diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 32376c8dec919995464cd97d4d53604d749ad693..6589419dec6b787c3b881287807b9c9f55274a4c 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -38,7 +38,7 @@ "metadata": {}, "source": [ "## En utilisant la méthode des aiguilles de Buffon\n", - "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :" + "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :\n" ] }, { @@ -71,13 +71,12 @@ "metadata": {}, "source": [ "## Avec un argument \"fréquentiel\" de surface\n", - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0, 1)$ alors \n", - "$P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0, 1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -94,18 +93,18 @@ } ], "source": [ - "%matplotlib inline\n", + "%matplotlib inline \n", "import matplotlib.pyplot as plt\n", "\n", "np.random.seed(seed=42)\n", - "N=1000\n", - "x=np.random.uniform(size=N, low=0, high=1)\n", - "y=np.random.uniform(size=N, low=0, high=1)\n", + "N = 1000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "y = np.random.uniform(size=N, low=0, high=1)\n", "\n", - "accept=(x*x+y*y)<=1\n", - "reject=np.logical_not(accept)\n", + "accept = (x*x+y*y)<=1\n", + "reject = np.logical_not(accept)\n", "\n", - "fig, ax=plt.subplots(1)\n", + "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')" @@ -115,7 +114,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,en moyenne, $X^2+Y^2$ est inférieur à 1 :" + "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,en moyenne, $X^2 + Y^2$ est inférieur à 1 :" ] }, {