW3i6z9nXm8KwIUn7s7b7egaxYU8P/vrWDvvejp/UDgB4eW3+UvxqgNPWlDSG/H7w/z0LALj8tKmeUVxd/Sk0xK0IrxHyXXAPbJQWM1lqhG7zsPJpjW1rQlPC22ymTJktjXFLg3XVZ6/0z8Vj3qswqHejvTlp13legIu87tJTjrTvTWe39t6rQajSfPS6O+AzsIsSFihF8N8XvBcA8OaW3Ohaqc4AcOQIq5EqgaL8HR+YMQpEliMxHiO8s+0Alm7sxLNyFKKIx7TGkbIij7r7UxgpO+nWpiT6Us71q3Y5BIrVOL0iwTbtscqkm+gUDyzbanfU7xnbCgDY7erAvvFHy8SnZtLv7u7Htv19jrIcHEhjVGsjknHydNwCwNV/fAtvyPq7+RLpU9JG6v2Dlmagv4h7NeGm0h02JImWxoSnU15fdfko2Znvl3XS0T2A7z1iCbSRLQ22GUi90G9vO4Av/uF1dHQP2D4Ud6fjFqTqQ0l3vmxpLqt3dmPmfzwGAPjorHGYJv0j7jDrffJl/9q899jhsmowoFZNOGHyMExob8KOA/32PsASrOf/IvcNjK+cNQNtTUmHqfGOlzfimO9Y5Tht+kiMkpGCvS5hoDrAUbKduZ99t/RtADnh2esI8Mhib88AxrY1YVybpV2u3tWNG2Q9r95ldeLqXfnuX50DCiDXYbY1J9Dc4B1KqwYezQ3ePpIDvSkZ2ky2puw2vd7zqqWtnT7DWkpJ11wP9KXw+uZ9AIDRrY0YNiSJ/b2pPFPlf8oBUUtjwlq7LJOv8bU0xvMi3vR8AEugqPbXPeAsp7rXKbLtuC0Ku7pyz8itofzs6TX2Mff3msoFC5QimDaqBWPbGvHjhe/a+46U8wcA64UZ2pjAZmny6h3MYM6Rw3Hn5XMBWM774UOS+NPr23DhzYtw5tFjAAD/+P6J1nEi+4Xd2dWPgXQWqYywXw7V+PTRv27yUo7d37ywwbZ7A8D3/roC9y7dgpOnjsAdl8/FBSdOQqu2OukOraMa19aE1saEY0Ss26FPPHI4AOCFNXsAABtlJ9ndn8KSDZ1IZ7IYNbQRuw54f2pWTQgEgLOOte5fLTny0to96B5I562culHriPf3DiJG1ki2MRHD397e6XjhN+7pwb//8S37//HtTWhrSuDht7Zjd3c/vnb/m/jb21YQw6jWRjsvJZh04RGPWVqMu1Nyd2QzpBD+y+vb8MaW/Zj/P8/b0VIXzp6ECcOa0d6cxNJN++xrhBC4Wpbz0lOn2AJF5Z+S9TiuvQnvP8Kq89NufNq+fuWOLlswj25tRCxGeRrsr57Nrb7wn584DuPamtCYiDkCO657aDnueHkjmhvimDzC0i627suZR9fs6safXttmT5pVwlM30Vj+IWtUf8LkYYiRNVFXaStfm3c0gNx8CTc9A2lcfMsrAHIaitvU9I0Hcs/0w0ePsXwomtD58ROrcc+rW2wrgBKA+si+qz+FB+V8r+lSE1+3O9e2vvOXd/CHJVswpMHSwEcOtSYi6wEk90lTN2ANSNqbkw7TJWANKNubk2hp8Nag1fs7rLkBbc3eJuKlm/ahrSlh+1AOuExX72y3/JlP/tsZtt9Tma1/qT33T/7mlYr4UepaoBDROUS0mojWEtHVFcwXV5w+1f7/8tOm2GYmdby9OYk7Xt6Irv4Udhzow98dNdKxaKM+YhjMWN9dUIIgFiOcPmMUGuIxaXaRozYpUEbKxjXne0/ipbV7kMkK7OoawLi2Jiz79tmOOTOvyFBkIYQdLfW+yZbJY3x7E7oH0raTXTXwqz58FOIxwujWRmzam3vRlPnoUycfgc9/8CgAwE8uPgFAznxyiYwgW72zG++d2I5n3+1w2I8XrduLKVc/gp1d/Th2fBvW/9e5dif6k6esEdWnZRqbO3vxrXOPxcRhzWhpiGOD5v95ce0ee5axsu1/88+5FZ8/9MNn7e1V158DIss5+u6ug5h/0/OOYIBRLY15UV66X2jRur0Y19aE1zbvx+0vbbDrxG3OmzisGZ+cOxmJODm0BsDyn8RjhBOPGIYHlm3F5+5cCiEEpl7zN3TLzqa9OWmHSquX/+lVuzFW+jwmDW+201PCQNdW3jPW6hwtk1duRK2bDaePaUU8Rpg2eijWaaY35eMb19ZkBwbokWYfuel5ADmtO/eVwVw9Kc1rbFsjGhIxTBzejA17e+2gBNVmEvEYPvie0WhIxByDgHtezXXSSqDonfiWzl7bZwlYAnTU0EZHoMNPn7ZMuEobUoOwz96xFD94zArpVn41ADhpygi0NMTx6sZcgIUyH/baPiWr/pWGvHb3Qfy7JtgmDR+SZ478y+vbsGJHF06eOhJDGq2VhPUB2SNv7cDXZGRne3MSk4ZZda4/T8BarHPqqBZMllaPjS4f6Bub92P4kCSOGj0UY9ua0NqUwDI5YGnWglgA4N1d+T6rqKlbgUJEcQC/APBRADMBfJKIZlYq/yvPOMreHuNyHgO5hnH6jU8jK4DRbc5zlPkDAH7xzDpMHdlij3CPGdeK9uYkpo1uwV2LNmHuDU8BgG3yOmZcm33tp3+7GN/+y9v48+tbMa69yT7nkS+dDsAa8Tz/bge2a5rCl8+aAQD48DGW2evjP3sRG/f0YFfXAI4a3YKvzz8GgOWYf2Z1B97eagkcNbK+4MSJ9khV+Up+8tQabNrbg01SK7v3X0/FvOPGobNnEIvW7UUqk0Uqk8XiDTm7+XV/PzNvZWRdC/nge0bjX86YhpeuPhOzp4zAm1v2QwiBmxa+63Dmf+Vs637+sMTqbNwRTmpOjeqc9vWmbFPB8CFJjB/WZHc8nT0p9KcyuPTWJfb1+3tTeE2aQP7z4RX44P97FulMFvt7BzGurQlLvnWWfe7JU0d6Ok6VjVy1lSdX7sKNj+bmrEwbbbUHImsOx72vbsGK7V3o7Bm0TUQTNYFy1o+ew9fvf9MRZHHVh6x5UBOHNaM/lcVLa/dCCIGu/jRamxL493OOts9NxglPr9qNgXTG4Se77NQpGNqYwPAhSby2eR9W73R2QrcumAMgF6K6YU8P0pksVu3swqd+s9hxj+Pbmm0fEOBcY+6cWeMwmM5i6aZ9WLWzC+s6DmKt5qQf09aIo8a0YH3HQbsjf3Nr7pm/fPWZ9r0OpLPYc3AQu7tzbfx90k+jnitgjdgXrdtra9W/u+JkxGOEI0a2YNXOLnT1pxyazA8usPxEajLxdumov14z1b34jQ/bg6+u/jT6U1ao/1fufQMAMPvI4RgvA1wefitXF1f9b06otTYlMKrV6VcFgLsWbcS2/X346HvHo60piVFDGx2h88s2deLepVswoqXBHjCdMWM0Fq3bi1tf3IC+VAYXzp6EpmQMZx87FrMmtqPcVPdrLKUxF8BaIcR6ACCiewCcByDfMFsmfnTR+/DV+9+0nYw6D151Gs77xUu2c/TUaSMdx+/+3Mn4p5sX2YJn1sR2nDNrHB750umYOd4SGBfNmexovMoPcPS4VvzgguNtk47qSHWOm9COY8e34f5lW3H/sq04fbplK779MyfZo8vZR46wz1cj+jOPGWPv++a5x+LjP3sRf//zFx1pK6cuAIyQ2tLCFbvs0OjP/N0UzJrYjpj0YVxy62K4ufmSEzF3ai7///nnE/CVe9/Ap37ziv3/+dIECABnHzsG//Hgcpx249O2cPzueccBsEwsiilXP+LI51MnH2FvTxvVglVaB/nJuZNx3SeOQzIegxrM3fTku7jpyZwpMx4jXP3RY9CQiOHL97xh75/+rUcBAOefMMExoJiqDRQAq+O987Nz7f/HtufO/fXz6+3tx79yhr09YVgz1nf04NyfvgAAmHfcOADWNzNu+IdZdni4CjUf3dqIV791tn39e2V71Ov92x87Fp/7wDT7/7fkIOHobz9mr/AA5MyPbc1J+5mqwc8XPnQUzjp2LADYa4v9x4PL8R8PLnfc86yJVvs9fcYoLJEj/3/T8gByPryLbl4EN/OPG4umZBwfe+8E/OKZdZj9vScdxye0N9lmNKW1nXRD7pyvzz/anmSstAvFJ2X7mjWxDaceZb2TA+kMXlnfheOve8I+79JTjsQ/nTTZqqNxrfa1P7jgeDwnfZ5vXTfPNjNNGGY9V+WrUpwybaStyX75njewemc3nlmd85nOmznWWstLNsAbH12FJRs6cdToFvxGhoKrd3La6Bbct3QrTps+Cm1NSVx+h7WyxkdnjbfTO3naCDzy9g673zht+kjc8A+zkIhVRneoWw0FwEQAek+6Ve6rGBfMnoTXvvMRnCY7a533TR6Gf/mAZRYb09po22oVE4c14+EvWlpEe3MS3/7YsQAsQUCyI77i9Kk4W77gH501zm7YAPBPJ03G69/5COYfN9bep14ixdwpw+3tF9daozK38Ft0zZn4wIxc+fU8Zk1sx3laiKiV5gj7G+sA8J4xrQ5TDABccOIkAJam9T4PYTt9zFCcM2u8fZ+ANWKdOKwZ2w/0Ix4j+2VXqI5MCZOPHz8el506xT7+6Jc/kJfP01/9IG44f5b9/zfPPRaf00yVF86ebE8CBZyh3wDwd0eNxLr/OhcXzZmM806YiF99+sS8PI7XhCsAHDO+1fH/VR8+CidMzp1z2alH5qWx/D/n22Y/APjimc7nqGuznz75SFx+2hTHQo6nu9rfzPH5dT77yOGO/78vA0sA4EfSF7js22fbplt9Xs16qTVOH51rw0SEjx+f68gUb103z36uXzprBr4+/2hccsoR+JLUihXj25tx8yX59Xn7Z07Cry+1tKCZE9ps4aQ474QJePprH8rd6wTncQC48oyc4IzHCEePbc075y//32m2xnSxFByKsW2NuO4Tx9n/j2nNCSU1iPvWucfawgQAPvieMThmnDOfV791Npob4hjX3oRTplmDp18+uw4rd1jm1mv/fiZ+/imrDvR34elVu/GbFzZgTGsjbr/8JDtARtX3l+95wxYm158/C1+dlxPW82aOs7c/9t7x+Nh7J6AxEQ9cgTwqKMx3smsRIroIwHwhxOfk/5cCmCuE+KLrvCsBXAkARxxxxOxNmzblpVUuUpksHnxjO06YPCxPoCh6B9MY0lC8oiiEwJMrd+O06SPz0kllsrjjpY0YNiSJW55fj6/NPxrzjxvnmc5j7+xEKpPFObPGOTo3wDIhxWPWJ131Dth9H1s6+zBjzNA8M9bmvb34yVNrkM5mceUZ03D02FaHUNLzuePljThl2khP9XzvwQE8uXIXlm/vwv85c3qeqXHjnh50HBzAM6t24+KTjsARWqCEzjvbDiCVydpOboUQAoOZLPb3prC7a8Ae6bt5ee0efPEPr+PGC47HmceMyXtZM1mBZ1btxsNvbceN/3i8Y/02xZbOXjy1cheOnzwMJ7rKAVgO8a37+rCu4yA+NfcIR4ejs2RDJ2YfOTyvDP2pDPb3pvCXN7Zh7tQRnnkIIXDNn97GPa9uwc2XnIhzZjkFxK6ufvz59W246+WN+Njx4/G1+UfnPf8nlu/EnoODmDmhDW1NCTs0OizrOw5iaGMCt7+8ESceMRwfmTnWcXwwbZkW71+2FWfMGO35TDbv7cVgJoODAxnMmtCW17a27+/Dpr292NXVj8FMFvNnjrPX31OkMlnbiS6EwJi2fDN2Z88g3tq6H6+s78S/njHNnk/mPueZVbtx0pQRjva3emc3/rBkM9qbk/jIzLFob07afhG9nL96dh3OPHYMegbSmDtlhKMc2azAX97YhjW7D6IxEcP0MUPx8eOdgyB1XkaIvPe4FIhomRBiTuB5dSxQTgVwnRBivvz/GgAQQvy36Zo5c+aIpUuXVqiEDMMwhwZhBUo9m7xeBTCDiKYSUQOAiwE8VOUyMQzDHLbUrVNeCJEmov8D4HEAcQC3CSGWB1zGMAzDlIm6FSgAIIT4G4C/VbscDMMwTH2bvBiGYZgaggUKwzAMEwksUBiGYZhIYIHCMAzDRAILFIZhGCYS6nZiYzEQUTeA1T6ntAM44HP8CACbA7IJSiPoeFRpBJX1UClnFOXgckZfjlLfJS5nYeeUu286WgiRv4aNGyHEYfMHYGnA8VsCjneEyCMoDd/jEabhW9ZDpZxRlIPLWZW2weWsYDlLLUdQ36n+2OTl5OGA4/sDjodJI+h4VGkElfVQKWcU5eByRl+OUt8lLmdh51Sqb/LlcDN5LRUh1qMp1/WVpF7KyuWMFi5ntHA5C0v/cNNQbqny9ZWkXsrK5YwWLme0cDkLSP+w0lAYhmGY8nG4aSgMwzBMmTjsBQoR3UZEu4noHW3f+4hoERG9TUQPE1Gb3J8kojvl/pXqGyzy2LNEtJqI3pB/Y7zyq1A5G4jodrn/TSL6kHbNbLl/LRH9lExfbqp+Octdn5OJ6Bn5HJcT0Zfl/hFEtJCI1sjf4do118h6W01E87X9ZavTiMtZtjottJxENFKef5CIfu5Kq2bqM6CctVSfHyGiZbLelhHRmVpaZX3nHYQJBTuU/wCcAeBEAO9o+14F8EG5/VkA18vtTwG4R24PAbARwBT5/7MA5tRIOa8CcLvcHgNgGYCY/H8JgFMBEIBHAXy0RstZ7vocD+BEud0K4F0AMwH8AMDVcv/VAL