Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
beeb6991a915eb4f2142c59ea8c1bde2
mooc-rr
Commits
4b654594
Commit
4b654594
authored
Jul 30, 2022
by
beeb6991a915eb4f2142c59ea8c1bde2
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update toy_document_fr.Rmd
parent
4fe0e36e
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
2 deletions
+4
-2
toy_document_fr.Rmd
module2/exo1/toy_document_fr.Rmd
+4
-2
No files found.
module2/exo1/toy_document_fr.Rmd
View file @
4b654594
...
...
@@ -15,10 +15,10 @@ Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars}
pi
```
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon] (https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r}
set.seed(42)
N = 100000
...
...
@@ -37,9 +37,11 @@ df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
4*mean(df$Accept)
```
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment