From f0f11a6a05d7059953f57bf7fe4e9a8a301beca6 Mon Sep 17 00:00:00 2001 From: bedc47adafe411ecc92ae5a5dfea34c1 Date: Sat, 21 Jan 2023 11:25:20 +0000 Subject: [PATCH] no commit message --- module2/exo1/toy_notebook_en.ipynb | 10 ++++------ 1 file changed, 4 insertions(+), 6 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 14eafa5..9e0efaa 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -18,7 +18,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# On the computation of $\\pi$" + "# On the computation of $\\pi$" ] }, { @@ -57,7 +57,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Buffon’s needle" + "## Buffon's needle" ] }, { @@ -96,16 +96,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 1.3 Using a surface fraction argument" + "## Using a surface fraction argument" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "A method that is easier to understand and does not make use of the sin function is based on the\n", - "fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\"\n", - "on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { -- 2.18.1