4vt2cCeBNAI4CpANYBiJe7TiMuZ9nqtIhytgA4HcDnAfzclVYt1adfOWupPt8PYILcngVgWyXq0/132GsoQojnAXS6dh8N4Hm5vRDABep0AC1ElADQDGAQQFcNlnMmgKfkdbthhRTOIaLxANqEEIuE1dLuAnB+rZUzyvKYEELsEEK8Jre7AawEMBHAeQDulKfdiVz9nAdrMDEghNgAYC2AueWu06jKGVV5oiqnEKJHCPEigH49nVqrT1M5y00R5XxdCLFd7l8OoImIGivxzusc9gLFwDsAPiG3LwIwWW4/AKAHwA5Ys1J/KITQO8/bper7nbKqlcHlfBPAeUSUIKKpAGbLYxMBbNWu3yr31Vo5FRWpTyKaAmuEtxjAWCHEDsB6qWFpToBVT1u0y1TdVaxOSyynoux1GrKcJmqtPoOoxfq8AMDrQogBVPidZ4HizWcBXEVEy2Cpm4Ny/1wAGQATYJkTvkpE0+SxTwsh3gvgA/Lv0iqW8zZYDWcpgP8B8DKANCyV100lwvwKLSdQofokoqEA/gjgK0IIP23TVHcVqdMIyglUoE4LKKcxCY991axPP2quPonoOADfB/CvapfHaWV751mgeCCEWCWEmCeEmA3gD7Ds0IDlQ3lMCJGSJpqXIE00Qoht8rcbwP+iMmYGz3IKIdJCiP8rhDhBCHEegGEA1sDqvCdpSUwCsN2dbg2UsyL1SURJWC/r74UQf5K7d0kzgTK/7Jb7t8KpPam6K3udRlTOstdpgeU0UWv1aaTW6pOIJgH4M4DLhBCqz6roO88CxQMVrUFEMQDfBnCzPLQZwJlk0QLgFACrpMlmlLwmCeDjsMw8VSknEQ2R5QMRfQRAWgixQqrI3UR0ilTPLwPwYK2VsxL1Ke//VgArhRA/1g49BGCB3F6AXP08BOBiaZeeCmAGgCXlrtOoylnuOi2inJ7UYH2a0qmp+iSiYQAeAXCNEOIldXLF3/movfz19gdrxLwDQAqWNL8CwJdhRVW8C+BG5CaADgVwPyyn1woAXxe5SJBlAN6Sx34CGVlTpXJOgbWq8koATwI4UktnDqyGvw7Az9U1tVTOCtXn6bBU/7cAvCH/zgUwElagwBr5O0K75luy3lZDi5QpZ51GVc5y12mR5dwIK4DjoGwrM2u0PvPKWWv1CWug1qOd+waAMZV45/U/ninPMAzDRAKbvBiGYZhIYIHCMAzDRAILFIZhGCYSWKAwDMMwkcAChWEYhokEFigMUyMQ0eeJ6LICzp9C2qrODFNtEtUuAMMw1kQ5IcTNwWcyTO3CAoVhIkIu4vcYrEX83g9rIudlAI4F8GNYE2P3APiMEGIHET0La/2y0wA8REStAA4KIX5IRCfAWlFgCKwJaZ8VQuwjotmw1kDrBfBi5e6OYYJhkxfDRMvRAG4RQhwP69MGVwH4GYALhbWW2W0AbtDOHyaE+KAQ4keudO4C8A2ZztsArpX7bwfwJSHEqeW8CYYpBtZQGCZatojcWkq/A/BNWB88WihXN4/DWppGca87ASJqhyVonpO77gRwv8f+uwF8NPpbYJjiYIHCMNHiXsuoG8ByH42ip4C0ySN9hqkZ2OTFMNFyBBEp4fFJAK8AGK32EVFSfrPCiBDiAIB9RPQBuetSAM8JIfYDOEBEp8v9n46++AxTPKyhMEy0rASwgIh+DWtF2J8BeBzAT6XJKgHrY2LLA9JZAOBmIhoCYD2Ay+X+ywHcRkS9Ml2GqRl4tWGGiQgZ5fVXIcSsKheFYaoCm7wYhmGYSGANhWEYhokE1lAYhmGYSGCBwjAMw0QCCxSGYRgmEligMAzDMJHAAoVhGIaJBBYoDMMwTCT8/9UkHCh/GgU9AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8XNV18P3fmptGd0u2JMs3DL4A5mbAGBJyIRAMTdpCCiRO2uC09CElpE2atE9DLy8pvLxPyCeFlqaQhwQnQEiBkKSQlEvMLTTEYGwwGNvYljHG8k2ydbGuM5qZ9f5x9sgjeTQaSaORxlrfz0cfjfacc3TmWJ41a6999hZVxRhjjMmGb6JPwBhjTOGwoGGMMSZrFjSMMcZkzYKGMcaYrFnQMMYYkzULGsYYY7JmQcMYY0zWLGgYY4zJmgUNY4wxWQtM9Ank2owZM3T+/PkTfRrGGFNQNmzYcEhVa4bb7rgLGvPnz2f9+vUTfRrGGFNQRGR3NttZ95QxxpisWdAwxhiTtayDhoj4ReQNEfmV+7laRNaIyA73vSpl25tEpEFEtonIZSnt54rIJvfcXSIirr1IRB5x7a+KyPyUfVa537FDRFbl4kUbY4wZnZFkGl8Btqb8/A3gOVVdBDznfkZElgArgdOAy4G7RcTv9rkHuB5Y5L4ud+3XAa2quhC4E7jdHasauBk4H1gO3JwanIwxxuRXVkFDROYAnwR+kNJ8BXC/e3w/cGVK+8OqGlHVXUADsFxE6oEKVV2r3iIeDwzaJ3msx4BLXBZyGbBGVVtUtRVYw9FAY4wxJs+yzTT+FfjfQCKlrU5V9wO477WufTawJ2W7Rtc22z0e3D5gH1WNAe3A9AzHGkBErheR9SKyvrm5OcuXZIwxZqSGDRoi8vtAk6puyPKYkqZNM7SPdp+jDar3quoyVV1WUzPsMGNjjDGjlE2mcSHwhyLyHvAwcLGI/Bg46LqccN+b3PaNwNyU/ecA+1z7nDTtA/YRkQBQCbRkOJYxBevd5k5+u+PQRJ+GMaMybNBQ1ZtUdY6qzscrcD+vqn8CPAEkRzOtAh53j58AVroRUSfiFbzXuS6sDhG5wNUrrh20T/JYV7vfocAzwAoRqXIF8BWuzZiCdfeLO/mbn7450adhzKiM5Y7wbwGPish1wPvANQCqullEHgW2ADHgRlWNu31uAH4EFANPuS+A+4AHRaQBL8NY6Y7VIiK3Aq+57W5R1ZYxnLMxE+5wZ4SuaGyiT8OYURlR0FDVF4EX3ePDwCVDbHcbcFua9vXA6Wnae3FBJ81zq4HVIzlPYyazlq4okb7E8BsaMwnZHeHG5FlLd5RoPEE8ccyYDmMmPQsaxuRZa1cfAJFYfJgtjZl8LGgYk0eRWJzOiFfP6LUuKlOALGgYk0fJLAOgt88yDVN4LGgYk0ctXdH+xxY0TCGyoGFMHrV2pwYN654yhceChjF5NCDTsEK4KUAWNIzJI+ueMoXOgoYxeZQaNOwGP1OILGgYk0cDaxqWaZjCY0HDmDxq6YoS8Hkz/ltNwxQiCxrG5FFLV5S6ijBgo6dMYbKgYUwetXRFmTUtGTQs0zCFx4KGMXnU2h2lvrIYsEzDFCYLGsbkiarS2tVHvWUapoBZ0DAmTzojMaLxBDNKiwgFfFYINwVp2KAhImERWScib4rIZhH5Z9f+TRHZKyIb3dcnUva5SUQaRGSbiFyW0n6uiGxyz93lln3FLQ37iGt/VUTmp+yzSkR2uK9VGFOg2rq9yQorS4KEAz67T8MUpGxW7osAF6tqp4gEgd+KSHKZ1jtV9TupG4vIErzlWk8DZgHPishit+TrPcD1wCvAk8DleEu+Xge0qupCEVkJ3A58RkSqgZuBZYACG0TkCVVtHdvLNib/kutnFAf9hIN+654yBWnYTEM9ne7HoPvKtOTYFcDDqhpR1V1AA7BcROqBClVdq6oKPABcmbLP/e7xY8AlLgu5DFijqi0uUKzBCzTGFJxIzMssQgGfBQ1TsLKqaYiIX0Q2Ak14b+Kvuqe+LCJvichqEalybbOBPSm7N7q22e7x4PYB+6hqDGgHpmc41uDzu15E1ovI+ubm5mxekjF5Fx0QNHw2esoUpKyChqrGVXUpMAcvazgdr6tpAbAU2A/8i9tc0h0iQ/to90k9v3tVdZmqLqupqcn4WoyZKMmgUeR3mYYVwk0BGtHoKVVtA14ELlfVgy6YJIDvA8vdZo3A3JTd5gD7XPucNO0D9hGRAFAJtGQ4ljEFJxr3gkYw4CMc8Fsh3BSkbEZP1YjINPe4GPg48I6rUSR9CnjbPX4CWOlGRJ0ILALWqep+oENELnD1imuBx1P2SY6Muhp43tU9ngFWiEiV6/5a4dqMKTj93VN+H0VBG3JrClM2o6fqgftFxI8XZB5V1V+JyIMishSvu+g94IsAqrpZRB4FtgAx4EY3cgrgBuBHQDHeqKnkKKz7gAdFpAEvw1jpjtUiIrcCr7ntblHVljG8XmMmTF98YCH8UGd0mD2MmXyGDRqq+hZwdpr2z2fY5zbgtjTt64HT07T3AtcMcazVwOrhztOYyW7w6KmIjZ4yBcjuCDcmT1K7p8IBnw25NQXJgoYxeRId1D3VG7NCuCk8FjSMyZMBmUbQMg1TmCxoGJMngwvhvX1xvEGCxhQOCxrG5El0UCE8odAXt6BhCosFDWPyJBk0Aj6hKOD917N7NUyhsaBhTJ5E4glCAR8iQlHQD9hCTKbwWNAwJk+isQRFfu+/XNhlGjaViCk0FjSMyZM+l2kAhC3TMAXKgoYxeRKNpQsalmmYwmJBw5g8icYSBJPdU0ErhJvCZEHDmDyJWveUOQ5Y0DAmT6KxBKH+Qrh1T5nCZEHDmDyJxjUl03DdU5ZpmAJjQcOYPInG4tY9ZQqeBQ1j8iS1e6qovxBu3VOmsGSz3GtYRNaJyJsisllE/tm1V4vIGhHZ4b5Xpexzk4g0iMg2Ebkspf1cEdnknrvLLfuKWxr2Edf+qojMT9lnlfsdO0RkFcYUqNRCeJGrafRZ0DAFJptMIwJcrKpnAUuBy0XkAuAbwHOqugh4zv2MiCzBW671NOBy4G63VCzAPcD1eOuGL3LPA1wHtKrqQuBO4HZ3rGrgZuB8YDlwc2pwMqaQpGYaye/JmW+NKRTDBg31dLofg+5LgSuA+137/cCV7vEVwMOqGlHVXUADsFxE6oEKVV2r3nzQDwzaJ3msx4BLXBZyGbBGVVtUtRVYw9FAY0xB6UsphAf84tosaJjCklVNQ0T8IrIRaMJ7E38VqFPV/QDue63bfDawJ2X3Rtc22z0e3D5gH1WNAe3A9AzHMuPkUGeEb/zsLSvQjoPUO8IDPi9oRG1qdFNgsgoaqhpX1aXAHLys4fQMm0u6Q2RoH+0+R3+hyPUisl5E1jc3N2c4NTOctTsP8/Bre9h2oGOiT+W4E0m5I1xECPl9xCzTMAVmRKOnVLUNeBGvi+ig63LCfW9ymzUCc1N2mwPsc+1z0rQP2EdEAkAl0JLhWIPP615VXaaqy2pqakbykswgPVEvw+iKxib4TI4/0Vi8fx0NgKBfrHvKFJxsRk/ViMg097gY+DjwDvAEkBzNtAp43D1+AljpRkSdiFfwXue6sDpE5AJXr7h20D7JY10NPO/qHs8AK0SkyhXAV7g2M066XbDoilj3VK6ljp4CCPh9tnKfKTiBLLapB+53I6B8wKOq+isRWQs8KiLXAe8D1wCo6mYReRTYAsSAG1U1+Q50A/AjoBh4yn0B3Ac8KCINeBnGSnesFhG5FXjNbXeLqraM5QWbzLpdLaPbMo2cSx09BRD0+4hapmEKzLBBQ1XfAs5O034YuGSIfW4DbkvTvh44ph6iqr24oJPmudXA6uHO0+RGt8swLNPIrXhCSSgDMo2QX+w+DVNw7I5wM0B31DKN8ZBcHzyYmmkEfMQS1j1lCosFDTNAT58XLDojFjRyKRk0QgHrnjKFzYKGGeBopmHdU7kUiXvXc0Ah3GfdU6bwWNAwAySDRZdlGjmVzDSKUrqnQgGfDbk1BceChhng6JBbCxq5lBxaO7h7yobcmkJjQcMM0J9pWPdUTqUthNvNfaYAWdAwA/TY6KlxMVQh3IKGKTQWNMwAR2salmnkUjRNIdy6p0whsqBhBrBC+PiIJDMN654yBc6Chhkg2S1lQ25z62gh/OjEzXafhilEFjRMP1Wlp89muR0P/TUNv7+/zZsa3bqnTGGxoGH69fYlUAW/T/rnoDK5ka4QHrDuKVOALGiYfsmuqerSENF4ov+Nzozd0IVwu8amsFjQMP2SdYyasiL3s3VR5cqQc09ZYDYFxoKG6dcfNMq9oGE3+OVOci3woP9oIdybRsRqGqawWNAw/ZKZxQyXadiw29w5OvfU0UJ40C/EEpZpmMKSzXKvc0XkBRHZKiKbReQrrv2bIrJXRDa6r0+k7HOTiDSIyDYRuSyl/VwR2eSeu8st+4pbGvYR1/6qiMxP2WeViOxwX6sw4yZ5N/iM8hBgQSOX0hbCfV6m4a1sbExhyGa51xjwdVV9XUTKgQ0issY9d6eqfid1YxFZgrdc62nALOBZEVnslny9B7geeAV4Ergcb8nX64BWVV0oIiuB24HPiEg1cDOwDFD3u59Q1daxvWyTzrE1DeueypV0QSP5uC+uA+7fMGYyGzbTUNX9qvq6e9wBbAVmZ9jlCuBhVY2o6i6gAVguIvVAhaquVe+j1QPAlSn73O8ePwZc4rKQy4A1qtriAsUavEBjxkFyffD+moZlGjkTjcfx+wS/L/XmPu+xjaAyhWRENQ3XbXQ28Kpr+rKIvCUiq0WkyrXNBvak7Nbo2ma7x4PbB+yjqjGgHZie4VhmHHS7IJHMNOwGv9zpi+uAIjgcnfHWgoYpJFkHDREpA34GfFVVj+B1NS0AlgL7gX9Jbppmd83QPtp9Us/tehFZLyLrm5ubM74OM7Tu/ppGMtOw7qlcicYSA+adAgj4j3ZPGVMosgoaIhLECxgPqerPAVT1oKrGVTUBfB9Y7jZvBOam7D4H2Ofa56RpH7CPiASASqAlw7EGUNV7VXWZqi6rqanJ5iWZNJJTiMyw+zRyLhJLEAr4B7SFrHvKFKBsRk8JcB+wVVXvSGmvT9nsU8Db7vETwEo3IupEYBGwTlX3Ax0icoE75rXA4yn7JEdGXQ087+oezwArRKTKdX+tcG1mHHRHY/h9wrTiIACdlmnkTDSWoCgw8L+bdU+ZQpTN6KkLgc8Dm0Rko2v7e+CzIrIUr7voPeCLAKq6WUQeBbbgjby60Y2cArgB+BFQjDdq6inXfh/woIg04GUYK92xWkTkVuA1t90tqtoyupdqhtMViVMS9OPzCSUhf3+Nw4xdNJ4YMHIKLGiYwjRs0FDV35K+tvBkhn1uA25L074eOD1Ney9wzRDHWg2sHu48zdj1ROMUh7wulJJQwO4Iz6FoLD5kITwas5qGKRx2R7jp190Xp7TI+xxRWuS3mkYORWIJwsGBNY1kELG7wk0hsaBh+vVEYxQHUzIN657KmUhfgnBgcNCw7ilTeCxomH7d0TglrnuqsjhAe0/fBJ/R8aM3FqcomL6mYd1TppBY0DD9ulJqGtWlIQ53RSf4jI4fkb5jR08lpw6xTMMUEgsapl9PNNafaVSXhmixoJEzkVicokE1jYDPuqdM4bGgYfr19h0t1laXFtHW3UfM3tByojdNphG0O8JNAbKgYfpFYvH+Yu30Um969NZuq2vkQiSWoGjwHeHWPWUKkAUN0y8aS/QXa6v7g4Z1UeVCJBYnPEQh3IKGKSQWNEy/SMpUF8lM43CnBY1c8ArhNuTWFD4LGqafN6meyzTKvKBhxfCxSySUaPzYmkbA3dwXtZqGKSAWNAwAsXiCeEL7Pw0nu6dauiITeVrHhajLJAbfp5GcKt0GG5hCYkHDAF6WAfR/Gq4qcd1TlmmMWa+bct7uCDfHAwsaBjg2aAT9PirCAVotaIxZ/7UdshBu3VOmcFjQMIA3cgoYcAPa9LIiyzRyINKXDMjpJyxMXntjCoEFDQN4Q0KBAcVauys8N5LXdvCQWxEh4BOb5dYUFAsaBjjahRKyoJFzvUNkGuB1UVn31Mi8vbe9PxCb/Mtmude5IvKCiGwVkc0i8hXXXi0ia0Rkh/telbLPTSLSICLbROSylPZzRWSTe+4ut+wrbmnYR1z7qyIyP2WfVe537BCRVZhxka4LZbpNWpgT6bK4pKBfrHtqBJo7IlzxHy/zyGt7JvpUpqxsMo0Y8HVVPRW4ALhRRJYA3wCeU9VFwHPuZ9xzK4HTgMuBu0Uk+U50D3A93rrhi9zzANcBraq6ELgTuN0dqxq4GTgfWA7cnBqcTO4M1T3V2hXFW67djFYyixu8CBN4mZ2Nnsre9oMdxBPKzqbOiT6VKWvYoKGq+1X1dfe4A9gKzAauAO53m90PXOkeXwE8rKoRVd0FNADLRaQeqFDVteq9Cz0waJ/ksR4DLnFZyGXAGlVtUdVWYA1HA43Joeig0VPgBY1YQjnSa4sxjUVyyG26TCPgs6AxEjsOdgDwfkv3BJ/J1DWimobrNjobeBWoU9X94AUWoNZtNhtIzR0bXdts93hw+4B9VDUGtAPTMxzL5Fgk7egpuys8F4YacgsQDAgxq2lkraHZyzAsaEycrIOGiJQBPwO+qqpHMm2apk0ztI92n9Rzu15E1ovI+ubm5gynZoaS7J5K3qUM3vToAIc77a7wsegfPTVEITxqmUbWdhz0gsae1h4SCQu2EyGroCEiQbyA8ZCq/tw1H3RdTrjvTa69EZibsvscYJ9rn5OmfcA+IhIAKoGWDMcaQFXvVdVlqrqspqYmm5dkBkn3aXhuVTEA7x22T3Vj0T96Kk2mEfJb99RINDR1EvL7iMYSNHXYh5mJkM3oKQHuA7aq6h0pTz0BJEczrQIeT2lf6UZEnYhX8F7nurA6ROQCd8xrB+2TPNbVwPOu7vEMsEJEqlwBfIVrMzl2dPRUStCoLiHoF95ttqLjWET6axo25HYsWrqiHO6Kcv5J1YB1UU2UbDKNC4HPAxeLyEb39QngW8ClIrIDuNT9jKpuBh4FtgBPAzeqanJQ9Q3AD/CK4zuBp1z7fcB0EWkAvoYbiaWqLcCtwGvu6xbXZnLs6Oipo29sQb+PedUl7LSgMSaDp2hJFfCLZRpZanAjpi4+xSuf7rGgMSECw22gqr8lfW0B4JIh9rkNuC1N+3rg9DTtvcA1QxxrNbB6uPM0YzNUsfakmjLebe6aiFM6bmQKGkHrnsrajiZv5NRFJ9dyy6+2WKYxQeyOcAMM/ca2oKaM9w532fTdY9DbFyfgEwL+oWoa1j2VjYamToqDfk6oLqG+ImyZxgSxoGGAlGlE/IMzjVL64kpja89EnNZxIXVFxMGC1j2VtbbuPmrKi/D5hLnVJZZpTBALGgbwahqhgA83s0u/BTVlAFbXGANvffBji+AAATcSyAyvKxKjJORdx3kWNCaMBQ0DJNewPvbPYUFNKWBBYyx6h7i2YENuR6I7Gu8PGvWVYQ51RojbvRp5Z0HDALg1rI/9NDytJMT00pAVw8cgEksMuNM+VdAvxOyNLytd0RilRd7YnWklIRIKR3r6Jvisph4LGgYYOtMAWFhbxm+2N9PYat0BoxHpi2eoafjos+6prHRHjmYayTXsW7ttipt8s6BhAK/ffag3tr/7vVPojMS45ntraTrSm+czK3y9mTKNgI+ojZ7KSlc0RmkomWkEAQsaE8GChgG8LpTQEEHjnHlV/PAL57G/vZcXtjWl3cYMLWOm4bPRU9nqjsYpKRqUaXRZ91S+WdAwQOZ+d/ACRzjoY9sBK4iPVOYhtzZ6KlvdKZlGVYmbgdkyjbyzoGGAzJ+GAXw+YXFdOdsOZprg2KTT2zf0kNtw0E8kFreFroYRTyi9fQlKkkGjP9OwoJFvFjQMkBw9lfnPYXFduWUaoxDNkGmEgz4Sit0VPozuqLcQWKnrnioN+Qn5fbR2W/dUvlnQMEBy9NTQ3VMAp8ws51BnxNbXGCGve2roTAOgpy+e9nnj6Y561yeZaYgI00qClmlMAAsaBsg8eippcV05ANsPWrYxEt4d4UNlGl7QiFjQyKgr4mUaySG34Nawt5pG3lnQMEDmYm3SyTO9oLHtgNU1RqI3QxaXDBrJhZpMekczjaPXcVpJ0ILGBLCgYYDk6KnMfw615UVMKwmyzTKNEYnE4kNe22QG0huzTCOTZKaRvCMcvEzD1q/PPwsaBkgWazPXNETcCCrLNLIWTyh9cU27PjhAcbKmEbWgkUn6TCNEmxXC8y6b5V5Xi0iTiLyd0vZNEdk7aCW/5HM3iUiDiGwTkctS2s8VkU3uubvckq+4ZWEfce2visj8lH1WicgO95VcDtaMg2xqGgCLastoaOq0IaJZ6l8RcZiaRq/VNDLqiqbJNEq8mkbC5u7Kq2wyjR8Bl6dpv1NVl7qvJwFEZAmwEjjN7XO3iCQ/GtwDXI+3ZviilGNeB7Sq6kLgTuB2d6xq4GbgfGA5cLNbJ9zkmKpmvCM81cLaMo70xmi2EVRZSbf2eqqj3VNW08ikO5K+ppFQ6OiNTdRpTUnDvkuo6ktAtutyXwE8rKoRVd2Ftxb4chGpBypUda16H1EfAK5M2ed+9/gx4BKXhVwGrFHVFlVtBdaQPniZMeqLK6pDv7GlWljrra+RXK/ZZJZc3Gqom/uSXYKWaWTWf59GaGBNA+yu8HwbS03jyyLyluu+SmYAs4E9Kds0urbZ7vHg9gH7qGoMaAemZziWybH+LpRhahpwNGjstKCRlWQwGCogF4csaGSjK1nTKDr6N1plM91OiNEGjXuABcBSYD/wL65d0myrGdpHu88AInK9iKwXkfXNzc2ZztukkZz7aLjRUwAzK8KUFQUs08jS0bXXhxtya0Ejk+5oDL9PBixHnJx/ym7wy69RBQ1VPaiqcVVNAN/HqzmAlw3MTdl0DrDPtc9J0z5gHxEJAJV43WFDHSvd+dyrqstUdVlNTc1oXtKUdvSNbfg/BxFhQU0pDbaSX1aGyzTCrt3u08isy62lkboccXVy0kILGnk1qqDhahRJnwKSI6ueAFa6EVEn4hW816nqfqBDRC5w9YprgcdT9kmOjLoaeN7VPZ4BVohIlev+WuHaTI4N92l4sAVuBJUZXrqhoqks08hO6gy3SdNKbU2NiRAYbgMR+U/gImCGiDTijWi6SESW4nUXvQd8EUBVN4vIo8AWIAbcqKrJ/w034I3EKgaecl8A9wEPikgDXoax0h2rRURuBV5z292iqtkW5M0IJGsa2YyeAq+u8fPX97JxTxvxhHLuCTaobSg9fV4Bt3iYoGFzT2XWlbKWRlJ5UYCQ38dhyzTyatigoaqfTdN8X4btbwNuS9O+Hjg9TXsvcM0Qx1oNrB7uHM3YDDcsdLCFNV4x/FN3v0w44Of1f7p0yDfFqW7wRHuDJfvprXsqs+7IsZmGiDCjLERzhw3/zie7I9yMuHvqtNmVBHzCgpoyevri/Ga7reY3lOG6p8AbgGDdU5l1ReNpr2FNeRGHOi3TyCcLGmZEo6cAZk8r5uVvXMyTf/VhqktDPLnpwHieXkFLTg+SKRMrdgsxmaF1R2MD7gZPmlFWZJlGnlnQMCn3aWT/51BXESYU8HHZaXU8t/WgfVIeQrJWkSnTCAf9NvfUMLojmTINCxr5ZEHD9HdPZVsIT/V7p9fTFY3zPzsO5fq0jgvJ7qmhJiwEbyoRq2lk1pVm9BR4QeNwZ4S4zT+VNxY0zIjuCB/s/JOqEYHN+9pzfVrHhZ5ojOKgH58v3b2qnnDQb1OjD6M7Gk/bxTejrIiE2rDbfLKgYfo/5Q61ulwmRQE/MyvC7GnpyfVpHRe6hyjgpgoH/da9l4Gq0h2N968PnqqmvAjA6hp5ZEHDpCylOewI7LTmVpWwp6U7l6d03OgZ4hNyqnDQT491Tw0pEksQT2jav89k0LC6Rv5Y0DBZDQvNZG51CXtaLWikk1WmEfDZGuEZJP8+S4fongLLNPLJgoahKxojFPAR9I/uz2FudTEHjvTasNE0uvvi/avzDcW6pzLLlAlbppF/FjQM3ZF42k9x2ZpXXYIq7G21usZgPdHYsN1TxUG/jZ7KoL3HW9K1ojh4zHOlIT/hoM8yjTyyoGHoisZGXc8Ar3sK4H2raxzD657KfG3DQZ/NPZXBERc0ppUcGzRExO4KzzMLGoaeIUamZGueCxp7LNM4RraFcOueGlqbCxqVaTINgBq7KzyvLGgYuqJxiseQadSUFREK+GwEVRo9fXFKhqlpFAX9RGIJvBUBzGBt3UNnGmBTieSbBQ3jZhAdfabh8wlzqootaKSRzeipZKE8eWe+Gaitx+t6mlYcSvu8TSWSXxY0jJtBdPSZBnhdVFbTOFZPFllc8qZKm38qvfaePkIB35A3n86sCNPSHeVAe2+ez2xqsqBh3AyiY1sPY151Ce8f7rYulhSxeIJoPJHVHeGATSUyhPbuPiqLgwOWek115dmzCfiEf3tuR3/b73Ye4tZfbeHmx98mFrcMLpeGDRoislpEmkTk7ZS2ahFZIyI73PeqlOduEpEGEdkmIpeltJ8rIpvcc3e5ZV9xS8M+4tpfFZH5Kfuscr9jh4gkl4Q1Oeatvzy2TOOUmRV0RGI2nUiK7ixmuIWjmYYNu02vrbuPaUMUwcEbvffH55/Ao+v38G5zJ7sPd7Fq9Tp++PIu7l+7m53NXXk82+NfNpnGj4DLB7V9A3hOVRcBz7mfEZEleMu1nub2uVtEkv9j7gGux1s3fFHKMa8DWlV1IXAncLs7VjXe0rLnA8uBm1ODk8kdb/3lsWUaZ86pBOCtvW25OKXjQjZracDRmoaNoEqvrSc6ZBE86caPLSQc8PFXD7/Brb/aSsDn487PLAXgcJfVO3Jp2KChqi/hrd2d6grgfvf4fuDKlPaHVTWiqruABmC5iNQDFaq6Vr3+iwcG7ZM81mPAJS4LuQxYo6otqtoKrOHY4GXGKJFQb4RPmgVuRmJxXTkhv49NjTbbbVK207MU2TrhGbX3xKgcogieVFNexHc/dw7v7O/g2a0H+V8fPpFT6ysAOGyC2vIOAAAgAElEQVT3cOTUaGsadaq6H8B9r3Xts4E9Kds1urbZ7vHg9gH7qGoMaAemZziWyaHeWBzV9PP6jEQo4OPU+nI27bWgkdQd9aa/GHYakYBlGpm0d0eHvEcj1cdOqeWuz57NxafUcv1HFzC91As0LV0WNHJpbB8vj5WuUqUZ2ke7z8BfKnI9XtcX8+bNG/4sTb+uyNgmK0x1+uxKnnhzH4mEZlw/Yqo42j2V+b9ZsvsqYjWNtNp6+obtnkr6xBn1fOKMesAL1iJw2Ibj5tRoM42DrssJ973JtTcCc1O2mwPsc+1z0rQP2EdEAkAlXnfYUMc6hqreq6rLVHVZTU3NKF/S1JT8NDzWQjh4dY2O3hi7begtkH331NFCuGUag0Vicbqj8YyF8KH4fUJ1SYhDlmnk1GiDxhNAcjTTKuDxlPaVbkTUiXgF73WuC6tDRC5w9YprB+2TPNbVwPOu7vEMsEJEqlwBfIVrMzmUzDTGOuQW4IzZ0wB4q9GK4XC0RpFt95TVNI7VnmHeqWxUl4ZosZpGTg378VJE/hO4CJghIo14I5q+BTwqItcB7wPXAKjqZhF5FNgCxIAbVTX5P+EGvJFYxcBT7gvgPuBBEWnAyzBWumO1iMitwGtuu1tUdXBB3oxRLjONRXVl+H3CjoOdYz7W8aAn60wjWdOw7qnBkpMVVpZkLoQPZXpZyEZP5diw7xSq+tkhnrpkiO1vA25L074eOD1Ney8u6KR5bjWwerhzNKPXFc1dphH0+6gpK+LAEbszF1K7p4apadiQ2yEl553KphCezvSyIrbuP5LLU5ry7I7wKa4nh5kGwMzKsE3n4PSPnhp2yK2bRsSCxjH6JyscbdAoDdmQ2xyzoDHF9dc0chU0KsKWaTjZdk8VBXyEAj6O9Pbl47QKStsYaxrTS4to7+mjz6YSyRkLGlNctp+Gs2WZxlHdfXGCfhl2GV0RYboVbNPqL4QPc3PfUKrLvP1abQRVzljQmOJyWdMAL2h0RmJ02Kdmb4bbYUZOJVWVhGjttje2wdq7o4hAeXh0mfAMd4OfreyXOxY0prjuSAyRo8M+x6q+MgzAQeuionsEy+hWl4bszuU02nr6qAgHR32z6PSyIsDmn8olCxpTXFfUW1kuV3dw11V4QeNAu/0n7c5iqdekqtIQrd2WnQ3W5qZFH61qm0ok5yxoTHHd0diYJytMlcw09rfbFOkj6Z6qLgnadBdpHGjvZab7IDIaM8qseyrXLGhMcd3R+JgnK0yVzDSse8or4lYUZ9s9VcSR3piN8hmksbWbOVXFo96/IhzE7xMLyDlkQWOKy8UCTKnCQT9VJUH22wgq9rb1MGtadm941aVeF0ybdVH164snOHCkl9ljCBo+n1i9KMcsaExxuVjqdbC6ivCUzzT64gkOHullTpZBo8r1vdsIqqMOtPeSUMaUaQDMKCuiucMyjVyxoDHFdUXjw07dPVIzK8NTPtNIvuFl+ym5usQKtoM1tnp1sdnTSsZ0nNryIposaOSMBY0prjsy9qVeB6uvtExjb9vI3vCqbJTPMfqv4RgzjbqKIpo6pvbfYy5Z0JjiuqO5rWkAzKos5lBndErf4Le3dWRveDY09FiNrd66LLOmjX70FEBteZjmjgjxRNo13MwIWdCYwlSV1iyX0hyJs+Z662q88f7UXVcj+Sk5OQR5OFUlNt3FYHtbe6gtL6JojDee1lUUkVC7wS9XLGhMYe09fXRH42P+JDfY2fOm4RNYv7s1p8ctJHtbe5hRVtS/VsZwQgEf5UUBWqwQ3q+xtWfMRXCAmnLv77vpiAWNXLCgMYUd7Xcf+3/MVOXhIKfMrGD9e1N3zay9bT0j7ouvsqGhA3jXcGxFcPAyDcDqGjkypqAhIu+JyCYR2Sgi611btYisEZEd7ntVyvY3iUiDiGwTkctS2s91x2kQkbvckrC4ZWMfce2visj8sZyvGWh/m/efqD7HQQPgvPlVbNzTNmVvVtvb1pP1cNskCxpHxRPK/vbcZBq1/TecWqaRC7nIND6mqktVdZn7+RvAc6q6CHjO/YyILMFbyvU04HLgbhFJ5u73ANfjrSm+yD0PcB3QqqoLgTuB23NwvsbZ56b6yHX3FMC586vpjsan5KppiYSOKtOoLgnafRpOU0cvfXHNSRZc4yYttO6p3BiP7qkrgPvd4/uBK1PaH1bViKruAhqA5SJSD1So6lpVVeCBQfskj/UYcEkyCzFjt7eth5Dfx4zSopwf+7z5XoL52ntTr65xqCtCNJYY8RteVWmI1q6pO+Is1a5DXQDMqx5791Qo4KO6NGTdUzky1qChwK9FZIOIXO/a6lR1P4D7XuvaZwN7UvZtdG2z3ePB7QP2UdUY0A5MH+M5G2d/Wy/108I5m+E2VX1lMTXlU3N95v7htiMMGtNLQzbCx3lnfwcAp9SX5+R4teVF1j2VI2MdoH+hqu4TkVpgjYi8k2HbdO9MmqE90z4DD+wFrOsB5s2bl/mMTb99bT1ZDwkdjYU1Zexs7hy3409WbzW2A3DyzJG94dWWh+ntS9DSFe2/b2Oq2rr/CDPKQtSW5+bvs7YiTLNlGjkxpkxDVfe5703AL4DlwEHX5YT73uQ2bwTmpuw+B9jn2uekaR+wj4gEgErgmCE5qnqvqi5T1WU1NTVjeUlTyr4RTKg3GgtqS2lo6sTrdZw6Xt11mNnTipk7wq6VhXVlAOw42DEep1VQ3jnQwan1FTk7Xp1lGjkz6qAhIqUiUp58DKwA3gaeAFa5zVYBj7vHTwAr3YioE/EK3utcF1aHiFzg6hXXDtoneayrged1qr0DjZNYcgbR8QwaNWV09MZonkLTUqsq63a1cP6J1SPed3Gdl5lsb5p62VmqWDzBtoMdnDLCTC2T2ooimjsjJArgrvB9bT189eE3uPBbz/PXj2ykbZINjhhL91Qd8AtXlw4AP1HVp0XkNeBREbkOeB+4BkBVN4vIo8AWIAbcqKpxd6wbgB8BxcBT7gvgPuBBEWnAyzBWjuF8TYqmjggJZVwzjYW13ifnnU1dOetmmOx2NndyqDPK+SeNPGjMqgxTVhSY8pnGrkNdRGOJ3GYaFWHiCeVwV5Sa8twP/Milbz/9Dk+9fYALF87gl2/uY92uFp77+kezvlF0vI06aKjqu8BZadoPA5cMsc9twG1p2tcDp6dp78UFHZNb+0Y4zcVoLKhxQaO5kw8sOL7HL6gqbza28+Yeb+qU808c+esVERbWlrF9igeNrQdcEXxmboMGeCtKTuag0R2N8estB/nU2bP51lVn8vPXG/nao2+y/WAHZ86ZNtGnB4y9EG4K1HjdDZ6qvjJMScg/JYrhT246wI0/eR0R7w7kE6aPbqjo4royntvaNPyGx7Gt+48Q9Et/ppoLyWNtP9g5ad5801mz5SDd0ThXLPUGkC5187htOzB5goZNIzJF7WzqxCdjn3Y6ExFhQU0ZDVOgj/7FbU2UhwN8eFEN135gPqO9nWhxXTmHu6JTennSTY3tLKgpIxTI3dvT/OmlhIO+ST8E/PGN+6ivDPfXxE6YXkoo4JtU2acFjSlq3XstnDarMufTog+2oKaUd5u7xvV3TDRV5eWGQ3x40Qwe+LPl3PixhaM+1qJkMfzg8R9oAfa0dHPDjzfQ5NZfOdwZYe27h7no5Nph9hwZv084ua6cdw5M3qDR1NHLS9ub+cOzZvXfO+X3CYtqy9g2if4eLGhMQZFYnDfeb2P5KEb4jNSCmjL2tvVw5DheW2PXoS72tfdy4cIZYz7WYjfstqFp8nyyHE8PvrKbp94+wN/97C1UlSffPkA8oVyxdFbOf9cpMyvYur9j0g4Bf3jdHmIJ5TPnzR3QfnJdOdsPTJ6/BwsaU9CmxnYisURegkbyd/x2x6Fx/10T5eUG77V9KAdBY2ZFmOrS0JSYVj6eUJ7YuI9pJUFe2NbM937zLo+/sZfFdWU5HW6bdEp9OS1d0Uk5BDwWT/CTV9/nw4tmcFLNwFrO4pnlHDjSS3v35PjgZUFjCnp1l3d/5Hnzxz9onHtCFdNKgjy75eC4/66J8tuGQ8ypKs7JPEkiwiWn1PL81iYisfjwOxSwV3cd5sCRXm654nQuOaWW259+h/W7W/nDs2aNuiaUSXI01tb9k+dTe9KzW5s4cKSXz19wwjHPJWcW2D5Jsk8LGlPQul0tLK4ry8tUFQG/j4tPruWFbU3EjsNp0jsjMV7afoiPLq7J2RvdJ86opyMS43cNh3NyvMnqv97YS2nIz6Wn1vH9a5fxbyuXsmJJHZ9eNnf4nUfhVDeP1TsTXAxXVZ7ZfIDuaKy/7cev7GZWZZiLTzm2lnOyq3NtmyRdVBY0pphYPMGG3a15yTKSPr6kjtbuPl4/Dpd/ffKt/fT0xfmjc+YMv3GWPrhwOuVFAZ56e3/OjjnZ/Pdb+/nphkauOHs2xSE/Pp9wxdLZ3Hvtsv71L3JtWkmI+sowm/dNbNB4acchvvjgBr7zzHbAu4/ptw2H+Nz58wj4j31Lrq8MUx4OTJpFzSxoTDFv7W2nMxLjgwvG3v+erY8sriHk9/HkpuPvTfCnG/ZwUk0p58zL3Rj6ooCfS06t5ddbDhKNHX/Z2e92HuKrj7zBshOq+KdPLsnr775w4Qx+veUAzR0TV9f40cu7AC+72NvWw0OvvE/QL3z6vPQZlohw1TlzeOLNfWmH3kZjCZ7atJ/evvx0Z1rQmGJedgXpfN6hXVYU4BNnzOTR9XtoPU5Wpnvj/VbufrGB195r5Zpz5+a8D/7qc+fS1t3HT17dndPjTrTdh7v40kOvM396KT9YdR7FofxOjfGlixYQjSW496Wdef29SbsOdfHCtmY+s2wuCPzZD1/jP9e9z+Wn12ecauevLllEaVGAbz117ETi//78Dm546HW+9ujGvMytZUFjinl55yFOm1WR96m3b7hoId3ROD/83Xt5/b3j4aXtzVz9vbV8++ltTCsJctU5s4ffaYQuXDidDy6Yzl3PN9BxnAxX3tPSzRd++BoA9606j8riYN7P4aSaMq5cOpsHX9nNaxPQ3fPA2vcI+oWvX7aYGy9aSFtPlAsXzuBvV5yccb/q0hBf/thCnn+nqX+0HsA7B45wz4s7OWlGKU9uOsBtT24d51dgQeO4kO0om55onNd3t+XkfoKROnlmOSuW1PGjl3cNKAAWmh0HO/jSQ6+zqLaMdX9/Ca//46Xj0gcvIvzd5afQ0hXlrud25Pz4+bb9YAefuvtlWrqi3LdqGfNGOc1KLnz144upLA5yzffW8s0nNuft90ZicX7xxl5WnDaT2vIwX/n4Il79+4/zgyyvx6oPzmf2tGJu+++tJBJKb1+cv/npm1QUB3nshg/yhQ/Op627j/g4ZxsWNFJs2N067hc8155+ez+n3/wM//hfm4bs00wklDt+vY1/evxtovHEhAQNgGs/MJ8jvTFeebcwRwXF4gm+/tM3KQr4WP2F86itGJ9VD5POmjuNzy6fx/f/ZxdPv31g3H5PPtz6qy3EE8rPv/RBzj0hf4Mw0pk3vYQX/uYiPnf+PH70u/d4/p38DAd/fmsTbd19XHPu6AZNhIN+/vflJ7Nl/xHuWLOdf/jF27y99wi3X3Um1aUh/p/fX8J3rjkT/zj+TYIFjX57Wrq5+nu/4yPffoGHCqQfed2uFr7y8EZqy8P8+JX3OefWNXz8jt/w9KBRN798ax93Pd/AYxsaKS8K9K/fnW/L5ldRFPDxcoENJVVVGpo6ufPZ7bzV2M4/X3HauE4pn+rmP1jCWXMq+fqjG/un2ig0r7x7mP/ZcYgbP7awf+bjiVYSCvDNPziNxXVl/MMv3s7LmhU/3dBIXUURH140+oXi/uDMWXx40Qy++0IDP3u9kRs/toBLl9QB4PPJuNzfMpgFDae+Msw9f3wO9ZVh/uEXb/P4xr0TfUpDisTi/MMvNrHy3rXUV4b55V9+iJ/8+fl85ry5hPw+/uLHr/MfLzSg6qWw3356G0vqK3jrmyt48W8vGvf5poYSDvpZfmL1gD7ZQnDLr7bw8Tt+w3+8sJPLTqvjk2fU5+13h4N+/nXl2XT3xbl/7Xt5+71joaps2N1Kc0eEzkiM//PUO9SWF/EnaW5cm0ihgI/brzqTQ50R/vC7L7N5X/u4/J4XtjXx5Z+8zm+2N/NH58wZUybg8wkP/NlynvnqR/ju587ma5dmroWMB5ms87CM1rJly3T9+vWj3r8vnuBz33+FzfuOcFJNKfvbevn9M+v58sWLJs08/D96eRff/OUWVn3gBP760sVMKzla1O7ti/N3P3uLxzfu4/fPrKcrEuOFbc089OfnT1i3VKp7XtzJ7U+/w7p/uGRCF2ZSVd7Y00Y8oQjQ3BFh874jHOqMMKOsiI+dUsM586p4ueEwf3Lfq1x1zhz+6JzZLD+xmmCasfTj7S8e3MDadw/zu29cTGnR5FnRYOv+I9z70rs0d0T49HlzSSSUH7+ym/W7WykJ+akuDbGvrYc7P7O0f7rvyWbD7lZufOh1uiIxHvpf52c1Bflr77Vw66+20NjaQ3k4wNlzp3HLladTER5Y3H/j/VY+839fYVpJkHPmVXHrladPmveRwURkg6ouG3a7QggaInI58G+AH/iBqn5rqG3HGjQADrT38pl71zK9NMTMyjDPbmnioyfX8P1rh72eI9bQ1EFfXJk1rTir0STxhHLxv7zI9NIQP//ShWm3UVX+/fkG7lizncriIH/+oRP5y0sW5frUR2VTYzt/8N3f8m8rJ+5NpCfqBdYn3tw3oN3vE6pKQrR2R4knlBllITojMWZNK+bJv/rwhK6ctmF3K1fd8zv+ZsVivnzxxP9b9sUT3LFmO9/7zU5Kgn6mlYT612iZUVbEjR9bwGvvtbBpbzvfvuqsSb8I1/72Hq753lo6IzEe/LPzOWNO5ZDbtnRFufxfXyLo9/GRxTUc6enjmc0HuOjkGr768cU8vnEvnZE40ViCl3Y0UxTw8csvf4iqPI9YHKnjJmiIiB/YDlwKNAKvAZ9V1S3pts9F0BjsjjXbueu5Haz564/0T1092Nb9R+jpi3PG7MphP4nuOtTFb3c08/jGff0T0wV8wmWnz+Sji2qYP6OUE2eUMqMsdEwf5TObD/DFBzfwH587h0+embmbZGdzJ7OnFU+aZSLBC3rn/r9rmFddwt1/fA6NrT3Mqiw+ZvRIU0cvIb+PaSXeG/fD697nZ6/vZVZlmPNPqmZxXTkXnDR9RK8tOX3Dt556h90t3fz1xxezdO40FJheGmJBTRnFIT9dkRi/fHMfb7zfRjAgfOGDJ+Z0QaDR+tMfruOFbc38/pn1/OFZs7hgwXQqwkHae/o4eKSX2vIiKouD49qvnUgo/9NwiP/vv7ey7WAHK8+by02/dypl4QCv7jpMdWmIhTVlae9snux2H+7ic99/lcNdEVZ9YD5NHRFOn13JpafWURYO8OzWg6zb1cI7B46w/UAn/3XjhSyZ5c1ndf/v3uNmNxIrFPBREQ5SFPBRVRrk21ed1b/dZHY8BY0PAN9U1cvczzcBqOr/Sbf9eASNlq4oF37reS4/fSZ3fPosOiMx1u1qYe3OwzR3Rmhs7WGDe/MvDwe4/sMn8Ykz6zl4pJf9bb10RWOEg36W1Ffw/DtN3PnsdlRh/vQSPv+B+dRXhtmwu5XHNjTS3nN0TH55UYD6aWGisQRd0Tg90Tjd0Rj1lcX85m8vKsj/mOBNIfE3P32THjfaKxz08fVLT+a5dw7yzoEOAj7hUGeUkpCfL3xwPr94Yy/723tZOncard1Rdh/uBrwZYT993lx6ojEiQ9w5XVcRZmFtGb19cR565X3WvefNu/XNPziND06C7rqR6Isn+I8XGrj7hZ1E4wmqSoJcefZsHtvQSEevN4w5FPBRV1FEbXmYuooiFtaW88kz6jnS28eOg52uG66dI719XLl0Nl3ROJv3tRMO+mnv7uNIbx9nzqmkvrKYhCrxhFJTXkR9ZZhfvLGXp98+wKHOKHOri/mnTy5hxWkzJ/iq5FZzR4QbfryB9btbmVFWxKFBM+LOKAtRWhTgyx9byDUpc2SpKnc910BclesuPJHKkvzfgzJWx1PQuBq4XFX/3P38eeB8Vf1yuu3HI2gA3PLLLax+eReVxUE6IzHiCSUU8DGzIkxpUYCrzplNfWUxj2/cy6+HmdH1U2fP5muXLmZOVfGAT4XxhLK3tYd3D3Wy61AXuw51caC9l3DQT0nIT0koQEnIz8dOqeXcEyZmBFSuNDR18vPXG1kyq4IfvvweG3a3UlNexKVL6ojFEyyuK+elHYd4aXszC2vL+NYfncEyN19WS1eUN/e08e/P7+D199sIB30Up8k4FGhLmU56RlmIr116Mp9eNqdgAy54das33m/j357bzivvtnDhwulcc+5cDnVGaO6IcPBIL03u+65DXQweRT5/egk+n/QvjlVXUUQsrpSHA5SEAmw72JF26Hko4GPFkjouObWWT5xRT1Fg8mSwuaSq9PTFKQkF2H6wgw27W+nsjXH2vGmce0JVXkYoTYTjKWhcA1w2KGgsV9W/TNnmeuB6gHnz5p27e3fuh8xGYnF+tmEvm/a2UV0a4sIFMzjnhKq03SOvv9/Ku81dzKoMUz+tmPJwgM7eGBv3tFES8nPpkrrj9g9vNCKxOC+808yHF80YUORVVTbuaePU+oq019kbHZYgHPQNeT2P9Pax+1A3oYCPedUleZ+2YjypKk0dEWrLi4Z8/U1Henl2axO15UWcOquCGWUhigJ+VJVNe9uZVhw6pmuwOxqjozeGTwS/T9jb2sOuw118aOGMvM8kYPLneAoaE949ZYwxx7tsg0Yh5OivAYtE5EQRCQErgScm+JyMMWZKmjwDvoegqjER+TLwDN6Q29Wqmr8JY4wxxvSb9EEDQFWfBJ6c6PMwxpiprhC6p4wxxkwSFjSMMcZkzYKGMcaYrFnQMMYYkzULGsYYY7I26W/uGykR6QC2ATOAXC7cUAnkcsL9yX48yN01LITXmuvj2t/f2Nj1G5uRXr8ZQKmqDr9ClKoeV1/A+tTvOTzuvVPpeLm8hoXwWnN9XPv7s+tXSNdvJNtb91T2fjnFjpdLhfJa7RpOnuPl2mR/vZP9+vU7Hrun1qvqsuT3iT6fQmbXcPTs2o2NXb+xGen1G8n2x2Omce+g72b07BqOnl27sbHrNzYjvX5Zb3/cZRrGGGPGz/GYaRhjjBknBRM0RGSuiLwgIltFZLOIfMW1V4vIGhHZ4b5XufbpbvtOEfluynHKRWRjytchEfnXiXpd+ZSra+ie+6yIbBKRt0TkaREprLVTRyjH1+4z7rptFpFvT8TrybdRXL9LRWSD+xvbICIXpxzrXNfeICJ3yRRY0SzH1+82EdkjIp2jOplcDvMazy+gHjjHPS4HtgNLgG8D33Dt3wBud49LgQ8BfwF8N8NxNwAfmejXV0jXEG925CZghvv523gLZU34ayyAazcdeB+ocT/fD1wy0a9vEl6/s4FZ7vHpwN6UY60DPgAI8BTwexP9+grs+l3gjtc5mnMpmExDVfer6uvucQewFZgNXIH3Hw/3/Uq3TZeq/hboHeqYIrIIqAX+ZxxPfdLI4TUU91XqPuVVAPvG/xVMnBxeu5OA7ara7H5+FrhqnE9/wo3i+r2hqsm/qc1AWESKRKQeqFDVteq9Az6Q3Od4lqvr5557RVX3j/ZcCiZopBKR+XiR9FWgLnkB3PfaERzqs8Aj7o9vShnLNVTVPuAGYBNesFgC3DeOpzupjPHvrwE4RUTmi0gA7z/53PE728lnFNfvKuANVY3gvVE2pjzX6NqmjDFevzEruKAhImXAz4CvquqRMR5uJfCfYz+rwjLWaygiQbygcTYwC3gLuCmnJzlJjfXaqWor3rV7BC/DfQ+I5fIcJ7ORXj8ROQ24HfhisinNZlPmQ18Ort+YFVTQcG9WPwMeUtWfu+aDLmXFfW/K8lhnAQFV3TAuJztJ5egaLgVQ1Z0uS3sU+OA4nfKkkau/P1X9paqer6ofwJsnbcd4nfNkMtLrJyJzgF8A16rqTtfcCMxJOewcjvOu0aQcXb8xK5ig4frO7wO2quodKU89Aaxyj1cBj2d5yM8yxbKMHF7DvcASEUlObnYpXh/rcSuXf38iUuu+VwFfAn6Q27OdfEZ6/URkGvDfwE2q+nJyY9cF0yEiF7hjXkv2/+cLVq6uX05M9KiAbL/wRqIoXlfIRvf1CbzRKM/hfVp7DqhO2ec9oAXoxPuEsiTluXeBUyb6dRXqNcQbFbTVHeuXwPSJfn0FdO3+E9jivlZO9GubjNcP+EegK2XbjUCte24Z8DawE/gu7ibl4/krx9fv2+7vMeG+f3Mk52J3hBtjjMlawXRPGWOMmXgWNIwxxmTNgoYxxpisWdAwxhiTNQsaxhhjsmZBw5g8E5G/EJFrR7D9fBF5ezzPyZhsBSb6BIyZSkQkoKrfm+jzMGa0LGgYM0Juwrin8SaMOxtvmuprgVOBO4Ay4BDwBVXdLyIvAr8DLgSeEJFyvGmpvyMiS4HvASV4N6v9maq2isi5wGqgG/ht/l6dMZlZ95Qxo3MycK+qngkcAW4E/h24WlWTb/i3pWw/TVU/qqr/Mug4DwB/546zCbjZtf8Q+Cv15qcyZtKwTMOY0dmjR+f0+THw93iL3axxC8n5gdQ1Cx4ZfAARqcQLJr9xTfcDP03T/iDwe7l/CcaMnAUNY0Zn8Pw7HcDmDJlB1wiOLWmOb8ykYN1TxozOPBFJBojPAq8ANck2EQm6tQyGpKrtQKuIfNg1fR74jaq2Ae0i8iHX/se5P31jRscyDWNGZyuwSkT+L94Mo/8OPAPc5bqXAsC/4i21mckq4HsiUoI38/KfuvY/BVaLSLc7rjGTgs1ya8wIudFTv1LV0yf4VIzJO+ueMsYYkzXLNIwxxmTNMg1jjDFZs6BhjBh3HIwAAAAkSURBVDEmaxY0jDHGZM2ChjHGmKxZ0DDGGJM1CxrGGGOy9v8DRTgz4s9ywwYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence annuelle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n", "entre deux années civiles, nous définissons la période de référence\n", "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n", "1er août de l'année $N+1$.\n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er août de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er août.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", "Encore un petit détail: les données commencent an octobre 1984, ce qui\n", "rend la première année incomplète. Nous commençons donc l'analyse en 1985." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", "\n", "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici les incidences annuelles." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+w1fV95/HnC0GwiSgQMPxQYSPJBE0Xyx10x+5uxC2QHxOwNQ2rVWbqDIniju1mVqTJjqnSmZhpYsu6ISE1FbWK1MSRTaF4jTq1XQJcgr+Q0Hu7UkSIXOaiYmegXnjvH9/Pqd97cjmcc/lyftz7esycOd/7OZ/P53zul8N9n8+P7/ejiMDMzKxIwxrdADMzG3wcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4YY3ugH19JGPfCSmTp3a6GaYmbWU7du3H4qI8bWUGVLBZerUqXR0dDS6GWZmLUXSP9daxsNiZmZWOAcXMzMrnIOLmZkVrqrgImmPpFckvSipI6V9Q9KbKe1FSZ/N5V8uqUvSbknzcumzUj1dklZKUkofKenxlL5F0tRcmcWSOtNjcS59Wsrbmcqeffqnw8zMilBLz+XqiJgZEW25tPtS2syI2AAgaQawCLgUmA98V9JZKf8qYAkwPT3mp/SbgcMRcQlwH3BvqmsscBdwBTAbuEvSmFTm3vT+04HDqQ4zM2sCZ2JYbAGwNiKORcTrQBcwW9JEYHREbI5sh7KHgIW5MmvS8RPANalXMw9oj4ieiDgMtAPz02tzUl5S2VJdLe/gu0f53e9v5uCRo41uipnZgFQbXAJ4WtJ2SUty6bdJelnSD3M9isnAG7k8+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr6vlrfxpJ9v29LDymc5GN8XMbECqvc7lqojYL2kC0C7pF2RDXPeQBZ57gG8Dvw+on/JRIZ0BlKlUVx8pGC4BuOiii/rL0jQ+8fWNHOs98W8/P7JlL49s2cvI4cPYveIzDWyZmVltquq5RMT+9HwQeBKYHRFvRcTxiDgB/IBsTgSyXsSFueJTgP0pfUo/6X3KSBoOnAf0VKjrEHB+ylteV3nbV0dEW0S0jR9f0wWmdffCHVfzhZmTGDUi+2cZNWIYC2ZO4oVlVze4ZWZmtTllcJH0IUnnlo6BucCraQ6l5Frg1XS8HliUVoBNI5u43xoRB4Ajkq5McyY3AU/lypRWgl0HPJvmZTYBcyWNScNuc4FN6bXnUl5S2VJdLWvC6FGcO3I4x3pPMHL4MI71nuDckcOZcO6oRjfNzKwm1QyLXQA8mVYNDwcejYi/lfSwpJlkw1F7gC8DRMROSeuA14BeYGlEHE913QI8CJwDbEwPgAeAhyV1kfVYFqW6eiTdA2xL+e6OiJ50vAxYK2kFsCPV0fIOvXeMG664mOtnX8SjW/fS7Ul9M2tByjoBQ0NbW1v43mJmZrWRtL3sMpRT8hX6ZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3BpUb7/mJk1MweXFuX7j5lZM6v23mLWJHz/MTNrBe65tBjff8zMWoGDS4vx/cfMrBV4WKwF+f5jZtbsfG+xKhx89yi3PbaD+6+/3D0EMxtyfG+xM8Qrs8zMauNhsQq8MsvMbGDcc6nAK7PMzAbGwaUCr8wyMxuYqoKLpD2SXpH0oqSOlDZWUrukzvQ8Jpd/uaQuSbslzculz0r1dElambY7Jm2J/HhK3yJpaq7M4vQenZIW59KnpbydqezZp386flVpZdaTt17FDVdcTPd7x87E25iZDSpVrRaTtAdoi4hDubRvAT0R8U1JdwJjImKZpBnAY8BsYBLwDPDxiDguaStwO/AzYAOwMiI2SroV+PWI+IqkRcC1EfElSWOBDqCNbDvl7cCsiDictlL+cUSslfQ94KWIWFXp9/BOlGZmtav3arEFwJp0vAZYmEtfGxHHIuJ1oAuYLWkiMDoiNkcW0R4qK1Oq6wngmtSrmQe0R0RPRBwG2oH56bU5KW/5+5uZWYNVG1wCeFrSdklLUtoFEXEAID1PSOmTgTdyZfeltMnpuDy9T5mI6AXeAcZVqGsc8HbKW16XmZk1WLVLka+KiP2SJgDtkn5RIa/6SYsK6QMpU6muvo3JguESgIsuuqi/LGZmVrCqei4RsT89HwSeJJtPeSsNdZGeD6bs+4ALc8WnAPtT+pR+0vuUkTQcOA/oqVDXIeD8lLe8rvK2r46ItohoGz9+fDW/rpmZnaZTBhdJH5J0bukYmAu8CqwHSqu3FgNPpeP1wKK0AmwaMB3YmobOjki6Ms2Z3FRWplTXdcCzaV5mEzBX0pi0Gm0usCm99lzKW/7+ZmbWYNUMi10APJlWDQ8HHo2Iv5W0DVgn6WZgL/BFgIjYmVZyvQb0Aksj4niq6xbgQeAcYGN6ADwAPCypi6zHsijV1SPpHmBbynd3RPSk42XAWkkrgB2pDjMzawK+caWZmVXkG1eamVlTcHAxM7PCObiYmVnhHFzMzKxwDi5mZlY4BxczMyucg4uZmRXOwcXMzArn4GJmZoVzcDEzs8I5uJiZWeEcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhas6uEg6S9IOST9JP39D0puSXkyPz+byLpfUJWm3pHm59FmSXkmvrVTaO1nSSEmPp/QtkqbmyiyW1Jkei3Pp01LezlT27NM7FWZmVpRaei63A7vK0u6LiJnpsQFA0gxgEXApMB/4rqSzUv5VwBJgenrMT+k3A4cj4hLgPuDeVNdY4C7gCmA2cJekManMven9pwOHUx1mZtYEqgoukqYAnwP+oorsC4C1EXEsIl4HuoDZkiYCoyNic0QE8BCwMFdmTTp+Argm9WrmAe0R0RMRh4F2YH56bU7KSypbqsvMzBqs2p7LnwF3ACfK0m+T9LKkH+Z6FJOBN3J59qW0yem4PL1PmYjoBd4BxlWoaxzwdspbXpeZmTXYKYOLpM8DByNie9lLq4CPATOBA8C3S0X6qSYqpA+kTKW6+pC0RFKHpI7u7u7+spiZWcGq6blcBXxB0h5gLTBH0iMR8VZEHI+IE8APyOZEIOtFXJgrPwXYn9Kn9JPep4yk4cB5QE+Fug4B56e85XX1ERGrI6ItItrGjx9fxa9rZman65TBJSKWR8SUiJhKNlH/bET8XppDKbkWeDUdrwcWpRVg08gm7rdGxAHgiKQr05zJTcBTuTKllWDXpfcIYBMwV9KYNOw2F9iUXnsu5SWVLdVlZmYNNvzUWU7qW5Jmkg1H7QG+DBAROyWtA14DeoGlEXE8lbkFeBA4B9iYHgAPAA9L6iLrsSxKdfVIugfYlvLdHRE96XgZsFbSCmBHqsPMzJqAsk7A0NDW1hYdHR2NboaZWUuRtD0i2mop4yv0zcyscA4uZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3AxM7PCObiYmVnhHFzMbMg7+O5Rfvf7mzl45GijmzJoOLiY2ZC38qedbNvTw8pnOhvdlEHjdO4tZmbW0j7x9Y0c6/1gm6pHtuzlkS17GTl8GLtXfKaBLWt97rmY2ZD1wh1X84WZkxg1IvtTOGrEMBbMnMQLy65ucMtan4OLmTWdes2BTBg9inNHDudY7wlGDh/Gsd4TnDtyOBPOHXVG33cocHAxs6ZTzzmQQ+8d44YrLubJW6/ihisupvu9Y2f8PYcC33LfzJpG+RxIiedAGsu33DezluY5kMHDwcXMmobnQAaPqoOLpLMk7ZD0k/TzWEntkjrT85hc3uWSuiTtljQvlz5L0ivptZWSlNJHSno8pW+RNDVXZnF6j05Ji3Pp01LezlT27NM7FWbWDDwHMjhUPeci6b8DbcDoiPi8pG8BPRHxTUl3AmMiYpmkGcBjwGxgEvAM8PGIOC5pK3A78DNgA7AyIjZKuhX49Yj4iqRFwLUR8SVJY4GO9L4BbAdmRcRhSeuAH0fEWknfA16KiFWVfgfPuZiZ1e6MzblImgJ8DviLXPICYE06XgMszKWvjYhjEfE60AXMljSRLDBtjiyiPVRWplTXE8A1qVczD2iPiJ6IOAy0A/PTa3NS3vL3NzOzBqt2WOzPgDuA/DKOCyLiAEB6npDSJwNv5PLtS2mT03F5ep8yEdELvAOMq1DXOODtlLe8rj4kLZHUIamju7u7yl/XzMxOxymDi6TPAwcjYnuVdaqftKiQPpAylerqmxixOiLaIqJt/Pjx/WUxM7OCVdNzuQr4gqQ9wFpgjqRHgLfSUBfp+WDKvw+4MFd+CrA/pU/pJ71PGUnDgfOAngp1HQLOT3nL6zKrie+Ia1a8UwaXiFgeEVMiYiqwCHg2In4PWA+UVm8tBp5Kx+uBRWkF2DRgOrA1DZ0dkXRlmjO5qaxMqa7r0nsEsAmYK2lMWo02F9iUXnsu5S1/f7Oa+I64ZsU7nbsifxNYJ+lmYC/wRYCI2JlWcr0G9AJLI+J4KnML8CBwDrAxPQAeAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIdZ1XxHXLMzx7d/sSHr4LtHWbFhF0/v/CVH3z/BqBHDmHfpR/na5z7pi/bMcnz7F7Ma1HI1eKvOy7Rqu631ObjYkFbt1eCtOi/Tqu221udhMbMKWvUuva3abmtOHhYzK1ir3qW3Vdttg4eDi1kFrXqX3lZttw0ep7MU2WxIKM3LXD/7Ih7dupfuFpkcb9V22+DgORczM6vIcy5mZtYUHFzMzKxwDi5mZgXyhasZBxczswL5wtWMV4tZSzr47lFue2wH919/uZfXWlPwjVD7cs/FWpK/HVqz8YWrfbnnYi3F3w4/4N5bc/GFq32552Itxd8OP+DeW/Op9kaoQ4F7LtZ0Kn0j97dD996a2fdv/OA6wxULL2tgSxrvlD0XSaMkbZX0kqSdkv44pX9D0puSXkyPz+bKLJfUJWm3pHm59FmSXkmvrUzbHZO2RH48pW+RNDVXZrGkzvRYnEuflvJ2prJnF3NKbKCKWoJ5qm/kQ/3boXtv1gqq6bkcA+ZExHuSRgB/L6m0PfF9EfGn+cySZpBtU3wpMAl4RtLH01bHq4AlwM+ADcB8sq2ObwYOR8QlkhYB9wJfkjQWuAtoAwLYLml9RBxOee6LiLWSvpfqWDXwU2GnKx8UVlz7qZrLV/uNfKh/O3TvzVrBKXsukXkv/TgiPSrdkGwBsDYijkXE60AXMFvSRGB0RGyO7IZmDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVmef+PpGpt75NzyyZS8RWVCYeuff8Imvbzx14Rx/I6/eUO+9WfOras5F0lnAduAS4H9HxBZJnwFuk3QT0AF8NQWAyWQ9k5J9Ke39dFyeTnp+AyAieiW9A4zLp5eVGQe8HRG9/dRldfbCHVefdC/6WvgbefWGeu/Nml9Vq8Ui4nhEzASmkPVCLiMbgvoYMBM4AHw7ZVd/VVRIH0iZSnX1IWmJpA5JHd3d3f1lsdNUZFDwN/LBz7dHGRpqWi0WEW9Leh6Yn59rkfQD4Cfpx33AhbliU4D9KX1KP+n5MvskDQfOA3pS+qfLyjwPHALOlzQ89V7ydZW3eTWwGrJb7tfy+1r1ito7xN/IB7/TnZuz1nDK/VwkjQfeT4HlHOBpssn07RFxIOX5Q+CKiFgk6VLgUWA22YT+T4HpEXFc0jbgvwFbyCb0/1dEbJC0FPhURHwlTej/dkT8bprQ3w78RmrOz4FZEdEj6a+BH+Um9F+OiO9W+l28n4tZ45Qv2CjxEurmN5D9XKrpuUwE1qR5l2HAuoj4iaSHJc0kG47aA3wZICJ2SloHvAb0AkvTSjGAW4AHgXPIVomVZnwfAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIeZNami5uasNZwyuETEy8Dl/aTfWKHMnwB/0k96B/ArYx0RcRT44knq+iHww37S/x9Z78jMWoAXbAwtvkLfzOqmqLk5a36nnHMZTDznYmZWu4HMufjGlWZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4RxczMyscA4uZmZWOAcXszrzfiY2FDi4mNVZfj8Ts8HKN640q5Py/Uwe2bKXR7bs9X4mNii552JWJy/ccTVfmDmJUSOy/3ajRgxjwcxJvLDs6ga3zKx4Di5mdeL9TGwocXCxQa3ZJs9L+5k8eetV3HDFxXS/d6zRTTI7I04ZXCSNkrRV0kuSdkr645Q+VlK7pM70PCZXZrmkLkm7Jc3Lpc+S9Ep6baUkpfSRkh5P6VskTc2VWZzeo1PS4lz6tJS3M5U9u5hTYoNJs02ef//GNlYsvIwZk0azYuFlfP/GmrbIMGsZp9wsLAWAD0XEe5JGAH8P3A78NtATEd+UdCcwJiKWSZoBPEa2BfEk4Bng4xFxXNLWVPZnwAZgZURslHQr8OsR8RVJi4BrI+JLksYCHUAbEMB2YFZEHJa0DvhxRKyV9D3gpYhYVel38WZhQ0f55HmJJ8/NandGNguLzHvpxxHpEcACYE1KXwMsTMcLgLURcSwiXge6gNmSJgKjI2JzZBHtobIypbqeAK5JQW0e0B4RPRFxGGgH5qfX5qS85e9v5snzBmm2YUhrnKrmXCSdJelF4CDZH/stwAURcQAgPU9I2ScDb+SK70tpk9NxeXqfMhHRC7wDjKtQ1zjg7ZS3vK7yti+R1CGpo7u7u5pf1wYBT543RrMNQ1rjVHWdS0QcB2ZKOh94UtJlFbKrvyoqpA+kTKW6+iZGrAZWQzYs1l8eG5xKk+fXz76IR7fupdvfps8YX8Nj5Wq6iDIi3pb0PDAfeEvSxIg4kIa8DqZs+4ALc8WmAPtT+pR+0vNl9kkaDpwH9KT0T5eVeR44BJwvaXjqveTrMgPoM1m+YmGl70N2ul6442pWbNjF0zt/ydH3TzBqxDDmXfpRvva5Tza6adYg1awWG596LEg6B/gvwC+A9UBp9dZi4Kl0vB5YlFaATQOmA1vT0NkRSVemOZObysqU6roOeDbNy2wC5koak1ajzQU2pdeeS3nL39/M6szDkFaump7LRGCNpLPIgtG6iPiJpM3AOkk3A3uBLwJExM60kus1oBdYmobVAG4BHgTOATamB8ADwMOSush6LItSXT2S7gG2pXx3R0RPOl4GrJW0AtiR6jCzBvEwpOWdcinyYHImlyIffPcotz22g/uvv9zf1szqpFX/37Vau8/IUmSrjlfJmNVfq/6/a9V218I9l9Pki/XM6q9V/9+1arvdc2kAX6xnVn+t+v+uVds9EA4up6mWVTK+etlaWTN9flt1dVqrtnsgHFwKUO2dbofCOKsNXs32+W3VO0y3artr5TmXOmjVcVYz8OfXPOfStIbSOKsNPv78Nq9mGqos5+BSB4NhnLWZP8R2Zg2Gz+9g1WxDlXk13VvMBq7Vr17Of4hXXPupRjfH6qzVP7+DTSvcKNRzLlaRx9vNms/Bd4+e9EahZ6JH6TkXK5zH282aTysMVXpYzCpqhQ+x2VDU7EOVDi52Ss3+ITYbipp9vyLPuQxxrXZ3VjOrP8+5WM2aeSmjmbUuD4sNUa2wlLHVuBdo9oFqtjm+UNJzknZJ2inp9pT+DUlvSnoxPT6bK7NcUpek3ZLm5dJnSXolvbYybXdM2hL58ZS+RdLUXJnFkjrTY3EufVrK25nKnl3MKRkavAqseO4Fmn2gmp5LL/DViPi5pHOB7ZLa02v3RcSf5jNLmkG2TfGlwCTgGUkfT1sdrwKWAD8DNgDzybY6vhk4HBGXSFoE3At8SdJY4C6gDYj03usj4nDKc19ErJX0vVTHqoGfiqHFq8CK416g2a86Zc8lIg5ExM/T8RFgFzC5QpEFwNqIOBYRrwNdwGxJE4HREbE5slUEDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVqWhcnfWM829QLNfVdOcSxquuhzYAlwF3CbpJqCDrHdzmCzw/CxXbF9Kez8dl6eTnt8AiIheSe8A4/LpZWXGAW9HRG8/dVmVmn0pY6twL9DsV1W9WkzSh4EfAX8QEe+SDUF9DJgJHAC+XcraT/GokD6QMpXqKm/3Ekkdkjq6u7v7y2J22twLNOurqp6LpBFkgeWvIuLHABHxVu71HwA/ST/uAy7MFZ8C7E/pU/pJz5fZJ2k4cB7Qk9I/XVbmeeAQcL6k4an3kq+rj4hYDayG7DqXan5fs1q5F2jWVzWrxQQ8AOyKiO/k0ifmsl0LvJqO1wOL0gqwacB0YGtEHACOSLoy1XkT8FSuTGkl2HXAs2leZhMwV9IYSWOAucCm9NpzKS+pbKkuMzNrsGp6LlcBNwKvSHoxpf0R8F8lzSQbjtoDfBkgInZKWge8RrbSbGlaKQZwC/AgcA7ZKrGNKf0B4GFJXWQ9lkWprh5J9wDbUr67I6InHS8D1kpaAexIdZiZWRPw7V/MzKwi3/7FzMyagoOLmVkTavWtxR1czKzl/5ANRq1+OyHfuNLM+vwhW3HtpxrdnCFtsNxOyBP6ZkNY+R+yklb7QzaYHHz3KCs27OLpnb/k6PsnGDViGPMu/Shf+9wnB3TXhyLu1u0JfTOrie+L1nyKvp1Qo4bXPCxm1oTqtTeM74vWnIrYWrzRw2sOLmZNqJ5zIEX8IbNiFXE7oRfuuPqkw2v14OBi1kQa8W3T90UbnBrdK/Wci1kT8RxI8YbyMutG3q3bPRezJtLob5uD0VBeZt3IXqmDi1mT8RxIMRo9oT3U+ToXMxuUir5eZCjzdS5mZomHGBvLw2JmNmh5iLFxPCxmZmYVeVjMzMyawimDi6QLJT0naZeknZJuT+ljJbVL6kzPY3JllkvqkrRb0rxc+ixJr6TXVkpSSh8p6fGUvkXS1FyZxek9OiUtzqVPS3k7U9mzizklZmZ2uqrpufQCX42ITwJXAkslzQDuBH4aEdOBn6afSa8tAi4F5gPflXRWqmsVsASYnh7zU/rNwOGIuAS4D7g31TUWuAu4ApgN3JULYvcC96X3P5zqMDOzJnDK4BIRByLi5+n4CLALmAwsANakbGuAhel4AbA2Io5FxOtAFzBb0kRgdERsjmyi56GyMqW6ngCuSb2aeUB7RPRExGGgHZifXpuT8pa/v5mZNVhNcy5puOpyYAtwQUQcgCwAARNStsnAG7li+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr8vMzBqs6uAi6cPAj4A/iIh3K2XtJy0qpA+kTKW6+jZGWiKpQ1JHd3d3f1nMzKxgVQUXSSPIAstfRcSPU/JbaaiL9Hwwpe8DLswVnwLsT+lT+knvU0bScOA8oKdCXYeA81Pe8rr6iIjVEdEWEW3jx4+v5tc1M7PTVM1qMQEPALsi4ju5l9YDpdVbi4GncumL0gqwaWQT91vT0NkRSVemOm8qK1Oq6zrg2TQvswmYK2lMmsifC2xKrz2X8pa/v5mZNVg1V+hfBdwIvCLpxZT2R8A3gXWSbgb2Al8EiIidktYBr5GtNFsaEcdTuVuAB4FzgI3pAVnwelhSF1mPZVGqq0fSPcC2lO/uiOhJx8uAtZJWADtSHWZm1gR8hb6ZmVXkK/St6Q3ljZvMhhIHF6ur/MZNZjZ4+a7IVhfeuMlsaHHPxerCe8ObDS0OLlYX3rjJbGjxsJjVjTduMhs6vBTZzMwq8lJkMzNrCg4uZmZWOAeXQcwXLJpZozi4DGK+YNHMGsWrxQYhX7BoZo3mnssg5AsWzYrnYebaOLgMQr5g0ax4HmaujYfFBilfsGhWDA8zD4wvojQzq+Dgu0dZsWEXT+/8JUffP8GoEcOYd+lH+drnPjlkRgPOyEWUkn4o6aCkV3Np35D0pqQX0+OzudeWS+qStFvSvFz6LEmvpNdWpq2OSdshP57St0iamiuzWFJneizOpU9LeTtT2bNr+aXNzKrlYeaBqWbO5UFgfj/p90XEzPTYACBpBtkWxZemMt+VdFbKvwpYAkxPj1KdNwOHI+IS4D7g3lTXWOAu4ApgNnCXpDGpzL3p/acDh1MdZmZnRGmY+clbr+KGKy6m+71jjW5S0zvlnEtE/F2+N3EKC4C1EXEMeF1SFzBb0h5gdERsBpD0ELAQ2JjKfCOVfwK4P/Vq5gHtEdGTyrQD8yWtBeYA16cya1L5VVW20cysJt+/8YMRoRULL2tgS1rH6awWu03Sy2nYrNSjmAy8kcuzL6VNTsfl6X3KREQv8A4wrkJd44C3U97yuszMrAkMNLisAj4GzAQOAN9O6eonb1RIH0iZSnX9CklLJHVI6uju7j5ZNjMzK9CAgktEvBURxyPiBPADsjkRyHoRF+ayTgH2p/Qp/aT3KSNpOHAe0FOhrkPA+SlveV39tXV1RLRFRNv48eNr/VXNzGwABhRcJE3M/XgtUFpJth5YlFaATSObuN8aEQeAI5KuTPMpNwFP5cqUVoJdBzwb2froTcBcSWPSsNtcYFN67bmUl1S2VJeZmTWBU07oS3oM+DTwEUn7yFZwfVrSTLLhqD3AlwEiYqekdcBrQC+wNCKOp6puIVt5dg7ZRP7GlP4A8HCa/O8hW21GRPRIugfYlvLdXZrcB5YBayWtAHakOszMrEn4IkozM6toIBdRDqngIqkb+Od+XvoI2VxOq3G768vtrq9WbTe0bttP1u6LI6KmSeshFVxORlJHrVG5Gbjd9eV211erthtat+1Fttt3RTYzs8I5uJiZWeEcXDKrG92AAXK768vtrq9WbTe0btsLa7fnXMzMrHDuuZiZWeEGZXA5yR40/17S5rSnzP+RNDqlj5C0JqXvkrQ8V+b5tC9Nad+aCU3U7rMl/WVKf0nSp3Nl+t07pwXaXe/zfaGk59K/+05Jt6f0sZLa035B7bkbs9a8X1ELtLtu57zWdksal/K/J+n+srrq/Rkvsu3NfM5/S9L2dG63S5qTq6u2cx4Rg+4B/CfgN4BXc2nbgP+cjn8fuCcdX0+2TQDAr5HdcWBq+vl5oK1J270U+Mt0PAHYDgxLP28F/gPZTT43Ap9pkXbX+3xPBH4jHZ8L/CMwA/jPDIkDAAADj0lEQVQWcGdKvxO4Nx3PAF4CRgLTgH8Czqr3OS+43XU75wNo94eA3wS+AtxfVle9P+NFtr2Zz/nlwKR0fBnw5kDP+aDsuUTE35HdSibvE8DfpeN24HdK2YEPKbsR5jnAvwLv1qOd5Wps9wzgp6ncQeBtoE3Zfd9GR8TmyD4Rpb1zmrrdZ7J9JxMRByLi5+n4CLCLbPuGBWT7BJGeS+fv3/YriojXgdJ+RXU950W1+0y172RqbXdE/EtE/D1wNF9Pgz7jhbS93gbQ7h0RUboR8E5glLJ7RdZ8zgdlcDmJV4EvpOMv8sEdl58A/oVs64C9wJ/GB/cwA/jL1HX9n2e6630SJ2v3S8ACScOV3SR0Vnqt0t459VRru0sacr6VbYh3ObAFuCCym62SnkvDFgPZr+iMOs12l9T9nFfZ7pNp6Gf8NNte0grn/HeAHZFt/ljzOR9KweX3gaWStpN1D/81pc8GjgOTyIYMvirp36XXboiITwH/MT1urG+TgZO3+4dk/8AdwJ8B/5fsZqE17XdzBtXabmjQ+Zb0YeBHwB9ERKVeayF7DBWlgHZDA855De0+aRX9pNXlM15A26EFzrmkS8m2k/9yKamfbBXP+ZAJLhHxi4iYGxGzgMfIxp0hm3P524h4Pw3T/ANpmCYi3kzPR4BHacxQQr/tjojeiPjDiJgZEQuA84FOKu+d08ztbsj5ljSC7D/dX0XEj1PyW2kYoDQEczClD2S/omZud93PeY3tPpmGfMYLanvTn3NJU4AngZsiovR3suZzPmSCS2lFhqRhwNeB76WX9gJzlPkQcCXwizRs85FUZgTweT7Yt6bh7Zb0a6m9SPotoDciXovKe+c0bbsbcb7T+XkA2BUR38m9lN9jKL9f0ED2K2radtf7nA+g3f1qxGe8qLY3+zmXdD7wN8DyiPiHUuYBnfNKs/2t+iD7pnwAeJ8s4t4M3E62UuIfgW/ywQWkHwb+mmzy6jXgf8QHqz22Ay+n1/6ctMKmSdo9FdhNNkH3DNldS0v1tJF9YP8JuL9Uppnb3aDz/ZtkXfuXgRfT47PAOLJFB53peWyuzNfSed1NbrVMPc95Ue2u9zkfYLv3kC0WeS99tmY06DNeSNub/ZyTfRH8l1zeF4EJAznnvkLfzMwKN2SGxczMrH4cXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwv1/q4MdzlEclD8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2014 1600941\n", "1991 1659249\n", "1995 1840410\n", "2012 2175217\n", "2003 2234584\n", "2019 2254386\n", "2006 2307352\n", "2017 2321583\n", "2001 2529279\n", "1992 2574578\n", "1993 2703886\n", "2018 2705325\n", "1988 2765617\n", "2007 2780164\n", "1987 2855570\n", "2016 2856393\n", "2011 2857040\n", "2008 2973918\n", "1998 3034904\n", "2002 3125418\n", "2009 3444020\n", "1994 3514763\n", "1996 3539413\n", "2004 3567744\n", "1997 3620066\n", "2015 3654892\n", "2000 3826372\n", "2005 3835025\n", "1999 3908112\n", "2010 4111392\n", "2013 4182691\n", "1986 5115251\n", "1990 5235827\n", "1989 5466192\n", "dtype: int64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n", " française, sont assez rares: il y en eu trois au cours des 35 dernières années." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGalJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDsr4QAhIqzgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq+69XcXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvaqO4CZmfWWC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJ+TnzVqlWxZs2aWYc9+OCDrFixop+zr6zJ2aDZ+Zytuibnc7bqyubbunXrPRFxUFczjYi+/a1duzbmctVVV805rG5NzhbR7HzOVl2T8zlbdWXzARPRZe11V4yZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmVGGX9B5JN0u6SdJFkvbtVzAzM6um48IuaTXwbqAVEUcDS4DX9SuYmZlVU7YrZimwXNJSYD/gzt5HMjOzbihK/OappLOAc4DdwFcj4tRZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuuyZng97nm9yxq2fTGlwOO3d3Pv7Q6pU9m/dCftVe115yturK5hsZGdkaEa1u5tlxYZf0JOAS4BTgfuAfgIsj4vNzPafVasXExMSsw8bHxxkeHi6bd1E0ORv0Pt+aDVt6Nq31Q3vYNNn5N1Vs37iuZ/NeyK/a69pLzlZd2XySui7sZbpiXg7cHhE/iYhHgUuBF3czczMz670yhf1HwH+QtJ8kAS8DtvUnlpmZVdVxYY+I64CLgRuAyeK5m/uUy8zMKir1tb0R8UHgg33KYmZmPeArT83MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy03Fhl3SEpO+0/f1M0h/1M5yZmZXX8U/jRcQtwPMBJC0BdgCX9SmXmZlVVLUr5mXA/4mI/9vLMGZm1j1FRPknSZ8BboiIv5hl2CgwCjA4OLh2bGxs1mlMTU0xMDBQet6LocnZoPf5Jnfs6tm0BpfDzt2djz+0emXP5r2Q9nbr5TKXMd/yNnm9c7bqyuYbGRnZGhGtbuZZurBL2hu4E3hOROycb9xWqxUTExOzDhsfH2d4eLjUvBdLk7NB7/Ot2bClZ9NaP7SHTZMd9/CxfeO6ns17Ie3t1stlLmO+5W3yeuds1ZXNJ6nrwl6lK+aVpK31eYu6mZnVo0phfz1wUa+DmJlZb5Qq7JL2A34LuLQ/cczMrFudd4YCEfEQ8OQ+ZTEzsx7wladmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmSn703gHSrpY0g8kbZN0XL+CmZlZNaV+Gg84F7giIk6WtDewXx8ymZlZFzou7JIOAF4KnA4QEY8Aj/QnlpmZVaWI6GxE6fnAZuD7wPOArcBZEfHgjPFGgVGAwcHBtWNjY7NOb2pqioGBgerJ+6jJ2aD3+SZ37OrZtAaXw87dnY8/tHplz+a9kPZ26+UylzHf8jZ5vXO26srmGxkZ2RoRrW7mWaawt4B/AY6PiOsknQv8LCLeP9dzWq1WTExMzDpsfHyc4eHh8okXQZOzQe/zrdmwpWfTWj+0h02Tnffwbd+4rmfzXkh7u/VymcuYb3mbvN45W3Vl80nqurCXOXh6B3BHRFxX3L8YeEE3Mzczs97ruLBHxF3AjyUdUTz0MlK3jJmZNUjZs2LeBXyhOCPmNuAtvY9kZmbdKFXYI+I7QFd9P2Zm1l++8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM6V+QUnSduAB4OfAnm5/SdvMzHqv7G+eAoxExD09T2JmZj3hrhgzs8woIjofWbod+CkQwF9HxOZZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuq8kduxhcDjt3L/68h1av7Gi8Xrfd5I5dPZtW2bbrdJl7ob3dernMZcy3vE19T4CzdaNsvpGRka3ddnOXLexPjYg7JR0MfA14V0RcM9f4rVYrJiYmZh02Pj7O8PBwybj9t2bDFtYP7WHTZJVequ5s37iuo/F63XZrNmzp2bTKtl2ny9wL7e3Wy2UuY77lbep7ApytG2XzSeq6sJfqiomIO4v/dwOXAS/sZuZmZtZ7HRd2SSsk7T99G3gFcFO/gpmZWTVl+hsGgcskTT/vwoi4oi+pzMysso4Le0TcBjyvj1nMzKwHfLqjmVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZKF3ZJSyTdKOnyfgQyM7PuVNliPwvY1usgZmbWG6UKu6RDgXXA3/YnjpmZdUsR0fnI0sXAR4D9gT+OiJNmGWcUGAUYHBxcOzY2Nuu0pqamGBgYqJK5ryZ37GJwOezcXXeSuTU5X9lsQ6tX9i/MDO3r3OSOXYs233bzLW9T3xPgbN0om29kZGRrRLS6mefSTkeUdBJwd0RslTQ813gRsRnYDNBqtWJ4ePZRx8fHmWtYnU7fsIX1Q3vYNNlx0yy6Jucrm237qcP9CzND+zp3+oYtizbfdvMtb1PfE+Bs3agjX5mumOOB10jaDowBJ0j6fF9SmZlZZR0X9oj4LxFxaESsAV4HXBkRp/UtmZmZVeLz2M3MMlOpozYixoHxniYxM7Oe8Ba7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8tMx4Vd0r6Svi3pu5JulvShfgYzM7NqyvyC0sPACRExJWkZ8A1J/xQR/9KnbGZmVkHHhT0iApgq7i4r/qIfoczMrDqlet3hyNISYCvwbOC8iPiTWcYZBUYBBgcH146Njc06rampKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT85XNNrR6Zf/CzNC+ztW1fs23vAu9J+r0RM3WhNe5bNuNjIxsjYhWN/MvVdh/8STpQOAy4F0RcdNc47VarZiYmJh12Pj4OMPDw3POY82GLaVz9cr6oT1smqz0O9+Losn5ymbbvnFdH9P8e+3rXF3r13zLu9B7ok5P1GxNeJ3Ltp2krgt7pbNiIuJ+YBw4sZuZm5lZ75U5K+agYksdScuBlwM/6FcwMzOrpsz+/FOAC4p+9r2AL0bE5f2JZWZmVZU5K+Z7wDF9zGJmZj3gK0/NzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMlPmN0+fJukqSdsk3SzprH4GMzOzasr85ukeYH1E3CBpf2CrpK9FxPf7lM3MzCroeIs9Iv4tIm4obj8AbANW9yuYmZlVo4go/yRpDXANcHRE/GzGsFFgFGBwcHDt2NjYrNOYmppiYGBgznlM7thVOlevDC6Hnbtrm/2CmpzP2arrd76h1SsrP3eh92ud5stWVx1pb+uybTcyMrI1IlrdzL90YZc0AFwNnBMRl843bqvViomJiVmHjY+PMzw8POdz12zYUipXL60f2sOmyTK9VIuryfmcrbp+59u+cV3l5y70fq3TfNnqqiPtbV227SR1XdhLnRUjaRlwCfCFhYq6mZnVo8xZMQI+DWyLiD/tXyQzM+tGmS3244E3AidI+k7x96o+5TIzs4o67tCLiG8A6mMWMzPrAV95amaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpaZMr95+hlJd0u6qZ+BzMysO2W22M8HTuxTDjMz65GOC3tEXAPc18csZmbWA4qIzkeW1gCXR8TR84wzCowCDA4Orh0bG5t1vKmpKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT8zlbdf3ON7R6ZeXnLvR+rdN82eqqI+1tXbbtRkZGtkZEq5v597ywt2u1WjExMTHrsPHxcYaHh+d87poNWzrO1Wvrh/awaXJpbfNfSJPzOVt1/c63feO6ys9d6P1ap/my1VVH2tu6bNtJ6rqw+6wYM7PMuLCbmWWmzOmOFwHfAo6QdIekt/YvlpmZVdVxh15EvL6fQczMrDfcFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWmVKFXdKJkm6R9ENJG/oVyszMqivzm6dLgPOAVwJHAa+XdFS/gpmZWTVltthfCPwwIm6LiEeAMeC3+xPLzMyqUkR0NqJ0MnBiRJxR3H8j8KKIeOeM8UaB0eLuEcAtc0xyFXBPldCLoMnZoNn5nK26JudzturK5jssIg7qZoZLS4yrWR77pU+FiNgMbF5wYtJERLRKzH/RNDkbNDufs1XX5HzOVl0d+cp0xdwBPK3t/qHAnb2NY2Zm3SpT2K8HDpf0DEl7A68D/rE/sczMrKqOu2IiYo+kdwJfAZYAn4mIm7uY94LdNTVqcjZodj5nq67J+ZytukXP1/HBUzMze2LwladmZplxYTczy4wLu5lZZp6QhV3Sakmr684xG0nPlPQeSSfUnWWmJmeDZudztuqanK/J2aB6vidUYZe0RtLVwBXAxyW9pO5M7ST9R+BrpO/SeZukt9cc6ReanA2anc/ZqmtyviZngy7zRUSj/4B9226/FvhEcfvNwD8AQ8V91ZDtBOAZ0/MHPgCcVtx/EfAlYLiOfE3O1vR8zpZnviZn63W+Rm6xSzpA0l9JuhX4hKTDikG/A/youD0G/BA4Y/ppi5jvKEnfA/4b8FlJJ0Rq7aOAQwAi4jrgm8BbFjNfk7M1PZ+z5Zmvydn6la+RhR04EdiXtGCPAB+QtJy0W/JqgIh4GLgYeElx/7F+hZF0qKQD2h46BbgkIl5K+oB5g6TDgQun8xUuA46WtE+/8jU5W9PzOVue+ZqcbbHy1VbYlSyV9FZJX5d0lqRnFYOfDTwSEXuAPwN+CpwGfBV4iqRfK8a7FfixpOP6lPFISV8GvgF8WNL01xT/P2C/4vYXgbuAdaRP1Ce37WHcR/p2y+f9KmVrej5nyzNfk7Mtdr7aCnuxq/GbwJuAjwH7AH9TDL4LuLv4ZPoxaWGeRWqA7/P41wIvA+4tHu8JSSva7j4fuCMi1gBXAp8oHr8PeFjS/hFxH/CvwFOLHN8E3luMtzfwc2B77tmans/Z8szX5Gx15lu0wi7pOEkflXR6cV/AkcAVEfGliPgYcJikFwM7SJ9gRxZP3wYMFI/9BfAqSa8mfSgMAt/tMtuTJJ0v6Xpgo6SDinxDwLWSFBH/CNwvaR1pT2H/YjjF/YOBx0h7GAdL+hvgImBPRNydY7am53O26pqcr8nZmpJvUQq7pOcAfwk8APyepPcW814NPFAsNMD5wBtIhXoP8OLi8RtIR4wfiohrgA3A6cDxwH+PiMfaplHFS4v5vYp0UOJs4ADSl50dUuxdAFxQ5Pt2sSyvBIiIbxXTWBoR24AzgZuB/xkRb6E7Tc7W9HzOlme+JmdrRr65Tpep+kfasj6DtNuxtHjsT4Gzitst4JPAycDLga+0PfdppF0VSIX8RtKvMB0D/G/gKW3jlj4dqWjYM4GrSd05q4rHvwi8u7j9DGBjMfxYUn/YkrZl+0kxndWkPYl3Ap8FPgWs6KLdGput6fmcza+r2+7f//V0i13S80kHOH8b+CDwvmLQDtJvpkL65LkW+F3gn4FDJD1X0rJI/ek7JL0kIq4kfd3lR4FLgYsi4t+m5xVFy5R0EvAa4EPAcaS+fUhn20zvHfwY+Drwyoi4nvSJO1LMcwq4Djg2InYAbyR1Bd0FvC8iHiwbqG1P49VNyzaD266axrUbuO26yfZEaLsyP433SyS9EDgc+GpE/IS0NX5rRJwu6QXAOZJawDjwnyTtFxEPSfou8HukczQvBP4A+KSk3cAkcHsxi78CLoyIXSUyKSJC0rGk3ZyvA1sinR7568BtEXGlpNtJV6++AtgK/I6kVRFxj6R/BR6U9HTgz4HTJB1M+tWoe0m7TkTEBDBRod1apL2aB4CPA3cDz6w7m9uuWrYnQru57fJru/mU2mJXskzSmyTdSOrYPxCYLrw/B7YXW983kHYtjgMe4vFTeAAeJe2CHELaKr+J1L9+NXBPRNwBaau8YlF/KfAZ0lHllwMfKUZ5DLhV0vKIuL3I91zSi3Un6XzS6eVYQmqfS4qMpwJrgc1R8RxXSSslfbaY5u3AuRFxt6S9SJ/kdWZbUrTdb5J2BRvTdsV6NyDpfBrWdsU8Q9IwzVzn9pG0oqFtd0DD225A0r6SLqBhbbegTvprgBXAi4vbBxbBPjnLeGeRLoNdXdw/mdSffhjpKwCuLh7fl9QNs6rtuccAe3eSZ8Y89wPexuNb/suAPwLeUQx/EvC9YvqnkPq71hTDTiqWZVVxexJYSerf/3J7HmCvLrJdRLpibIDUtXRm2zjTxyHeCfyPxcrW9rqeQVrZ1pMO8DSl7aazXVqsVwc1rO32B7aQfkkM4D1NaLcZ+b4M/HVx/2PA2+puO9J74s2k9/8lTWu7tnxXAn9fPNaY9a7TvwW32CWdDdwGbJE0GBH3k/qF7iz6xl+jxy8Q+hbpAOj0hUbXkg6iPhQRFwA/lfQ50kHRW4Bf9CFFxI0R8chCeWZkOwS4HBgGPkc6QPFa0l7CnmK6PyUdeH03qe/rYB4/jfIa0rn0j0TE5cCnSVeznkc6Yv1oW75Sn6ozsv0d8PYi263AEZI2FltRv690wdUVpD2Yvmcr8q0gvblOIF0/8ArScY9jSVtKdbZde7bNpLMFXku6huE36m67wnLStRfPkrSKtM4vKaZZS7vNkm9v0rr2VFIXx9GSPlJX20laRjrGdjLw8Yj43WLQMW3TrK3tZuT7WERMb3FPAkfV2XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI7txacSaeV9Udv900lbJm8Gvt32+FOBO4vb7yBdtvuk4vlfAp7eNu6qPmV7E+lI968Df1/8vR74X6Rz+RctW9v0Dmy7/Z9Jb6ZT6267WbL9MemUsWc2qO3eTOprfT/wVtKBtOvrbrdZ8r2PtMezqgltR9oDO3XGY6cA1zWh7ebI9/QiQ+3rXcfL0cGCTp+acwowXtxeRtqaWlncP4y0tX4saRfwYtKW1j+RPqn26Uv41Mcl+MVvt76Ax7t77iWdMzo97tcoCi1p9+mrxTh/skjZjgG+Mb3ito23jHRw+YTi/jn9zjYj5wGk4xs7gQ8X9+8FButqu1my3VXMdwVFN19dbdf2er6F1M32WuALxWP31N1uc+QbKx5rP124lvWO1EVxK7CpmP8HivpxH3BwA9a59nxXkb6Y69C617vSy1FigZ9MulDoOcX9pTOGnw+cPL0CkboezqRPRX2OlfkCHj9f/nPAR4vbv0ba43h62wtzNG1fCbxI2d7R/lhx+5Ci7Z672NnaMvwh6XzbzaR+7W8WbzjV2XYzsp1HOq3s2U1oO9JXRi8h9aFeTdoyvgl4f93r3Cz5/pl0htkLGtJ2XyHtgT2NtBV8FmnDsCnrXHu+L5Au/T+8CW3X6d900emIpE8BP4uIDcX9vUjnXb4DeA5wSpTsJ+8VSYeS+rTeFRG3Kn2h2GiRazXwnejNVWXdZHt7RNxWPHYMqVtqXZHtD+vI1k7pOoQzSW+yI0kr66HU2HZt2Y4mvdn+nHSW1UnU1HaSBkjdHPuQ2uk3SBeenE3aUj6cGtttlnyHk45P/BbpmNfLSO1Xy3qn4rTn4vbzSO/Ta0mX1Ne+zs3IdzTpSvdzSd80W9t6V0bZ89g3A+cWBxmOJK3Ex5NelLPrKuqFYyjOgZd0Bqn//2xSF9IPIp1+WXe2HxXZbietHHtIW/E31pit3b2kg4Dvi4i/k3QacHND8t1P6ie+ifS6LqO+tttDOnviUdKW+s9J6/8k8N4GtNtc+R6W9BpSwa9tvZsumoX7Sced3h8RFzag7Wbme4C08boN+K/Uu951rOwW++tIB0ofJn3j2JURcUufspUi6VrSwbXtpHNIPxQR36s1VGFGtruADQ1qt5WkLbg3kL7/fjNwXkQ8Ou8TF8Es2T4dEZvqTfXLigtPpvuy76o7z0xFvpOBz0Y666TuPPuQfnPhjaQ96r8EPhXpa7prN0u+zRHxZ/WmKqfjwi7puaTzOS8mHSzq2VfldqvYg/ggaUv485GuWmuEJmcDkLSU1P3yMClfk17XxmaDdFEX8FiU2TpaRE3OJ+lM0mm1n2va6wrNz7eQUlvsZmbWfE39aTwzM6vIhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpn/D0QBdzhJVkBDAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 1 }