Ajout d'une courbe représentant l'extrapolation en comparaison avec les mesures

parent 2e49fa83
...@@ -1032,22 +1032,22 @@ ...@@ -1032,22 +1032,22 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 105, "execution_count": 115,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"[<matplotlib.lines.Line2D at 0x7ff0d3509828>]" "[<matplotlib.lines.Line2D at 0x7ff0d3ed6be0>]"
] ]
}, },
"execution_count": 105, "execution_count": 115,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
{ {
"data": { "data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXd4XOWZ//151HuXZUu2ulzB3aYZDCGFGtgECLwhZCGEkA0hySbZJbub3V8q2eTdvJv8SNkQ2ATCQkJ3sgaTEGzApljuli3ZsiVZzerVqqN53j9mzngkTTkzGs1oNPfnunR55pzznLnHluc7d32U1hpBEARBiAq1AYIgCMLcQARBEARBAEQQBEEQBDsiCIIgCAIggiAIgiDYEUEQBEEQABEEQRAEwY4IgiAIggCIIAiCIAh2YkJtgC/k5OTo4uLiUJshCIIQVuzbt69Ta53r7bqwEoTi4mIqKytDbYYgCEJYoZRqMHOdhIwEQRAEQARBEARBsCOCIAiCIAAiCIIgCIIdEQRBEAQBEEEQBEEQ7IggCIIgCIAIgiBEPH+t+yuH2w6H2gxhDiCCIAgRjNaaTzz3Cb786pdDbYowBxBBEIQI5mT3STqHOnmn6R1GLaOhNkcIMSIIghDBvNP4DgAjlhH2tuwNsTVCqBFBEIQIZk/jHpJjkwHYVb8rxNYIoUYEQRAimHea3mFL4RYuXHAhuxpEECIdEQRBiFD6Rvo42n6USxZfwtairexp3MP4xHiozRJCiAiCIEQo7ze/j0Zz6ZJL2Vq8lXPj59jXui/UZgkhRARBECKUPY17UCguWnwRlxdeDkgeIdIRQRCECOWdpne4YMEFpMWnkZeSx/Kc5ZJHiHBEEAQhArFqK+82vculSy51HNtatJW3z7zNhHUihJYJocSUICilrlFK1SilapVSD7k4r5RSP7WfP6yUWu9trVJqrVLqXaXUQaVUpVJqc2DekiAI3jjecZy+0T4uWXyJ49jWoq0MjA1w8OzBEFomhBKvgqCUigZ+BlwLrATuUEqtnHLZtUCF/ec+4Bcm1v4Q+JbWei3wr/bngiAEgT2NewAmewjFWwEkbBTBmPEQNgO1WuvTWusx4BngpinX3AQ8oW28C2QopRZ5WauBNPvjdKBlhu9FEASTvNP0DjlJOZRnlTuO5afmU55VLoIQwcSYuKYAaHR63gRcZOKaAi9rvwzsUEr9v9iE6VJcoJS6D5vXQWFhoQlzBUHwxp7GPVyy+BKUUpOOby3aygvHX8CqrUQpSTFGGmb+xZWLY9rkNZ7Wfh74itZ6CfAV4DFXL661/pXWeqPWemNubq4JcwVB8ETXUBc1XTWTwkUGW4u20jPSw5G2IyGwTAg1ZgShCVji9Hwx08M77q7xtPbTwAv2x89iCy8JgjDLvNv0LsCkhLKB5BEiGzOCsBeoUEqVKKXigNuBbVOu2QbcZa82uhjo01q3elnbAmy1P/4AcHKG7yVk3PKHW/ji9i+G2gxBMMWexj1Eq2g2FWyadq4wvZDijGIRhAjFaw5Ba21RSj0A7ACigce11lVKqfvt538JbAeuA2qBIeBuT2vtt/4s8BOlVAwwgj1PEI4caT9C27m2UJshCKZ4p+kd1i5cS1JsksvzVxRdwfaT29FaT8sxCPMbM0lltNbbsX3oOx/7pdNjDXzB7Fr78beBDb4YO1fpH+2XBJwQFlisFt5rfo/PrPuM22u2Fm3liUNPcKzjGKsWrAqidUKokU+xADAwOkDXUFeozRAErxxpO8LQ+JDL/IHBFUVXAOd7FYTIwZSHILjHqq2cGz/HsGVYSvWEOY+rhrSpFGcUE6WiaOxvdHuNMD+RT68ZMjg2CNiEoXekN8TWCIJn9rbsJS85j8J09z09MVEx5CXn0TIgvaKRhgjCDBkYHXA8lrCRECz2t+7nTN8Zn9dVd1azasEqr8niRamLRBAiEBGEGdI/2u943DnUGUJLhEjBYrXwoSc/xDff+KZP67TW1HTVsCx7mddr81PzRRAiEBGEGTIwdt5DEEEQgsG7Te/SPdxN26Bvpc4dQx30jvSyPGe512vzU0QQIhERhBkyKWQ0LCEjYfZ55eQrgO+/b9Wd1QCmPYSOoQ7GJsZ8N1AIW0QQZoh4CEKw2V5ra+vpHu72aV1NZw2AOQ8hNR/AZy9ECG9EEGaIs4cggiDMNi0DLRw8e5C46DifBaG6s5rEmESWpC/xeq0hCBI2iixEEGaIkVSOjYqVKiPBIz3DPYxYRmZ0j1drXwXg+orr6R3pxWK1mF5b01XD0uylpnplRBAiExGEGWKEjIoyiugcFg9BcM+W/97C/X+6f0b3eKX2FQpSC9haZJsL6UvvS3VnNctyvOcPQAQhUhFBmCEDowNEq2gKUgskZCS4ZcI6QU1nDU8ffdpvT3J8YpzXTr3GteXXkpOUA5jvfRm1jFLXW8fybO/5A4Dc5FyiVbQIQoQhgjBDBsYGSI1PJTc5V0JGglvaz7UzoScYmxjjd4d/59c99jTuoX+0n+sqriMrMQswn1iu7a7Fqq2mPYQoFWVrThsUQYgkRBBmSP9oP2nxaWQnZouHILileaAZsOWaHt3/KLYBwb7xSu0rxETFcHXp1WQnZQPmBaGmy3yFkcGiFOlWjjREEGbIwNgAqXGp5CTl0D3cjVVbQ22SMAdp7rcJwj3r7qGqo8qxa5kvbD+5ncsLLyctPs3hIZjtRTB6EJZmLzX9etKtHHmIIMyQgVFbyCgnKYcJPUHfSF+oTRLmIMYH61cv+SrJsck8uv9Rn9Y39TdxpP0I15ZfC+BzyKimq4bFaYtJiUsx/ZoiCJGHCMIMMTyE7ESbCy9hI8EVzQPNRKtoSjNLueOCO/h91e8nzcHyhtGdfF3FdQBkJGSgUKbzVtWd1aY6lJ3JT82ne7h7xqWyQvgggjBDnD0EkPEVgmuaB5pZmLKQ6KhoPrvhswyND/H0kadNr3+l9hWWpC1hZe5KwJb0zUzMNOUhaK2p6azxKX8A50tPzw6e9WmdEL6IIMwQI6lsCIJ4CIIrmvubKUgrAGBT/iZW5602HTYamxjjz6f/zHUV100aW52dmG3qC0jbuTb6Rvv88hBAehEiCRGEGeIIGSVJyEhwT8tACwWpNkFQSnHvunvZ17qPA60HvK7dfWY3g2ODjnCRQVZilikPwZcZRs6IIEQeIggzQGttCxnFpfrcKCREFs0DzQ5BALhz9Z0kxCSY8hJeqX2FuOg4PlDygUnHs5OyTQmCY8qpyR4EAxGEyEMEYQaMWEaY0BOkxqeSGpdKTFSMeAjCNIbGh+gd6XV8wAJkJmZyy8pbeOrIUwyND3lcv6thFxcVXDStQigrMctUyKimq4ak2CQWpy32ye7sxGxio2JFECIIEYQZYFSJpMalopQiJylHBEGYhtGDYOQQDO5ddy/9o/28XP2y27VD40Psb93PZUsum3YuK8FcyKi6s9r0UDtnlFKylWaEIYIwA4zBdmnxaQDkJOVIlZEwDaNL2TlkBLClcAsZCRn8te6vbtfubd6LxWrhssLpgpCdlE3/aD/jE+MeX7+my/cKIwPpRYgsRBBmgLEXQmp8KoCMrxBcYnygTvUQoqOiuaLoCnY27HS7dk/jHgAuWXzJtHNGc1rPSI/b9SOWEep66nyuMDIQQYgsRBBmgOEhpMbZBEFCRoIrHCGjKR4CwFXFV1HbXUtTf5PLtbsbd7M8Z7mjis0ZoxnSUyFDbXctGu2/hzDH91Y+0HqA9f+1ntaB1lCbMi8QQZgBUz0ECRkJrmgeaCYlLsXxe+LMlcVXArCzfue0c1ZtZU/jHpf5AzA3vsKXfZRdkZ+aT99on8vE9zuN7/DzvT/3676BQGvN37/29xw4e4D3mt8LmR3zCRGEGWAklY0cQnZiNl1DXTLgTpjE1JJTZ1bnrSYzIdOlIFR3VtMz0uNWEMxMPDV6EHwZaueMURnl6hv4w28/zJdf/XLIft93nNrh+Hur7a4NiQ3zDRGEGeAqZCQD7oSptAy0TMsfGESpKFsewYUgGPmDS5dc6nKtmYmn1V3VLElbQnJcso9W23DXi2B4L+PW8ZCElKzaykN/eYiSjBKyErM42XUy6DbMR0QQZoCrkBHIPCNhMs397j0EsIWNTvWcorGvcdLx3Y27yUnKcfvt3kzIqKazxueGNGfcCUJNZ43j97yup87v+/vLM0ef4VDbIb5z1XdYmr2U2h7xEAKBCMIMMDwEo2FIxlcIU7FqKy0DLZOa0qZi5BF2NeyadHz3md1cuuTSSfOLnEmPTydaRbtNKmutqe6sNr1tpivcCcLuxt2Ox/W99X7f3x/GJsb45hvfZHXeau648A7Ks8olZBQgRBBmQP9oP8mxyY6GHxlwJ0ylc6iTceu4Rw/BVR6h/Vw7J7tPus0fgK1xzNPE07ODZxkYG5iRh5CRkEF8dLxLQchMyASgrnfmHsK3d32bC39xIT/c/UPaz7V7vPbRfY9yuuc0D1/9MFEqivLMchr7GmVMdwAQQZgBA6MDjoQyIPOMhGm460FwJkpFsbV4K2/Uv+E45i1/YJCdmE33iGtBMCqM/C05BZvo5KfmT9tbefeZ3VxedDn5qfkzFoQfv/Nj/m3nvzE0PsQ//uUfWfzjxXziuU/w+unXpyWsB8cG+fab3+aKoiscmwWVZ5Wj0SEJXc03YkJtQDgzMDYwqZRQNskRpuKpB8GZK4uu5KXqlzjTd4bC9EL2NO4hLjqOjfkbPa7LSsxy+wXkZLct0VqRVeGH5eeZ2pzWNtjGye6T3Lv+XrqGumYUMnri0BN89bWvcsvKW3jm489wousEv97/a35z6Df8oeoPZCVmsblgM5vzN7O5YDNvnXmL9nPtvHz7y45QWnlWOWCrNFqRu2JG7zXSEUGYAcboa4O0+DQZcCdMwhhb4SmHAE55hPpdfGrNp9jduJsNizaQEJPgcV12UrZDdKZS11NHbFSsz0PtppKfms+htkOO54b3sqVwC0faj/BWw1t+3fePNX/knpfv4YOlH+R3f/M7oqOiWZG7gv/4yH/wvau/x4vHX+SvdX/l/Zb3+e5b33V4Czcvv5mLF1/suE9Ftk3wDAEU/MdUyEgpdY1SqkYpVauUesjFeaWU+qn9/GGl1Hoza5VSX7Sfq1JK/XDmbye4GLulGRgD7qTKSDBo7m9GoViYstDjdRfmXejII4xYRqhsqfSYPzDwNPG0vq+ewvRCoqOi/bLdYKqHsLtxN/HR8WxYtIHi9GIa+xu9zlOaylsNb3Hbc7exftF6XrjtBeJj4iedT4hJ4I4L7+DRjz7KofsP0f9QP2/+7Zs8cu0j/Py6yc1wWYlZZCZkSmI5AHj1EJRS0cDPgA8BTcBepdQ2rfUxp8uuBSrsPxcBvwAu8rRWKXUVcBOwWms9qpRaEMg3Fgz6R/spTC+cdEzmGQnOtAy0kJeSR2x0rMfrjDzCzoad7GvZx9jEmNf8AXieeFrXU0dJZolfdjuTn5rP4Nig4wvQ22feZlPBJuJj4inJLMGqrTT1N5l+rdM9p7nx6RspSi9i+ye3u+zgnkpyXDKXF13O5UWXuzwvlUaBwYyHsBmo1Vqf1lqPAc9g+yB35ibgCW3jXSBDKbXIy9rPAz/QWo8CaK09lxbMQQbGJieVQcZXCJPx1KU8lSuLruR0z2meOfoM4D2hDLaQ0eDYIGMTY9PO1fXWUZxe7JO9rnB0Kw+2Mjw+PGkcd0lGieO1zPL4gccZGBvg1TtfdRRizBQRhMBgRhAKAOeOmSb7MTPXeFq7FLhcKfWeUmqXUmqTqxdXSt2nlKpUSlV2dHSYMDd4GLulOSMD7gRnmgeaPVYYOXNVyVUA/PrArynPKicvJc/rGnfNaefGztF+rj1gHgLYvJ29LXsZt447BKE4oxgw35ymtebZY89yVfFVjrWBoDyrnIa+BpfCKJjHjCC46orRJq/xtDYGyAQuBr4O/EG56MDRWv9Ka71Ra70xNzfXhLnBY2qVEUjISJhMc38z+SmeE8oGFyy4gKzELEYsI6byB3C+sm2qIBiVP8Y3+JngLAhvn3kbOO+9LElfQrSKNl1pdLjtMCe6TnDryltnbJcz5VnlWLVVSk9niBlBaAKWOD1fDEwdXuLuGk9rm4AX7GGm9wErEBj/MQiMT4wzYhlx6SF0DXWh9VTNFCKNEcsIXcNdpj2EKBXF1qKtAKYFwTHPaErpqUMQAuwh7G7czYqcFY6u/JioGJakLzEdMnr22LNEqSj+ZsXfzNguZ4zSWgkbzQwzgrAXqFBKlSil4oDbgW1TrtkG3GWvNroY6NNat3pZ+xLwAQCl1FIgDgibr9ZTd0szcAy4G51fA+7+98T/8seaP4bajLDCmBBqNocAcHXJ1QBuk6dTcTfx1PiADkRYJjUulaTYJJr6m9jTuIcthVsmnS/OKDYlCEa46MriK1mQHNgaEudeBMF/vFYZaa0tSqkHgB1ANPC41rpKKXW//fwvge3AdUAtMATc7Wmt/daPA48rpY4CY8CndRh9rZ462M7AeZ5RRkJG0O2aLb6848skxyZz47IbQ21K2ODYOtOkhwBw34b7WLdonenuYncTT+t66kiMSSQv2XsewhtGt/JfTv+F3pHead5LSUYJO07t8HqfI+1HONF1gq9c/JUZ2zSVnKQc0uLTRBBmiKnGNK31dmwf+s7Hfun0WANfMLvWfnwMuNMXY+cSU0dfGziPrzC+tYQ7Tf1N1HbXBqwiJFIwGsa8NaU5Exsda6q6yMBdDqGut47ijGK3g/F8JT81nzcb3gSYtr9zSUYJLQMtjFhGPDbSPVtlCxd9bMXHAmKTM0opW6WRTD2dETLLyE/cegjzcHyFMXStc6hTBoj5gMND8CFk5CspcSnERMW4zCEEIn9gYIhaXnIeZZllk84Zr9PQ2+B2vREu2lq0NeDhIgMpPZ05Igh+YuyW5s5DmI+CANPHIAvuaRloITEmcVZDh0opshKnN6cFqgfBwKiUuqzwsmleh5Gn8FRpdLT9KDVdNQGvLnKmPLOcup46n7umhfOIIPiJp6QyzK9NcnbW73SMOnY3N0eYjtGDEKiwjTumTjztHemld6R3VjyELUu2TDtnpjnNqC6ajXCRQUV2BRN6goY+956KweDYIOU/Led3h383a/aEIyIIfuIuZDTfBtw19jVyqueU45tdU39TiC0KH5r7m33KH/jL1ImnRi1+IHoQDAxxuaLoimnnFqUuIi46zm0PgBEuuqLoClPNdv7iS6XR/xz5H071nGL7yWnpzYhGBMFP3CWVlVLzqjnNCBfdudqW/xdBMI8vYytmQnZS9qSQUSB7EAxuWnYTb9/9NhvyN0w7F6WiKEovcushVHVUUd1ZPavhIjAvCFprfllpq4mpbKmcVZvCDREEP3HnIUBo5hk9eehJNv5qIxPWiYDe9436N8hKzOKywstIiUtxJEoFz2itaRloCYogTJ14GsgeBIPoqOhp1UXOlGSWuM0hPFv1LAo1q+EisCW8k2OTvQrC+83vc+DsAcqzyjnZfZLekd5ZtSucEEHwk/7RfuKi44iLjpt2Ljsp+B7CX+r+wr7WfVR1VHm/2Ad21u9ka9FWolQUi9MWi4dgkp6RHkYsIz71IPhLduJkD6Gup460+DRH3icYlGSUuPUQjHCRtxHgM8VReupFEH6575ekxKXwg6t/AMD+1v2zalc4IYLgJ64mnRqEYsDdqe5TAI5ZM4GgobeBut46x+YtBakF4iGYxOxOaYEgKzGLofEhR0lwXW8dJRkls57MdqYko4TOoU4GxwYnHT909hDHO49z26rbgmKH8a3fHT3DPTxz9Bk+eeEnHb/XEjY6jwiCn0zdLc2ZnMScoO+rfLrnNABvnfFv9ypXGPmDq4ptUzjFQzCP2Z3SAsHUiad1vYHZB8EX3JWePnn4SWKiYoImCBVZFdT11GGxWlye/+2h3zJiGeHzGz9PdlI2JRklIghOiCD4ydTd0pwxQkbBmsQxND5E66Btbs5bDW8F7HV3NuwkOzGbVQtWATZBaB1oDXieYj5i9GsEK2QENkHQWlPfWx/QHgQzGALkXGlksVp46shTXF9xfdC63Muzyhm3jtPY1zjtnJFMvnjxxaxZuAaAjfkbRRCcEEHwk/7RfvceQpAH3BnewWVLLqN5oJkzfWcCct836t5ga7EtfwC28MeEnqDtXFtA7j+f8Wdshb84TzztGOpgaHwo6B6Cq16E10+/ztnBs9y15q6g2eGp0mhXwy5qumq4f8P9jmMbFm2grrfO7a5zkYYIgp94yyHA9JHEs4WRP/j0mk8Dgckj1PfW09DX4AgXAY7N2iVs5J3mgWZyk3JdFh0EGueJp7PRg2CGnKQckmKTJoWMnjj8BJkJmVxfcX3Q7PAkCL+o/AWZCZmTwlcb8zcCsK9lX3AMnOOIIPiJx5BRkOcZneqxCcLNy28mLT4tIHmEN+reAHAk3uB8+EO6lb3Tdq5tVpuwnHGeeGp8Qw+2h6CUmlRpNDA6wIvHX+QTqz5BfEx80OxYlLqIxJjEaYLQNtjGC8df4G/X/i2JsYmO4+sXrQcksWxgatqpMB2PSeUgzzM61X2K9Ph0cpJyuGzJZQHxEHY27CQnKYdVuascx8RDME/nUCe5ScHZ4c85h2D8zgWyB8EsJZklDg/l+ePPM2wZDmq4CGxNcmVZZZMqjQZGB/jRnh9hsVr43IbPTbo+MzGT8qxyKltFEEAEwW9c7adsEOx5Rqd6TlGWVYZSii2FW/jnv/4z3cPdjm+OvqK1Zmf9Tq4svnJS6WJOUg6xUbFSemqCrqEuRzJ+tkmKTSIuOo7u4W56hnvIScohJS4lKK/tTHF6MW812LzTJw49QXlWORcvvjjodlRkVfBe83s8sP0Bdjfu5nDbYazayg1Lb2BZzrJp12/M38iexj1Bt3MuIiEjP7Bqq8v9lA0MQWg/1x4Ue071nHKMJDZ2s9p9Zrff96vrreNM3xmuLLpy0vEoFUVBWoF4CCboHOokJzE4lTXGxNOuoS5HD0IoKMksoW+0j8Nth3mj/g0+tfpTQe2FMLhwwYW0DLTwm4O/ITsxm3+5/F947c7XePbWZ11ev2HRBs70naHjXEeQLZ17iIfgB+fGzgHTJ50apMWnkZGQ4aj+mU0sVgv1vfXcsuIWADblbyI2Kpa3z7zt9+5mRv7gqpKrpp1bnLZYPAQvWLWVruGuoG4oZEw8reutc8TFg40hRN958zvA+flXweYbl3+D21bdxrKcZcREef+IcySWW/dxTfk1s23enEY8BD9wN9jOQClFRVZFUDbraOxrxGK1UJZl8xASYxPZVLCJtxv9zyNsr91Ofmo+K3JWTDtXkCoegjd6R3qxamtQBSErMYuOcx009DYEvQfBwEhkP3fsObYUbqE0szQkdiTEJLBqwSpTYgCSWHZGBMEPPA22MwjW7k1GhZHzLlZblmxhb/NehseHfb7f8Pgwr9a+yk3LbnLp7hvdymG0/XXQMRK7QfUQkrI52n6Ucet40CuMDJwT2XetDm4yeSakxaexLHuZCAIiCH7hzUMAmyA09DUwNjHm9pr+0X4Onj04I1uMHgTDQwBbHmHcOs7elr0+3+8vp//C0PgQNy+/2eX5gtQCRiwj9Iz0+GdwBGD0nxj9AcEgKyHL8W8SqhxCRkIGGQkZxEfHc+uq2R11HWikY9mGCIIfOLbP9OAhVGRVYNVWt5uGAHz3ze+y7r/W8Te//xuP2w964lTPKeKi4yYNUTPGFPtTfvpS9UukxadN6j9wRkpPvRMqD8EgVB4CwMWLL+bO1XfO6rahs8GGRRtoHmimdaA11KaEFBEEPzBCRu6SynC+Y9LT5MUDZw+QnZjNa6deY8XPVvDdN7/r8yb2p3pOUZJRQnRUtONYVmIWq3JX+SwIE9YJ/njij1xfcb3bDltpTvNOKATBucS4ML0waK87le3/z3Z+deOvQvb6/uKcWI5kRBD8wEzIqCK7AvC8e9OxjmNcv/R6qr9QzY1Lb+Sbb3yTC35+Ae82vWvallPdpyaFiwy2FG5hd+NunwbRvdP0Dh1DHW7DRSAeghlCKQj5qfkkxCQE7XWnopRyzL4KJ9YtWodCRXzYKPz+5eYAZpLK2YnZpMenuxWE3pFeWgZaWJW7iiXpS/jDrX/gz5/6M0PjQ3z9z183ZYfWelIPgjNbCrfQP9rP0fajpu4FtnBRXHScx9K7RSmLUCgpPfVA13AXcdFxJMcmB+01jW7lUOUPwp2UuBRW5K4QDyHUBoQjjhyCBw/B2L3JXcjoWMcxAFbmrnQc+2DpB7lx6Y0c6zhmqoqnY6iDwbFBl4JweeHlgPk8gtaal6pf4uqSqz2GwmKjY8lLyRMPwQOdQ53kJOUEtSnL8BBCmT8Id4zEciRX0Ikg+MHA2ABRKoqk2CSP11Vku+9FqGq3bXXpPCsIYEXuCrqHu+kY8t416arCyKAwvZDFaYtN9yNUdVRxqueUx3CRgWyU4xlDEIKJkVQOVQ/CfGDDog2cHTzr2MsiEhFB8ANjjpG3b4DlmeXU99a7LD091nGMpNgkijKKJh03msGOdxz3aofRCe3KQ1BKccGCC0z3QrxU/RIKxUeXfdTrtbKVpmdCIQiL0xaTFJvkSI4KvrNu4ToADrUdCrEloUMEwQ88zTFypiLbVnrqqqS0qqOKFTkrpiXgVuTaBaHTuyCc6jmFQrkNE+Ql59E2aG4zm5eqX+KixReZ2ghdPATPdA51OmL6wSIrMYu2r7WZEnTBNctzlgNQ01kTYktChwiCH3gafe2Mp806jnUcm5Q/MFiStoTk2GRTHsKpnlMUpBW4rSpZkLyA9nPtXmOijX2N7Gvdx83LvIeLwOYh9I70OmY6CZMJ9hwjg5S4lJAMk5sv5CTlkJmQyYmuE6E2JWSIIPhB/2i/KQ/B0YvQNTmx3DvSS/NA87T8AdhCPctzlpvzELpdVxgZ5CXnMTox6kiCu2NbzTYAU/kDOF96KmGj6UxYJ+ge7g6JIAgzQynF0uyl1HSJhyD4wMCo++0znclNyiUtPm2ah2B8+3flIYAtbGQ2ZORREOw7dnnbA/mlmpdYnrPc5ax4VzgEQZrTphGKwXZC4FiWs0wzhTqtAAAgAElEQVQEQfANsyEjd6WnVR32CiM3G6isyFlBU3+To9/BFefGznF28KzLCiODvGS7IHjII/QM97CzfqfpcBGc71aWPMJ0QtGUJgSOZdnLaBlo8fh/bz4jguAHnvZTnoqrMdjHOo6RGJPodptDo9KourPa7X09VRgZLEheAHjeqGdvy14sVgsfLvuw22umYsxNEkGYjrFLXrCTykJgWJZt85IjNY8gguAH/aP9pjwEsOUR6nvrGZ8Ydxyr6qhiRe70CiMDM5VGjrHXnjwEEyEjo+Z6avmrJ5LjkslIyJAcggvEQwhvjLCpCIJgCq216ZAR2ARhQk9MKj11V2FkUJZZRkxUjMdKI0dTmgcPIScpB4XyGDIyBGFRyiK317hCSk9dI4IQ3pRllqFQEZtHMCUISqlrlFI1SqlapdRDLs4rpdRP7ecPK6XW+7D2a0oprZQKi/9BoxOjWKwWU0llsIWM4Hzpad9IH039TS4rjAxio2OpyKrw6iFkJmSSmZjp9pqYqBhyknK8egiZCZkkxiZ6eyuTkOY014gghDeJsYkUZRSJILhDKRUN/Ay4FlgJ3KGUmvr19lqgwv5zH/ALM2uVUkuADwFnZvxOgoSZwXbOTB2DbXzIe/IQwHul0ake11NOp2L0IrijZaCF/NR8r/eZingIrukc6iQ+Ot7rWBNh7rIse1nENqeZ8RA2A7Va69Na6zHgGeCmKdfcBDyhbbwLZCilFplY+/8B/wCEzTQpM6OvnVmQvIDUuFSHh+BuhtFUVuSs4FT3Kbc7rnnrQTDIS8nz6iH4Kwhtg22TciOCbbe0YA+2EwLLsuxlnOg6EZFD7swIQgHQ6PS8yX7MzDVu1yqlPgo0a63DanCImd3SnDFKTw1BONZxjISYBLcVRgYrclYwoSemNbUBWKwWGvoazAmCl/EVLQMtLEr1LX8AtpCRRtM6GNk7TE2lczj4c4yEwLI0eynnxs9F5JA7M4Lg6qvOVOl0d43L40qpJOCfgX/1+uJK3aeUqlRKVXZ0eJ8AOtuY2S1tKs69CMYMI+cdzlxhVBq5Kj0903cGi9ViKmSUl+zeQ7BqK2cHz5Kf4p+HAFJ6OpVQDLYTAotRaRSJeQQzgtAELHF6vhiYKp3urnF3vAwoAQ4ppertx/crpaZNVtNa/0prvVFrvTE3N9eEubOLryEjsCWWjdJTbxVGBkY9tKs8wuG2w8D5/IQn8lLyGBwbZGh8aNq5rqEuxq3jfoWMZCtN13QOdU7a31gIP4z/e5GYRzAjCHuBCqVUiVIqDrgd2Dblmm3AXfZqo4uBPq11q7u1WusjWusFWutirXUxNuFYr7U+G6g3Nlv4mlQG2we3xWrhaPtRGvsbveYPwFbrX5Re5FIQnjz8JAuSF3DJ4ku83sdTc5rhEvubQwDxEKbSNdRFTqJ4COFMQVoBSbFJ4iG4QmttAR4AdgDHgT9orauUUvcrpe63X7YdOA3UAo8Cf+dpbcDfRRDxy0Ow769sDJEz4yGAvdJoSi9Cx7kOttVs41OrP0VsdKzXe3gaXzETQchMyGRhykJernk5IpNvrpDBdvODKBXF0uylbpvTnjz0JE8eejLIVgWHGDMXaa23Y/vQdz72S6fHGviC2bUurik2Y8dcwNekMpwP7bxc8zLgfobRVFbkrGBX/S6s2uroan7y8JNYrBbuXnu3qXt46laeiSAopfiXy/+FB155gO0nt3P90ut9vsd8o2ekB40WQZgHLM1eSmVL5bTjFquFr+z4CqMTo9y0/CafconhgHQq+4gjZOSDh5CXnEdKXAoHzh4gISbB9EboK3JWMGwZ5kyfrU1Da81jBx7jooKLTIuKGQ/BzKY4rrhvw31UZFXwj3/5RyasE37dYz4hTWnzh2XZy6jvrWfUMjrp+K76XXQNdzE4NshvDv4mNMbNIiIIPtI/2k9SbJLXKiFnjNJTsO3KZHatY6aRPWy0t2UvxzqO8Zl1nzH92rnJtkS8qxxC62Ar2YnZxMfEm76fM7HRsXz/6u9T1VHFbw/91q97eCLcehwMQZCkcvizLHsZVm2dNpjyuWPPkRSbxIZFG/i/7/9frNoa8NfuGe4J2RcsEQQfqeutozC90Od1hiCYzR+A0/7K9sTy4wceJzEmkU9c8AnT90iISSA9Pt1tyMifcJEzH1/xcS4quIh/feNfXVYy+Uttdy0pD6fwfvP7AbvnbNM1ZJt0Kh5C+ONqyN2EdYIXql/g+orr+dqlX6O2u5ZXa18N6OtWtVdR9J9F/HD3DwN6X7OIIPjI8c7jjg9qXzBmGpmpMDLITsomNymX4x3HGRof4umjT3Prqlt9jlu661YOhCAopfjhh35I80AzP33vpzO6lzNvn3mbsYkx9jbvDdg9ZxsJGc0flmYvBSb3Iuxu3E37uXZuWXkLH1/xcfJT8wP6O98z3MPNv7+ZgbEBDrYdDNh9fUEEwQfGJ8ap7a51bMbtC/54CHB+ptHzx56nf7Sfe9be4/Nru+tWDoQgAFxRdAU3Lr2Rh99+2PGhOFMOtB4Azo/5DgdEEOYPafFpLExZOEkQnjv2HAkxCVxXcR2x0bF8fuPn2XFqR0D6FSasE3zyhU/S0NtASUaJy33Yg4EIgg+c7jmNxWrxSxA+XPZhPrrso2wt2urTuuXZtv2VHzvwGGWZZVxRdIXPr+1qwN2EdcLWpRwAQQD4wQd/wODYIN9783sBuZ/xDcnYCCgc6BzqJCEmQQbbzROch9xZtZXnjz/PNeXXkBKXAtiKKuKi43jk/Udm/Fr/Z+f/4ZXaV/jptT/luorrONV9KiTl3CIIPmCMkfBHEBanLebl21/2OK7aFStyV9A93M2uhl3cvfZuv4amuRpf0THUwYSe8HkfBHeszF3JPWvv4Wd7f+bYq8FftNYcPBt+gtA13CXewTzCGHIH8F7Te7QMtHDLilsc5xckL+D2C27nN4d+Q99In9+v8+LxF/nuW9/lM+s+w+c2fI6yzDL6Rvscu+8FExEEHzAEwWhtDwZGvkKh+PTaT/t1j7yUPLqHuydV7bQO2IbSBcpDAPjWVd8iISaB+/5034y+3dT31tM/2k96fDqne06HTeObzDGaXyzLWUbXcBddQ108d+w54qLjuGHpDZOueXDzgzMqQT3ecZy7XrqLTfmbeOS6RyZVJM70i5U/iCD4wPHO4+Sn5pOekB601zRKTz9S/hHHuAhfMXoRnMNGM2lKc0d+aj4/+tCP+GvdX3nswGN+38fwDm5cdiPnxs953M9hLiGCML8wEsvVndU8f/x5Plz24Wn/9zfkb+DSJZf6XYL64KsPkhiTyPO3PU9CTAJwPt8YijyCCIIPVHdW+xUumglL0pbw4OYH+faV3/b7Hq7mGc2GIAB8dsNnubL4Sr762lf9Hnx38OxBolQUNy2zbZ0RLmGjzqFOshOlB2G+YEQC/ufI/9DQ18DHV3zc5XUPbn6QUz2n2H7S40CGaQyODbKr3hYKXpJ+fgZoSWYJChWSggoRBJNorW2CkB1cQVBK8ZNrf8Kmgk1+38PV+IqZdim7I0pF8eiNjzI+Mc7n//fzfoV7DrYdZFn2Mi5YcAEQXoIgHsL8oSSzhNioWB478BgxUTF8dNlHXV73sRUfIzMhkxePv+jT/XfW72TcOs6Hyz486XhCTAKL0xaLhzCXaTvXRt9oX9A9hEDganxFy0ALC5IXmBqQ5yvlWeV856rv8McTf+T3Vb/3ef3BswdZu3CtYxOhcBAEi9VC70ivCMI8IiYqhrKsMkYnRrm65GqyErNcXhcbHcsVRVews2GnT/ffUbuDxJhEthRumXauLKtMBGEuM5MKo1Dj0kMYbAlYhZErvnzxl9lcsJkvvvJFOs6Z39ioe7ibM31nWLtwLQkxCRSkFoRFL0LPsAy2m48YYaNbVt7i8bqtRVs53XPap3HwO07t4MriK12OjinPLJeQ0VzGEAQjyRtOJMcmkxiTOMlDaB1oDXj+wJnoqGge++hj9I308aVXv2R63aGzth1V1y5cC0BpZmlYeAjSlDY/WZW7ipioGEc+yx1XFl8J2IbfmaGup46T3Sf5SNlHXJ4vyyqj/Vy7Y5hmsBBBMMnxjuMkxyZTkDp1O+m5j1KKvJQ82ocmJ5VnUxAALlhwAV+5+Cs8ffRp016CUWFkCEJZVllYCYIklecXX7/s67x373uOIZHuWJ23mvT4dHY1mBOE1069BtiqB13hKD0NspcggmCS6i5bhZE/jWFzAefxFRarhbZzbbMuCAAfKvsQAIfaDpm6/mDbQfJT8x2VUaUZpTQPNDNiGZk1GwOB0UQkHsL8IiMhg/WL1nu9LjoqmsuLLmdn/U5T933t9GssSVvitqepLNO2X3qw8wgiCCYJRclpIHEecNd+rh2rtgZFENbkrQHOh4K8YSSUDUozSwGbiz2XkZCRsLVoKye7TzqaPt1hsVp4/fTrfKTsI26/YJZl2QQh2M1pIggmODd2jjN9Z8JbEJw8hNnqQXBFbnIu+an5pjyEUcsoxzqOsTZvuiDM9bCR7IUgOPIIXsJG7ze/T99o37RyU2fS4tPITcoVD2EuYswz8Wfs9VxhQfICOoY6sGqrQxBms8rImTV5axy5AU9UdVRhsVomeQjGN6VwEITEmEQZbBfBrF24ltS4VK+J5R21O4hSUVxderXH68qzyqntEUGYcxgb1IS7h2DVVrqGumZljpEn1uSt4Xjn8WnbEU5lakIZIDcpl+TY5LAQBAkXRTYxUTFsKdzitR9hx6kdbMrf5LavwaA8q1xCRnOR6s5qolSUI/Mfjjj3IrQMtKBQjmOzzdqFa7FYLQ5hdcfBswdJjk12eAVgq5AqzSyd870IMulUAFseobqz2uX+I2Drs9nbstdtuakzZZllNPU3BbWgQgTBBNWd1ZRmlvq99/BcwLlbuWWghbyUPGKiYoLy2msW2hLL3sJGB88eZM3CNUSpyb+W4VB6Kh6CAOfzCG82vOny/OunX8eqrW7LTZ0pzypHo4NaUCGCYIJwrzCCyQPuWgZnvwfBmYqsChJjEj1WGlm11VZh5JRQNijNKJ3zY7A7hzoloSywftF6kmOT3SaWXzv1Gunx6Wwu2Oz1XoanHMzEsgiCFyasE5zoOhHWCWWYHjIKVkIZbDXaF+Zd6LHSqL63noGxgUn5A4PSzFKGLcMu94WeK3QOdZKTKB5CpBMbHctlhZe5FAStNTtO7eDq0qtNeeehaE4TQfBCQ18DoxOjYe8hZCZkEhsVS9tg26yPrXCFUWnk7lu+q4SygVF6GooNQ8wgg+0EZ7YWbeVo+9Fp+4vXdNXQ2N/Ih0vdl5s6k52YTVp8mngIoUBrzSPvP0J9b/2k48c7wr/CCGzJ2QXJC2geaKb9XHtIBKFnpMft8C9jDwRj5LUzMy09HbGM8PBbD9M70uvXem90D3cD0pQm2DD2TXfOI4xNjPHw2w8DeOw/cMbYPU08hBBwuuc0X3zli1z31HX0j/Y7jodi28zZYkHyAg63HUajgy4Ixjd/d2Gjg2cPsjxnOYmxidPOFaUXoVB+C8Kv9v2Kf/rrP/H8sef9Wu8N6VIWnNlUsInEmERHP0J9bz1bHt/CE4ee4B8u/QdKMktM36ssM7hjsEUQ7BxpPwLYeg4+9eKnHNvhVXdWk5uUOy8ShnkpeVR1VAHB60EwWJ23GnBdaaS1Zn/rftYtXOdybXxMPIvTFnO613dBGLGM8O+7/x2AYx3HfF5vBulSFpyJi47j0iWXsqthF9tqtrHuv9ZxousEz9/2PP/+oX/36V7lWeXU99ZjsVpmydrJiCDYOdp+FIDvf+D7bKvZxrd2fguwDbULx5HXrshLznP8YgVbEFLjUynNLHXpIbzT9A7NA81cVXyV2/WlmaV+5RD++8B/0zLQQkpcitc+CH8RD0GYytairRxqO8RNz9xEaWYp+z+3n4+t+JjP9ynPKsditXCm78wsWDkdEQQ7R9qPUJJRwkNbHuLutXfz7Te/zYvHXwzJtpmzhdGLAMEbW+HM2oVrXZaePrr/UVLiUvjEBZ9wu7Ys0/deBCNue+mSS7lx6Y2z5iEYTUgiCILB9UuvJ1pF83cb/47d9+x2FEb4SrCnnoog2DnafpQL8y5EKcXPr/85mws2c+eLd9I51Bn2CWUDoxchSkU5HgeTNXlrqO2uZXBs0HGsb6SP3x/9PXdccAcpcSlu15ZmltI62MrQ+JDp13vi0BM09jfyzSu+yarcVTT0NUx67UBx8OxBMhIywnKvDGF2WL9oPf3f6Odn1/+MhJgEv+/jKD0NUoWdCAK2KZs1nTVckGurcEmISeCF214gLT4NCP8KIwOjF2FhykKio6KD/vpr8tag0RxpO+I49vTRpxm2DPPZ9Z/1uNb4hjW1Cswd4xPjfP+t77MpfxMfKfsIK3NXAueLBAJJZWslG/M3hu1eGcLsEIhBh4tSF5EQkyAeQjCp6aphQk9wYd6FjmMFaQW8+IkXubrkai5efHEIrQscRsgo2PkDA1eVRo/uf5Q1eWvYmL/R41pfexGeOvIUdb11fPOKb6KUcuSBAh02GrGMcKTtCBsXebZfEPwhSkVRllkWtNLT4AyzmeMY31in1sBfvPhi/nLXX0Jh0qxgeAihEoTC9EIyEjIclUb7W/ezv3U/j1z7iNdv1770IlisFr7/1vdZu3AtNyy9wbY+s4zYqNiAC8KRtiOMW8e9Cpog+EtZVvBKT8VDwJY/iI2KZWn20lCbMqs4PISU0AiCUorVeasdHsKj+x4lMSaRT67+pNe12YnZpMalmhKE3x/9PSe7Tzq8A7CNFFiavTTglUaVLZUAIgjCrFGeaWtOM0rhZxNTgqCUukYpVaOUqlVKPeTivFJK/dR+/rBSar23tUqpHymlqu3Xv6iUygjMW/KdI+1HWJazjLjouFCZEBRyknLIScph1YJVIbNhbd5ajrQdYWB0gKeOPMWtq24lI8H7P70xBttbL4JVW/neW9/jggUXcPPymyedW5m7MuAeQmVLJTlJORSmFwb0voJgUJZVxohlxOvWnIHAqyAopaKBnwHXAiuBO5RSK6dcdi1QYf+5D/iFibV/Bi7QWq8GTgDfmPG78ZOj7Ue5cMGF3i8Mc6Kjoqn9Yi2f3/j5kNmwZuEazo2f4+G3H2ZgbIB7191req2ZXoQ/nfgTxzuP840t35g2Rntl7kpO95xmeHzYL9tdIQllYbYxKo2CETYy4yFsBmq11qe11mPAM8BNU665CXhC23gXyFBKLfK0Vmv9mtbaaL97F1gcgPfjM/2j/TT0NbicoTMfSU9ID0mFkcGaPNveCD9+58csz1nOlsItpteWZZZR11vn0XX+4e4fUpRexG2rbpt2bmXuSqza6tgSdaYMjQ9R1V4lCWVhVlmVu4ovbPpCUPpczAhCAdDo9LzJfszMNWbWAtwDvGLCloBT1W4b5RAJHsJcYNWCVUSraEYnRrl33b0+fbPeXLCZEcsITx1+yuX53Wd2s7txN1+95KsuxwsbI8wDFTY6dPYQE3pC8gfCrFKQVsAj1z0SlFCvGUFw9T926gxjd9d4XauU+mfAArj8X66Uuk8pVamUquzo6DBhrm8YM4wixUMINQkxCSzPWU5sVCx3rbnLp7UfX/lxNhds5ut//vqkAYQGP9rzI7ISs7hn3T0u1y/NXkqUigqYIEhCWZhvmBGEJmCJ0/PFQIvJazyuVUp9GrgB+KR2Myhfa/0rrfVGrfXG3NxcE+b6xtH2o6TEpVCUURTwewuuefCiB/n2Vd8mN9m3f88oFcUj1z5C+7l2x6wpg+rOarbVbOOBTQ+QHJfscn18TDzlWeUBqzSqbK1kYcrCkJXxCkKgMSMIe4EKpVSJUioOuB3YNuWabcBd9mqji4E+rXWrp7VKqWuAfwQ+qrU2P48gwBxpP8Kq3FXTEpDC7HHfhvt4aMu0YjVTbCrYxL3r7+Un7/3EEe4D+I89/0F8TDwPbH7A4/pAVhpVtkhCWZhfeP0UtCd+HwB2AMeBP2itq5RS9yul7rdfth04DdQCjwJ/52mtfc0jQCrwZ6XUQaXULwP3tsyhtW2MguQPwovvX/190uLTePDVB9Fa0zrQyhOHn+DutXd79TpW5qzkZPdJxibGZmTD4NggxzuOS0JZmFeY6lTWWm/H9qHvfOyXTo818AWza+3Hy32ydBZoO9dG13CX5A/CjJykHL77ge/yhe1f4Lljz7G/dT8Wq4W/v+Tvva5dmbsSi9VCbXetY76RPxxoPYBGS/5AmFdEdJzEGFnhPMNICA8+t+FzrF24lr9/7e/5ReUv+PiKjzvqtT0RqJlGRkJ5Q/6GGd1HEOYSES0IxqY44iGEH9FR0Txy7SM09TfRN9rH1y/9uql1y3OWo1AzF4TWShanLWZhysIZ3UcQ5hIRPdzuSPsRFiQvCMneAMLMuazwMr500ZdoP9fOpoJNptYkxSZRnFE840ojI6EsCPOJiBaEo+1HxTsIc/7zmv/0ec1MK436Rvo40XWCu1b71kchCHOdiA0ZWbWVqo4qqTCKQFbmrqSms8bvjcv3t+4HpCFNmH9ErCDU9dQxND4kHkIEsjJ3JaMTo9T11Pm1XhLKwnwlYgXBGFkhHkLkMdOZRpWtlRRnFAdl2JggBJOIFQSjwmgmtehCeDLT0lNJKAvzlYgVhCPtRyjJKCE1PjXUpghBJi0+jcVpi/2qNOoe7uZ0z2k25ZurahKEcCJiBUEqjCIbfyuN9rXsA2DDIskfCPOPiBSE8YlxTnSdYFVu6LaSFELLypyVHO887vM+tUZCef2i9V6uFITwIyIFoba7FovVIvmDCGZ5znKGxodo6m/yad2+1n2UZ5WTmZg5S5YJQuiISEEwQgWh3GxeCC1lWWUAPpeeVrZUSrhImLdErCAoFMtzlofaFCFElGaWAnCq55TpNZ1DnTT0NUiFkTBviUhBqOqoojijmKTYpFCbIoSIJWlLiFbRnO45bXqNkVAWQRDmKxEpCMc6jkn+IMKJjY6lML3QJ0EwEsrrFq6bLbMEIaREnCBYrBZqumpEEARKM0t9E4TWSpZmLyU9IX0WrRKE0BFxgnC65zRjE2MiCAJlmWU+ewgSLhLmMxEnCEaFkQiCUJpZSsdQBwOjA16vbRtso6m/SSqMhHlNxAqCMeBMiFyMSqO6Xu+lp/taJaEszH8iThCqOqooTC+UGUaCQxDMhI0qWypRKEkoC/OaiBMEqTASDBy9CN3eexH2te5jec5y+SIhzGsiShAmrBNUd1azMkcEQYDMxEwyEjJMewiyIY4w34koQajvrWfEMiIeguCgNLOU072eBaF1oJWWgRY2LpL8gTC/iShBkAojYSpmSk8loSxECiIIQkRTmllKfW89E9YJt9dUtlQSpaJYu3BtEC0ThOATUYJQ1VFFQWqBdJoKDkozSxmbGKNloMXtNZUtlazIWUFyXHIQLROE4BNRgiAVRsJUvJWeaq3Z17pPwkVCRBAxgmDVVo53HhdBECbhbQx2y0ALZwfPSoeyEBFEjCCc6TvD0PiQCIIwCW9jsI0Jp+IhCJFAxAiCJJQFV3gbg13ZUkm0imbNwjVBtkwQgo8IghDxlGW5Lz3d17qPlbkrZTMlISKIKEFYmLKQrMSsUJsizDFKM1zvi2CxWniv+T0JFwkRQ8QIQlVHlXgHgkvcjcHeVb+L7uFublh6Q4gsE4TgEhGCoLW2lZzKDCPBBe7GYD977FmSY5O5tvzaUJglCEHHlCAopa5RStUopWqVUg+5OK+UUj+1nz+slFrvba1SKksp9Wel1En7n5mBeUvTaepvYnBsUDwEwSWuehEsVgsvHH+BG5beQGJsYqhME4Sg4lUQlFLRwM+Aa4GVwB1KqamfrNcCFfaf+4BfmFj7EPC61roCeN3+fFaQhLLgCVdjsN9seJOOoQ5uXXlrqMwShKBjxkPYDNRqrU9rrceAZ4CbplxzE/CEtvEukKGUWuRl7U3Ab+2PfwvcPMP34hZDEFYtWDVbLyGEMZmJmWQmZE7yEJ6tepak2CSurZBwkRA5mBGEAqDR6XmT/ZiZazytzdNatwLY/1xg3mzfONZxjNykXHKScmbrJYQwx3kM9oR1gheqbeEiKTcVIgkzgqBcHNMmrzGz1vOLK3WfUqpSKVXZ0dHhy1IHD3/wYXbcucOvtUJkUJp5vvT0zYY3aT/Xzi0rbgmxVYIQXMwIQhOwxOn5YmDqaEh313ha22YPK2H/s93Vi2utf6W13qi13pibm2vC3OnkJOWwbpHshSu4x3kM9rPHniUxJpHrKq4LtVmCEFTMCMJeoEIpVaKUigNuB7ZNuWYbcJe92uhioM8eBvK0dhvwafvjTwMvz/C9CILfGGOwG/sbeeH4C1y/9HoZdy1EHDHeLtBaW5RSDwA7gGjgca11lVLqfvv5XwLbgeuAWmAIuNvTWvutfwD8QSn1GeAMIOUcQsgwKo2eOPQEbefapLpIiEiU1j6F9EPKxo0bdWVlZajNEOYhp3tOU/bTMrITsxkaH6Lj6x3iIQjzBqXUPq211xksEdGpLAjeKEwvJFpF0zXcxXUV14kYCBGJCIIgADFRMRRlFAFIuEiIWEQQBMFOaWYpCTEJXL/0+lCbIgghwWtSWRAiha9d8jVuX3U7KXEpoTZFEEKCCIIg2PlI+UdCbYIghBQJGQmCIAiACIIgCIJgRwRBEARBAEQQBEEQBDsiCIIgCAIggiAIgiDYEUEQBEEQABEEQRAEwU5YTTtVSnUADX4uzwE6A2hOsAln+8PZdghv+8PZdhD7A0WR1trrDmNhJQgzQSlVaWb861wlnO0PZ9shvO0PZ9tB7A82EjISBEEQABEEQRAEwU4kCcKvQm3ADAln+8PZdghv+8PZdhD7g0rE5BAEQRAEz0SShyAIgiB4ICIEQSl1jVKqRilVq5R6KNT2eEIp9bhSql0pddTpWJZS6s9KqS6ebGwAAANlSURBVJP2PzNDaaMnlFJLlFJvKKWOK6WqlFJfsh+f8+9BKZWglHpfKXXIbvu37MfnvO0GSqlopdQBpdSf7M/DyfZ6pdQRpdRBpVSl/Vg42Z+hlHpOKVVt//2/JJzshwgQBKVUNPAz4FpgJXCHUmplaK3yyG+Aa6Ycewh4XWtdAbxufz5XsQBf1VqvAC4GvmD/+w6H9zAKfEBrvQZYC1yjlLqY8LDd4EvAcafn4WQ7wFVa67VOpZrhZP9PgFe11suBNdj+HcLJftBaz+sf4BJgh9PzbwDfCLVdXmwuBo46Pa8BFtkfLwJqQm2jD+/lZeBD4fYegCRgP3BRuNgOLMb2ofMB4E/h9rsD1AM5U46Fhf1AGlCHPS8bbvYbP/PeQwAKgEan5032Y+FEnta6FcD+54IQ22MKpVQxsA54jzB5D/aQy0GgHfiz1jpsbAf+E/gHwOp0LFxsB9DAa0qpfUqp++zHwsX+UqAD+G97yO7XSqlkwsd+IAJCRoBycUxKq2YZpVQK8DzwZa11f6jtMYvWekJrvRbbt+3NSqkLQm2TGZRSNwDtWut9obZlBlymtV6PLbz7BaXUFaE2yAdigPXAL7TW64BzzPXwkAsiQRCagCVOzxcDLSGyxV/alFKLAOx/tofYHo8opWKxicFTWusX7IfD6j1orXuBndjyOeFg+2XAR5VS9cAzwAeUUr8jPGwHQGvdYv+zHXgR2Ez42N8ENNk9SoDnsAlEuNgPRIYg7AUqlFIlSqk44HZgW4ht8pVtwKftjz+NLS4/J1FKKeAx4LjW+sdOp+b8e1BK5SqlMuyPE4EPAtWEge1a629orRdrrYux/Y7/VWt9J2FgO4BSKlkplWo8Bj4MHCVM7NdanwUalVLL7IeuBo4RJvYbRERjmlLqOmzx1Wjgca3190JskluUUk8DV2KbktgG/BvwEvAHoBA4A9yqte4OlY2eUEptAd4CjnA+lv1P2PIIc/o9KKVWA7/F9nsSBfxBa/1tpVQ2c9x2Z5RSVwJf01rfEC62K6VKsXkFYAu//I/W+nvhYj+AUmot8GsgDjgN3I3994gwsB8iRBAEQRAE70RCyEgQBEEwgQiCIAiCAIggCIIgCHZEEARBEARABEEQBEGwI4IgCIIgACIIgiAIgh0RBEEQBAGA/x/gsO1ofeaRnAAAAABJRU5ErkJggg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmczuX+x/HXx9hJFJU1TqiQrUmLpZKtEm1CRFFaVCoOTaI6UYqUk1SydmyRSCo7bdaRfc0SyU9I9syYmev3x3WrOaUzo1m+c9/zfj4e92Pu+3t/5/aZc/Sey/W9vp/LnHOIiEjkyhF0ASIikrEU9CIiEU5BLyIS4RT0IiIRTkEvIhLhFPQiIhFOQS8iEuEU9CIiEU5BLyIS4XIGXQBA0aJFXdmyZYMuQ0QkrCxfvny/c65YSudliaAvW7YssbGxQZchIhJWzGxHas7T1I2ISIRT0IuIRDgFvYhIhFPQi4hEOAW9iEiEU9CLiEQ4Bb2ISIRT0IuIBOSdd2DOnIz/cxT0IiIBeP11ePhhGDYs4/ftVtCLiGSyl16Cp56CO4st4P2zH8/wP09BLyKSSZyD3r2hZ09oU2Ep4/c1IHfdKzP8z0110JtZlJmtMLPpodf9zWyjma02sylmVjjZuTFmtsXMNplZ44woXEQknDgHPXrAiy9Cx2s2MPq7q8nZvSu0bZvhf/aZjOi7ABuSvZ4NVHHOVQU2AzEAZlYJaAVUBpoAQ8wsKn3KFREJP0lJ0KUL9O8PjzT/kaFLqhF1UxM/h5MJUhX0ZlYKuBkYduqYc26Wcy4h9HIxUCr0vDkwwTkX55zbDmwBaqVfySIi4SMxETp1gjffhKc6HmTwV9XIUeEiGDcOojJnDJzaEf0bQHcg6S/e7wB8HnpeEvgh2Xu7Qsf+i5l1MrNYM4vdt29fKssQEQkfJ0/CPffA8OHQu0ccAxbXxVwSTJsGZ5+daXWkGPRm1hTY65xb/hfv9wQSgLGnDp3mtD+tH3LODXXORTvnoosVS7FvvohIWImLg7vugvHjod/zJ3hh6Y3Yxg0wcSJUqJCptaRm45HaQDMzuwnICxQyszHOubZm1h5oCtzgnDsV5ruA0sm+vxSwOz2LFhHJyo4fh9tvh5kz4d99DvPY5OtgzRoYNQoaNMj0elIc0TvnYpxzpZxzZfEXWeeFQr4J0ANo5pw7nuxbpgGtzCyPmZUDKgBLM6B2EZEs5/BhuPFGmDULhvfbx2Mja8LGjX66JhNW2JxOWrYSHAzkAWabGcBi59xDzrl1ZjYRWI+f0unsnEtMe6kiIlnbzz/7kF+xAsa9vINWb1zl53DmzoWrrw6srjMKeufcAmBB6Hn5/3FeX6BvWgoTEQkne/ZAw4bw3XfwUe+V3PLStVCokA/5SpUCrU13xoqIpNGOHVC3Lmzf7vis42RueSEaypSBhQsDD3lQ0IuIpMnmzT7k9+93zLmuL/WH3Am33OJDvnTplD8gEyjoRUT+ppUroU4dOHE8kfll7uWqT3tBr14weTKcdVbQ5f0mLRdjRUSyrW++gZtvhkL54pmTowEVtyz3a+RbtAi6tD9R0IuInKFZs+C226DUuceZfehKyhT4Gb7+GmrUCLq009LUjYjIGZg8GZo2hQrnH+LLvZdS5oJ4Px+fRUMeFPQiIqk2fLhva3DFhT+xYMc/OP+y8/xIvmzZoEv7nxT0IiKp0L8/3H8/NCy/nVlb/kHhBtEwfz6EQa8uBb2IyP/gHMTEQPfu0LLGZqZtvpgCLW+BTz6BggWDLi9VdDFWROQvJCbCI4/A0KHw0PUbGTy/MlG3NYcxYyBn+MSnRvQiIqcRFwetW/uQ73nHBoYsqExUwxt83+EwCnnQiF5E5E+OHPHLJ+fOhdce2MhTo6rB1VfBlCmQJ0/Q5Z0xBb2ISDL79sFNN/kOlKN7bqbdwJq+X82nn0KBAkGX97co6EVEQnbuhEaNfJOyqX3X0bTPVb5fzcyZULhw0OX9bQp6ERFg/Xof8seOwewBq6jTozaULOmXUJ5/ftDlpYkuxopItrdwoW9OlpgIXwxc7kO+VClYsABKlAi6vDRT0ItItvbJJ34b16JFYeHrS6j6aD0/XbNgARQvHnR56UJBLyLZ1siRfnVN5crwzQtzKNexvm9nsGABXHBB0OWlGwW9iGQ7zkG/ftChA9Sv75h3Y3+KtWkEF18M8+aF/Zz8HynoRSRbSUqCJ57wbQ1a33mS6QVacdaL3eHuu32DsggLedCqGxHJRuLioF07vz/Ik/f+woAldcmxeSMMHOjT3yzoEjOEgl5EsoVDh+DWW/30+4Anf6TryCoQFeV3EalfP+jyMpSCXkQi3u7dcOONsGEDjBm4lzavXO73dP3yyyzfSz49KOhFJKJt2ABNmsCBA/DpuEM0fKYOxMf7G6GyQciDgl5EItjXX0OzZpA7N3wx41dqdm0MP/wAc+bApZcGXV6m0aobEYlIkyf7G6HOOw8WfZVAzZdbwLJlMGEC1K4ddHmZSkEvIhFn0CBo0QIuvxy++dpRrt+DvvvkkCHQvHnQ5WU6Bb2IRIykJOjWza+UvPVWmDPbce6LT8CIEfDcc/Dgg0GXGIhUB72ZRZnZCjObHnp9jpnNNrPvQl+LJDs3xsy2mNkmM2ucEYWLiCR34oTfEeq116BzZ5g0CfL1fRb+/W948kkf9NnUmYzouwAbkr1+GpjrnKsAzA29xswqAa2AykATYIiZRaVPuSIif3bgADRs6G+EGjAA3nwTol55CV56CTp18ukfoTdDpUaqgt7MSgE3A8OSHW4OjA49Hw3cmuz4BOdcnHNuO7AFqJU+5YqI/Lft2+Gaa2DpUvjgA+jaFezfg6BnT2jbFt5+O1uHPKR+RP8G0B1ISnbsfOfc/wGEvp4XOl4S+CHZebtCx/6LmXUys1gzi923b98ZFy4ismwZXHUV7N3rV0ze1cL54fwTT/i2lCNHQg5dikzxfwEzawrsdc4tT+Vnnu5Xp/vTAeeGOueinXPRxYoVS+VHi4h4H38M114L+fP7jUPqXnECOnaExx+HW26B8eMhp24VgtSN6GsDzczse2ACUN/MxgA/mVlxgNDXvaHzdwGlk31/KWB3ulUsItneoEF+wH7ZZbB4MVySfyfUretH8L16wZQpkCdP0GVmGSkGvXMuxjlXyjlXFn+RdZ5zri0wDWgfOq098HHo+TSglZnlMbNyQAVgabpXLiLZTmIidOny+/LJ+fPh/HXz/IL5TZtg6lT41798szL5TVomr/oBDc3sO6Bh6DXOuXXARGA9MAPo7JxLTGuhIpK9HTsGd9zx+2rJSZMg//A3/XKbYsX8hH02vBkqNcy5P02fZ7ro6GgXGxsbdBkikkXt3u171qxYAW+8AY89nODTfvBg/8aYMb4bZTZjZsudc9EpnacrFSKSpa1eDTffDL/8AtOmwc31jkDzVvDZZ/DUU/Dqq5qqSYGCXkSyrM8/h7vugrPP9p0oq5/7A9S9Bdau9evjH3oo6BLDghaYikiWNGQING0KFSrAkiVQPf9muPJK2LbNNyhTyKeagl5EspRTK2s6d4abbvKbQJV0u/xF14QE+OYbaKwWWmdCQS8iWcaRI/7a6qmVNVOnQsG4n6FRIz9JP2OGXzwvZ0Rz9CKSJezc6adq1q9PNv1+9Kgf1m/b5kO+Zs2gywxLCnoRCdzSpX4kf+KEvwDbsCEQFwe33w6xsfDRR3DddUGXGbY0dSMigZow4b971jRsCBw/7pvLz54Nw4frRqg0UtCLSCCSkvxeIK1bwxVX+FF9pUrAli2+JeXUqb6pzb33Bl1q2NPUjYhkuuPHoX17+PBDuO8+eOcdyJ0bf0dUu3b+BqjPP9fqmnSiEb2IZKoff4R69WDyZL8b1PDhkDsq0W8U0rw5XHQRLF+ukE9HGtGLSKZZutR3nTxyxA/emzYFDh2Cli1h5kzfT37wYMibN+hSI4pG9CKSKcaN8yP5PHlg0aJQyG/dCldfDXPnwrvvwrBhCvkMoKAXkQyVlAQxMdCmje9gsGwZVKmCv+X1yithzx6YNctv4i0ZQkEvIhnmyBG/E1S/fvDAA361ZNGi+J2gGjTwL5YsgeuvD7rUiKagF5EMcWpW5tNPfUuDd98NXXT95z+hQwe/eH7RIt+1TDKULsaKSLqbOxdatPDPZ86EG24ADh/28zfTp8Mjj/gdRHLlCrTO7EIjehFJN8750XvjxlCihJ+Pv+EG4PvvoXZtvzb+rbf8QyGfaTSiF5F0ERfnB+ojRvjl8P/5T2h3v6+/9hP1CQm+MVmDBkGXmu1oRC8iabZ7t+85NmIEPPus70F2VkHnb3mtXx+KFIHFixXyAdGIXkTSZNEi32TyyBHf0uCOO/A9Dh56yA/rmzSBsWPhnHOCLjXb0oheRP62YcN+7zy5eHEo5E81JRszBl54wS+7UcgHSiN6ETlj8fHwxBN+g5BGjWD8+FCWf/yxb0qWMyd89pkfzUvgNKIXkTOyZ4+fdn/7bejWLTRgz3scHn7YN7KpWBG+/VYhn4VoRC8iqbZokZ+eOXTIbxjSsiW+02SbNrB5s0/+Pn18QxvJMjSiF5FUGTrUz8fny+cDv+WdifDyy34+/tgxmDMH+vdXyGdBGtGLyP904gQ89pi/8Nq4se9Cec6RHVC/nW9MdtddfhllkSJBlyp/QSN6EflLO3dC3bo+5J95JjQf//lYqFoVVqyA0aP9HI5CPktLMejNLK+ZLTWzVWa2zsxeCB2vbmaLzWylmcWaWa1k3xNjZlvMbJOZaZsYkTA0dy5cfrmfep86Ffp2+4Woe+6Gtm190K9e7VfYmAVdqqQgNSP6OKC+c64aUB1oYmZXAa8CLzjnqgO9Q68xs0pAK6Ay0AQYYmZRGVG8iKQ/5+DVV/2yyfPO8/1qmpeMhWrVYNIk6NsXFiyAsmWDLlVSKcU5euecA46GXuYKPVzoUSh0/Gxgd+h5c2CCcy4O2G5mW4BawKJ0rFtEMsChQ36z7ilTfPfJESOg4HcroGFDKFwYFi6EK64Iukw5Q6m6GBsakS8HygNvOeeWmNkTwEwzG4D/l8E1odNLAouTffuu0LE/fmYnoBNAmTJl/vYPICLpY80av3Ry2zYYONDfEGVr1/iQL1TIj+IvvDDoMuVvSNXFWOdcYmiKphRQy8yqAA8DTzrnSgNPAsNDp59uws6d5jOHOueinXPRxYoV+3vVi0i6GDPG7+p35AjMnw9PPgm2aaNvQpY3L8ybp5APY2e06sY5dxBYgJ97bw98FHprEn56BvwIvnSybyvF79M6IpKFxMVB585wzz1+RmbFCr/Khu++87e/mvmrshddFHSpkgapWXVTzMwKh57nAxoAG/HhfW3otPrAd6Hn04BWZpbHzMoBFYCl6V24iKTNjh0+1IcM8Te0zp0LF1yAn4evXx9OnvQHL7446FIljVIzR18cGB2ap88BTHTOTTezg8AgM8sJnCA03+6cW2dmE4H1QALQ2TmXmDHli8jf8dlnfpVkYqLvHX/bbfgrsTExvolNmTL+TtfKlYMuVdKB+UU1wYqOjnaxsbFBlyES8RIS4Lnn4KWX/GrJDz+E8uXxy2wefdR3LHv8cXjxRShYMOhyJQVmttw5F53SeWqBIJJN7NkDd9/tL7Z27Ahvvgn5csRBq/bwwQf+JqipU7V8MgKpBYJINjB/PlSv7jcHGTnStzTIlzvRz9988IEfwcfGKuQjlIJeJIIlJfkMb9DA3++0dCncey/+9tdOnfzczcCBfqPXXLmCLlcyiKZuRCLUvn1+wD5rlp+yeffd0LS7c36ZzYgR0KuXXzQvEU1BLxKBvvgCWreGAwd8wD/wQLLeY337+lH8Y4/5PV0l4mnqRiSCJCb6qZr69eGss2DJEj9D81vIv/66H8W3awdvvKHOk9mERvQiEWLPHj9VM3eu39nv7bd92AN+sr57d3jtNd/QZvhwyKFxXnahoBeJAHPm+JA/dMivqOnQIdlg/cQJP4KfNMn3Oxg0CKLUOTw70a90kTB28qTf+alRIzjnHN87vmPHZCH/889+yc2kSTBggF88r5DPdjSiFwlTO3b41TQLF/pwHzQIChRIdsL69b63wY4dfq38XXcFVqsESyN6kTA0ZYq/AWrNGhg/3k/X/BbyR49Cjx6+x8HPP/t5HYV8tqagFwkjv/4KjzwCt9/ue9SsWAGtWoXedM7fAHXppX4vwHbtYMMGqFMn0JoleAp6kTCxdq3vUPD22/5+p2++SdYmfvVqaNzY7/9XtKh/c/hw0KY+goJeJMtzzof7FVfA/v0wcyb07w+5c+P3/Wvb1s/jLFvmL7YuWwbXXJPi50r2oYuxIlnY/v3+rtapU6FJExg9Gs47D79ovk8ff9trrlx+Tr57dyhSJOiSJQtS0ItkUXPm+Gn2n3/2HQu6dIEcu3fBEwNg6FCIj/e/BXr1ghIlgi5XsjAFvUgWEx8PPXv6Ze+XXup3g6peaBs81A9GjfJ3ubZt60+qUCHociUMKOhFspCNG/3a+BUr4OGHYUB/R/4XY3zqR0X5BfPdu0O5ckGXKmFEQS+SBTgH77wDXbtC/vzw8cfQrBnQ7xV45RVo397v/6cpGvkbFPQiAfvpJz9Q//RTv0Jy5EgoXhwYM8Zv1t26te8dryZk8jfpb45IgD75BC67zF94/fe//Xx88eL4FpQdOsB11/nkV8hLGuhvj0gAjh6FBx/00zMlSsDy5X4fkBw58H0Nbr8dKlb0vQ7y5Am6XAlzCnqRTLZokb+/6b334J//9JuDVK4cenPbNrjxRr/n3+ef+41eRdJIQS+SSeLj/R7cdepAQgIsWOBb0uTJg+8Z36cPVKkCR474kC9dOuiSJUIo6EUywfr1cPXVfrvWdu18a5p69UJvTp/uh/S9esHNN/upm6pVA61XIouCXiQDJSb63ftq1oSdO+Gjj/y11UKFgM2b4ZZb/CN3bpg9228QUqZM0GVLhFHQi2SQ7dvh+ut9p8kmTXz3ydtuw/c0ePxxP4pfsMB3KFu1yu8EJZIBFPQi6cw5f6G1alWf36NG+cUz5xeO88P78uXhrbf84vktW/xvgty5gy5bIliKQW9mec1sqZmtMrN1ZvZCsvceM7NNoeOvJjseY2ZbQu81zqjiRbKaXbv8oplOnXxb4dWr/U2ttnaNXzDfrZufrF+92t8Ke/75QZcs2UBq7oyNA+o7546aWS7gazP7HMgHNAeqOufizOw8ADOrBLQCKgMlgDlmVtE5l5gxP4JI8JyD99/3HSZPnoTBg32vmhw5gIkT4b774OyzYcYMf/urSCZKcUTvvKOhl7lCDwc8DPRzzsWFztsbOqc5MME5F+ec2w5sAWqle+UiWcSePdC8Odx7rx+0r1oFnTtDDpcITz8NLVv6hfPLlyvkJRCpmqM3sygzWwnsBWY755YAFYG6ZrbEzL4wsytCp5cEfkj27btCx/74mZ3MLNbMYvft25e2n0IkAM7B2LFQqZJfMDNwoL+2Wr48cOCAXyr5yivw0EMwf36ot4FI5ktV0DvnEp1z1YFSQC0zq4Kf9ikCXAX8E5hoZgbY6T7iNJ851DkX7ZyLLqZ9LSXM7N7tR/Ft28Ill8DKlfDkk76TMEuXwuWX+3B/7z2/D6AutkqAzmjVjXPuILAAaIIfqX8UmtpZCiQBRUPHk9/SVwrYnS7VigTs1Fx85cp+FP/aa/DVV3DxxaE3X3/d3/rqHHz5Jdx/f9Ali6Rq1U0xMyscep4PaABsBKYC9UPHKwK5gf3ANKCVmeUxs3JABWBpxpQvknl++AGaNvWraCpV8nPxTz0VGsUfOOCH+E895adsVqyAK68MumQRIHWrbooDo80sCv+LYaJzbrqZ5QZGmNlaIB5o75xzwDozmwisBxKAzlpxI+Hs1Lr4bt38na6vv+47TUZFAb/+6nfu7tHDX5UdNMi/aaebwRQJRopB75xbDdQ4zfF4oO1ffE9foG+aqxMJ2LZtfvZl/nx/l+uwYfCPcs7Pw48aBePHw6FDvqXwwoUQHR10ySJ/oh2mRE4jMdFvBPLss37k/u6bcTxQ4QvsnTm+CdmGDZAvH9xxh19Xef312hxEsiwFvcgfrFnjuxMsWwZNK21lSOGelO42FeLiIFcuf7H1qaegRQt/E5RIFqegFwmJi/Mt4fv1cxTJc5zxBbrQcv1wrGpVePRR33Ssbl0oUCDoUkXOiIJeBL9EstP9iWzcHEXbXBN5/VhnijarDb1j/Zp4kTCmoJds7eBB6NHlBEPfz8uF9iOf8SA33pQHes/yTeRFIoCCXrIl52DyiEM81sXYe6wAT/Ea/7plOQWefwlq/GmRmUhYU9BLtrNz9UEevf1HPtlamRp8y/TGk7n8tbuhctegSxPJEFoPJtlGwuHjDLx5DpWq5WTu1rL0rzmepesKcvmMvr6ngUiE0oheIl9iIsue/ZhOAyqyMqEBTc9fyuD3z+bCRq2DrkwkUyjoJaId3HmYnvW+4u0dt1I8989M7rOB256ppQ4Fkq1o6kYiknMwbtA+Lrkonnd2NOHRa9eyYW9Rbu95qUJesh0FvUScTZug4RUHafNEMcq4HSwbEsu/F1Sl0NlKeMmeFPQSMY4f971pqlZJJHY5DCn2HIvWnEXNh9UuWLI3zdFL2HMOpk2DLl0cO3YY9zCWV+t8wgXThkKRIkGXJxI4jeglrG3d6jcDufVWKLh3G19Qj/e7ruaCeeMU8iIhCnoJS8ePQ+/efvn7l/MTeK1gb1bY5dSb+BgMGOC7TIoIoKkbCTPOwUcf+S7BO3fC3VXX8OramylZIT9MWQSXXhp0iSJZjkb0EjY2bIBGjeDOO6Fw0s98ce7tjF1dlZJ3Xu13fFLIi5yWgl6yvEOH/Ai+alXHsoXxvFnsXyzfdT71Ku6BL76ADz6AQoWCLlMky9LUjWRZSUkwciTExDj274cHzp1Cn/0PUqzsefDeZGjWTJtwi6SCgl6ypIULoUsXiI2FawqtZYZrT82Cv0D//nDPPX4jVxFJFU3dSJaycyfcfTfUrg271+xnLHfzdf7G1Hzrfn/L6733KuRFzpCCXrKEY8fguefgkkscUyadpJf1YXO+6tzdvya2dQs88gjkzh10mSJhSVM3EqikJBg7FmJi4McfoWWB6byS8CgXtr8e+q+AYsWCLlEk7CnoJTBffeVX08TGQvQ5W5lAe+qU2g/vjIbrrgu6PJGIoakbyXTbtvm18PXqwZ4f4vlPsadYcuhS6rzQCFatUsiLpDON6CXTHDgAffrA4MG+Q8G/bltB189uIP+5+eCL+f4KrIikuxRH9GaW18yWmtkqM1tnZi/84f1uZubMrGiyYzFmtsXMNplZ44woXMJHXBy89hpcdBEMGgTt2ybw3W3d6TWlJvmvqQ7ffquQF8lAqRnRxwH1nXNHzSwX8LWZfe6cW2xmpYGGwM5TJ5tZJaAVUBkoAcwxs4rOucQMqF+ysKQkmDgRnnkGtm+HGxvE8+rlE6ky5UXYvBl69PBD/Jz6h6VIRkpxRO+8o6GXuUIPF3r9OtA92WuA5sAE51ycc247sAWolX4lSziYNw9q1YLWraFQ1FFm39CPz74qRJVX7oHCheGTT6BfP4W8SCZI1cVYM4sys5XAXmC2c26JmTUDfnTOrfrD6SWBH5K93hU6JtnA6tVw441www2wb8cx3r+wF99uKUSDZS9Dx46wYgUsWeKbyItIpkjVcCo07VLdzAoDU8ysKtATaHSa00/XfMT96SSzTkAngDJlyqS6YMmavv/e94cfM8ZROF8cA859nc77XyDvORfC0Hf97a4FCgRdpki2dEb/bnbOHTSzBfjpmXLAKvNNpUoB35pZLfwIvnSybysF7D7NZw0FhgJER0f/6ReBhIe9e6FvX3j7bYgigW75hxJzrCdFKpWHoeOgeXO1LBAJWIpBb2bFgJOhkM8HNABecc6dl+yc74Fo59x+M5sGjDOzgfiLsRWApRlSvQTm8GEYONCvpvn1V0eHC+fRe1t7StUoCS99CPXrq7OkSBaRmhF9cWC0mUXh5/QnOuem/9XJzrl1ZjYRWA8kAJ214iZy/PorvPUWvPyyXxd/R+3/o8+mu7jkhyXQ93no3l0XWEWymBT/i3TOrQZqpHBO2T+87gv0TVNlkqXEx8Pw4X415O7d0Lh+PH3OepXoj3tBlSoweylUrx50mSJyGmqBIP9TQgKMGgWXXOIbSJYrm8SCRyYy49vzif7kOT+Cj41VyItkYQp6Oa2kJBg/HipXhvvugyJFHJ/2XMhXP13MtUNawpVX+rWUr7wCefIEXa6I/A8KevkvSUkweTJUq+ZXRObODR/130psweu5qW9tLE9u+PxzmDHD/xYQkSxPQS+AD/gpU6BGDd9ZMj4exr91gFU17+O27hWw9ev8VdhVq6BJk6DLFZEzoOUR2ZxzMG0aPP88rFwJFSrAf4adoNWOV8nZrR8kJsI//+kb1px9dtDlisjfoKDPppKSYOpUePFFH/Dly8Po0XD3ZWvI2epO33Tsrrt8P5py5YIuV0TSQFM32UxSEkya5BfJ3HGH36t11CjYsAHaJY0iZ+0r/d1Qc+fCBx8o5EUigII+m0hIgHHj4LLL/EA9Ph7GjIH166F9i+Pk7NTBL6+56irfeKx+/aBLFpF0oqCPcKdudLrkEmjTxnclGD8e1q2DNi0TyDljug/3UaOgVy+YPRsuuCDoskUkHWmOPkIdP+4Dvn9/+OEHuPxyv6qmWTPIsXkjPDMS3n8f9uzxwf7ZZ1pNIxKhFPQR5uBBvwpy0CDYt8/v0Pfee9DomqPYpIlQZxgsWuQ7St58M3ToADfd5DdxFZGIpKCPEHv2wOuv+3bBR474zT9innbUzRfrk/7O8XD0qJ/D6d8f2rbVFI1INqGgD3ObN8OAAX5pZEKCo8W1e3m62gyq75kBHZbB1q2QLx+0bAkPPABXX632wSLZjII+TC1ZAq++6ufdc+d2dCg1m67bHqH8/K0wHyhd2k/Md+vmN27VzU4i2ZaCPowkJcH06X4E/9VXfo/tZzr+xGOzm3H+zm+hR1e4/nqoWROKFQu6XBHJIhT0YeDXX+E///G7OW3eDGXK+N2d7s87hrNIrf9UAAAJ7ElEQVSeegDOOQcWLPBXXkVE/kDr6LOwn36C556DCy+EBx+EggX9Gvita47z5PoHOOuRe+Caa/wNTgp5EfkLCvosaM0av+qxTBn417986/f58yF2aRKtTv6HnJUqwrBh0LMnzJoF552X8oeKSLalqZssIjHR37M0aJBvM5M/P9x/P3TpAhUrAl9/DVc96Xdzio6GCROgTp2gyxaRMKCgD9jhwzBiBLz5JmzbBiVL+o23Oz3gOOfw9/6qa48pvtVkyZL+btY2bSCH/jEmIqmjoA/Ixo3+DtZRo/x9TNdcAy8/e4zbEiaRa8FsqP4l7NrlTy5SxDeM79YNChQIsmwRCUMK+kyUmOiXRw4eDHPm+G36WrZI5PEaXxO9eDA8/AnExUHx4lCvHtSt679WrqwRvIj8bQr6TLB3r28w9u67sGMHlCoFfXvHcf/hgZz3/gAYe8Cve3/wQd+aIDpad6+KSLpR0GcQ5+Cbb2DIEPjwQzh5Eq67Dl4b4Gh+4gNyPt0NfvzR7/7RoQM0bKjGYiKSIRT06ezQIb+hx7vv+mWShQrBQw/5R6WE1fDYY/Dll34X7okT/eS8iEgGUtCnA+dg2TIf7hMm+F7wNWr4ppGtWzkKrPwGXnjTD+2LFPEnduzoWwWLiGQwBX0aHDwIY8f6e5dWrvQLYu6+20+1R1f+1d/GWvdN/2bhwtC1Kzz9tG9ZICKSSRT0Z8g5f+/Se+/5TbZPnPCj9yFvJtKm8koKfbsA+nwFX3zhfxNUqeJH8G3aaGmkiAQixaA3s7zAl0Ce0PkfOueeM7P+wC1APLAVuM85dzD0PTFARyAReNw5NzOD6s80u3f7e5VGjvSNxQoVgnvvhQcabKfm2K7w9Cw4dsyffNFFcNtt0K4dXHutVtCISKBSM6KPA+o7546aWS7gazP7HJgNxDjnEszsFSAG6GFmlYBWQGWgBDDHzCo65xIz6GfIMPHx8Mkn/s7VGTN8m+B69SAmBlo0PEiBAS9Aq8F+pH7vvf7NOnWgRImgSxcR+U2KQe+cc8DR0MtcoYdzzs1Kdtpi4M7Q8+bABOdcHLDdzLYAtYBF6VZ1BnLOt5MZPdpPsR844DsPxMT4LC9fLtFPyld/Fn7+2e/a9OKLaiwmIllWqubozSwKWA6UB95yzi35wykdgA9Cz0vig/+UXaFjWdquXTBunA/49eshb1649VZo394vcY+KwjejqdMGFi/2o/c33vAT9CIiWViqgj407VLdzAoDU8ysinNuLYCZ9QQSgLGh0083Ie3+eMDMOgGdAMqUKfM3Sk+7w4fho4/8ph7z5/vRfO3aMHQotGjhF8r8Zvx4v5wmRw6/1KZ1a829i0hYOKNVN865g2a2AGgCrDWz9kBT4IbQFA/4EXzpZN9WCth9ms8aCgwFiI6O/tMvgowSHw8zZ/qs/vhjv2rmoovguW5HaVNjA+UvPxvKlfv9LtWjR/1NTqNG+Zubxo3zO4GIiISJ1Ky6KQacDIV8PqAB8IqZNQF6ANc6544n+5ZpwDgzG4i/GFsBWJr+padeUpLv9jtunF8S+csvcG6heO6rvIJ78kziqu3jsf7JfhdFRUHZslChAmzZ4qdseveGXr0gp1akikh4SU1qFQdGh+bpcwATnXPTQxdZ8wCzzU9hLHbOPeScW2dmE4H1+CmdzkGsuHEOli71d6pOmuTbyhTIn8StZVdxNwNo+MtEcq10cOml0OAGqF7dP9+7F7777vdHgQIwb55fJikiEobs9xmX4ERHR7vY2Ng0f45z8O23Ptg/+AC+/x5y50qiSYVttEoYQ7PN/SkQFQc33+xbEDRsCPnypf0HEBEJgJktd85Fp3Re2M9DOAexC+P5cNhBPvwsH9v2nkVOS6BB7q94nlE0P/kxhdcf8qP1V5+He+6BCy4IumwRkUwT1kG/bMwm7upQgO9PliInRbiBuTyT4yNurbCOc6PL+emY6vdAtWq+37uISDYU1kH/j2pnUfmc3fS+YinNbzXOubICVBzst24SEREgzIP+3MtKMH1PCSDFKSoRkWxLG5GKiEQ4Bb2ISIRT0IuIRDgFvYhIhFPQi4hEOAW9iEiEU9CLiEQ4Bb2ISITLEk3NzGwfsCMNH1EU2J9O5WS2cK4dwrv+cK4dwrv+cK4dsk79FzrnUuzvkiWCPq3MLDY1HdyyonCuHcK7/nCuHcK7/nCuHcKvfk3diIhEOAW9iEiEi5SgHxp0AWkQzrVDeNcfzrVDeNcfzrVDmNUfEXP0IiLy1yJlRC8iIn8hrIPezJqY2SYz22JmTwddT0rMbISZ7TWztcmOnWNms83su9DXIkHW+FfMrLSZzTezDWa2zsy6hI6HS/15zWypma0K1f9C6HhY1A9gZlFmtsLMpodeh1Pt35vZGjNbaWaxoWNhUb+ZFTazD81sY+jv/9XhUvspYRv0ZhYFvAXcCFQCWptZpWCrStEooMkfjj0NzHXOVQDmhl5nRQlAV+fcpcBVQOfQ/97hUn8cUN85Vw2oDjQxs6sIn/oBugAbkr0Op9oBrnfOVU+2LDFc6h8EzHDOXQJUw/9/EC61e865sHwAVwMzk72OAWKCrisVdZcF1iZ7vQkoHnpeHNgUdI2p/Dk+BhqGY/1AfuBb4MpwqR8ohQ+U+sD0cPu7A3wPFP3DsSxfP1AI2E7oemY41Z78EbYjeqAk8EOy17tCx8LN+c65/wMIfT0v4HpSZGZlgRrAEsKo/tDUx0pgLzDbORdO9b8BdAeSkh0Ll9oBHDDLzJabWafQsXCo/x/APmBkaNpsmJkVIDxq/004B72d5piWEGUwMysITAaecM4dDrqeM+GcS3TOVcePjmuZWZWga0oNM2sK7HXOLQ+6ljSo7ZyriZ9q7Wxm9YIuKJVyAjWBt51zNYBjZPVpmtMI56DfBZRO9roUsDugWtLiJzMrDhD6ujfgev6SmeXCh/xY59xHocNhU/8pzrmDwAL89ZJwqL820MzMvgcmAPXNbAzhUTsAzrndoa97gSlALcKj/l3ArtC//gA+xAd/ONT+m3AO+mVABTMrZ2a5gVbAtIBr+jumAe1Dz9vj576zHDMzYDiwwTk3MNlb4VJ/MTMrHHqeD2gAbCQM6nfOxTjnSjnnyuL/ns9zzrUlDGoHMLMCZnbWqedAI2AtYVC/c24P8IOZXRw6dAOwnjCo/b8EfZEgjRdKbgI2A1uBnkHXk4p6xwP/B5zEjxQ6AufiL7J9F/p6TtB1/kXtdfBTY6uBlaHHTWFUf1VgRaj+tUDv0PGwqD/Zz3Edv1+MDYva8fPcq0KPdaf+Ww2j+qsDsaG/O1OBIuFS+6mH7owVEYlw4Tx1IyIiqaCgFxGJcAp6EZEIp6AXEYlwCnoRkQinoBcRiXAKehGRCKegFxGJcP8P711CBU9w8ncAAAAASUVORK5CYII=\n",
"text/plain": [ "text/plain": [
"<Figure size 432x288 with 1 Axes>" "<Figure size 432x288 with 1 Axes>"
] ]
...@@ -1060,14 +1060,17 @@ ...@@ -1060,14 +1060,17 @@
], ],
"source": [ "source": [
"plt.figure()\n", "plt.figure()\n",
"#plt.plot(mean_values, 'r')\n", "plt.plot(mean_values, 'r')\n",
"approx = []\n", "approx = []\n",
"diff = []\n", "diff = []\n",
"a=0.013\n",
"b=0.84\n",
"c=316.3\n",
"for i in range(len(mean_values)):\n", "for i in range(len(mean_values)):\n",
" approx.append(0.013*i**2+0.84*i+316.3)\n", " approx.append(0.013*i**2+0.84*i+316.3)\n",
" diff.append((approx[i]-mean_values[i])/mean_values[i])\n", " diff.append((approx[i]-mean_values[i])/mean_values[i])\n",
"#plt.plot(approx, 'b')\n", "plt.plot(approx, 'b')\n",
"plt.plot(diff, 'g')" "#plt.plot(diff, 'g')"
] ]
}, },
{ {
...@@ -1084,6 +1087,52 @@ ...@@ -1084,6 +1087,52 @@
"En utilisant les données mises à notre disposition, on peut extrapoler un modèle parabolique avec les valeurs suivantes : $a\\:=\\:0.013,\\: b\\:=\\:0.84,\\: c\\:=\\: 316.3$" "En utilisant les données mises à notre disposition, on peut extrapoler un modèle parabolique avec les valeurs suivantes : $a\\:=\\:0.013,\\: b\\:=\\:0.84,\\: c\\:=\\: 316.3$"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On peut comparer notre modèle théorique et les valeurs réelles avec oscillations pour voir si on a bien une représentation\n",
"cohérente de la tendance :"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7ff0d36a3550>]"
]
},
"execution_count": 117,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8FcUWwPHfIYQmSO+hV+kldBAEFKSK0kWlCE/Ahk9EQLA3xC6iKFURpMijCAgqVWpCDb0qIEjonZBk3h9zN3uDIEHIzb3J+X4+fGZ37+wyez9wspmdOSPGGJRSSiV/qZK6AUoppXxDA75SSqUQGvCVUiqF0ICvlFIphAZ8pZRKITTgK6VUCqEBXymlUggN+EoplUJowFdKqRQidVI3ACBHjhymcOHCSd0MpZQKKOHh4ceMMTkTWt8vAn7hwoUJCwtL6mYopVRAEZHfb6a+dukopVQKoQFfKaVSCA34SimVQmjAV0qpFEIDvlJKpRAa8JVSKoXQgK+UUimEBnyllPKRU6dg0iSIjrb7Q4bAlCm++/v9YuKVUkqlBFmz2nL+fPj6a3jjDbvfvr1v/n4N+Eop5WMTJkCrVpCWS+TIEwwE+eTv1S4dpZTygQsX4u+fOXCaBdzHimpP+6wN+oSvlFI+sHKlu52Lv2jwSlNCiEDa9/FZG/QJXymlEsnkybB8ud1u3NiWhdjPcuqS6/ROWjKb1F06+qw9+oSvlFKJ4Nw56NTJbhtjy7JEsECakM5cpDE/I7Vq+bRN+oSvlFKJYP78+Ps1WclS7iZrFsPdLGUVtbjnHt+2SQO+Ukolgr173e2YuT/xM405TnaWvf0bWygHQKFCvm2TBnyllEoETjdOe77HtGzJLkpQl+Xsii4SV8fXC/0lOOCLSJCIrBeROZ7990Rku4hsEpEZIpLFq+5AEdktIjtEpEliNFwppfzJpUvgvXDfyZPwBCOZRCe2ZqpJfZZwlNw88IBbp0oV37bxZp7wnwG2ee0vBMoZYyoAO4GBACJSBugIlAWaAp+LiG9mFSilVBLJnBmqVYNFiwBjSP3uG4ykD3NoQY3TP3GGzKxdC9myuefkyOHbNiYo4ItICNAc+No5ZoxZYIzxZIRgFRDi2W4NTDbGXDbG7AN2A9VvX5OVUsr/REXZcvbMWE5268cbDGECj/AQ07lEegAKFoT06eH4cTh/3vdtTOgT/kfAC0DsdT7vDszzbOcHDnh9dtBzTCmlkgVjYOfO+PsAqblC5wVdyTr+Yz7kWboyjmiC4+plymTLbNkgQwYfNtjjhgFfRFoAR40x4df5fDAQDUx0Dl2jmrnGeb1EJExEwiIjI2+iyUoplbQ+/hhKlYK777b7Dz4IGTjPTFoTuu0bviz4Bs/xAe8OS0XFirZOhQr26T4pJeQJvw7QSkT2A5OBhiLyLYCIPAa0AB42xvkZx0GggNf5IcCfV1/UGDPKGBNqjAnNmTPnLdyCUkr5Vr9+tly2zJbL/xfJrzSkCT8xvMSXPPHHYEB46inIlcvW2bQpSZoazw0DvjFmoDEmxBhTGPsy9ldjTBcRaQoMAFoZY7zTAs0COopIWhEpApQA1iRC25VSKunt28dv1KECm2jDDEYH9QLsC9x06WDhQlstbdokbKPHrYzD/wzIBCwUkQ0i8gWAMWYLMAXYCswH+hpjYm65pUoplUT27oXNm/9+vBLrMbVrk4NjNOIXIoq0Yvt2+1nnzrbs2dOWEyb4pq3/5KZy6RhjFgOLPdvF/6Hem8Cbt9IwpZTyF8WK2dIYOHjQbjfkF2bQhrOXslCHX6n68F20D3W7e/J7hqp8+CE0agRt2/q+3VfTmbZKKfUPvMeUREdDt27QgcnM435+pxDDH1zJdu7ihRegaFG3bohnoPodd0CHDpDKD6KtHzRBKaX814IF7vbu3fDgHx8xmU6spBb1WMb6o/ZRPn/++AE/vx8ORteAr5RSXq43xl6IJfilF+i9sx/TeZCsq3/iNFlYtAhy57Zj64t7dXTnzevbdieEBnyllPLy4Yd2jP2GDRAbC488AsFEMZ7HKDb9PUbQh/ZMIWvedICdMVuyJIjYUTmO4ODr/AVJSBdAUUopLzNn2rJ3b5g3DzJylmm0pQkLGF/iDZ7cNQgQ8uRxz/GeSvTxx3D2rE+bnGAa8JVSyosTvHPlgmNb/mIRzanEBp7POpr3d3WP+8z7CX7xYnf7ad+tSX7TtEtHKaW8zJhhy5DzO8jzYC3KsJXl//0fS4t3j6tToED8c7780ocNvAUa8JVSymPMGNtvX5dlvLW4FnLhPA1YTNWXW1DEXbeEsWPjn9emjW/b+W9pwFdKpWhPPummP+jRw65Q9TONOUou3muzkp2Zq5MpE5Qta+sEB0M5u0Ih27fDxo0QFCArfmjAV0qlWDt2wIgRcN99gDH0Zxjf05E1VKdGzArWny4a133jzLa9csWOyAE7mqdChSRp+r+iAV8plWINHGjLIKIxffoyjAFMpgP3spCTZGPXLnfGbBPPYq3NmydNW28HDfhKqRTjiy/ij6KJirJ57GfQBvliJO/yAp35jko17ID6bdvclaly5LBdOFOmJEHDbxNx09gnndDQUBPmvfqvUkolAqcr5vJlSJMG8sgRZtOSKqxjU8/PqPJVb8DOtC1Z0tatXBnWrUuiBt+AiIQbY0ITWl/H4SulUpx9+6BkzDZW0oxcHKU1M/nxqxaAzYHjnSLhlVeSpo2JQbt0lFLJ0iOP2KUHHUuXutvHflhKVLXaZOAC9VnCj7SI+2zVKvc3AbB5cpILDfhKqWTp22/tJKo1nvX26te3ZUcmUXPIvey9kIearKLO0/F7RJyXtM7ShFWq+KjBPqABXymVrHXp4mwZBvIWk+jM/jw1qcNv7KcInTu7T/TODwWwPyhmzvTPJGj/lgZ8pVSy5Lx0rVsXuHyZsXTjLQYzkc48c9cCTpINgBo13ElVGTO65xcqBK1a+bbNiU0DvlIqWXJy2p/ee5yoe+6jK+MZyqt8Wfdbflkef0Vx54dD4cK+baOv6SgdpVSyVZIdfLCyBanNATrxHX/d04lSxWDZcvv5m56Vty9ftqV3vpzkSJ/wlVLJzpw5UJ/FrKQWd0SfZvZzvzKZTowdCwULuvWcPvv+/W3p9vcnTxrwlVIBzxgYNgzWr7f7P7Qcw0Lu5TB5aZJ5NQ+8WxuwaY0LFXLPy5rVlvXr22skpyGY16IBXykV8MaNgwEDoGqVWHjxRcbQg0XcQ21WsO6k20+TKlX8XPZOQrSUQgO+UirgffEFpOcCU2kH777LSJ6gOT9St1nmuDpOt02OHO55adOSomjAV0oFnPPnYfdud79d3cMsoT5tmEHsBx/Sh8+JJphhw9w6TroEZwhmSqSjdJRSAccZL3/oEOSL3Mgjn7XgDk7Smpk8lLVlXD3vF7ROV06qVDB+vM1ln9Ik+AlfRIJEZL2IzPHsZxORhSKyy1Nm9ao7UER2i8gOEWmSGA1XSqVMV66420e/ngV16xIVBXVZzhxa8ssv9rORIyFTJreud9/9o4/aCVcpzc106TwDbPPafxH4xRhTAvjFs4+IlAE6AmWBpsDnIhIgC4AppfzdqlUAhhd5m4qvPAClS1OD1WykEmBz6ADcfXf8865eeDwlSlDAF5EQoDnwtdfh1sB4z/Z44AGv45ONMZeNMfuA3UD129NcpVRKc+ECtG0LW7fa/cfaX+RbuvA2g4go25G17y/lMPn+dl4+z6EXX4QSJSBz5r9VSXES+oT/EfACEOt1LLcx5jCAp/TkliM/cMCr3kHPsXhEpJeIhIlIWGRk5E03XCmVMsycCdOne/LS//kn3/9Vn05MYiBvMaL2RKrXTw/Ad9/FPy9LFlu+/babZiGlu2HAF5EWwFFjTHgCrynXOPa3ZbWMMaOMMaHGmNCcOXMm8NJKqZRm3z5bVo1dC9WqUSF4Gw/wPyYWGMjhI2646dTJPadmTR83MkAk5Am/DtBKRPYDk4GGIvIt8JeI5AXwlEc99Q8C3r1lIcCft63FSqkU5aOPoBPf8cz0epAmDf1rr2A2rShdGo4csXWc3PWO7dt9385AcMOAb4wZaIwJMcYUxr6M/dUY0wWYBTzmqfYYMNOzPQvoKCJpRaQIUAJYc9tbrpRK/mJjeTZyEN/xMKupwebRa/h0cXnA9tE7T//OwuROaoSoqCRoawC4lYlX7wD3isgu4F7PPsaYLcAUYCswH+hrjIm51YYqpVKGr7+2qRI4e5az97ZhEG/zJb24l4WsP+h2/+bJA87rvwwZbOn027/zjk+bHDBuauKVMWYxsNizfRxodJ16bwJv3mLblFIpUM+eUJh9dH2/FekjtvEknzKCvoAwd66tc/IkfP+9e44zwapECdixA+rU8XmzA4KmVlBK+Y2NG6EeS1lLNczBgzRlPiN4ksGD7cvZFSvgzjvtEMtKldzz7rnHllOmQFhY8lqH9nbSgK+U8g/GcMf4z/mFRhwjBxGj1/ALjQHo0cNWOXDApjcWsV06DifNcfr0ULWqj9sdQDTgK6WSzKZN9mn94O5L8PjjFP+wL/NpSg1WsyKyRFw975Hbmzfb0jvTpVxrMLj6G02eppRKMu+/DxnPHCJ1owfhjzVMLT2EDttfwZCKZctsnUyZ4I473HPSpLGlM3P2/fd92+ZApgFfKeUz585BunSQOjXExMCeCcsJpy13/HEeM/0H2j/UBrDDK5cuteeMGWOf4FOlgthYm+kSbPeN+duUTvVPtEtHKeUTJ0/ap/VWrQBjiP50JIu4hzPcSQ1W8+35NnF1ixe3/fUA1T2ZuJxum1q1fNvu5EQDvlLKJ5xcN7/Muww9e5K2Xx9+ognVWcM2yrB3r1vXWawE3CyXP/1kh2x657hXN0e7dJRSPpEuHeTjEDNTPwSjV/NRxpd47tyrGFKRJg1MmmTrtW3r9s8XLuw+2TdqZP+of08DvlLKJ1YO/40w2pIx+hxMn06/hx4E7JDKkyfthCmwvwk4yxDu3580bU2utEtHKZUozp+Hgwft9pXPvuTz7fdwjozUZBXn7nswrt4rr9gyWzZo3hyCg+Hdd+0x78lV6tbpE75SKlFkzAhpucSFHk8TPPorfqQZDzOR02SJe5rv1AmKFrXbJ064/fVNmkCfPtC1a5I0PdnSgK+UShSF2M802pJqdDgTCw/m0f2vEotd7bRePVunSROb/8ZRrJgtM2SAESN83OAUQAO+Uuq2MMZ9wbr7s/mE8zBBxLBm8Ewic7Qitp9b9+JFWxYvHn/UTalSvmtvSqR9+EqpW/bLL7bvfffOWHj1VYo93YyDhBBKGFMvt4qbNfvrr7arx1Gnjp1A5ahRw7ftTmn0CV8pdcteeQXujDnBsZpdKH5yHjMyPkqXcyO5SAaGD3fr1aljk57t3g3lyrnHp02z4+yvXrlK3V76hK+UumXnl68jnKpUPvkLfPEFA/OO4yJ2VZKGDd16adJA3rx2O1s29/hDD8GoUT5scAqlAV8pdVMiI20yM2cxEkaPZgW1CSKGeiwjqtt/2LnLdubXru3mu2nWzJZ//WVLTWPsexrwlVI35fXX4cIFeKj5RZuo/vHHWcrdVGEdB/JUJyLCrZs9OyxZYred2bOdOtmyTRuUj2nAV0rdlGPH7BKEv1EHxozhdV7ifuZxnBwcOQLr19t6kyfD7Nk2wyXAk0/a8pVX7KQsZ2im8h0N+EqpfzRvHrRs6Qbue6N+JJyqFGEfV36YzVBejxtfD8SNyHG6cBwlS7rbzqLjyrc04Cul/lGzZjBnDhw9dAUGDKDb9Bb8TiGqEk5YnhZx9Z54wparVkGOHDYV8pdfutfJnt3HDVd/owFfKXVD+TlImib3wLBhjOQJarGSfRRl/34b2ENCoHt3W3fHDqhWzW4/6KbM0WUI/YAGfKXUdUVHQ1PmsYFKZNy7kcPvf0cfRnKZdACsWAFnz9oXublzu+c5i5boU71/0YCvlIonNtbTXx8dTdTzg5hHMw6Rn5Hdw9hfyw6xef55W/frr21ZqRLkz+9ew5kxK2JXuPKefKWSjgZ8pVScXbsgKAgKBB2Chg3J8PHbjKInNVnFrlSleOABW69lSztx6tIlu1+2rD3PGXnjPOEDzJwJ//2vb+9DXdsNA76IpBORNSKyUUS2iMirnuOVRGSViGwQkTARqe51zkAR2S0iO0SkSWLegFLq9ilZEu5lAeupDOHhdOEb/sMoLpGeESPg6FFbLzYWTp+229Wq2Tw6YNMj7NmjXTn+KiFP+JeBhsaYikAloKmI1ASGAa8aYyoBQz37iEgZoCNQFmgKfC4iQde8slIqSV26BEuXenZiYniNIcynKUfJRdSKMCbS5Zrn1a0LMTF220lpDDYRmpPfXvmfGwZ8Y53z7AZ7/hjPnzs9xzMDf3q2WwOTjTGXjTH7gN2A1y94Sil/UbIk1K8PP407DI0bM4Q3GEdXqrOGXanvAuCRR6BWLfecp56C1KmhQwe7H6SPcwEjQX34IhIkIhuAo8BCY8xq4FngPRE5AAwHBnqq5wcOeJ1+0HNMKeVnDhyA+/iJSt0qwerVfFRpHD0Yw0UyxC0qXqeOO0sWIDTUlkOH2vLFF33bZvXvJSjgG2NiPF03IUB1ESkH9Ab6GWMKAP2A0Z7q1xpta64+ICK9PH3/YZGRkf+u9Uqpfy8qimH05yeaEklOWLuWaXc8FreO7Pff27JBA8iXzz2tUCFbliljE6N5pzlW/u2mRukYY04Bi7F9848BP3g+morbbXMQKOB1Wghud4/3tUYZY0KNMaE5c+a8yWYrpf6NrVs9ycz27OFi1br0ZzgjeYJeFddA2bIcOWJXncqa1easDwqyq1J5B/y6dZOs+eoWJWSUTk4RyeLZTg80BrZjg3h9T7WGwC7P9iygo4ikFZEiQAlgze1uuFLq5pUtC6MaTMRUrkzw77t4iGn0YSTRaTJw4oQdYVOqFBQubOvny2eDfkiIew3tsw9cCVnxKi8w3jPSJhUwxRgzR0ROAR+LSGrgEtALwBizRUSmAFuBaKCvMSYmcZqvlEqomNPnGEdfHmMCpwvVYcvg7/ihk11Q9vBhN41x+fIQHm6zXjqTqTJkgB9+sD8wVOC6YcA3xmwCKl/j+HLgmksYGGPeBN685dYppW6Pdesw7TryCLt5jSGsyjuUeZ3sf/8MGeDgQRgzxi5s0rIlLFhgTzt3zr2E5q8PfDrTVqnkzBj46COoWZOokxdoyK+8zGvMW+g+6919ty3nzIFUqSBtWjvsEuKPsVeBTwO+UsnUxT8i2VGiBfTrB02bUvDkBpbQ4G/13nrL3T57Nn7ZosXfqqsApgFfqeTol184XaQihff8TP90n8DMmRwnBwBFirjVhgyJnwbhvvvc47VqxU9vrAKfBnylkpPLl20qy8aNORV7J9VZw/BLT3H6jDs9xnvlqdatbRI0h7PebMmSNvWx92cq8GnAVyqZCBsXQXTV6vD++9C7N83zrGMTFQG326ZRIyjgNUsmNta+qHXk1znxyZoGfKUCXWwsV4Z/TLluoZzYchhmz8aM+Jy9R9yFY50++blz4wf80ND4K1Fp4rPkTQO+UoHs8GFo1ozg/s/yM40pz2Zo0SIubz3YgH7kiO27T5MG8ua1x/Pnd4N93742+OuonORNA75Sgep//7OzpJYuZWT5z2nJbI6SmyNHYNYsW2XAADsyc8UKm/sGbApjiD/G/rPPYO1a3zZf+Z4GfKUCzblzTEjbE9q0IbZgIVi3jj6be+PkLTx40K3qLCb+119Q0E6qpXNnOzT/0CHfNlslPQ34Svm5Vq1s14sxwJo1xFSsTJeo0bzFQMY8vpK1Z0vHq79+vS3ffz/+wuJOgE+VCp55Jv7LWpUyaMBXys/Nng1BRLOg3utQuzaXzkTRgMUM5i3OXk7D6tW2npPgzEmLULUq5MnjXqdUKd+2W/kfDfhK+blSbOc36tDkt6HQoQNvtd/IMmw+hL173QC/eLEtnSRopUq5L2jBpkxQKVtCsmUqpXxo+nQ7Pr7dQ7FEf/gp63mRC2SgPd8zakR73spq61WqZAP+3Ll2P18+yJEDIiPtaJzcueMPuezXz/f3ovyLBnyl/MiVK9C2LRRiP+0adCP14sXMpzk9+Yoj5OXVw27dokXht9/sdvnydvRN4cJw7Jjtp3eC/aJFMG2azppV2qWjlF8Z/p6hO6PZRAVMeDjdGU1LZnME2zfjvJB99lkb8P/6y+6//rotnXz1qb0e5Ro0sMMuldKAr5S/OHyY8oNbMprHCSOU32dvZizdAYmbHfvyy27pnQSteHFbOnlyatXyWatVANGAr5Q/mDwZypalEb/wNB/TmJ/5ZGYh0qe3XTWPPGKr7d5tyyxZ4qdBcLbTpbPl0aO+a7oKHBrwlUpC3VsdY3rqDjZNZcmSVGIDn/I0hlSEhcHFizB2rB2L72jf3pbeT/jO7NlnnoFPPtFZs+raNOArlVRmzeKt2eVoGTODiy+9CcuXsxM7WD4kBFatstXKlYs/ht55mncWGvcWFARPPQXBwYnbdBWYNOAr5SNnzkC7dnA44jg8/DC0bs1f5KYaa9nUYhDzf7ZvWu+4A3LlsiN2wAb4LFnc6zgBP21a6NkTJk3y8Y2ogKXDMpXykZ49wUybRqppfSH1CY49+QrVPhvIFdKwdi3s3GnrPfkkhIXZ7fz53e4ah3fO+lGjfNN2lTxowFfKF44epe2UvrRjGuFUIXf4Qr6eWwHPQzy7d8O+fbbr5p133DH0JUr8/VJ33eWzVqtkRrt0lEoEZ87YoC1iYNIkYkuXoRWzGMhbNM2yGipUYOBAWzdTJti1C+bM+Xs+eu/lCB3eL2uVuhka8JVKBB06QB4OM4M20LkzR+4sQSU28A4DOXYqNRcuuHWbNIEtW+y2M2HqnXdsWbWqW+/AATh50jftV8mTBnylbjdjKLFiPFspQxN+4uLrw3mi7HK2cxfPPWerTJhgy1Kl7KSp33+3+/ffb8s+fezs2K5d3cuGhMR/eavUzdKAr9RtMH26Z7TMgQPQvDmfnOnKZspTgU1ENPkv2XIGAXDvvbZ+7962nDs3/vBKJ0d9pkx22cE0aXx2CyoFuGHAF5F0IrJGRDaKyBYRedXrs6dEZIfn+DCv4wNFZLfnsyaJ1Xil/EW7trEs7zyC2DJlYckSnuITGrCY3ZRg2zY76uaee+KvRgV2iGVUlLvvvcC4UrdbQkbpXAYaGmPOiUgwsFxE5gHpgdZABWPMZRHJBSAiZYCOQFkgH/CziJQ0xsQkzi0olcQiIlhOL2qzkhOl7iXL5C/4rISb92DPHvtStnlzO6G2Z097vEYNW3p309St68N2qxTnhk/4xnKWOw72/DFAb+AdY8xlTz0ne0drYLIx5rIxZh+wG6h+21uulI9ERcVf8Dsy0va9L/npEgwZQmzlKpRgF134hvGdf2LHFTfYZ84MmzbZaxQqZLtsnABf2rMyYf367rVT60BplYgS1IcvIkEisgE4Ciw0xqwGSgL1RGS1iCwREc9yyeQHDnidftBzTCm/Fx5un8BjY91jadPaPnXHhAmQZ+cSCreuCG+8wZEGHbmLbUykC/v2C0OH2noTJ0L27LBwod2vXNmW+fLZ0llUPGfOxL0npRwJCvjGmBhjTCUgBKguIuWw3UFZgZpAf2CKiAgg17rE1QdEpJeIhIlIWGRk5L++AaVup9BQ+PprN8/8ypXuZ7GxwMmT3Pl8T5bQAHPlCixYQPHfJnCcHIB9Z7tmja3/wAM24J8/b/fLlLHl1q22rFTJlunTw333wfDhiXtvSt3UKB1jzClgMdAU++T+g6fLZw0QC+TwHPd+9RQC/HmNa40yxoQaY0Jz6iOO8jNnz9ryyBHniOH8uKlw1110YyzD6E+b4hFw771cvGhrlC5tA/4ff9j9DBnc7pucOW33DsCDD9rSGYIJ8NNP8N//JuYdKZWwUTo5RSSLZzs90BjYDvwPaOg5XhJIAxwDZgEdRSStiBQBSgBrEqf5SiUOJ+/8wYMQwgFm0YpMPdpj8uenGmsZwDA27MwQ9/QOdtGRffvs9lNP2dLpzvH+JXbCBLsW7dU5cpRKbAl5RZQXGC8iQdgfEFOMMXNEJA0wRkQigCjgMWOMAbaIyBRgKxAN9NUROspfGePmrTl0yD0eEQHN7osmz6RP2cpQUhHL3r7vE9TvaTYUd//b/PyzLXv2tH39J07Yfae75lruuEPTI6ikkZBROpuMMZWNMRWMMeWMMa95jkcZY7p4jlUxxvzqdc6bxphixphSxph5iXkDSv1b4eF2se/337f7gwa5n11atBITGkq7lc+xjHqUI4INDZ/j5ddtsO/UydZzctb36RN/eKWTv95ZrGT06ES8EaUSSGfaqhTL6TN//nlbXrwI2TjOKHoydH5tzLHjPMh0mvMj+ylCZCSMH2/rNm5sSyeNcbFi0KiRe20n6dm339runO7dE/9+lLoRDfgqRYiKsl03LVu6x5Ys8aoQG8sdU8eyndJ0l7GMy/E8Xz+3jRk8SMWKts/Hux/eWST8t98gd247bNN7jdkcdtAOwcHutlJJTQO+ShGcl6lz5tjhlc6wS4CyRGDurs9YurODUrzx0HoGpHqPDbszAjBjhq03ZIgtP/jATYFw8aKb0tgZVw/uewGl/IkGfJUsGeO+QIX4L2R//hmmToU7OMcw+rOBSkRHbKMbY+hWdCnRpctz7JgdoVO69N9fsBYqBBkzQtasdr94cfez115zf0Ao5W804KtkqWdPO+nJ6bbxDvivv2bIt3oGWylDf4Yzlm7kOb2DcXTj4uVUFCxofwuYOxfKl7fn3HOPe76TEsFJg2C8phUOGWInXCnljzTgq2TJGRWzdKkt5861ZQl2MuavZjz47YOckqx8+dhv9OIrTpA9rp7T5x4T4wb1cuXcaztdOE6fvjORSil/pwFfJTveeXAOH4Zjx2DO5LO8wwAiKEfevSv4uMiHPF07nEc+rx3v3AoV7Hh6h5O/3juFsffnAK1b3+YbUCqRaG4+lSz88Yd9kSoC773nHh850pB59kR28AL5OMxYujEj9G0Wbc1N1+Y2/UG2bLa/v1Ure06dOu75bdrYskIFW3p37Wz1sRGIAAAaUklEQVTf7q5dq1Qg0Cd8FfA2brQvUp2+9U8/tWUl1rOMerx98BEOEsK2sauY8+AYftqQm3Pn3NmwThdOfk9OVyfnDbiTqZy8N84kLbCTq6pVQ6mAoU/4KuCtX2/LnTttefHQcT7nJXoxiuNkpwdfM5ZuxHZNRZ61bveMM4zSOS9vXvea99xjZ+E6ihSJ/3JWqUCkAV8FnIsX7QvVjHaYPN262TIVMTByFDt5icycJqLBk9Rf/CqncXMeeAf1hg3jX9d7IZJ58zTAq+RHA74KKMbYfnewL2ed/vO6LOMTnoY+G4iQBoQ/9glnCpXn9GL7uZM+IU8e91pBdl1xxo6FMWOgXj33s6tfzCqVHGgfvvJrJ07AO+9AdLTd/9NrZYV9+yB6516m0I5l3E0OjvHrf76ngfmVdNXK066dW9dJZpYr19//jq5d7fBNffmqkjsN+Mqv9esHAwe6L007drTlnZwm9oUBBJW/i2bMZSivUoodNPqyPSAUKhQ/t40zW9bpt+/Tx2e3oJTf0ICv/EpMTPy+8wkTbOnkna9WOZr/8AW7KEHx6cNYkrcTJdnJvi5DuUiGuPNCQ+MvMOJ011SqBLt2wSefJPKNKOWHNOArv+HMbB082O57T6CqUAFYuJAXv6/MF/RmO6X5vHsY9/w+jj/JT79+8Z/oc+eOf+00adzt4sXd/nulUhIN+MpvOBks337blk5/fSm2M/JAC7jvPs4evcBDTKNHsSUsOlM17twqVaBwYbvdvLl7zRMn4idRUyol04Cv/MaZM+52VBT8vu44H/M0mylPuZPLODVoGGXYyg88REgBiUuM5kx+KlTIlk7qYrAZLZ2slkqldBrwVZK5fBlefNF9kj992pbpuMjpwcOo2LY4fRnBb3c9TnF2kXt4f6Kw4yWzZXOTlzldQE43jTMiRykVnwZ8lWRGjoR333WX/zt6OIbHGMdOSpJz+AAWX6lDRTay578jiSRX3AzZ8+fj98E7ywnmy2dLJ0WCUio+nXilksyGDbY8ecLAvPmU7jyAcWxmDdXY8Nw3tPqgASJuIHdkyOBOvgI34A8aZIddPvSQb9qvVKDRJ3zlE8eP24lN3qmEx4+HqoTxbngjaNYMuXiB9nxPDVbT+sMGgO3y8U6H8NxztnzjDfeY87SfNi306BE/B45SyqX/NZRPrF1ry1mzbGl272ESHQmjGmVjN7Ow5SeUYSs/Z7UTp5yx+O3bx19CsEwZW4aE+KzpSiUbGvBVovjkE+jQwd3fv9+WOYgk+slnoMxdtGQ2r/MSxdjDo2uf4gpp+OoraNDAPa9cOTdJmrPvOHHCJlJTSiWMGD9ICRgaGmrCwsKSuhnqNvFeGnD1aqheHfKkP03vSx/Qjw/JlOo844N6MOjKKxzG7aDPkMG+kH3gAZg50/bN79hhP3Py3Jw5A5ky+fiGlPJTIhJujAlNaH19wle3xdSp7vBKJ788wJa1F7j42jC2XCrKy7zGAu7j148jmFB3FIfJF7f2LLiJzZxFR7yvky6dLTXYK/Xv3TDgi0g6EVkjIhtFZIuIvHrV58+LiBGRHF7HBorIbhHZISJNEqPhyn98+KHta3eGQ27eDMFE0YcRtH2xGOlfHsAaqlOVMNoxjc3Rd7Foka3rLCEIbl/96tV//zt27oQtWxL3PpRK7hLyhH8ZaGiMqQhUApqKSE0AESkA3Av84VQWkTJAR6As0BT4XEQ0c0ky5oycASA6mrkd7Fj6ETzJoQwlmPn8Mpoxj+pPVCVjxvhP7lmzuqNwype35fbttnz2WbdegQLuC1ul1L9zw4BvrHOe3WDPH6fj/0PgBa99gNbAZGPMZWPMPmA3UP32NVkltYgIWLEi/jEhlrZMxZQrxzi6cYwcNGE+dx1dwnLqkjo1fPyxTVO8cKE955tvbHn4sC3vusuWq1bBnXfaSVlKqdsnQX34IhIkIhuAo8BCY8xqEWkFHDLGbLyqen7ggNf+Qc+xq6/ZS0TCRCQs0pkjr/xedLR9Eq9Tx+5fiTI040fCqcpU2hMrQbThB6qxlgU0AYQNG6BiRZuxskgR2L3bnnv1E7uTwrhGDZtmwTvDpVLq1iUo4BtjYowxlYAQoLqIVAAGA0OvUf1a6wb9bSiQMWaUMSbUGBOaM2fOm2mzSkLuS1bD6e9+xFSvzo+0IFe6M3ThG7Z8t4m5adrQv7/EDct0Aj7ET5Dm5Lw5cMAuM1i6tK/uQqmU6aZG6RhjTgGLsd02RYCNIrIf+4NgnYjkwT7Re+UrJAT4ExWQ9u2zwyMPHrT7TzxhaM4c1lCdzA+34NDG4/TgazpU2M5EuvDj/CCioqB2bfukDnDsmDt+fvFiW6ZODXfcYbdDQuwyg0qpxJWQUTo5RSSLZzs90BhYb4zJZYwpbIwpjA3yVYwxR4BZQEcRSSsiRYASwJpEuwOVqIoWtStEPdnXwOzZrKUac2hJdo6zvNtoSrKDMfSg06PBgJu5slat+EMone6bhg1t6axRq5TynYQ84ecFFonIJmAttg9/zvUqG2O2AFOArcB8oK8xJuZ2NFb5lh1Xb2jJLIbMCoVWrcjKSboxhlLsYHKG7kRjA32PHvYcY2w/fe7c8XPaOAG/Uyef3oJSyktCRulsMsZUNsZUMMaUM8a8do06hY0xx7z23zTGFDPGlDLGzLvdjVaJY906O6N1wADAGI5+PYtwqjKL1uRKc4p9Q8ZQmu2MoxvRBDNihD3viSfsxKhKlex+rVq2bNfOvbaT+8ZZTNw5VynlOzrTVsWZMgVSEcPeYVOhShUqvdyaOzlDz9RjaVt2O7+VtIG+f//4+W1atrTl5s22dAK+d5eOkxqhUSMID4fevRP/fpRS8WnAT8HWrYNp0zw7UVEUXTyGrZRhKu3hwgW6MpbSbOdc2678/mcwR4/aqv37x0+MVqyYLWM8HXd167qf1a1rfwPwVqWK+wNAKeU7GvBTKGOgalV4tN0Fm9qyWDF6re7BBTLQjimcX7uV8XQlhtRUqGAXGF+0yC4tmD07ZM5sryPiLh7uLDzidO0ALFtmV7ZSSiU9DfgpyKpV7lP4lFGnGMhb7KcwPPMMFClCh8zzqJdhHdNoxwcfu9kwnH73OXOgaVP7MtZZcerOO+3CIwDffw8XLvjufpRSN0cDfgrRpIntW3/3v0dh0CAeeLYQbzGYMEJZ+e5Szv64lCmnm9LgHtvXsmqVPe+bb+KvOFWtmi3XeAbaOguPg115Kn16H9yMUupf0YCfDJ07Z7tavvvOPbZrwV4+4Sme/6wQvPMO/7vUlMqsozlz2ZS5Hi+8YOvdd58t1661AbxDh/gBv2xZW3bpYksnbbFSyv9pwE8GJk60Ad6ZzPTRR7Z8+GFgzRpM+/bsogT/4Ut+zdMZtm2jI9+zgcqAnUX7xRf2nF697FN6ZKTtmw8Ojh/wnRmzHTvCkCG2b18pFRg04CcDztO2k4Vy6JBYWjKLJdwNNWpgflrAMF6gMPt5IdtorhQtFXduSIibNgHsE7uzbGCFCrb0Hl6ZJ48tg4PhtddsH75SKjCkTuoGqNvnf5Mucv+Bb9jG+5RiJ/spxPm3PqLGF93ZcsZG7cObYfx4W3/qVBg+3F1Y5Op0xJUru9vPPmt/GOhwSqUClwb8ALdhA2TnGL0ZyXOTP4VvIjlHFToyiWm05TWTmi1/xD9n7lxbNmoEkyfD9Ol231lxylG0qLv94YeJdw9KKd/QLp0Ac/CgzVtz9iywbRvBz/TmDwryOkPZkbk6S15ZRChhfE9HYkjN4MF27Dy4T/ZLl9rgnjWruywhuOmKnXw3hQr57LaUUj6gAT/AFCwQy5ExP3Ko3H1Qpgwll49lRrpOPHdfBI9mncPegg0AiVtk5P774cQJO+O1Zk177Phxm/IY4Oef3WuXKGHLzz+3ee+dRU6UUsmDBnw/Zgw0aOBZCvDMGfj4Y/akLsWPtCDv8S3w5pvcXeQA3987mgzVyrJ3L/Tta88NCbFBfZ4ndV3fvu6TPkBUlC1fesk95qwwlSULdO+u/fVKJTca8P3Ip5/CmDHu/pEjcGjJLk4++jQmf3549llOBeekA5PJcX4/x3oNYtWenNSqZfvbY2LcETZp08bvkmnRwgZyR5s2tnTG1Sulkj99aZtEoqPhl1/sDFiw496fftpud+poSL98Ielf+5hdzCWKYM427MCxzk9TpWO1uGs4L1/r1o2/dKAjXz532zu7JUDbtrYs4FmbzFlQXCmVfOkTfhLp39/mpXEmPP36K2TlBP34gHMFSkOTJkStDOdlXqEgf7D8P99Q9Ylq8a4xa5YdD1+jhrtcIEBEhC2dBGetW7ufDRpkh1s6ywhnzWq7jpyx/Eqp5EsDfhJxZsP27m1g9WrS/qcrh8jPB/yXyxlzcPbzbygQ+zuv8TJ/kYf16+HUKXuOsyD4/Plw11227907JbGzutSmTbbcu9f97M033YVOlFIpiwb8JHIH5+jJKMKpCjVr0vjMdMbRlWrBG3jj/t/48nwXokgbV995uZo5s81KCXD+PMTG2u3Uns650FA3mE+caEfarFjho5tSSvk17cP3AWPc9V1NxBbM5yM5xDdk5gwbqUDMZyPJ++TDnCMToRVh/363T/7oUciVy73WuHHxc9t4f3bqVPxslfnywfLliXVXSqlAo0/4iaB6dfuUbYzd37L2Al34xua2KVcOvv6aWbTigZy/UYkNTMz0BOfIRPr0NmHZunWwb5/trsmZ010yEOziIt4ZKps2dbczZ3aHViql1NU04N8GZ864+WjAphYGw57vw6B3b4rVy8s3PEpeDrOvz3t89fJBHuUbyjxeGxBWr7bn5c1rx91HRtp89M2a2eNOwjJwM1g6HnkkUW9NKZWMaMC/RcbYJ+ty5eDyZTDHjvMUn7CBShTvVA3GjyeiaGvqs5iS7GR1vef5z+AcgB1dA+6omsWL3WGS4D7ZO104Tt+8iDtr1vuHgVJK/RMN+Lfo4EEQYmnMQi627gj58/EJz3CFYL6rN5KYg4epvn0CS6kPCIcOuec6k56WLrU5bbyDPbijbXLntmXnzu5n8+bBnj2JdltKqWRIX9repNhYm5YgXTpg716uvPoNexlLYX7n/OKsfBr1H0bTg01UpHYMFN7unpsuHSxYYLebNYMcOdzPnIW/vfvgnbVknbw3ly65n2XJEn/mrFJK3YgG/Gt4/HG7Zmt4uO1PX7HCnZmaLegU7ZjKsHITyBqxnKLAQhrzIu+QtvUDTJhi36gWLGhntzoJyObOhaeegmXL7P7QofEXD3EWG2nSBB57zPblOy9nO3Sw3UWtWiX6rSulkrEbBnwRSQcsBdJ66k8zxrwsIu8BLYEoYA/QzRhzynPOQKAHEAM8bYz5KZHanyhGj7bl1q12UZCpk67QaMJ8ss6awBFmk47LbIsoTdY336TQ4If5g0Jkzw7NPMPms2e3AdtZgQps1srixd1umGLF3KGa4OaeF7FDL72J2B8CSil1KxLSh38ZaGiMqQhUApqKSE1gIVDOGFMB2AkMBBCRMkBHoCzQFPhcRIISo/G3w+XLNqDWr2/3naGUYDj761qazn2aP8lH1kdbEbtoMaPoRShrKcNWLv93EH9QiIwZ7dP8+vX2zA8/tC9xDx+2+6++asvTp92/N3t2WzrJ0jp2TMy7VEqpBAR8Y53z7AZ7/hhjzAJjjGfZbFYBIZ7t1sBkY8xlY8w+YDdQ/Ta3+1/r3NkGeCf4zpxpy6VLbfA/vW4Pg3iTrZSh7nPV6XBmFIu4h9UvzWbEoD95hk8IJxQQz/BLmz8+QwZ3tE29evFHz1SpYstVq9xjzoibbt3sD5mrk5sppdTtlqBROiISJCIbgKPAQmPM6quqdAc8mdfJDxzw+uyg55jPnTljA6t33phJk2zppBuYORNCOMBzvM+pktXIElqcN3mJY+Rg7gOjqF3kCB2YQosvWvDdVDsAvls3e67TH1+yJGzbZrfvvNOmJfZe+Nt56eqdxEwppXwtQQHfGBNjjKmEfYqvLiLlnM9EZDAQDUx0Dl3rElcfEJFeIhImImGRkZE33/IEeO+963+2a/lfMGIET3xXjwMU5H2e50oU/Hz/cArwB/VlGTNy9KRAeTsUpn592LjRpjJwJkQNGmRL77VgixSxP2C8FwB3Rts47Xnuudt0g0opdRNuapSOMeaUiCzG9s1HiMhjQAugkTFxvd8HAe8R5SHAn9e41ihgFEBoaOjffiD8G1OnwpQptgR44w3vvw/+2HCC7sygI5Np9PavYGLJQjkG8waLcnagZJPiceu+1q4Fu3e7GSoPHbKLizRtGj9fDbj98WCXE4T4i484M2NLlPB+R6CUUr51wyd8EckpIlk82+mBxsB2EWkKDABaGWMueJ0yC+goImlFpAhQAlhz+5tu/fGHm9agfXuYNg127LD7mTNDDiLpwdecrtOMAtXzMJrHKcx+3jSDOLJwMxXYTNTzg4ktWjwu0VhoqB1Fs307bN5sjzn97337ehYQ93jhBVs6M18PeHVmjRplfwAppZQ/SMgTfl5gvGekTSpgijFmjojsxg7VXCi2k3yVMeYJY8wWEZkCbMV29fQ1xsQkRuMvXHCfpM+fd48fWXuAUj/N4H+nf6AeywgilvP7irKsyrP0W9OR9VQGhB3j3HOPH3eHTA4bZodUHjny97+zenU4dszddyY/vfSSXUbw0Ufdz3r2vF13qpRSt06MH/QxhIaGmrCwsJs+b+VKqF3bbs8YvpuVz0/nQX6ghucXigjKMp2H+IEHefLLCoz4XDh37u8pCS5csKNsHEeO2Je7/frZ/RIlYNcuu+18Xc6L4E2boHx5u713r51wlVqnsymlfEBEwo0xoQmtH9C5dMpmOcTLvMJGKvDA8yV4lxcRDPPqv00ptlOeCMzLr7KJiqxeI2zcaFMOXz2xKX166NXLboeE2Nw1q73GIR09akvvLJVOWoRy5dxjRYtqsFdK+a+ADvh3Rp9gKK9xkqw8w0cU5Hc6FF7DuNwvspNSALz8sn2p+sMP9pzXXnPz1oCbT76aZ7lYJ4FZ795uHSftwVdfucfCwuDHH3WpQKVU4Ajs59Fy5ejX6S8+mZQz7tC9JdxVnlKntgE5b147KSpNGpuhcv9+9xJOPnnnydwJ+PXquXXuv9+OuXdezIJ9d+A9EkcppfxdQD/hI0LX/m6w79rVjnn/0zMI1Hkid/LJly9vg37Bgu4lOnWypTMbtkePuEtz+bLNUDlggO2fL1Uq8W5FKaUSW2A/4WP75B29e8MTT7j7ztO7k5jMebnqZKEsW9btkqlQAa5cid8Hf61UxUopFagC+wmf+Ou7VqsWf7JVkCdlmzMu3zu/TWysm/vGoS9clVLJWcAHfG8iNp/81bJls6XzpO/UVUqplCRZPNNOneqmOwgKsjlrnPH5YGff7t+v3TJKqZQtoCdeKaVUSpaiJl4ppZRKOA34SimVQmjAV0qpFEIDvlJKpRAa8JVSKoXQgK+UUimEBnyllEohNOArpVQK4RcTr0QkEvj9Fi6RAzh2w1r+I9DaC4HX5kBrLwRemwOtvRB4bb5RewsZY3L+w+fx+EXAv1UiEnYzs82SWqC1FwKvzYHWXgi8NgdaeyHw2ny726tdOkoplUJowFdKqRQiuQT8UUndgJsUaO2FwGtzoLUXAq/NgdZeCLw239b2Jos+fKWUUjeWXJ7wlVJK3UBAB3wRaSoiO0Rkt4i8mNTtcYjIfhHZLCIbRCTMcyybiCwUkV2eMqtX/YGee9ghItdYsytR2jhGRI6KSITXsZtuo4hU9dzrbhH5RCTx1hK7TptfEZFDnu96g4g085c2i0gBEVkkIttEZIuIPOM57pff8z+015+/43QiskZENnra/KrnuL9+x9drr2++Y2NMQP4BgoA9QFEgDbARKJPU7fK0bT+Q46pjw4AXPdsvAu96tst42p4WKOK5pyAftPFuoAoQcSttBNYAtQAB5gH3+7jNrwDPX6NukrcZyAtU8WxnAnZ62uWX3/M/tNefv2MBMnq2g4HVQE0//o6v116ffMeB/IRfHdhtjNlrjIkCJgOtk7hN/6Q1MN6zPR54wOv4ZGPMZWPMPmA39t4SlTFmKXDiVtooInmBO40xK439FzjB6xxftfl6krzNxpjDxph1nu2zwDYgP376Pf9De6/HH75jY4w559kN9vwx+O93fL32Xs9tbW8gB/z8wAGv/YP88z9OXzLAAhEJF5FenmO5jTGHwf7HAnJ5jvvTfdxsG/N7tq8+7mtPisgmT5eP86u7X7VZRAoDlbFPdH7/PV/VXvDj71hEgkRkA3AUWGiM8evv+DrtBR98x4Ec8K/VX+UvQ47qGGOqAPcDfUXk7n+o68/34bheG/2h7SOBYkAl4DDwvue437RZRDIC04FnjTFn/qnqNY75vM3XaK9ff8fGmBhjTCUgBPv0W+4fqid5m6/TXp98x4Ec8A8CBbz2Q4A/k6gt8Rhj/vSUR4EZ2C6avzy/huEpj3qq+9N93GwbD3q2rz7uM8aYvzz/gWKBr3C7w/yizSISjA2eE40xP3gO++33fK32+vt37DDGnAIWA03x4+/4Wu311XccyAF/LVBCRIqISBqgIzAriduEiNwhIpmcbeA+IALbtsc81R4DZnq2ZwEdRSStiBQBSmBfxiSFm2qj51flsyJS0zNC4FGvc3zC+U/t0Qb7XftFmz3XHw1sM8Z84PWRX37P12uvn3/HOUUki2c7PdAY2I7/fsfXbK/PvuPb/Rbal3+AZtiRBHuAwUndHk+bimLfqm8EtjjtArIDvwC7PGU2r3MGe+5hB4k4yuWqdk7C/up4Bfu00OPftBEI9fzj3AN8hmcynw/b/A2wGdjk+c+R11/aDNTF/pq9Cdjg+dPMX7/nf2ivP3/HFYD1nrZFAEP/7f83H33H12uvT75jnWmrlFIpRCB36SillLoJGvCVUiqF0ICvlFIphAZ8pZRKITTgK6VUCqEBXymlUggN+EoplUJowFdKqRTi/w+JDO7wpfhYAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(true_df['concentration'],'b')\n",
"new_approx = []\n",
"for i in range(len(true_df['concentration'])):\n",
" x=i*65/len(true_df['concentration'])\n",
" new_approx.append(a*x**2+b*x+c)\n",
"\n",
"plt.plot(new_approx, 'r')"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment