{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence of chickenpox-like illness in France" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data on the incidence of chickenpox-like illness are available from the Web site of the [Réseau Sentinelles](http://www.sentiweb.fr/). We download them as a file in CSV format, in which each line corresponds to a week in the observation period. Only the complete dataset, starting in 1991 and ending with a recent week, is available for download." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is the documentation of the data from [the download site](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Column name | Description |\n", "|--------------|---------------------------------------------------------------------------------------------------------------------------|\n", "| `week` | ISO8601 Yearweek number as numeric (year times 100 + week nubmer) |\n", "| `indicator` | Unique identifier of the indicator, see metadata document https://www.sentiweb.fr/meta.json |\n", "| `inc` | Estimated incidence value for the time step, in the geographic level |\n", "| `inc_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n", "| `inc_up` | Upper bound of the estimated incidence 95% Confidence Interval |\n", "| `inc100` | Estimated rate incidence per 100,000 inhabitants |\n", "| `inc100_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n", "| `inc100_up` | Upper bound of the estimated rate incidence 95% Confidence Interval |\n", "| `geo_insee` | Identifier of the geographic area, from INSEE https://www.insee.fr |\n", "| `geo_name` | Geographic label of the area, corresponding to INSEE code. This label is not an id and is only provided for human reading |\n", "\n", "The first line of the CSV file is a comment, which we ignore with `skip=1`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check that the local file does not exist before downloading" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import os\n", "import urllib.request\n", "\n", "data_file = \"incidence-PAY-7.csv\"\n", "\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02023287858043311282913719FRFrance
12023277739346721011411715FRFrance
220232679192622312161141018FRFrance
3202325711498825714739171222FRFrance
4202324711115796814262171222FRFrance
520232371256361341899219929FRFrance
6202322712184812516243181224FRFrance
7202321711349759815100171123FRFrance
82023207900046151338514721FRFrance
92023197934460911259714919FRFrance
10202318710671729114051161121FRFrance
112023177918461621220614919FRFrance
12202316711387801414760171222FRFrance
13202315714040761320467211131FRFrance
142023147152471103219462231729FRFrance
15202313713322970016944201525FRFrance
16202312710374721813530161121FRFrance
1720231174919288069587410FRFrance
1820231074854273169777410FRFrance
19202309770044548946011715FRFrance
202023087817553161103412816FRFrance
21202307765953782940810614FRFrance
222023067959560171317314919FRFrance
2320230576237390785679513FRFrance
2420230476299397386259612FRFrance
2520230376063379883289612FRFrance
262023027657630601009210515FRFrance
272023017815354701083612816FRFrance
2820225275171271776258412FRFrance
2920225176226382286309513FRFrance
.................................
16721991267176081130423912312042FRFrance
16731991257161691070021638281838FRFrance
16741991247161711007122271281739FRFrance
1675199123711947767116223211329FRFrance
1676199122715452995320951271737FRFrance
1677199121714903897520831261636FRFrance
16781991207190531274225364342345FRFrance
16791991197167391124622232291939FRFrance
16801991187213851388228888382551FRFrance
1681199117713462887718047241632FRFrance
16821991167148571006819646261834FRFrance
1683199115713975978118169251832FRFrance
1684199114712265768416846221430FRFrance
168519911379567604113093171123FRFrance
1686199112710864733114397191325FRFrance
16871991117155741118419964271935FRFrance
16881991107166431137221914292038FRFrance
1689199109713741878018702241533FRFrance
1690199108713289881317765231531FRFrance
1691199107712337807716597221529FRFrance
1692199106710877701314741191226FRFrance
1693199105710442654414340181125FRFrance
16941991047791345631126314820FRFrance
16951991037153871048420290271836FRFrance
16961991027162771104621508292038FRFrance
16971991017155651027120859271836FRFrance
16981990527193751329525455342345FRFrance
16991990517190801380724353342543FRFrance
1700199050711079666015498201228FRFrance
17011990497114302610205FRFrance
\n", "

1702 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202328 7 8580 4331 12829 13 7 \n", "1 202327 7 7393 4672 10114 11 7 \n", "2 202326 7 9192 6223 12161 14 10 \n", "3 202325 7 11498 8257 14739 17 12 \n", "4 202324 7 11115 7968 14262 17 12 \n", "5 202323 7 12563 6134 18992 19 9 \n", "6 202322 7 12184 8125 16243 18 12 \n", "7 202321 7 11349 7598 15100 17 11 \n", "8 202320 7 9000 4615 13385 14 7 \n", "9 202319 7 9344 6091 12597 14 9 \n", "10 202318 7 10671 7291 14051 16 11 \n", "11 202317 7 9184 6162 12206 14 9 \n", "12 202316 7 11387 8014 14760 17 12 \n", "13 202315 7 14040 7613 20467 21 11 \n", "14 202314 7 15247 11032 19462 23 17 \n", "15 202313 7 13322 9700 16944 20 15 \n", "16 202312 7 10374 7218 13530 16 11 \n", "17 202311 7 4919 2880 6958 7 4 \n", "18 202310 7 4854 2731 6977 7 4 \n", "19 202309 7 7004 4548 9460 11 7 \n", "20 202308 7 8175 5316 11034 12 8 \n", "21 202307 7 6595 3782 9408 10 6 \n", "22 202306 7 9595 6017 13173 14 9 \n", "23 202305 7 6237 3907 8567 9 5 \n", "24 202304 7 6299 3973 8625 9 6 \n", "25 202303 7 6063 3798 8328 9 6 \n", "26 202302 7 6576 3060 10092 10 5 \n", "27 202301 7 8153 5470 10836 12 8 \n", "28 202252 7 5171 2717 7625 8 4 \n", "29 202251 7 6226 3822 8630 9 5 \n", "... ... ... ... ... ... ... ... \n", "1672 199126 7 17608 11304 23912 31 20 \n", "1673 199125 7 16169 10700 21638 28 18 \n", "1674 199124 7 16171 10071 22271 28 17 \n", "1675 199123 7 11947 7671 16223 21 13 \n", "1676 199122 7 15452 9953 20951 27 17 \n", "1677 199121 7 14903 8975 20831 26 16 \n", "1678 199120 7 19053 12742 25364 34 23 \n", "1679 199119 7 16739 11246 22232 29 19 \n", "1680 199118 7 21385 13882 28888 38 25 \n", "1681 199117 7 13462 8877 18047 24 16 \n", "1682 199116 7 14857 10068 19646 26 18 \n", "1683 199115 7 13975 9781 18169 25 18 \n", "1684 199114 7 12265 7684 16846 22 14 \n", "1685 199113 7 9567 6041 13093 17 11 \n", "1686 199112 7 10864 7331 14397 19 13 \n", "1687 199111 7 15574 11184 19964 27 19 \n", "1688 199110 7 16643 11372 21914 29 20 \n", "1689 199109 7 13741 8780 18702 24 15 \n", "1690 199108 7 13289 8813 17765 23 15 \n", "1691 199107 7 12337 8077 16597 22 15 \n", "1692 199106 7 10877 7013 14741 19 12 \n", "1693 199105 7 10442 6544 14340 18 11 \n", "1694 199104 7 7913 4563 11263 14 8 \n", "1695 199103 7 15387 10484 20290 27 18 \n", "1696 199102 7 16277 11046 21508 29 20 \n", "1697 199101 7 15565 10271 20859 27 18 \n", "1698 199052 7 19375 13295 25455 34 23 \n", "1699 199051 7 19080 13807 24353 34 25 \n", "1700 199050 7 11079 6660 15498 20 12 \n", "1701 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 19 FR France \n", "1 15 FR France \n", "2 18 FR France \n", "3 22 FR France \n", "4 22 FR France \n", "5 29 FR France \n", "6 24 FR France \n", "7 23 FR France \n", "8 21 FR France \n", "9 19 FR France \n", "10 21 FR France \n", "11 19 FR France \n", "12 22 FR France \n", "13 31 FR France \n", "14 29 FR France \n", "15 25 FR France \n", "16 21 FR France \n", "17 10 FR France \n", "18 10 FR France \n", "19 15 FR France \n", "20 16 FR France \n", "21 14 FR France \n", "22 19 FR France \n", "23 13 FR France \n", "24 12 FR France \n", "25 12 FR France \n", "26 15 FR France \n", "27 16 FR France \n", "28 12 FR France \n", "29 13 FR France \n", "... ... ... ... \n", "1672 42 FR France \n", "1673 38 FR France \n", "1674 39 FR France \n", "1675 29 FR France \n", "1676 37 FR France \n", "1677 36 FR France \n", "1678 45 FR France \n", "1679 39 FR France \n", "1680 51 FR France \n", "1681 32 FR France \n", "1682 34 FR France \n", "1683 32 FR France \n", "1684 30 FR France \n", "1685 23 FR France \n", "1686 25 FR France \n", "1687 35 FR France \n", "1688 38 FR France \n", "1689 33 FR France \n", "1690 31 FR France \n", "1691 29 FR France \n", "1692 26 FR France \n", "1693 25 FR France \n", "1694 20 FR France \n", "1695 36 FR France \n", "1696 38 FR France \n", "1697 36 FR France \n", "1698 45 FR France \n", "1699 43 FR France \n", "1700 28 FR France \n", "1701 5 FR France \n", "\n", "[1702 rows x 10 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_file, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Are there missing data points?" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "No, there's not" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The dataset uses an uncommon encoding; the week number is attached\n", "to the year number, leaving the impression of a six-digit integer.\n", "That is how Pandas interprets it.\n", "\n", "A second problem is that Pandas does not know about week numbers.\n", "It needs to be given the dates of the beginning and end of the week.\n", "We use the library `isoweek` for that.\n", "\n", "Since the conversion is a bit lengthy, we write a small Python \n", "function for doing it. Then we apply it to all points in our dataset. \n", "The results go into a new column 'period'." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data = raw_data\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are two more small changes to make.\n", "\n", "First, we define the observation periods as the new index of\n", "our dataset. That turns it into a time series, which will be\n", "convenient later on.\n", "\n", "Second, we sort the points chronologically." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We check the consistency of the data. Between the end of a period and the beginning of the next one, the difference should be zero, or very small. We tolerate an error of one second." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data is OK" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A first look at the data!" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEKCAYAAADq59mMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXmYHUW5/vv1OTOTPWQjhARIIGFJogQIkUVkh7hdcOEaF0AvXhBx+6lXwasXF1C89yqCCsp2CYIgsgiyKTuEJSEBkpCEkARC9pXsyUxmzqnfH93VXV1dW59zZs5Mpt7nmWf6VFdXVXdX11ffTowxeHh4eHh45EFQ7wF4eHh4eHQ9eOLh4eHh4ZEbnnh4eHh4eOSGJx4eHh4eHrnhiYeHh4eHR2544uHh4eHhkRueeHh4eHh45IYnHh4eHh4eueGJh4eHh4dHbhTrPYBKMXjwYDZy5Mh6D8PDw8OjS2HWrFkbGGNDqm2nyxKPkSNHYubMmfUehoeHh0eXAhG9W4t2vNjKw8PDwyM3PPHw8PDw8MgNTzw8PDw8PHLDEw8PDw8Pj9zwxMPDw8PDIzc88fDw8PDwyA1PPDw8PDw8csMTD48uifXbWvCPeWvqPQwPj24LTzw8uiS+cNN0XPSnWWhuLdV7KB4e3RKeeHh0SSx7bycAoMxYnUfi4dE94YmHh4eHh0dueOLh4eHh4ZEbVuJBRD2IaAYRzSaieUT0k6j8x0S0kohej/4+IlxzGREtJqKFRHSmUH4UEc2Nzl1LRBSVNxHRX6Ly6UQ0sva36uHh4eFRK7hwHi0ATmGMHQ5gAoDJRHRMdO5qxtiE6O8RACCisQCmABgHYDKA64ioENW/HsCFAMZEf5Oj8gsAbGKMjQZwNYBfVn9rHh4eHh7tBSvxYCG2Rz8boj+TlvIsAHcxxloYY+8AWAxgEhENA9CPMfYSY4wBuA3A2cI1U6PjewCcyrkSDw8TvL7cw6M+cNJ5EFGBiF4HsA7A44yx6dGprxHRHCK6hYgGRGXDASwXLl8RlQ2PjuXy1DWMsTYAWwAMUozjQiKaSUQz169f73SDHnsm+NbCW1t5eNQHTsSDMVZijE0AMAIhFzEeoQjqIISirNUAfhVVV3EMzFBuukYexw2MsYmMsYlDhlSdCMtjD0Ae0rGtuRVPLljbbmPx8OhOyGVtxRjbDOAZAJMZY2sjolIGcCOASVG1FQD2Ey4bAWBVVD5CUZ66hoiKAPoDeC/XnXh0K/DdRh7G49t3z8YFU2dieeQj4uHhUTlcrK2GENFe0XFPAKcBeDPSYXB8AsAb0fGDAKZEFlSjECrGZzDGVgPYRkTHRPqM8wA8IFxzfnT8aQBPRXoRDw8zcsySpRt2AAB27vZe6R4e1cIlh/kwAFMji6kAwN2MsYeI6E9ENAHh57sUwEUAwBibR0R3A5gPoA3AJYwx/rVeDOBWAD0BPBr9AcDNAP5ERIsRchxTanBvHt0ALAf18CYYHh61g5V4MMbmADhCUX6u4ZorAVypKJ8JYLyivBnAObaxeHjI8Pyph0d94D3MPbo0GIA/vbQU37jztRzXeIrj4VEtPPHw6NJgjOFHD8zDg7NXWeuS0qjPw8OjEnji4dGlUQkP4UVdHh7VwxMPjy6NPITAK8w9PGoHTzw8ujQq0V+0J+fx4pIN+PkjC9qvAw+PTgJPPDy6NjqZCOpzN07HDc+9Xe9heHi0Ozzx8OjSqEjn0dkojodHF4QnHh5dEjzocj6dh1d6eHjUCp54eHRpeC7Cw6M+8MTDo0ujEuW3N9X18Kgennh4dGnkoQNeaOXhUTt44tGJsWLTTixZv91esRvDB1/28KgPXKLqetQJH/zl0wCApVd9tM4j6bzwToIeHvWB5zw8uh08s+LhUT088fDo0vCch4dHfeCJh0eXRkXhSbx5b5fCc2+tx+vLN9d7GB4SvM7Do0sjF+fh7a26JM67ZQYAr/vrbPCch0eXhuchPDzqAyvxIKIeRDSDiGYT0Twi+klUPpCIHieiRdH/AcI1lxHRYiJaSERnCuVHEdHc6Ny1FMWLIKImIvpLVD6diEbW/lY99iRwHqISU909SWE+8tKH8cvH3qz3MDy6IVw4jxYApzDGDgcwAcBkIjoGwKUAnmSMjQHwZPQbRDQWwBQA4wBMBnAdERWitq4HcCGAMdHf5Kj8AgCbGGOjAVwN4Jc1uLeaYfPO3fjLK8vqPQwPBXI5Ce6hUqvrn1lS7yF4dENYiQcLwT3VGqI/BuAsAFOj8qkAzo6OzwJwF2OshTH2DoDFACYR0TAA/RhjL7Fwu3ibdA1v6x4Ap1InimL3nbtn4/v3zsWC1VvrPRQPjmh2VMR51Hgo9YJ3kPSoJ5x0HkRUIKLXAawD8DhjbDqAoYyx1QAQ/d87qj4cwHLh8hVR2fDoWC5PXcMYawOwBcCgSm6oPbB+ewsAYHdbuc4j8ZCRT2G+Z8HTDo96wol4MMZKjLEJAEYg5CLGG6qrvlFmKDddk26Y6EIimklEM9evX28btkc3QGU5zPeMVbe8h9yHR9dELmsrxthmAM8g1FWsjURRiP6vi6qtALCfcNkIAKui8hGK8tQ1RFQE0B/Ae4r+b2CMTWSMTRwyZEieoXvUGYwxLH9vZzu0m6NyB0pCa0Wg1m1rxjML1ynPedLhUU+4WFsNIaK9ouOeAE4D8CaABwGcH1U7H8AD0fGDAKZEFlSjECrGZ0SirW1EdEykzzhPuoa39WkAT7FOuD28/7WVeOyNNfUeRpfELS8sxQn//TTmr3LTG1167xzc/cpya73KnATbH7WavVNueBlf/L9XlMTIcx4e9YQL5zEMwNNENAfAKwh1Hg8BuArA6US0CMDp0W8wxuYBuBvAfACPAbiEMVaK2roYwE0IlehLADwald8MYBARLQbwbUSWW50Nt764FF+5fVbV7WxtbsWitdtqMKKugxnvbAQALHtvh1P9u15Zju/dO8dab0/VeSxetx2rt+zCOxvC59VWzt6opx0e9YTVw5wxNgfAEYryjQBO1VxzJYArFeUzAWT0JYyxZgDnOIx3j8CUP76M+au3diuPWe7dXasFr60UNvTuxtqLwmqBam/ztF8/CwBoKBBaSwylMkNDIV3HEw+PesJ7mNcB87uxyW+t1rtdrSEze+l9du4kM4YOWHRrJXUtBCHRbS1lLf18jC6PesITD48OAcV+GbVtt6noPoU7j+eQO4pBeH+c0xKhkGR5eHQYPPHw6BDExKPGu+WmYsFeKYP2X3Vr1UPMeZQVnIdEiZes344f3D8XJU9VPDoAnnh4dAjaK6JtLs6jXUagRq04rGJEPGSC0FoqY+mGUN/DCfPFt8/Cn6cvw6J13csYw6M+8MSjjuiE1sjth3YSWx08tG/ua7rSY+echyy2+tlD8/Hx300DkBBFTl8KXVE+59Hl4IlHHWGSLpT3MNFDHAW3Ru0de2AYvea40e5RbDoyXFqtxHNFjcL8hcUb4mN+X9zvoxOFhfPYg+GJRx1hcvJat62lA0fScagVt1WNAr4rOQkWChHn4bCZ4H0GnnZ4dAA88agjupOHcHvthnNFJ2mXEbQvuAjKpARPxFZhncBzHh4dAE886ohuRDuE5E01aq+akOxd6LnLIikTPPHw6Eh44lFHdC/Oo33aVfk/2GAiOFNfXIqRlz6c0jE8v2g91ucUI9aMSDq0x58tt+b1tMOjI+CJRx2xh+nEjUgU5rW96Z8+NN99DLGviR7/+4+FAICdu0tx2bk3z8CUG16qZHhalMoMv/7nQmzZ2Zo598nrXoiP+ZhlsZXqHjhRDLzSw6MD4IlHHdG9OI/axrZS+Mw5I88Y+IK8ZL1bQMf4OguRfGLBWlz71GL85O/zMudeXbY5Pub9muYK96HpTpsRj/rDE486gnXDxITiGvji4g14dO7qitpx9aKe9e572LxzNwDglaWbwjE4cD/Vin5sBIpnpWxxzE7pcrucwHQr/yGPusETjzogllEbPvI9Leidys/jczdNx8V3vFpReyXHBfJT17+EKTe8jFeWCrnFHC7lzVe6Du/cXcJ3/zo7JlwyEp8Mt/ZMBKGtXMbutnJMYDzt8OgIeOJRB8imlSp0ZRHEnTOWpRdrQPAwr82NuXAevK8312zDqs27knLTRdJiXulo/zx9Ge6ZtQLXPrnYWM/VhNl0v2UGjL/8H57j8OhQWPN5eNQeARHKjO2xHuaX3TcXAFL5Smod28rNdDU53rorUUw7rbFVPn4bZ8HH4PpUbNNhd6mMjTvUXM6egqffXIcgIJx4sE9B3RngiUcd4OKjsKduImt1Wy6ch1hH1C2YRILyYl7pbt52FR9DLcRW2brOVbsUvnTrKwDQrZKodWZ4sVUdkDh+6evsaZZYpFJ6VAEX4iE+Q/Fx5rK2yjMoAW+tCSPb6mhDEkrEUWyVh3jsYfoyj84JK/Egov2I6GkiWkBE84jom1H5j4loJRG9Hv19RLjmMiJaTEQLiehMofwoIpobnbuWolWUiJqI6C9R+XQiGln7W+08cNN57FkLQK09D1yej1glRUgc2q92AX5s3hoAes6COyHWSmwlotqpUyozvLFyS3WNeOzxcOE82gB8hzF2GIBjAFxCRGOjc1czxiZEf48AQHRuCoBxACYDuI6IeMae6wFcCGBM9Dc5Kr8AwCbG2GgAVwP4ZfW31nkROISc6MIqDyVqnQzKJVCg+HxLKS6k40RAOoX49++dG1VwayfPZqLaJ3z9M4vxsd9Ow2vLNlXZUvXwRgCdF1biwRhbzRh7NTreBmABgOGGS84CcBdjrIUx9g6AxQAmEdEwAP0YYy+xcEbcBuBs4Zqp0fE9AE4l3Ve3B8AlIuye9tFwhXntnAQddB5CZ2J9lyHE421nEZCrIUE+glfdmOet2goAWLW5WXn+qTfX4qzfv9AhGQv3sM9gj0IunUckTjoCwPSo6GtENIeIbiGiAVHZcADLhctWRGXDo2O5PHUNY6wNwBYA7okauhi6I+fBUavbsj2fjdtb8NeZyXRL1Xfx86jRSG2kwXWLVMrhUFrtyG1c4jfufB2zl2/Gzt1tVfZkxx76GewRcCYeRNQHwL0AvsUY24pQBHUQgAkAVgP4Fa+quJwZyk3XyGO4kIhmEtHM9evXuw6904F/nCbRS2fQeTDGcNPzb2NTDUxAq8m/UQkuvuNV/EyIe1VKcR4GayspjErV47UQB9f3/MO/zcWOlvZfrAE7l8j1NT56b/eGE/EgogaEhOMOxth9AMAYW8sYKzHGygBuBDApqr4CwH7C5SMArIrKRyjKU9cQURFAfwCSlxnAGLuBMTaRMTZxyJCua+vdUAgfuykibGcgHq8s3YQrHl6AH9w/t+q2aq3zsGHd1rTIZeOOJCquy6Ot1ShtYinX17x2awtunvaOU932Jnh803PPrBVYvWWXuXKV2NPEt3sSXKytCMDNABYwxn4tlA8Tqn0CwBvR8YMApkQWVKMQKsZnMMZWA9hGRMdEbZ4H4AHhmvOj408DeIrtwbOmIcoOt9sQ16ij7765tYQv/t8MPPXm2riM73TFCLOVo7671NtfXhYfOxGPDnoBeTYJLkYCIWozdl0rnIu7/MF5uODWmTXpS4W5K7bgmF882W7te1QHFyfB4wGcC2AuEb0elf0AwGeJaALCObYUwEUAwBibR0R3A5iP0FLrEsYYX30uBnArgJ4AHo3+gJA4/YmIFiPkOKZUd1v5Mevd9zCsf0/su1fPdu+Lcx67DYLsjiYeq7c045mF67F2awtOOXQogGR8jcXq3YE6WmxVKeSw7dVbW5nP5zPBdatc7ZiDWHRnb2hrczakfK3wu6cXYcP2PdtrvivDSjwYY9Og3jY+YrjmSgBXKspnAhivKG8GcI5tLO2JT13/EoiAd37R/t6rjZx4GDiPjhZb8YVCTHrEx8fHWw1q7CNYVdRb0xhq/dhtw8xlgutYtVZSK5f+ejUWjOcXrtmGUYN7V7QBqXVIG4/awnuYC+io9ZpzHq0GzqOjiUeyA076bVVwHkvWb8esdzPqKHd0AtbDZUcdK8yrXIptRC6XCa44FqOZt3OTSuTRT/Vs1O8/12xpxpm/eQ6XP5jNWZJnHB6dEz62VR3QULTrPDreVDfsUFx4OPHgOhoAOPVXzwLIH1/IJYtfHtgWSJObkOlSeeFsb1qXx1eio+huHs7DlLSQi7RmyhGWXcfhiUenhuc8NPjjs0sw8tKH28U80oXz6Gh7gTgXhFC2O7IGK9ZEbFVbJ8FqOIKOiKrLYRO95NJ5ONerlltyf1emOpywVMpF78F+whl86voXcem9c+o9jFzwxEOD2156FwCwSZPMpxq4KMw7mvNQfd9xTuwckV9vev5t5blarwPVESGDn4dUo1YOdzrkCb3vrPOoVmzF26mumapTD3cf0gHMencT7nplub1iJ4InHh2Mx95YHS8YnUVh3loq48zfPAdAzfG4Ki6nv/Mernh4gfJcIgqpkRlpFc3k2VFXO97aKsxrY201e/lmzF6+WV8hR+IuUw1utZUnInBqGN2I8+iK8DoPCzbtaMX25tqIrmYufQ9fuT1Ju9raSZwERdGcqlcGhh0tbdjVavb3MBHDeBda0QhrCzepVceMNE8vtRJbnfX7FwDo9VZJXK/qwDnWSmNgedLRueE5Dws+/rtpeHvDjpq0tWVX2iZ+d5t+Ma6XUZLYr/jxfvia5zHxiidq2n517ZgbMi08pksz4UlyjssVIwf1AoBcWfE6ys8jV+4VQ2dLN+40VimVGc7+/Qspx1TlODw6JTzx6CCs29aMC6amvXFdOY96OduLvS57b2f+6xXjrsWdLFi9Fau2qCO+usC0M5fHXH2oD/UKOLhPEwCg6KpQqsVYHJHQjvQczBOKZMHqrTj/lhkA9Fz0jt1teH35ZnzjzteV5z3t6NzwxAP5F+dKFvN7Z63MlLkqzNtbeZ7Osle5zkPGtMUbkjZyyNFNKJcZPnzN81W10bGxrbIolRlmvrspdz8dtYVQRQO4ffoyHPuLpzJJosQxtZXKGHnpw/j904tTzqY2EWyLhgPvjoEXF0YZKLsCPPFAfplsJeufSl/gqjBvb86DaY7zQv7WW1qT+6uVt/Di9durbsPs5yGF5qiVCEiAuIPP82pd56mqzVKZpRZ0E1Q6j5ff3ggARhFuczSfr3t6Mfr0SNSpumFzw5HWEsNl9ymCb3Y/2oELpr5S7yE4wxMP5N/ZV7KeNCuIh4koiOc6VGjVTp3VahOZQ8qjRUd6mNcSrkYUqjH/4pEFOPrKJ7DZwfScE2id/ivVl4Zr7VEsKMtFiMTwzhnLMud1G4485s1dDVt2tl+ssFrDEw/kt2yqhBNQhV83fQNlgSlpb1m37n5q2W8er2UTCoHjlO0ku1Z7SHb3B1IN5/HP+aFSerPD4jQrFqlVbmIrXqsbt82EV9d/Z0hX0G7oJPPWBZ54QD0ZTTtlLq/OA9WO2fRxpsRWHbj7be+eqr2XPApm7RhM1lZSnfaOqruzteSckc+ZeFQwDhVU3WUMCjTvM8W1aDov27Ij6qy0FC/l0bmr8fSb6ywNdn50IdrhiQeQX+fx3Fv5sxgWCtlpYeQ8UuKA3N3VBaZddq1Csge1IB4OBCyObVVlX6rRirv//35sIcb+1z+c2nLP56FHLi9m4WXpCIDufbqIvOychxoqonPxHa/iS7fWRl+wfltL3cRHXckxsts7Cf7wb3Px1tp8SthK3m9BcZHp2+lI89yUwryG/Yot1cpJUPUcVajUz6Mj8LHfTqvoOldZv+kd/uHZJZmyWe9uQp+mIg7Zp2+6nXzDk661X12p7qK9xVZHX/kECgFhyc8/0q79dHV0e87j9peXYcY7VYQYd0RBsWM2KsxT9dphQJr2XUUeebm1Wu2naiHC69DwJDXcSLpyHsp3aKj/qetfjMPT5IXu8YhD1T0D2xzSKtoN7+Snf5+PNoMJvCsq9YqvFrIjcWdGtycelaASs1MVO2qanh2l82CM4Y+K3agN1zy5KN8FnSiToMsQmPTfBdsVEZjl9/6i4PvSXqidF3/O+qlrU3ynsn6lMa+YgTbc8sI7eL4DnrGHJx5a1Fr0qFL0mth2V53Hfa+uwMhLH469eVXYsqsVKzervYPnrdqKm6a9E/92zVf+0pJ8H2jiO1DdylaLhdHETVTjzHjz8+9Y63zupum52+Vw98epDfXYuMNu1qvikAlu5u82sZXurJXodIINSneAJx4dBKXYylDf1c/j23fPBgA8a1Din/qrZ3D8VU8pz5m83FcZwlFU6vRX7eJfi3UhF+fh2OHy93Zi0Tqzd7DK16c9oBrzxgpygV8rcJdOb5uJ/0Rlu7q6TARkcZMpJpZH/WElHkS0HxE9TUQLiGgeEX0zKh9IRI8T0aLo/wDhmsuIaDERLSSiM4Xyo4hobnTuWop4eiJqIqK/ROXTiWhk7W81Hzoif7JJ8VdLD/MNOReOr9/5GgDgj8+GuTmUTyLn4+loIxKj1YrWQojFzyqvk+DHfzcND81ZbaxT7aLnHBhRUbatiqRmO1ranM2J4zG4WFtJz+MvM9OWYLq7tT6HrmOw1KXhwnm0AfgOY+wwAMcAuISIxgK4FMCTjLExAJ6MfiM6NwXAOACTAVxHRNzd9HoAFwIYE/1NjsovALCJMTYawNUAflmDe+v0MH0DKSfB9h9KCn+fvSr1O68CVoVa5fOohTWYjiBMS8nK8/Wjc74Tx1upjL/eGHf5P/DEgtCHwmghKDyzBQ4xmmST28fnq6Pryuiqz1GHv72WjXvXFWAlHoyx1YyxV6PjbQAWABgO4CwAU6NqUwGcHR2fBeAuxlgLY+wdAIsBTCKiYQD6McZeYuEXdZt0DW/rHgCnknHrWF9UMjLVNaaFMM155O/PFTX1Ijc8l1q9zdroPNTlomgxrlOtmE24ft3WyiMB5xlKR66tTDNPf/S3N+Jj3buXRaZyNd33YWPgOu3CocHtL79b7yFUhFw6j0icdASA6QCGMsZWAyGBAbB3VG04AJH/XBGVDY+O5fLUNYyxNgBbAAxS9H8hEc0kopnr1+d31MuDWpMulRjMrPNwrFgn5H0+tc5hXg10Q+jTlHV7qna44kL3tT+/VmVrbmhPHyFjOPvov2x1phMBL5WCLMpEQdeTTdHeifedStiSrHVWOBMPIuoD4F4A32KMbTVVVZQxQ7npmnQBYzcwxiYyxiYOGeKeRKczQDWfnXUedaYeqpeTVycUWzFVP5yq0ZEh2cV3l1f3VHmfWXTEepqXaLVIUaUz30OFCvOuRTr2cOJBRA0ICccdjLH7ouK1kSgK0X8eWGYFgP2Ey0cAWBWVj1CUp64hoiKA/gDa33PPgEo3b+ffMgPvuzwbbkLVnlHn4WCqW68kUdWgamurWoitHOIx1Sq2lfgeW6pdJCxjmXJ0+NnlnWvVwOZgCqgtDYEssXA1KLB5mHe1wImm1AydGS7WVgTgZgALGGO/Fk49COD86Ph8AA8I5VMiC6pRCBXjMyLR1jYiOiZq8zzpGt7WpwE8xdpxZfzINc/jFsG3QQXTBDTtbJ59a73SskW1YJljW9lNdaux3mGMVUV88outon4Vd5NnHK5cWCXhSdKSQpb6XynEe2s2pB12astxLO3rVJr/XFER1w3IzmvTN3fBB0c51QNqZ8o7b9UWe6UaoIvRuhgunMfxAM4FcAoRvR79fQTAVQBOJ6JFAE6PfoMxNg/A3QDmA3gMwCWMMf7VXAzgJoRK9CUAHo3KbwYwiIgWA/g2Isut9kBbqYz5q7fipw/NN9YzTsAKZADqCVKdqa41sBxjWguWPzz7NkZd9ojSK9oFqkdgfCqk13nk+Xhqw3moYTNSeHrhOoy89GEsXuceC01sx5R2OG9b9YL8XaRS1WqerI7zkG9Itr4S22soJEuVjTbUIoAkAHz02ml4uwbJx2zoqn4r1sCIjLFp0K8Lp2quuRLAlYrymQDGK8qbAZxjG0st8J5DMhygshf67kZ9ljUVTCGpxfwfesWhuf37Xl2J7/x1tvLczRHntcOBeKgUkLX0g6n00zl+9CC8sHijtV6fpmKaSGpWYZvY6ndPLQYAzHr3PYzeu4/TGGspQnFuqx3XomaTiEXTb4MmB4v8iZnur7GYtGH7NlW5cyrFpg6IrttVTY+7nYe5NYdABHmCDu7TiEtOPggAMKRvU1zeWirHnMGJ//OMoV+FuMbwlYv9az1tLZNulSYkCYDY6cslP8atLy7NlOUVjSRiqyxMYquRlz6Mi2+fJfSbYOywfvjspP2tfcs7X7u9kCi2SsCTJO3OsTjVcll4cYmZUHaEUYKst3HReWjFVrLOQ/ot/mwU2rARDx0RuuaJRfjqHbOU53S48LaZuepXgq6aGbHbEQ/XRU9mfYkIn5kYLlQ9G5IUm2P+81F8969zHPrNwjRnxP51Y7buwAzneQyrSqetKEZwQcy8KD5suUReVB59Y432nIsEUSaQ8hC+cNN0XP34W85ioTxRW2vJeWxrbsPs5Zu154vRDr89N7KyhZQIrc5DqzCXfssiMeGnON9s96d75lc/8RYembtGeU4Hl/he1cJzHl0Eru9JXpgLRJmgefz/va+ugA15Zf0lBxdzm6K5zYHNqnTeNqqIh8NCfvO0d/DYG2uwblviMFfpAru9peQkPJMTSMnPbdriDbjmyUVKCzfVM84lFqnxumASu/IdfjUKc1sYkgznkTrOp/OQa8ubHZ3OQ15sZWsl23TKG2qlvSHHPOsqVpTdj3g41pMX3oCSRYi/W1NQwWy/ih23YZKUHMKTvGbYhQKui1xlE7WhaJ86b61NQlTwW92xu4Sv3D4LXxCiy2bM+w1DEk9ta3aTR2c4D13bQscvGMJ6t5bLOO+WGXjsDXMsK6D9zEZVc4cvsNV02dpmvrgizkPDpcr3YGKkGwSxlfxMV0sBPG0c+RdvqU3GwVqhuVX2d6nTQHKi+xEPxy9LnoBEFOch55O3ebfpQ7J/GHLR4/PX4qT/eRqtpXKK89AN+ZonzDk1XKxOKp2oouhOh//5x8L4WO7m3Y07K+pXfBa728pasZVYHpBZbBWXC8c8oqyqbluJ4bm31uMrt7+aa7ztDZNzvqgpAAAgAElEQVT+yuV9HX/VU7ju2cXGOqZdsu5We2j6lp/N/gN7as+LBEgWb8nfqo1gz1haVxcyKzzn0UnhLNeWxVYBxRZG/BT3DG1S7MIzux9Fx/Ik/8H9c7F0405s2rHbqvN4Zel7eN3CebhYjFVqJqgK5XGTQz4LDnFBd3QszpxtKzMnqy+dwrxUZrjy4cRkWxyHbsED8uo8kuPBfRqdr7NBZQHHiYfq+X3iyOGK0jRWbt4VR1LWYepL+jhMukVPoy/PzGtTeBIx/XDWXDgNG/HQmg53EnjOo4tDnn8BIeY8+KRviZy+VPJ/lzg9D7y+SlEa1rVZW63cpLek4mh1WOQqJR6qD/SpN9cpakaQ6ovfb6Uyevn+dE5dZ0/YVxpK2N/tL7+LGwWCJy5+JuKRz9oqqTtqcO/4ePK4fazXnnfsAdpz67e1ZMqKsdhKJSK1dlcRUjoPB45OhE1hLv4W9Va2fZltShc6WeyrEQMkjqtTBPGxo9sRj0o/ooAo3u3xyRkvvA5xq3T9in4WokFSmvOoDC75kCslHnmfo1xd5Dyyi4G+8bTTXVps9bSGeH3p+FGp3/yeL39wXqp8iRCob2Dvxkx/HHk4D5XvCAAUdNtxCd+bfIiyXOXcmSjMVePoAOqhgW6KyUOSFeFizCdxf5bduOQTW3W2xblfjwacdtjQ+HcXkVp1Q+JR4cQJgkTnwT9EA+3ITGDdhBYXP/E4zXm4jbmtVMb//ONNbI4scjY5OERWnEe62g9Q5DxyhSdJ0FZiTtZW8kZTpwsSw4h/KhLzqO4zj6GE+A50YhgTvnrS6NRv3VXjh/fDpJEDsx0BmLNiM55fVL/c6frQ6mbdhUgg05sN88bMmt62ky3OraUyGot6MW5nhdXD3CNEc2spnsB8kvOPQiV/dg0vrZsobRaFuWrteWLBWvz+6SVYvaUZh+3Tz8n7ulIHJZfLvnjcyPhYvodtzcnCYN5HSudEzsMwCFEXIutFXKzQTGG9XcSBHA+8vgpfOfEgHDasX2oRdZG751lErvrk+2OiKBO8f/ndC+4N5cTbG3aAMQYiqkEcsPRvcY4UA72HeVbnYelHU97cWsKhP3rMMsrao7VUlsKvdA3q0f04jwrfy4pNu2KxAJ+8fNe+ZVcr/vTS0lR9V7GVqnjD9hbkWJ9icFl8S1sZVz6ywOmaijkPh8tE80pjHogK30lbqeyWu0GqUnLyf+EbhOw5k7mqCjwWltiUbAFWLQKilNizI5H4xKjP6xZDm9VUS0ps5c55VOKB3tJWwtvr84UXqhVaSyztBFmXUeRHt+M8bC9mR0sbeissiQCgqRgqUfniIa5BP3ogLT9nhiBvNnzst9PQo8Hdo1ZGnmVJtwu3BYRzETXp5P1AyDnpHPHMfh7JSVdnPXGT31AgI8eS9JP+L8IWQvszE/dL5ePmhCJlelpji58gAMhC0w4c0rtdFkjTs5p4wADnjVMmPIlwnCIelm/LqvNQnP7wNc/XjXjs9pxH14C4UI289OHM+dkr9OavfCfNd0Sml2yK06MbjyheER2HnENxWyadKrSFTgRzyq+etfRlH8+ryzbFx/J6XTCY6rr22+oYqEzkTgoBORkJmKrYxFZfOyWtp+Drgthke2aq1D3PxkKAR75xglN7Bw/tA1f6Vo65tHTHxx44CAGRYe5L7RjCk4jxsWzflst8kiUF9SIcQKTzKFAcdr6L0I5uSDws5/l6pDKlJCI0FYOE8zC85Sxrra7rsqDk5jw0DZ31+6zsu9Lw1S67o1eXbU70Q9KTT/l5SNeZiOVtLy2Nj9tKzGkRFqs0BIETxyKHoBGxq9VMPORwKPH7ENoS5fm1QEBCql9NnYZCgJ6NdmdBINQxuM6MmHhI5YVwUHqxlawwz3AeDB97/zDc8eUPYG8hGKmNU3UR2cqSgnqitS3kPIbvFZnseuLROWFb8/gEHqhx6BKJh2kH66zzcJgozyw0+E9UiTxmpyJc5zc3t5TvU7RYchOBhXXunJGIg1pLZa2ToI6oFArkFPMr7ldRJntZZ/qWfsdiKwBD+4WLoEtI9zyiTlLEXpMROrq6oaGg5xhk6HQeFNIOvbGI9FvkPN5csxVrt7YgIMLxowdj3L798c1TxwBARh/Y2Uxv86K1xNBQDOL358VWnRbmF8MXU937a2ooxM6Bpk17hpWubDgAgLtnpgMvMsbw5ILaEJRKExS5zm9OYE1WXQ7O+MoyeewuYyoG5Bi2RV/HpvOQCZcY1mbcvv3x0Nc/iK9Loq1qIfap5zzIWVFvcjiUkVTJvo+ASDsgUwifyb95HgDw4OzEkfbjhw8D4C4StqEzhAFhjMU6D3GT0RXQ7YiHlfOIZ7C6YlGQmZsDG7op8cRdk+6zbmpIv6a/vLI89VHJyKUwz7ELF+H64cXiH1Mdh8/ldYUuqq2sj22lQzEIUHISW6X/i7DtDOUFWgyoSQDGD++PYiHARR86MHOtKeS6rU+FdCyFYhA4P6+CFATUhETnkS4vlUOxonbuyzoPS2cUGx7UinhUdl0twTcyjQXynEdnh+21xKRDUzEgynqYK+AqthKxakuzslwOf6JK8nTw0D4VfQy/f3pJ/ovgvju6Z1bINRk/CBfu65XlmTJXJ0G+mB+6T18UnDkP/eBsOhOt2IqlOYSDh/bNXKvSS8mQo8iGfdizOxaFBcqGBoO3ugydzsNGPMTy/Qb2dA4rYkqFq4PqW+0MSzQ3vmgoBAJxrOeI3GElHkR0CxGtI6I3hLIfE9FKKac5P3cZES0mooVEdKZQfhQRzY3OXUvRkyKiJiL6S1Q+nYhG1vYW07C9GJvNuvgx5BFbVVNPNh22XWLiSmrFqrvujniwxCpph/L6Dx082GkMPRsLuOHco/CnCz4Qmgg79Kirc9CQ3pi/emumXFToymt4ISWO0BsKZMagqEBEOPYXT2XK09yOumVRNGIDd8pzec+6DVdbuZzabHFs3N6CdduawRASqTk/PgNjJSdKFTg35CLmlPHQnOw30Rl2+DwEfkMhEPx06j8uF7hwHrcCmKwov5oxNiH6ewQAiGgsgCkAxkXXXEdE3LzjegAXAhgT/fE2LwCwiTE2GsDVAH5Z4b04wb5wMDyzcF3KTh9IFgfR9HClIc3rhu3pwHW6oH0u00SMe6OD63yz7e4OGdoXk0YNrFl/cTpXwwWVmFpedOKB+PW/TnDeSZ8xbh8M6dtkNB1VjUGuK+de4Bjar0d8LHMAYliblG6ixouETWzVs7Hg/LyKOcRW3KdJ/rZKLFwUZdHoUVc8gUlXPhlxYoR+PRoiImMTW4X/Mya9irpyPpZv3vV6ps4aDaffkeD604ZiEHN7qvA37+3YHTubdhZYiQdj7DkArgHwzwJwF2OshTH2DoDFACYR0TAA/RhjL7Hwi7kNwNnCNVOj43sAnMq5kvaAC+fx11nZzIA8ymogcB7f/etsbTvfuyedmnaR5sW7LCCyvb1SoWxtJYTNx6FY0Cs44zoBOfcXL8KGOm6723SdEQN6oUdDwc3DXIBJjJLqL6ojByDkH7tpfAEB10yZIPQphkoRr6kdgkDQeWjq9GooKHKbaHR7ObIS6nUe5dBAQSPmYywROwZk97/hnEdWYZ697vNCsjEdfnD/XGud9gZPB92roYA+TQ0AgB0t2Tl2xtXP4bRfm32vOhrV6Dy+RkRzIrHWgKhsOABxy74iKhseHcvlqWsYY20AtgAYVMW4jLASD6RFAPd/9TgAycekYsNVkO3420oMZ0/YF/17NmT6syETulpxE2XGMP0dh1hWDqIB24JRCOy7RA5ey1S/ErFVpbsL1/fH+5tyw8upcjHGkqo+EBKLsyYk+TMCgSPQ+/Ko3ql9nGIfsZ+H5rpejYXMc9P1YcqHLkf61RGPtijshs6pUvzWgsDOEfK6GX2i+TIt8sQoay9w4tG7qYA+PULx9PaWbDRsWZLRGVAp8bgewEEAJgBYDeBXUbnq02CGctM1GRDRhUQ0k4hmrl+/Pt+I44bz7fQ5x9EQfUyuO1cZZcYwpG8ThvXvYa8swSn+FEv7QJjGYYLL4loM1NzJyYcMyQ7LST9kV4DqLs9LRMKwKO5yfDmOVdEhlHpGYR4ku/iUSEsYhur53DljmbWvuA/R2krztHo0Zjk13bOQUy6LkCMCxzoPRZiQYkFvoFAuJ2K8wOG7iomH1J5NnCPeo/j95cpF307Y1RpuMns2FtE7cuBUcR6dERURD8bYWsZYiTFWBnAjgEnRqRUA9hOqjgCwKiofoShPXUNERQD9oRGTMcZuYIxNZIxNHDIku1C5jd1+XuQ8+AQTOQ+XxUfeYZYZU8rb3eTv9p2WK0FzEQ3Y2ioWAmUd1VU2AwTbOR1UO3iXZsR3ICfhEaF7Bg3afNzJsc4PQeY8xMXWNKdcMhAS7IS0KKQV4NBNh1h5q3iqckRgLedRZqF1m2aRfmzempTYSjUWsS+dwlwWEQPp58x39wAwbt/+8bFLjLP2Bteh9SgGWrFcZ0VFxCPSYXB8AgC3xHoQwJTIgmoUQsX4DMbYagDbiOiYSJ9xHoAHhGvOj44/DeApVkdzAwaGjTvCHAyNxSD2seBZ4AKiTGA2FWTZcjniv+SP0UmmbIj5k7TjBtv3EpA9THtRI2IwmUNWqzDX1tGsmDpdiLjDrYSg6UKpi9V1egVZJCr2YXrkT377JP1JjpQiPjm+R9DfFYSEZnFdzcwRRW3Zc/L9qYdUKjOs3dqMlZt34eW3syLVFZt2xW3pOHrxefNDl9hkIne0Y3ciQhZTRlcaXaGW4FxZaEat9mNJ1e8EY+awRtUlojsBnARgMBGtAHA5gJOIaALC72EpgIsAgDE2j4juBjAfQBuASxhjnOxfjNByqyeAR6M/ALgZwJ+IaDFCjmNKLW6sUry4ZCOeeysUiTUVAxw8tC/+8IUjccKYkNNxFVvJaxeLOI8MHFb9bG4Qtc7DBTbCEBBZdz467kTJjURldyn8NOI6LqazGu7LPeBGUj+PwlyGLokTYwzHjx6Er508Js5CKI+1zFhqkRfFOaYx9e/VoD3HQVArzEWjjkDBeei61ekXAEVOeAPxmL08tDL88/RlOOZAhSozFlupNyQNIvEI9GMCQiOFu2cuxwuLN2qJtJgmoJ5iqy27WsO1JJoDriH1d5fKsfd/vWElHoyxzyqKbzbUvxLAlYrymQDGK8qbAZxjG0etYFs33liZmNTyXcrk8QmjRQJ7vf/AXlj23k5lO7IDWCgOU+ygHcbsttg5NAQ7S2wSM3DorK1UO8I8yun4t6qOvRknmELBu/RnMu7q3VjEsQdlF8i4mzTtSMXIUg3l8BH9M2U7FOlnw6Yj1hZmwicTW90jiHfBinOy3kfHyR00pA8Wrd2G7S1tKdFRqp/of0Dq+SMSKq531IXUGdS7CT0jHWXaJDo5FsWOlUZXqAUO/8k/AQDj9u0HgMcdU4vlROxuK6OXXYrZIegcJKwDkSeIGs/fISIQFK6mtibst1fqN9d5yBYebjoPucChjgZO1laWtgqKoHmMMbz8dlZVlUc5nQtRu3mNukXZuqlf3bD1JtcGSyru64K0OE1Uxqvm0gUnZMOXXHpvVr7PkdGzSatQEBBI+uJ188EktpL1PpygiffwySOG47efOwJ9e4Rc0xML1ir7aSxyE3g1Ryj21aMh1AuorJGA9MYgHbU5abdRFFt1Ap3HvFWhw2k6vIx+XJXGomsPdD/iYXn24vcnykc5Akp23aaNizwxyyxcOJZuVHMqj85drW3LlCQnLnMWW5nPk4PYqiEIMv2t1jhcMQCbdphzqYuJp8plpgw8qBdb5UMQuD0r3aKqk7dnLKnEcwKnI9YQiYdSWaygRlsNodxlsYfsbFZURNXVPYkkpEq2hhwu58d/D8Obi3P++NGD0a9HA3o1mUPA828sCNQKc5HLCR0Ki9i6S/0MCMn9iByLjvNozZkRkmPphh149i2ztSdjzBp9WUTBwU8H6Bxe8Rzdj3jYKggfbKOSeOiT34golbMhx1W6Vr4ruvfVrGMih8uEcd1EWTkPB4V5QSG2OucPL6krM+DPFpPTqx59Mz6+/MF5OPJnj6uaSf/OsQkQIe5wjQpzc/PZ+ibOQ+B0xDrD90rMRlXvJW+ywUTUFLYlmxkXgmxUXd184KHjXTiPtVtDHwQV0ef99dbkEeEZM0WOPjVmaby9m4pa0R2ENsTLxHt05Ty+ddoY7bmT/vcZnH/LDO15APj5Iwtw6I8ec/YlCQSRYp6Aq/VE9yMeOSi3ivMQdR6m95hWhob/xQ+Xm4ny4ZgmhUpEJEO3CMhmni6mujZ2XmWqqwvV4kL4uC8NAPzp5XeVdfSyeWvz6fqAILZSN9pYDHKbD8uEAQC+etJBqX4kfTn+deJ+OGPs0PicDDmplAm9GosZgikv5gFliYeq36+fMjpW+rvoPPgv1UKZmPyq0WQRW8nWYWFsMjUIyaZGpzBfvy1xtjPN8wOH2POtmHBjFNPNNd99IQi5YsC8qfHEo46wPXpxql5x9vsy5/kOiTGGNVv1sXFEpXNZwXlwxR6vZZrI1ZjqykEV7XJee5gInamuCi7VVETa1o6KgLqMiQSxo5Ygado3IRRJpRe6Uw7dO9UPA0uHKiGKFeyq/lzznE//wanoI7xn3pQcSkUUjYjjltG7qSg4CWbPyzGh+EK9O6XDUWOt9M0knIeb5z9B72eV1nmorxdjkJm4gjPGDsWR+++l5Zhc4RL+H0hzHqbn4IlHHWEVdwiTTuVExndIj72xxtiOaF3CiYe4cLTGSafCcyYLp6ypbhZaT2FptXBJZGQK+AhEoSSMNRKcdthQK3fQt4fV6C8DF6KrQtrgQVfH/f5S45HuU5Zhy5wH7wtQLxiunAdfEOXAiPK7Xru1WUE8su0RknG6PF4+TtPc4t/Atua0sptzHnlM4PWcB5ScB2/3W6eNwb8cvm9cLi7E8nMpBoQj9x+AaqHSHyrFc4IZtckQpzMo+Tm6HfHII81W+WVwJ0FbrJm7hai8ogXIn//9AwCAiSPTkWtVO4oDI8dEl8xprmIdXWA/Dpf1SiefVmG/gXovbo4zFPniZegSALnu7DhcdB6i/b0zFIRBNp1lDFoCo9Z55PdhiYYCIKswn/Xupgx3pBYVJQNTLWTyXOVzRpVaOL6/Mu8v3VaTyHk4PPOQK9ScE6I/qEx19x/YK6VIFzds8pPmXFq1a7XKHFj1rYvWVqY+vcK8jsjz7GWzRiDZIdmiuZbKLGbvRbHVcQcNxps/mxyHPefjaY0m2ZH774Vp3z8Z//jWh3D/V49XxmLK4yQoL0A2GayL051rWPNwXPY6LkukrhmbZdjIQb3SfZFocaYRfxj60+HtDTsyEXiTnaRYJsvwOYHJtpnKEeIA2dTzrbXbM+czToKKdkSHNVUFea6pxFYy+HuSOeweEedR0FhbyRDFjtlz6nImnBd1/Xxh391WzvRNkX6o2sVaRShU3ENI1OwK8+ufWYIFinwy9UD3Ix6W8+L803EejLntCgNpJ8Gv6dGQjW7KJ1n/ng0YMaAXDtmnL/r3akDBcQKbWHkRLZp8FHF9h5U8VDrbx9RYVMfAkuG0u9OI7mwcl2wxFy4+Zs6Dv+PbNcp7GVt2haKYZxamzTfFcBNrtjQrxYGBtOCLOGxYP6f+ZfCWvnHna+nxIBueRBcpwJRPO8N5BIR5q7bgPcEkO16woxnIr2mWOF/OeTiLraBfXHXzMrF2JEmcBeWYPv+B/aMx5RdfylARDx3nYfKt4bj/tZX41PUvVjmq2qD7EQ+rziOZXCoRThBwzkPfxg8/ehiAZHImOo9sP3w8fEdWkEJ+qxSJ8j188biRWpb/36U82S1tJePOxol4UHoMung7geMWvpLMfkm0XvO1qsRMopPgaYftrboIZcbww7+9kT0ngCvEdUrM2NKIAX94Nkz3O0fKxa5Tksq+FC6wvbsgUMxpjQjUJE6TDRyG9euBj147Db8QTK51kDcvPQRrK6dNvkHnUWbq71t8tqrYZPJGkMexU3H9eeHKeQRB1tRah84QSh7olsSjBjoPlnb2euCS41N1uIWTvMNVJQXidTgLLVvYqHZk8j3Ii7kIOQthS1sZ06Qsa+m27NRD3L0DwE6NM1TyrMxtunAeopVM+tr8Oo9EB6EWP7pqGvir0umJRAX2onXbAGTDbeuUpHlNkFPQPJLPTtpfwXmo64qET8bnjzkg9VsVkqVvk9oIQn5fnDN09Z8iQHt/pTLTfAd885Y1VVaNSbTYqoR23PrCO/FxW5nhzTVb8e2/vB4TEt1mw4XzANSRL+qB7kc8LOdt3yz38whSHIq04PO+os4Wrd2WaVuew5zzkMtVO7J7X12ZrQN16O6M2KqtZNy5yPU/fdQIZR1x/jdr4ha5J16yVxq+V1rxzi8R21ft2FTPU+Q8VF7cYWIid3Gb3uQ3Ef3oPLZ11lZ5leWAfef60fcNy5Tpo+rqxVayk6C8GF5x9nhMHh8ZQUi3IS/UsYe5IJ5NvdPMRkmfrKzMGA7ZJ4wpt3ffZLMRb96UVyFOoxv/5sTGMYimjB//fX58XCozXHLHq7jvtZVxJAWVEj20xFPPBRkupu0dgc4xig6Eai48/72T8fR3TwKQXmzUnEc0oVMiKLlO+sP77I1hNjqVZ6ysMM+2lf04ZcUsl/XqOCXuLQyEYgMTdyGfE00bxTbF71eVF+GerxzrLMfmIjfRgStTR2M0oFrkt7e0xTGDZIhjYgwYqCG4eYierqqowOYcZVYxG/6XxY6utONHHxubXBOPK1vvsGH9lO9de5+acakgz8/PfyDL4XDIY2socp1HQtRNvgykaIOjzBi+c8bBAIBRQ3onfUb/RYum1JikN5joKPMbTsgolbP6I9X9NRYCp9hWgCcedYNq19KvR0PstCdCqfNQcB6ZCSl9eDyYmThn4okiXSrLugNLcqYrPzE+TuGp/OYI+ODoJHFWS1s5tQO76MQD8cp/niYPPTNOuYyPadOO3ZizfHOmzsSRA53l2Hzck3/znLUOR8x5KJiomUuVucQAcHNO3gZT6hYCze5WJMJA8u5sBJJBn3+be2tnzV/t1OOwYf1wwQdHxb91cwow7LpVCmahvpgLQwdRht9YDIybk4zYqpCIrYDwmxHrKD3MDWKrvj0acNCQ3qmH8PyiDfG1LgQ0bj+aK9XoPT58zfMZ/xtVhOEBvRsz9XRYpYkj19HodsRD9WWFyqrwWJTP6zgPWeehE1vJ2F0qCXXSYoyTDg6Vr5d/fJzUX7LYvbFyS2Z3fuDgPjHnoZrkRMDPPzkef//aBwGEYqu0UQBhiGAS6ubnEYrJGGM44meP4+I7XtXUC8f1y8fMilS+WGw0BFC86tE3lfenMtUVlaLyYuHiJEikJsRnjtsHJx6cEGLZIEJGIqoSxFNSw9xAQhZl9HTwbM7uWZL+Fq7ZZr2e11W2HY33odn6gJ0c4v03ScTYpp/nOg8uPiyzNPHIs3CLzric+JfLDD97aH48FtX0lt+fHBFCNwTXsXETZj6mpRt2KOslHEq1/E7HoPsRDwWKQZBMKoM4KiyjKEJuUiYSj6n/Nklruy/awcu7RAaGQb0bMUBKJMQX4Hc27MDHfjsNn7juhdR57nPCoHH4QqhgO3RYKAtuaS2nCIQs83dTmId9vauJEJyMvXo7eRHiDte069clbErGZOtJzTFdcvJoHLF/Emo/5fyHbDC9lNgq4jBkSxue7EguH+CSAIr0v880cHEidK+HzxFdHg4Rou+GKphousP0z5jzEMR6ZrGVQedR5nWS+7rh+beTayn9jHguDVvK4VZNKGrXqc0jafNmdGHVEws3t3brjW5HPFTvpRCQckuiWkj5zlUkGHxh2LtvE048eIjWgkY1aURTXZ0ZYZkxbNoZ7spXbEr7CoQy1XBMqknH76EoiE3Syn6pvny9Icy4LVQCOS3UlXnNJqKn7DkxrIc8etGqB0y9QQgvV3Nx4vNIlPbhwT6SRZi4QeDPXF4Y+TtvK7GUH8gBg3rDBh2NdDEc4FD7RZhNdWWI3J9MPHT5zjl4Zj+xP1PaAKPYKuY8kjqiaXRLWzk193s3RlaRGbEVi86H3J9sIae7FxtibsiBU+0K6H7EQ/FiikIWL9u+my/mv3nirbiMx8AaG+1k5B0EtxT60MGD42tkwtRWZspAeHwB1gXJ69VYiMUsOs5D7K/M0vfYJOt6FN3IaVWT2E/mWa4KY3L3Rcfib5Jps4nAiBZkLy1J8mB/cPTg6FpRxBH+T+VyyLSYtrZSEUcitS5FTPUaXs8Xg/B3VnyZLAYxkZAaFjmS4696CkDIdfz6Xw/PDkAxnvRvxP3J0D1jrejO2WA5nX5AtsT6n3PC++BhauSxicmg+PldYobFHGPmIkGROxH9ptpKIXcfj5upF3P+s0+UyGq7JodK3jVe3mzI4E+8M4UgMcFKPIjoFiJaR0RvCGUDiehxIloU/R8gnLuMiBYT0UIiOlMoP4qI5kbnrqVoNSOiJiL6S1Q+nYhG1vYW01DtygIh2qhNasPFHmJSp6ZiAY9+8wRc+9kjwjYkfcbYffvhkKF9ccqhQ7MNRuMplZkyN3FA4Ueh4kqumTJBUEwzpWVMRrHPWCpECVe4fvPUMfjNZyYowmcAz/7HSXjtR6fj8o+PxX+ceUjsPGWb46pFeNKogXj/8HR6VdPH8vNPJJGNzxNyKLwvStGqDCgo3EPWNFYUN6mdPXUmmnLdRGnP+IXK+gwMA6LcoT/5l7ROqxgtbuICvK25Lc7AZ4LOUEP1NEua7bx2IcvDeQhNy5zH8L164uwJ+womyen2OPHk07ulrYRjfvGkti/R4EFG/BoEzkPcdJVZ+htTmQaLv/tEiaxk60b5+rzQiuUM768zwoXzuBXAZKnsUgBPMsbGAHgy+g0iGgtgCoBx0TXXERHf2l4P4EIAY6I/3nkT+ogAACAASURBVOYFADYxxkYDuBrALyu9GRdoFYSO1+vMTw8b1g/9og9e1mc0t5YyClB5l9haKiu5i0JkbaUiHmdNGB63VWZq5bGsmykz4OI7ZsVlPJfG/zv9YJx9xHDlc+jbowEDejfiS8ePwiUnj46V+LZJrtN5yNFiTd+g6r5FHLx3Nu+C6RrRACHkPNK4/YIPhObRlt0hkDb55W2r6jIWmlf2aAjwmaP3T9UpCmIrjkojp8bcgmLsujZVtymGjpffH7c4m/b9k/HUd04EkCZMKus1EuaB3F1DTDzC/7skh1M1fdToPEQuNPpv4kITPx2J84hqckKo84tScniGd2cLyBnPnz2F82CMPQdAtn08C8DU6HgqgLOF8rsYYy2MsXcALAYwiYiGAejHGHuJhW/qNuka3tY9AE7lXEl7QMumO3bpYn4qKswZY1i/rSVjmy0TmJDz0Ok8zLkdeCa35tasQj7VJ8IJ3GyIb+XyGHg7tufgGtrc9MHtu5c5Ku9XTx6dKTMqzIP0R0wEfOPURNG9d78m7e62T1MRn5m0H8bt2w8HDOolEKHwIKM/Et4xg9p6jy9uP7eE9vj9547MlGUWVsPOVRfy3xQnKjyflN3x5Q/gwchqb8SAXhgxIAw6aeI8+LiYZqHmYiX+zcjjlEdn0nnw5yu+v9R3I10nGzzI4FyhjnhwPaQIU6BOnYf5TedNDMcd/d7TFeZDGWOrASD6zwMEDQewXKi3IiobHh3L5alrGGNtALYAyMY7qBFs5nX2BdElnlLS19QXl+LNNdsyJraiPBwIlelyXCsg4XRMxG2+IspmIf6QxLHbF3OdHF0ek8vmSObSLvvwocp6uqZuOPcoZXBA0dtcxWWYCKAokuI77G+ffnDoG4Dw/RJlP/CFV0xGj4YC9u7bAw9/4wQM699DsPhCdK0s8gt/72xpQ7msduLkG4bZCl8ZEQdI0YHF9pN7C6F6NzpRCbfKOu2wofgcDwgo6HbEq44fPTgVJobX0YnEknGJvjXpc3ye8n2TLW4TUXpMYjDGM8cNjfpLRl6QxFYi+DORy798QhgPLra20hDe655ekikzWYrxfmQCU5C4r2rjaXUUaq0wV322KukALzddk22c6EIimklEM9evNyeg10HLefDzDrtpcbL94QuKHaHw4T2xYB0AZLIOyutIqVyOWXi5v5CD0Y/pkpMP0o5BLrMRPgX9UrQT+Xlonua3Tw+9fGUu7RNHDo+PRaKgG9NBCpEUABw4xGyJJDYnN80Xn9eWbUJzaznz3olI+ZzkeEJiRjtV4Esg2fVOfendjKECx4btet8WG7KmunqqKS7Kh0YhPICE8H3rtDFxNkIiN8uf2IJMqPS6ggjG1oBllskxwg0IuChTXqj/7fhRqd/ic39ozqo43/03Th0T6zPEzY34SHS6DbmcPwf+PYqJ237+yIK4nkuuExFbd7XF7YhobUtHl3CyUOwE7EmlxGNtJIpC9H9dVL4CwH5CvREAVkXlIxTlqWuIqAigP7JiMgAAY+wGxthExtjEIUOGqKrYoXnmrgpCIkopgYfvpdgRRsvELdPeiYMQyhZLyXDC/to0SvEkPIl+XCpRAZc9i7fjxjHIK5K6BtOYVP77CaNiMZDMpYnxhtK6A9uY0rDtTk3vkBO0T1z3YmogiWMYYUdLCcvfs/iwBFlRjMxZ7D8wnBvvH94fukjM3GpM1BXoCL8rVDvX//p4EsaE500XsXe/JuE+0tyzDryOLTUqtwb8rwffwDfvej11jkfZ5YRP9IX69b8enokKLXIeLwgBPhuFjZfMnXDkjczMOQ9O4Jpby7jhOcFvRPFxmMRWX7r1lbCONH2PPGBANG61RudFRSBTWx6bjkClxONBAOdHx+cDeEAonxJZUI1CqBifEYm2thHRMZE+4zzpGt7WpwE8xdqRb9PtlpOgZJadOaU/KNOHftcriQRviJTYR97xtpUYGhTbfh6exDQs1Y7z3q8eh2+dNiZWiIdjTwf8U4Ujd1mkTHofcR0JSJ8PXSxljOVKcGNbrNKK03RdmaDJwegCCkUhs1dsMfYhir9MYqvejQX06VEMfYMUm4PeTUWcPWFf7NM/IaxKk20Hk454TinOfez9SYyy2CFPeI5NxUJirSSKrYzzLvxvex883MvtLy/LnEsyCYa/Rc5EJeYjpL8ZcfxJHVISdPle+Lh1yw0XKe5uUxMZ1bdi4wjaSmX89qlFqbLBfZpS7Ynj2dHShs/dNF3RThcgHkR0J4CXABxCRCuI6AIAVwE4nYgWATg9+g3G2DwAdwOYD+AxAJcwxrj5xMUAbkKoRF8C4NGo/GYAg4hoMYBvI7Lcai+I7//0sUMx+7/OCH84sox8FyX+lqHSbctWKOLHeeNzb+O15Zu0ToKMmcel+sgO3acfvnXawZl6Yjuy5Q/gZnXGxTq2jIYq3YEKZcbi4JEi9huQ5eoAYPl76hzrTPoPZBcMWewoc5yu0WzF3a0cziLVX0T85Xho8pjEZ6lay3QGEKo68vVfOCb9nrmeQdy9NhWDlKgn1tdowu2H9UIiY3cW1c/fj0dEjT8bkatU5nCPRKbTFm3AP+atiYtFa0bx3Ygt8EX54W+ESv9F67Zj1+6SdmyNhbTCXN7tq96m7Vk8PHc1VmtiU6lEhToioYrM29FQB90XwBj7rObUqZr6VwK4UlE+E8B4RXkzgHNs46gVxBfTs6GA/r0k81or55FefNTVs9MqSxg4i8pwZSRHVVtbqRfq//vS0ak6LiDITnXZwesc3VJl0cepunexzMR5iCizbFt7923KiOOG9mvC2q0t2LxLrScQZdNaUNr3hN9doyAvd4Fo0ROHxVBuJMLc3AxM+564KHRArwZs2tmqDrmicSBN/dYYsn73jEPSY+LRBsoS8YiuJCKsiww8/j57FUwguIit9JwqH0vMeQhiK5XVHBeZfuHm9G58leCdL3InIvgwx+2b+BltbW7VW1tJYquSw27fxnnIOh0x2Ca/Wzffmi7AeexpEB+5+D0mL858vUvIDdUiIn/8qjoqcQUnVvJ8OmK/JMaSyTRV7lNsRx3OxKUdvpvONvDVkxLlvSm2VVrnka2jGgfflOq+reufWWI8z8ek6ueWLx6Nr58yOpM3RAe+iAFILboyeG7uMB6ajvMI20o4Gfu4+RhUBaocGPKYwn5Yqk7MeQDYGqXWtcFlgyA+K20dhc5Dw3gokTZTT+adeO+qMRQNUatjhXkktpJjXA3snc0xb+M8VEYxHLrcLipU6gtUS3Q/4iFMlFQMJMp+UCrIcY+UIgbFdS75DdSmunzxkWT3hsixOrgkOdKJQjJ1WHr3c82UCZj74zOwt2TK6TTJlc8w27HO0SxbT9+0rPN4eE4YNXbk4N74zhmH5PD3EcRkGp0Hr1diYcRjU8ZBFfclwsUkWTd0+dJYbFVmGLN3H0yMFLYsXnDtzplin246DzP4mGxiKx1XMWVSYqcjPof7Xk08BFRjKDGGGwUluAg5MKJ8n4P7Zo1gxDq//NT7Mv5dRYM5o4qoi8fnH3sA/v2EUcqx1APdj3gIx+IC5cp5yHoDZbgT1Q5U/tAVbatNdUNWWP5gRC4ln9hKLFHt+O2N8cVAbKtvj2ImpAY5KsxdwzzEC4ulukggVZn7xP6WWiID6yDubo06D+KhY+w6DxNhV4twHF+83J8QwTYgihW2vPeAyH1OuXAe5LApi1YiMRSI8p4l/RDHwUMT82ORwGwV4lKphjlv1Vbc91qSmVP0p4mJR8QNyfoH1X2L91kMgsw7V4mmk/qU6Udsr0+PIgZF7+qvM5ej3uh+xCMlk0+O3XUeLua82bKs2CqrHFPt9nh4kn8KykG5rlKxqICsmK1cbIWM2Eq1kLk8Kz4OVQwqGdys05bvwMR5mJS3eSAuUDprK15WKofPSkc8OHdpFLepvlQDR2GCmHiprVyOndREfxV5LCeMGQwVXHQeLlEZ+LP5j3vmJGWKe1Zz9fLvZJ4fe2DibyzOsb49QnWvqMc4euQA3HfxcfFvOYy+fJ8q50GR0y4WspkLZdH0F48bFR/zGHui06WopA+I0BZtoOQwLvVAtyMe4nKSChroaKpLkQI0bs1xAdZ5A4v9vfz2RsjgC8u1Ty1OlYvsb55dolVf4+BhzhcDu8ks8MLi7D3J7XJrJHmsMnbHCnFjt0biQuSWn1zEfV89LlOWUpgLi66MQkDY3tKGe15dkT0ZtxUubCYRn1JsJf3mBgai3gDIRroVsxqWykk0Z1HnIY5l+F49cfP5R0OFgMjJ50D1XXGrJ0D9vnXEVm4qk5NGqCOeEq/j6XsLAicwdli/eGcPJEYUfN7J70flWS+uDak8QbxMeBcLr5iMi09KO/gWA0r18495a5P7Ior1fq56zvZENyQeCdJ6g/C/i9hKnISq6qpdeDbpUvhf/PBU3sa63bu4luQyL7VYijlxHogW/JTNcrbe7ja33RFT6HTyQLQ84+3pECh21Sb88KOH4cj9B2TKRVFMoitQ6yUembsGjCGVr0M1Jk6MVWFcXBaLYhCKm+RdaQ8p7L6Y1VB0TuWPRRZF9e/ZoE3y5KrzkD+UFy89JWX1pNoA6fQ8GfNrhTEKr5P+VpMf/HmK386hUigcWYyUl/MoBJSZE6JoWo5awK8R+/nR3+Jg5qmAna7ShvZEtyMe4mQSLZY4XBTmNnPXPNZW4gL8xeNGKvpTs/xyKlkXhPqT5LcyaZBLQ9HHuX57i1iUgUnpOn54OjyJfI+6hRbIEuzRQ9JhTFJtyQuNwQJMBZ0OSCzli4suKrINfEyt5TK+fspoXHRiNtyMUnmsENc0FQvW7H8i51FOcR4JByUugqaQNU7WVooNkDxndSK/TFvI6jzk5y7WEfudPG5YfBwrp4Wxf+pIMQgGX/wTXZsc2UB132JZg0JsxTeWf/73D2SuBUKrsYfmqFP/hs86HIPnPOoA/mr/eO5ROGdiMlkSnYf5+iCQFeZZ6HagKoiTTYw5FPfnurNzgIsz2rNvpWOGmcQJYrDH/QZmHfrEcX1SiGsFAD89azzuvfg4DOzdGO66cyzoNk9fVWhucUx5dB66JysSdb7Q6kytbQhl2SEB1VnjuCrMG4sBdu5W55+Q2yrFnEc6lA0hLZo1KeZlEZcKomVafB3JdRyfnYLz2F+ee0KdMmM49sBBWHrVR7G/oAznTYsEQTZYISI0FIKYw9i8M22+3KYIkyPOvYkHDMw8uSQCs/6ZmjhU3qXnPOoA/m5HDuqdWhjddR7phc7VVDfDeSDZ/XGok0HZd8qum5BQ3JT8VrW6aN32+PjTR43AUQcoRDYIn5MYSuKgIeoghhyiiAIIRSlHHTAgcYLMQTzkqjKBs7WUj/PQl/N2YuKhsZZzAX+WOmscF84DCJ39dlg4jyQ8CZQ6j4CAEw9JYseZ7oHI7hhHijmcJR7Z63R6Hrm32/5tkrZOSRMzjpeJoifVRqkYhErqDdtbUo6Jsm6Cg5f935eORv9eDZl3IeqV8kJ8jq6m1O2J7kc8YoeudHmsg7B8CE2FwClstIzMTkPRn27n6mqpAoQRdm849yjNuNIf8ShLnuyf/Ms4rdx59Zbm2PrJBbqpnvixODdlxPxVW43EYe3WZmzTpBVVwch5RMd8B6riGlw5j9a4DXV918WioRBgl414cJEpS+s8zjvuADQVA5x86N44euTA2GzVZL5NpF5E03UUBF96sjofGVVbIvWYNHJgyrcICJ8BNxooMTXh5dyXLcwHf88btqdTKhQLanFdWeJC5Toxga5g8Q+IcNLBIVEXrcjqhe5HPDSUX2VjrUKjEAMoajFTRymrlYriySv016JQMIvJi3QQF5b3Dd8LZ4zbR1kvCMLh7j+wFyaNHBinchXxoYOTHaduweIy2dtfftc4rrReRl2He1dX4/QkNv2Ra59PWRvJHM2jb+hNnpVtaxbOh+euxuJ129HcWop3ryquwU3nkRBPFfcJqMVWqui4hYBS9//fn36/dkzc2or/Hrdvfyy84sNxzg5ebqJ/TqbryG6A5MeiktapiJKs8+CBFUXsu1ePOFxJucwyPlZhf27fOzcIyPhrBIFRYa7TSby5Zmt0H2aoQwcBx40ejLd//hEcrtDXdjS6H/GI/quUjYWArFyFbCHhKraSwYnVrS8ujctWbs4GTHMRW4kfoinjIG+rrVROyX9FXCSEwNbtmrlCduMO91wU+tAc6vubKIjLdEmkkrbTvy/6U5Jm10aS/vgFNZeWjM98/ZZdrTHhq5TzEKvowleoFtfzjh2ZKSsElNqEDFKkAkhbW6nTHwNqiyRVW7pkSUmdrHFGxnRd0ccORe5wmYtRWSz1aWrAzt0lrNq8C3NXbjHqU5w4D4WPTsh56E11dZwF15vYnHHNPj/1F1kB3ZF4xG9FvUu0Eg9pp6PavauoR4ZNjyaAqKBWTUa3WFpJ26adLiGU8W5tbtMuUqJPgG3XbCJUANC3KYm7qQ3NgazI6uRDhmCqIMceKoklaomRg82iO5tCqS1agAGNzsPhCxMXpjwKc9UiEhCw27KY8/c6Y+l7aG4ta99zzHkY2gp35nYxrvyOM5yH4v6264iH8HvEgGwsskIQcgtf+/OrAIAl67cr6wCJzuPGKBVstl74/cnPqBgQWhUfJtcZ6r4vHv3Xtv4zZHVJnSAiSQrdjnhwqNaEhsC+ixJDq39/8qHKnY9L2AjVB6ti013EAimfDwvn8fDc1dje0qZdpMQF0DbBxTDYKqRi/+hMXokyVisHDOqN3gLhqcYq0fTojth/L4zWZCuM+7a0L4qtVPlYXEwqKUU8qtN5BJQWW5n0b/95/xvGPotSelQVZJ8QlThFZc6b1Xlk2z72oKxcX8zVAWTz5ADhN1BiLA6WqLLkizmPaO6ZxKphdIB0eTEIlFF2L39wHgB1nDog0YHoOI/vnhGmUSgzhj/PSOc/sUVW6Gh0O+JhsnYoFgKl3kGEyHnoPjqX71y1GJw4JpsdseAkthI4D+OHnhzrrHrSGe0ctkdAiksQIXIxupaCAJnUpDKqYfE/MGqg9txYRX70bN/m87t2l+Kdt+qZusQKc3kvrgEbZbGV0mFVmnu6DQdfAE1dE9JK4U9LJtkAsGJT1vRUXltV81bMPBn3R1lHPBkFCk2N+bNUMUb8Ot6WLXTMMimzZCGgTJRdEbq1wUasxACtv3kinTSqCj/adkH3Ix6G8NlFwYdj5g9PU14vTjLdR6dqWxZ3qT6WYxQWFHLaWxXED8gothL6lENW2MpFXDNlAgCgua2EkYN64cSD7SmBTUEBeaY2jqzTlxkm4nrFJ9IpZH7/uSTnvJM+wtJ7S5ugMK/YSTA51inMAeD40XYLG9FyC4Dy4cldrNvWkq2EJJinWWGeDk+iehNvK8VGZp0Hn2MqiJyVKY2B7Pwo1wES4qG7R27Qce7NM1LlOmsrDt1756Iu3bzi42AMGX+dzpC3XET3Ix5GziMsHdynMY40KkOcFLrdhWoifn9yWumrzBqokWHn8fMwLVYuinVTvgGOcfuGO/bWEjMSG3HY+o+TMpyHTGhti7zp8chixUF9ElGa7ln9WMj3rev6Z2eHRKnMksVMJcJ04ULTOg+z2NEG2dpKBXmhXrR2m7IeF22axVbp4IKqd6HyeM96mCfHx48ehLMmZDmYsL80cdR9R2WWjN+UHyXhBPSbG5U4OfT/0E88G+dh+h7CMbPMc+tktKMbEw/Fy+OTzbwA23f5cvFBQ3qjf88GZV0bAiIl268fk1s93Q7XhfMQ29HFPMpeoy4nSkJec2SDJDp14QTxo9a1e74QJkbX9YGRor1cZmiJxq96Fm7WVm7EwwWbdu7G2q2WsDHSmLbuUvu98Plts7YSOQ/VRkdFPEyiMzllswhC2rFPye1xK7FAPybZSdBIPKTNzfC9eqIYBEZLLd33xfvTPVJe/Nkbs3nLq4n/1h7ofsQj+q9iGznnYdIbuOkz0o9VznORB0GQtjq59UtH49UfnS6NiZTHJugWKRdiIH74LsQGMLDpyMYMkomJ7Znn+ahSIj6DnDs5VrfDixkS/xwb8fh/Uk55uS3A/Dxd3q280dBlNxTx5SjBkAz+Pdi6FcU3qlexcUdWLCY/e3FIKg6Ogygd+FGlmOaPMI7ioNiy8zqlWOeh7082onnueyfbxVaah8YJjolYAcDs5Zsz5/JGg25vVEU8iGgpEc0loteJaGZUNpCIHieiRdH/AUL9y4hoMREtJKIzhfKjonYWE9G15KodrABi8DcZ8U7LUW+giyEkLswHDOqF6z5/ZKaO6zyQJ1m/ng0YKNnup8VR1S0+7cV56LbwGRk9gJMP3dt4sWwhleebSoWyd9gJ6GXTiXhhd1sZDQUyhsEAgItOPDBzHpA5QrOIqBZIRZLdpy/Ombifsl7iJGjYTAUS8VDU+bfjs8QpGwnXbU4RkPKgV03XIB43Uv9V/XGlt8kPSRarFgIKTXUNYivdI2uzcR6Gd7wniq1OZoxNYIxxQ+lLATzJGBsD4MnoN4hoLIApAMYBmAzgOiLiW4zrAVwIYEz0N7kG41LC9Pz5bsEkthJ3FLqFWlyA/+PMQ7CvY15sFeQFX7VQih+iMQKqcE6vMLevUK4iBhG6VgOiWOwDAC9fdiqOH51OPCSaBF/+8bG4+6JjU+fzfFPiM3Di0mwfOQOue2aJdiERu9D19/ryTfGxq8jUFUqxlaOBReIkaGqfsEkIGKjaHauiBMsQ701O3SrDynnE49YTPznCg8lUV9zc/PpfDwcQiqVMnIduQ2MTk5kIdXcQW50FYGp0PBXA2UL5XYyxFsbYOwAWA5hERMMA9GOMvcTCmXebcE3tYdB5BA7EQ5yruvfsIhpxtdlevklOk2oOh2J2EkzO9VCEdQDcOA/xnvoI/hgymOY4NSbp49ynf9Y886AhiSPf0SMHZjivPB+VSPBtzm2AmegBdsKVyvioaezUw5IwI2axlaUzBdQctnhsIB4OToLy5XLuEFUdZV8i8dDMTSDrV+Ji4ab6BmNTXa4w1+kvJcfhXtFGxuZQrPu++TX6eZUt48Pf0zgPBuCfRDSLiC6MyoYyxlYDQPSfyyCGAxAT766IyoZHx3J5BkR0IRHNJKKZ69evV1VxhilsutlXwkX0I8rMq5M1vLYsLftURa8VJ5xp7HNXbomPdaIBJ7GVUEUX5kSGaRG2+XnYxDp5NmTirvauV+x5oLX5POIP2t0HR7fbPEQIxW9WmNdGbuW62XB1EuT42PuH4TNHZ0VgLubKYhc6S0cg+wSU1lZRY9MWbwAANBT1dVotOo+ACK0pU/KwYoNF56G7hzYHMZmMb5+WOA52JlRLPI5njB0J4MMALiGiDxnqqp4WM5RnCxm7gTE2kTE2ccgQu2+Bsg1LilKgetGBi1jgACmi7dKrPmpt97FvnYC9emVjFbmGJxExYoB60XdNXsRhEzFw6J56ECD+OL90/EhrfyrieKAmxAgXMYgQRWAuwRhtO0SXzJNxW5rGeggK4lpzHsMUnJzIfZk2G4mToIl4JMcXfegg5fhdIwtzGImH1JTazyP9+xZFCl3+COymumknVt52IQiU4UkOGtIbH33fsFSEBBHcjNqkoBfxrdPG4LSxQ9G7sYCzNebL9UJVxIMxtir6vw7A/QAmAVgbiaIQ/V8XVV8BQNyWjACwKiofoShvF5j8PPKy1zqIH5Cuzf49G3DuMQcAUEdH5RAd8HQiohTn4bjCfGjMYHslDQoVECsdCAnncYJmTGIXSl+YgDLJpgDgk1JmOCAtVnELHaI9A8Au+uLDJdIvwqII0ezkmRybFliO6z5/JEbvnU0wlgpBY9R5ZPvNjEk43l1SR2dwIh7CSpTH18VmpAAAY4Zmn4Gs8zBxAqJ4itcrBurAiG1lptQb/v1rYb527pCp52jT5QN7N+KwYf0w76eTMXZfe0SEjkTFxIOIehNRX34M4AwAbwB4EMD5UbXzATwQHT8IYAoRNRHRKISK8RmRaGsbER0TWVmdJ1xTc8Smuop3x0MQvLlG7TQFuBEYcfKbPk5ugqvz8AWAM4Xw6rKsnyMtV3dbzKsRp4n35GqqO0Sz2AWUmObq4gG5+EG4xBMDgJ4C8XCyttKKM8L/10ghJGS4+EqIBM1ksMDbOPeYA7QREEQcoshMCaSfoQvnYXpM4n21aJwTa/nNNEicrquzra5OiyWPiuyUmERQzjoJ/nPeGry7cSe2t2SJ6L57hRzgnBWh6NikoE//ro2osj2g13baMRTA/dGHXQTwZ8bYY0T0CoC7iegCAMsAnAMAjLF5RHQ3gPkA2gBcwhjjT/liALcC6Ang0eivXSCm2pThkiRIXMh0IsiUOajh5T88N8yL8brCpptDXJt7KpSRch8mU89awdVaR8RJh6jFjEFA8Qfc4OB0We3HJC7OLmO3EbTZK7Yoz3Pw8ZpEZMXUmOym1q6PQB/w0I3T4debCLP4PnSe7S7PORXN2XCDTdJmRWkQ4CJajurwhGa6TVBAwIK1SXiVmHgUsp7nv3j0TQCIc4mI6N1URGMhiLlsrXWeQ5KszoKKiQdj7G0AGaEyY2wjgFM111wJ4EpF+UwA47NX1B66TIKucLkutRgYLmgICLaMGOJiYlPe2vqrFdJ+Jfr+RLNNF7GA3mPfvuC73nZe/VA1wS8Bt12w+M6MSlHifbt1rrs/8Z5MPhXcB8Jk/r1QCG1y6D5qsYoLlysSNFN/8iKvajuPr5I1/a/UPvemLwZZU12ebVBlhVUICP16NsR1dAFY5VdmC9RaT3Q/D3ODzsNlMXEJTuYa1txt5xv+72UIf+4SrLGWcI3FxPGDj+iTOQWUvBNdSAeX/iq5a5drtMRKuvoLx+yvrOekRxMqmeIl8edgMlIQAwq6BL80tXXfqysBAIvXZQMbyvjMxP2UZtauELlOk/GdTOyUCnOXHCpRneeifDqqcPpAI13EHgAAEhdJREFU9v2JaWZlIsElF2I5nxcFIvTvmezVdRGdZWK1ZVersl5nQPcjHvxA8VG7OMjZ8jUD7l7MeXZIKvt5uY5rm9UiFRzSob99+uudJJ30GaJjX5WcR164Br/UBtJ02XUL8+UAg+kzb8m04J90cOKdb0vyZGuLw4XTsSVRs0Gct6bdtljvg6MHK3N521LLAtln4xoKv00QW+lEkUePTNIA/PRfxuPNn01GEFDqG9ZyY1Ixz0nSGVGNzqNrgocnUcW2CgIA5pclTpgzx6tzhbsqsF30E4nCVV9HPOdqOlsNXK2tXKzSUyIwB9GBa+BAnX5IhMv4XMVkOmnTIodde0G4b9MmgYtMmgx1RELrkljKJbyMLekXkI5WXAnS3Lr+HYvjveLs8crNi4s/hCqtrAp9e6SXSG5hVVDkMB/StwmD+zThF598X9JPQOgRhM9va7Odi5DH1dzqxVadBiZrKxeInMdwh7AjprXOhUuIlZaOjlq1IB4Xn3QQ/utjY7Xna7nLd0nBajPVBbKbgb9//YPWvgcqfGZk6MYk96dbhEXHTH0fbg+Uhz43vWPxeeoIkdjd84s2aNsy5dSQ4RKCxATxWzCt/eKmQEfYXZigFmlHrxNbyVaCbYLYSjbVbSuVMfGAAVpufPl75ujYgErn0Xk5j+5HPAw6D1XOZBkuIS1E1Eps5arKqEVMye9PPhT/9sFRTn1U6/XqYinmkilRLjall334GyFhcVJm6xTm0qvTLehfNjxHWx8yYs7DSDySYx3xEDkJk4XhAAfiyuHid2JCingYeELR6VH3/lSpaWUM7Z+uo5t7srNfytpK4jzahOyFlUKex7bcLPVENyQeZqcgIAxmqIMtx7kMEwvupjAP63SEFVUlMN0ff9am2xQvd9EvuDwzG0c4anCYX+V7hvds60/mPHQL+scP39feh+O75QuXKWS5i35CvN4ktnJdCJ0jKxsgPmeTWrGfoHTWzZfTDpOjMmfRVCzgzHGJc66Ow5TvrU3IGinrP9tKzJmL1EF+f5/XGGJ0BnQ7nUeSz0OPUZpwF7ZzKhidsJw8b+1iq7w4WeNzUQlM98CZElcC6mJtpRdViGbB2u4AAL0ai5h9+RnGOkP6NmH9thbnhF+fOirrzQ64LcCuFnIx8TAGDnRqKoaJi+HcgKnJN35yZkVhU1T47KT9ceeMZUa5VTp6g17J3bdH0eq3xd/t4D6NWr2OTDw4py1G1d28czfeWLkVpTJzMiBxxQuXnuIkGq8Xuh/xMETV5TCJYsYP74+XLzsVQ/u5semmfno1hRP22s8eoa3DdzIu5oeu4dH/70uTnOq5wLTw2RLtAMA6Ieud3qfCLrYS4w9Va/kDJAumCzc0Zu8+6NWo/pRM+VXyIuE8qsvZIsLU1tbITFQXpwkwR1XWYYoieCKQmKWbeHtXB0cXiyv+rETrKBnyN3XUAWF6omJAsR/Ml6fOxMx3N8Xl1cBlrncWdD/iEf03ec3arHHz2LO7iVn07XG5s20izfnxGU4WRrWG6fbKMaHWV/r/7Z15kBTVGcB/3+6y3Mslx7KAoILCAiJsIQIGI4WCGEk8EikUlCRKSRI0qSKaxDJWTIlJNJ5VSimUOdQkFVOi8YixomVOlURULhVjeWGMR+QqReTlj3692ztM93TvvJnuZr9f1dT0vH7z+utv3vTX73tff2/T9h2t23EeyAszVkHfsAs/sS9yeLRV6RETtMkeNQcTFz8ja7luqyBXnNYcum/qqP5MP3wAV0bUScoDX59Jc0iOptY09xH/v+DzIFH93V/zY/7ExtA6/vFG9A8Pj/ZHeZNH9OXXFx7X+lvX1dRgjPfcx9ZAOqNybxbaP7NVVlMVp/MZj6gZ88I6Doj3Zw6vM3pwL44a0ptFNoliGA1lLHVbDpGhuq1zHvEuaKGRTTG+79p4+F0gLKghKFGc54NK9anRg3pxVktx15ePH6sRd8I8ihrxjPv4oX1C6/Tu1oW7vjotXoMx6VpXE54pwb5Hjfz93Fb1tTWxQojnTwg3Hr4xLpap2scfeXxq2t8k+O7IT/bvZ2cg0OadnR+VlCmKOGsBZYVOZzx8on6XOKm6S+H7XHt2De/gwYVlwuhaV8vDF0dluk+XicP6hu7bH2PCPEg5kSrNTX14bIuXwLnU+iBx8OPre3ULy2QcDDEuHUZd6n7k0W/OKimTf7ErTA5Y7Hil8MUp182SlOiswaV15cs7KKbbeGZE9ui9dimAsIXRoM1QF0ZZ+udReK3YHSNiM2zkBe3dgC5dnpUg29JVkKi/jAvj4Yf9DugZ3sl/+sVJrJg9mqOHhd/9ZZ2oAAJfjeXmYorDitmjW7eTRsQV4yM7egnz6beLEotwW7m8efQngDsyzxBGbRUSabY7XqTx8N6jfr3WSfwSYvv/qagRuT83FvVgZn2r8Whf7huxwr4WNT/k8+MzD1xnxid4s1L4gGLW6HTGI45HyoXX6vovTWJsY0Pk0HpQQzcumTPGaSRVltjfGhYdr345qVXKXVekkEnDvRFVqPEI3H5Eua38PS4coUfZfEjFFnhKSms+sQyNPKbZVCMTmsJvpuL+zvdeNIMXr5oXWafNeIT3O994FOa0qwsZecSRL2pdjmB/q0aeunLItmmrAG1ZdSNcRRGdKS4LJjWxIGMrf6VF3JFHlv4rty9p4bX39sRKT7Jnb3gKiaZ+3Rnev3vkE/txueaMCSybdVikjz4p1U75HeWKObl5CP+8fE7oujUAQxo8w7li9pjI49TWSMkLeavxiAhAqK/19n1acEfpjzb3FbizytVm1kcbQfIjqSNizJdz6sTSD3YppWkL1Y33lyp3BDa8f/dYKSDi0NCtC+Mj7oCDohauMx+ka10tT6480YlMPerraI6Y4O4I1R559IiYA4TwBc98+vWs599Xn+JktO4HVkS5rXwKMwv7eisMCY6S686lU9lWIteZS5dkpel8biv7HtX3XLtAssIdS1qchl2WIumEebn84eLSk86uyPIiPXG46AQvF1W1+3pvBxdHV25eP29UlKfh/d3FV/n0Rx6FiQujRJs1ZmBk2h+IXnoha+THzDli3vghjBncKzJW/mBl9tjwtdKTctdXji2ZQyjOcx5xeXXV/JJ1/PmlwwYmywLQEbJsO648rZm+PaJDt1fOPYqVc8PXWXHN1adP4KEX3s7U/F6cCfOwff7I48Rrn2hXvqzMBJEiwsq5RzLj8PAosazQ6YzHoQN6cuiA4heX5qENbHxrR9F9SnumH1G6cx9i03RX827qsW/N4pCICDdXBEceT678bMWPl4Ql00emLcIBLJw6goVTs5WnyQ/QCMuoC3D65GG8t3svi45tL3uxEdt500cyuKH8YIaLTjii7DaqQWaMh4jMBW4AaoHbjTGrqi3DfctnlHy6XInP1adP5PjRA5kYEYr8uaOHcv+GtxjWz00On8MHlv8kdxyClw5XsivVZVxjA1ve3lnShV1sNFHotnz++yfRO6UHddMiE3MeIlIL3ALMA8YBC0Wk/PCUhNTV1jjJEKp49OnehYVTR0S6Ki6fPxaIDs/MIl3jrAqnZJqrvjCeG86eFBkYEUbhwKOzGQ7IzshjKvCyMeYVABG5B1gAbEpVKqXiDGroxj0XTIscnWSRhhyFVCrF6VFf1+Fw+onDwzMrdBay8g9oAl4PfH4DODYlWZQqM63IOtRZR0S46vPjGdsY/sCXcvDS1Lc7r66az7u7Pj7gAcLOQlaMR7Fx/wG/iIhcAFwAMGJEtibflM7HOSWSVSoHP+WuoJhnsuLgfwMIJvkfBrxVWMkYs9oY02KMaRk40N2CRoqiKEoysmI8ngZGi8goEakHzgbWpSyToiiKEkIm3FbGmH0i8jXgEbxQ3TXGmI0pi6UoiqKEkAnjAWCMeRB4MG05FEVRlNJkxW2lKIqi5Ag1HoqiKEpi1HgoiqIoiVHjoSiKoiRGjIs1V1NARHYCW0N2jwBeK9FEH+BDB3VcthVHbpfHc3l+rnQet57L89P+ov0lyfHy3l+ONMb0jnHcaIwxuXwBz0Ts+2+M7692UcdlW3Hkdnw8l+fnROcpnZ/2F+0vnaa/RF07k7wOVrdV+LqgbdzvqI7LtuLI7fJ4Ls/Plc7j1nN5ftpftL8kOd7B3l9ikWe31TPGmJak+7JMXuUGlT0N8io3qOxp4MvtSv48jzxWd3Bflsmr3KCyp0Fe5QaVPQ1WF7yXRW5HHoqiKEp65HnkoSiKoqRELoyHiKwRkXdE5IVA2dEi8jcReV5E7heRBlteLyJrbfkGETkh8J0ptvxlEblRqrB+qEPZHxeRrSLyrH0NqrDcw0XkTyKyWUQ2isgKW95fRB4VkZfse7/Ady6zut0qIicHyquqd8eyV03vSeUWkQG2/i4RubmgrUzrvITsme7rIjJHRNZb/a4XkRMDbVVN747lTq5zFyFblX4BnwEmAy8Eyp4GZtntpcAP7PZyYK3dHgSsB2rs56eA4/AWn3oImJcj2R8HWqqo80Zgst3uDbyIt778j4BLbfmlwDV2exywAegKjAK2AbVp6N2x7FXTewfk7gnMBJYBNxe0lXWdR8me9b5+DDDUbo8H3kxD747lTqzzqvw4jhQ1kvYX4B20zdkMBzbZ7VuAcwL1HsNbI70R2BIoXwjclgfZO/rjOj6H+4A5eA9mNtqyRmCr3b4MuCxQ/xH7J0pN7+XKnrbeS8kdqHcegQtwHnQeJnvaOk8iuy0X4D28G49U9d5RuTuq81y4rUJ4ATjNbp9F20qEG4AFIlInIqOAKXZfE96KhT5v2LI0SCq7z1o7pLy80m6IICIyEu+u5R/AYGPMdgD77g9vi61D30TKei9Tdp+q6z2m3GHkQeelyHJfD3IG8C9jzMekqPcy5fZJpPM8G4+lwHIRWY83ZNtry9fg/WjPANcDfwX2EXOd9CqRVHaARcaYCcDx9nVuNQQVkV7Ab4GLjTE7oqoWKTMR5RXHgeyQgt4TyB3aRJGyrOk8iqz3db9+M3ANcKFfVKRaxfXuQG7ogM5zazyMMVuMMScZY6YAd+P5qTHG7DPGXGKMmWSMWQD0BV7CuygPCzRRdJ30atAB2THGvGnfdwJ34bniKoqIdMHrlL80xtxri/8jIo12fyPwji0PW4c+Fb07kr3qek8odxh50HkoOejriMgw4HfAYmPMNltcdb07krtDOs+t8fCjAUSkBvgecKv93ENEetrtOcA+Y8wmO3zbKSLT7JBsMZ6PMPOyWzfWIba8C3AqnuurkjIKcAew2RhzXWDXOmCJ3V5Cmw7XAWeLSFfrchsNPJWG3l3JXm29d0DuouRE52HtZL6vi0hf4Pd482R/8StXW++u5O6wzqs1mVPmRNDdwHbgEzzr/mVgBV50wYvAKtomoEfiTRhtBv4IHBpop8UqZRtws/+drMuOF5myHngO2AjcgI0GqqDcM/GG3M8Bz9rXKcAAvIn8l+x7/8B3vmt1u5VAlEm19e5K9mrrvYNyvwq8D+yy/WtcjnR+gOx56Ot4N3y7A3WfBQZVW++u5O6ozvUJc0VRFCUxuXVbKYqiKOmhxkNRFEVJjBoPRVEUJTFqPBRFUZTEqPFQFEVREqPGQ1EqgIgsE5HFCeqPlEDmZUXJOnVpC6AoBxsiUmeMuTVtORSlkqjxUJQi2ERzD+MlmjsG74HOxcBY4DqgF/AucJ4xZruIPI6Xi2wGsE5EegO7jDE/EZFJeFkEeuA9PLbUGPOBiEzBy2e2B/hz9c5OUcpH3VaKEs6RwGpjzES8NPrLgZuAM42Xl2wN8MNA/b7GmFnGmGsL2vkZ8G3bzvPAFbZ8LfANY8xxlTwJRakEOvJQlHBeN205gH4BfAdvEZ1HbcbqWrzUMz6/KmxARPrgGZUnbNGdwG+KlP8cmOf+FBSlMqjxUJRwCnP37AQ2RowUdidoW4q0ryi5Qd1WihLOCBHxDcVC4O/AQL9MRLrYtRFCMcZ8CHwgIsfbonOBJ4wx/wM+FJGZtnyRe/EVpXLoyENRwtkMLBGR2/AylN6Et0TtjdbtVIe3aNfGEu0sAW4VkR7AK8D5tvx8YI2I7LHtKkpu0Ky6ilIEG231gDFmfMqiKEomUbeVoiiKkhgdeSiKoiiJ0ZGHoiiKkhg1HoqiKEpi1HgoiqIoiVHjoSiKoiRGjYeiKIqSGDUeiqIoSmL+D2q4hoMQeydoAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXeYJFd97/05nePksLM7m3cVVlm7WiWyhAUYI9sEi2DJNra4XNnG4fX7gMN1uJZtHLDNtcEW4UVgk0wwcAGDvAIk0EqrVQ6b8+zOTg6d43n/qDrV1dM9oWe6p8Ocz/PMs73V1T3VNdX1Pb8spJRoNBqNRmPHUe8D0Gg0Gk3jocVBo9FoNCVocdBoNBpNCVocNBqNRlOCFgeNRqPRlKDFQaPRaDQlaHHQaDQaTQlaHDQajUZTghYHjUaj0ZTgqvcBLJeenh65ZcuWeh+GRqPRNBVPPfXUuJSyd7H9mlYctmzZwsGDB+t9GBqNRtNUCCHOLGU/7VbSaDQaTQlaHDQajUZTghYHjUaj0ZSgxUGj0Wg0JWhx0Gg0Gk0JWhw0Go1GU4IWB41Go9GUoMVBo9GsiP0nJjg+Gq33YWiqjBYHjUazIj74tef5Pw8fq/dhaKqMFgeNRrMiYqkss4lMvQ9DU2W0OGg0mhWRzOSJprL1PgxNldHioNFoVkQykyOS1OLQamhx0Gg0yyaTy5PNS205tCBaHDQazbJJZnIAWhxaEC0OGo1m2SQzeQCiySxSyjofjaaaaHHQaDTLRlkO2by0hELTGmhx0Gg0y0aJA0AkpdNZWwktDhqNZtnYrYXonIylP/vWy7z3M08WCYimedDioNFolk0yW7jxzw1KP312in2HR7nv358mm9Mup2ZDi4NGo1k2dqtgruUQS2UJepzsOzzKE6cmV/vQNCtEi4NGo1k2ibQ95lAsDvF0jq29QeO5pI5HNBtaHDQazbJJZuePOURTWbqCXmM/ncnUdGhx0Gg0y6bIrVRiOWTpDnoASGV1ULrZ0OKg0WiWTVEqq811lMrmyOQkXaY4aMuh+dDioNFolk1xnUPBcoinjO0FcdCWQ7OhxUGj0SwbZRG0+91FMQflYiq4lbTl0GxocdBoNMsmmcnhdgo6Au6imEMsbTxu87txOYS2HJoQLQ4ajWbZJDI5fC4nIa+ryHKImW6loNeFz+20LIdzk3HdoK9J0OKg0WiWTTKTx+t2Eva5imIOMfNx0OPE63KQzOQYnknw6r/5AT86Olavw9VUgBYHjUazbFKZHH6Pg5C3OOYQN91KdsthPJImL2EskqrX4WoqQIuDRqNZNsms4VYK+1xFMYeocit5XJbloARDB6ebAy0OGo1m2STSOXxuI+Zgr3MoWA5OvKblkDCD0locmgMtDhqNZtkkM3l8bgch03JQwWZlRQS9BctB9WHS1dLNgRYHjUazbJJZw3II+1xkctKyCuKpHE6HwOty4HM7SGXyxJU46GrppkCLg0ajWTbKrRT2uoCCxRBNZQl4nAghzIB0TruVmoxFxUEIsVEI8QMhxCEhxEtCiA+Y27uEEA8JIY6Z/3baXvMhIcRxIcQRIcQdtu27hRAvmM99VAghzO1eIcSXzO1PCCG2VP+jajSalfLUmUnu+/zT5PKG+yiVzRsxB58hDhEzYymezhIyBcNwK+W1W6nJWIrlkAV+V0p5OXATcJ8QYhfwQWCflHInsM/8P+ZzdwFXAG8APiaEcJrv9XHgXmCn+fMGc/t7gSkp5Q7g74EPV+GzaTSaKvO5/Wf49vPDTMSMdNRkJofP5aAnZLTmHplNAkYRXMBjfO2V5WC5lbTl0BQsKg5SymEp5dPm4whwCNgA3Ak8aO72IPCz5uM7gS9KKVNSylPAcWCvEGIAaJNS7pdG1Oqzc16j3usrwG3KqtBoNI1BPi959Ng4ANNxIzMpmcnh9zjZ3GUM9Tk7GQeM9hklloPpVtKtNJqDimIOprvnOuAJoF9KOQyGgAB95m4bgHO2lw2Z2zaYj+duL3qNlDILzADdlRybRqOpLS8PzzIRSwMFcUhkjJjDQIcPp0NwdsIUh1SWgMcQByvmoOscmooli4MQIgR8FfgtKeXsQruW2SYX2L7Qa+Yew71CiINCiINjY7oEX6NZTR45VvjOTcXTSCmNVFaXA7fTwfoOn2U5RFM5gnMsB52t1FwsSRyEEG4MYfh3KeXXzM0jpqsI899Rc/sQsNH28kHggrl9sMz2otcIIVxAO1AykVxK+YCUco+Uck9vb+9SDl2j0VSJR46OWS24p+NpywLwuo3YwuauIGdMcTAC0nNiDhkdkG4mlpKtJIBPAYeklB+xPfVN4B7z8T3AN2zb7zIzkLZiBJ4PmK6niBDiJvM9757zGvVebwMelrp1o0bTMOTzkqfPTPNTV6wDYCqesSwAvykOG7sCnJu0uZVslkNeFjKZtFupOXAtYZ9bgV8EXhBCPGtu+33gr4AvCyHeC5wF3g4gpXxJCPFl4GWMTKf7pJRqqfB+4DOAH/iu+QOG+HxOCHEcw2K4a4WfS6PRVJHJeJp0Ls+l/SE8TgdT8bQVYPYpy6E7wGQsTSSZIZbKWQFp9fyUGa/Q4tAcLCoOUsofUz4mAHDbPK+5H7i/zPaDwJVlticxxUWj0TQeo7NG6mpfm4+OgJvpWMbKOvK5DQfEpq4AAKfH4yQyhVRWr8t4flKJg85Wagp0hbRGo1mU0YhRv9AX9tIZ8DCdSJPMFlsOShwOXzTyVaxUVvP56bghDmltOTQFWhw0Gs2ijJozGPrChuUwFc9YFc8q5rCp2xCHQ8MRgKJUVoCYLoJrKrQ4aDSaRVEDevravIZbKZ4mmVHZSsZtpM3npiPg5tCwYTkEvcVuJYXOVmoOtDhoNJpFGZ1NEvYZU906Ax6m4pkStxLAFevbeOLUBGAM+pn7POg6h2ZBi4NGo1mU0UiKvrDRP6kj4DEsB9NN5HMVbv5//bZrWNfmAygqgrOT1JZDU6DFQaPRLMpYJEVf2LjpdwbcZHLSaqXh9xTEYUOHn3/71Rt56/WDXLGhDSi2HHxuB5mctLq6ahoXLQ4ajWZRRiMpei3LwQ3AqfEYUIgtKLb1hvi7d1xDm8/Yz245dPiNCmudsdT4aHHQaDQLIqVkNJIscisB7Ds0wkC7j16zXfd82C0HJSw6KN34aHHQaDQLEkllSWby9LUZItBpisPpiTg3bu1ise76dstBvVanszY+Whw0Gs2CWNXRtpiDYu/WxTvrl7UcdMZSw6PFQaPRLIi9OhoKbiWAvVu7Fn19UczBshy0W6nR0eKg0WgWxF4AB9DuN1b/PSEP23uDi76+fMxBWw6NjhYHjUazIEocek23ksflIOxzsXcJ8QYAp0Pgdhr7deqAdNOwlJbdGo1mDXNiLEbY56LNV7hd/MMvXMvWnsWtBoXX5SSTyxbcSjrm0PBocdBoNAvy9Jkprt/UWWQl3HZ5f0Xv4XM7iKagw6/dSs2CditpNJp5mUlkODoaYffmzhW9j9dssdFljhlN6pkODY8WB41GMy/PnptGSlYuDmbnVh2Qbh60OGg0mnl56vQkDgHXbOxY0ft4XU48Toc140EHpBsfLQ4ajWZenjo7xeUDbdZUt+Xiczvwe5xWzYO2HBofLQ4ajaYsubzk2bPTK3YpgVEIF/A4rZGhOlup8dHioNFoyjIaSRJL57h0XXjF7+VzO/G77ZaDdis1OjqVVaPRlOXCdAKA9R3+Fb/XDVu6GOz043IIHEK7lZoBLQ4ajaYs56eNnkobqiAO9712h/XY63JqcWgCtFtJo9GUZdi0HAbafVV9X6/bQUrXOTQ8Whw0Gk1ZLkwnaPO5CPvci+9cAV6XQ1sOTYAWB41GU5bz08mqxBvm4nU5dYV0E6DFQaPRlOXCdKJG4qAth2ZAi4NGoynLhZkE6zuqG28AM+agxaHh0eKg0WhKiKezTMczNbEcfC6nrnNoArQ4aDSaEi6Yaazr22vgVnI7dIV0E6DFQaPRlFDNAri56DqH5kCLg0ajKaEgDjWIObgc2q3UBGhx0Gg0JVyYSeIQ0N9WG3FI6FTWhmdRcRBCfFoIMSqEeNG27U+EEOeFEM+aP2+yPfchIcRxIcQRIcQdtu27hRAvmM99VJgzB4UQXiHEl8ztTwghtlT3I2o0mko5NDzLpq4Abmf114/be0MMTSUYj6aq/t6a6rGUv/xngDeU2f73UsprzZ/vAAghdgF3AVeYr/mYEMJp7v9x4F5gp/mj3vO9wJSUcgfw98CHl/lZNBpNFcjnJU+enmTv1q6avP9rL+tDSvjRkbGavH+j8F8vDvPuTz6OlLLeh7IsFhUHKeUjwOQS3+9O4ItSypSU8hRwHNgrhBgA2qSU+6Vxpj4L/KztNQ+aj78C3Cbsk8w1Gs2qcmw0ynQ8w96t3TV5/10DbfSGvTx8ZLQm798oPHZigp8cn2A00pwW0kpsxl8XQjxvup3UNJANwDnbPkPmtg3m47nbi14jpcwCM0BtrkqNRrMoB05NAHBjjSwHh0Pw2kt7eeToGJlc62YtjZmicGIsWucjWR7LFYePA9uBa4Fh4O/M7eVW/HKB7Qu9pgQhxL1CiINCiINjY61tkmo09eLA6SnWtfkY7Kx+GqvitZf2EUlmeerMVM1+R71R4nBqPFbnI1keyxIHKeWIlDInpcwDnwD2mk8NARttuw4CF8ztg2W2F71GCOEC2pnHjSWlfEBKuUdKuae3t3c5h67RaBZASsmBUxPs3dpFLb2715ujR4+NRGr2O+rNmBlwPzm2hsTBjCEofg5QmUzfBO4yM5C2YgSeD0gph4GIEOImM55wN/AN22vuMR+/DXhYNmsER6NpcsaiKUZmU1y/qaOmv8fvMWdJt3AxXLNbDotOghNCfAF4DdAjhBgC/hh4jRDiWgz3z2ngfQBSypeEEF8GXgaywH1SSpXQ/H6MzCc/8F3zB+BTwOeEEMcxLIa7qvHBNBpN5czEMwB0h7w1/T2FWdKtKQ6xVJZ42rj1taw4SCnfWWbzpxbY/37g/jLbDwJXltmeBN6+2HFoNJraM5s0xKHNX90BP3PxOFtbHJTVsL7dx9nJOOlsHo+ruWqOm+toNRpNTZlNZgEI+2o7Xl4I0dJtNFS8Ye/WLnJ5ybmpeJ2PqHK0OGg0TcrIbJJ9h0aq+p6zCdNyqPJo0HJ4Xa3bnVVZDjduM7LyTzVhUFqLg0bTpPzv//syv/rZg1acYC6pbI5smTqCk2PReXPvleXQ5q+t5QDgdbdud1YlDjdsMWpFTo43X62DFgeNpgmZiKb43ksXkRKePle+VuBdn3iCv/7ekZLtf/zNl/jQ114o+5pIcpUth1Z1K0VSOB2CrT1Bgh4nF2ear0pai4NG04R89ekhMjmJEPCMrZDs3x4/w/ND0wAMTcU5N1nq656OZxieSZR939lEFo/TYWUT1ZJWniU9FknRHfTgdAg6Ah5mEuWtu0ZGi0OdadY0N039kFLyxQPn2LO5k10DbTx11hCH0dkkf/SNF/nSk0YHm2Qmb6VT2omns4xFUmUbws0mM4R9rpoWwCm8LmfrxhyiKXrDRjpwm9+txUFTGU+dmeS1f/vDlq4SrQUnx6L8r2+8SDSVrfeh1IXpeIaT4zHecOU6dm/u5Nmz0+Ty0nIzJc0bbiqbKzs3IZHOkczkiZQ5f5FktuZprAqvu7XdSkoc2v0uZhLpOh9R5WhxqCNqTu9Yk3ZtrAfPnJ3irR9/jM/uP8Nz56brfTh1YSJmXC99bT52b+4kls5x5GKE77xwEYBkNoeUkmQmT6Kc5WAKRrnrbjaRoa3GaayKVncr9Zni0OHXbiVNhaiVr56KtXT+4Osvks0b7pDJWPOtxqrBeNT43N1BD9dvMnoUPfjYaZ4wu6mmMjnSZpZSuWtLuZqUOOTzkk88cpLZZIZIMkN4FYLR0LqzpPN5yUTMbjm4mZ4no6yR0eJQR1RmiBaHpZHLS46PRXn9rn4ApuJrUxwmlDiEPAx2+rn98n6+dPAceQltPhepbN5yLc21HHJ5Sdq8IStxODoa4f7vHOK7Lwwzm8yuShorqDqH1rv2I6ksmZykM+ABoCPQnDGH1bkKNGWJmjnl5Ux/TSnnpxKks3mu39TJ154+v2Yth0nTrdQd9CKE4BN372b/yQlOj8f51nMXSGZyli9/7sIjni7EGZQ4qDqJC9NJZhMZwt7Vijk4LaFqJaxCQjN20+Z3m4Kdw+d2LvTShkJbDnVEFRwlW3D1VAtUIdEl/WHafK41Kw7j0TRCQGfAuPkIIbhlew/vunETPreDZCZvZQHZxQCKFyKqxYNa1Q7PJMyAtI45rISIKiQ03XMd5t+p2awHLQ51RMccKkP1xd/WG6Q75F2z4jARS9Hhd+Nyln59vS5nkeWQzOTJ5wspq/bUVmU5qEXK2ck4iUxuFWMOrZmtVGheaIhsu1+Lg6ZCCm6l1ls91YKT41HafC66gx46A+41HXOYr6W2z+0gmc1ZMQcwspcUdnFQs42VG+ToiGGZrV62UmvWOcztT6XEodmC0loc6kgkpQPSlXByLMa23hBCCLqCHiswu9aYiKXpDnrKPudzGzdc+4rc7kpKZIwFicflKMQczJuZssRWt86h9cShxK3kN/5WS7UcZhKZhrAytDjUkaiOOVSEIQ5BALqCnjVsOaTomddyMN1KthW5ffGhLIdNXQGbW6n4RrSabqV0rtjt1QrM51aaXsL1KqXkPZ98gt/4wjO1O8AlosWhjkR0ttKSiaWyXJxNsr03BEBn0MNULFO2BUSrMxFL0zWP5eB1OUhm80Urcvv1pcRhc1eAyViKXF4ymygOWq+WW0kNv0mX6RzbzKjzGfKa4lBBQPqHR8Z44fxMQ3RN0OJQRyI6IL1kVA+qrT2m5RDwkM7lia0xYc3k8kzHM3SH5hEHMz3Ufk0VPVaWQ3eAvDSC2zOJDPZWSqtZBAe0XNwhkswQ9DithIGw14UQi4uDlJJ/+sFxAC7OJuue5qvFoY7oIrilkc9LPv2TUwBcui4MGJYDwOQaizsoV9pCAWkoBEWhOAhttxzAyFiaTWbY2h209lnNVFag5TKWZpOZoriNwyFoX0LzveeHZnjqzBRXD7YjJfN2zl0ttDjUiUyuUMW61mMOp8Zj/P1DR/nWcxdK8vIB7v/OIb729Hl++/ZLLLeSCshO1jDuMBVL87tffq6hGvypIHzPfAFpczVuvxEVxxyMz7LZtMBGZ1PMJjJs6w3hdhrmw6oFpF2tOUd6NpEtmYexlBYaj5802p/c+6ptAAxNaXFYk8RsN5y1HnP43P4z/OO+Y/zGF57hX390suT5//v8BX5qVz8fuH2ntU1ZDlM1rHV48vQkX316iOcbqMFfoXVGecvBa1oO03ZxKGM5bDPFYXjGqIruCLjpb/MhBIQ8q2Q5mNXCrWY5RFKZkhncS7Ecnj03zaauANcMdgDGPI56ottn1AkVjAbtVhqairO9N0gqmy873yKSzLLRdIMousy+NRM1FAdVHDbdAGmFCtWRdb6AdFnLYY44uJ2CDR1+HMJwXcwms7T73axv9zOTyOBw1H6WAxQsh2SLxRxmE1mr6Z5iKeLwzNlp9m7tYl27D4fQlsOaRYmDx+nQ4jCVYHN3kE1dgZLVUjZnDKyZuxLrCtXeclB++0bIOVeojqw98wSkVe8e+zHHiwLSWfxuI1jaF/ZxbjJONGW4Qbb2BK0206tBy7qVkqVtzxcTh4szSS7OJrl2Ywdup4OBdn/dxUFbDnVCBaN7w16Sa9ytNDQVZ8+WTpKZHD88Mlb0nPL3z82gCXtduByibMzh4kySyViaXevbVnRcKl+9kcThzEQMl0PMO+O5XEA6OcdyCJhuo4EOH0dUVbTfxS/efJl1Xa4GVrZSi7mVZhOlbc8X68z6rDkH/LpNhktpQ6efoak48bTR4bV9leJAdrTlUCfUTa8n7F3TlsNMIsNsMstgp5/BzgCjkVRRgF5ZWHMtByEEnUFP2Wylv/3+Ed73bwdXfGwqX70RxEFKyR/+5wt8dv8ZXnVJ77yuH6/NraSEoihbKZMj4DH2Wd/u58SoIQ7tfjddQQ+bbVlLtUbFR1rJcpBSlm1eqCyH+epynjk7jcfpsBY0g52G5fC+zz3Frz74ZM2PuxxaHOqEuun1rXFxOG+azoOdATZ0+AEjSKootCIoNXK7Ap55LYcL08kVV94qy6EReuIMzyT5t8fP8vbdg/zrL+6edz8lCNPxDEGPC4/LUVLn4DfFYaDdZxWgzWeJ1BLLrdRCMYdEJkc2L0vOZ4ffQy4vy45mBXhuaJrL17dZ4j7YGWB4Jsmjx8Y5O1mfwLQWhzqhLpLesLekc+ZaQsUYDMvBX7QNCu63coVZG7v8PHN2qmRlPx41Kn8nYmkOnJrkvZ95kp//2E84eHqyomNTv3u2ASwHJVSvubQPd5lurAp7zMHrcuA322ko4umsZTkMmGIMq5e+aqcV3UrK2px7vS5WlzM8k7RqTwDruwDUrROAFoc6EbVZDtBapnUlDNksh0Hzy2EPxM3nVgL4wG2XMBlL83ffP1K0XTWQG40k+eKBszx6fJynz07zxKnKxKGR3ErRBc6DHSvmkMzgdTsJeJxFtSOG5WC8x/p2n7W9Hj7tVgxIR+b0VVKoupz5suum5rRE2dhpfBd6Qt66dQLQ4lAnIskMLoegw/xSrlXX0tBUgoDHSWfATX/Yi8shii0Hs3Ot6lNj56rBdu6+eQufe/wMx0eNXjT5vCyIw2yKoekEV29oByq/CTVSQFqJZGgRcVCrcSmxLIeEzW0TT+cImNbFOps4rFZVtJ1WjDlYTffmWA7qxl9uBkkml2c2mbXGigLcsKWTP7vzCn7jdTuA2mblzYcWhzoRTWUJ+1xW5sjaFYc4Gzr8CCFwOR0MdPjmsRzKr2zfdeMmpISXLswCxpcza7roRiNJzk8lGOz043FWPlimocQhNX/sxY664RqPnfjcThLpLJ97/AzffO6Cma1kBqTtbqW6xBxUb6XWufYLbqU5qdeWOKRKXqNiWp3Bwt/A5XRw981bLPdSPQZb6VTWOhFJZgn5XPjML+parZIeMm/eisGOwJLdSlBwy6n203az/fy0kTu+odOPx+WouJGZ+qIvpdVyrVHuitAi853tM4p9LgduhyCRyfHxHxyn10x+UAHpnpBhqQGWYKwm3hbsylpo1138d1KNEidiafJ5yXg0RV+bYbmp68tuOSg6V6FNzHxoy6FORJJZwl43fvPLvFb7Kw1NxRnsLA7EnZ8jDh6nY97B7O1+N26nsOYh2wcAvXh+hlxesqEjULE45POSSNLoVhpJZeueMLDkmIOrcJ68bid+j5PpeIbh2SRHR6LEUoWAtNMh6G/z0eZ3I8TqVEXbacVspdk5g34UAY8Ln9vBZDTNd14c5hUf/oG1oFFWQbmqd9UJQLuV1hDRVIaQz2WJw1p0K8XTWWaTWQY6Cr7vDZ1+RiKFdsWRZGmfGjtCCHpDXsYjxpdnwhQJl0PwzFmjsEi5lSoRh1g6S15Cf9iHlMXtTupBJJlFiMVX+G6nsNpv+8yYw/HRKFIa11gqm7cC0gDrO3x1CUaD8bfzuFprGpzKbCt3zXYHjbnnh4cjpHN5jps1JqrTbkeg9O+gOgHUw62kxaFOGJ0bXfg9xp9gLbqV5o5TBKOhnJQFUzuSzC66Wu4NewuWg/kl2tEXYsr05VpupQrcF2oFuLHLcHnVO+4QTWUJeV2LrvCFEJb1oCyHuTdfu8C85Zr1/MzVA9U/4CXidVUeC2pkZpMZPK7ylm5X0MNELM35acMyPjtp9BFT12k5y0F1AqjH1MNFxUEI8WkhxKgQ4kXbti4hxENCiGPmv5225z4khDguhDgihLjDtn23EOIF87mPCvMqF0J4hRBfMrc/IYTYUt2P2JgMzyRY1+6zLqJEJsfIbHKRV7UWqkrcnomkVrHqZmxYDguvbHvD3kLMwXQrXT5QaJ2xocNvjKSsYIWqfPyq4d90or5xh0iytA30fKh0Vp/LUdbSsG/7xZu38Ds/dWl1DnIZeF2l4tXMxFM5gvNYd11BD5OxtOU2PTNhZOUpq6BczMHqBBBb/cXJUiyHzwBvmLPtg8A+KeVOYJ/5f4QQu4C7gCvM13xMCKHO1MeBe4Gd5o96z/cCU1LKHcDfAx9e7odpFqKpLFPxDBs6ApZb6Zmz09z4F/t42nSFrAViSxKHbNk0VjtF4hBLGR1GTVdVT8iDz+2s2H2hgtEq37zelkMkmVn0PCjUgsPrLqxgQ16XVYHunyd+Uw+8LkdLxRxS2dy88bHukCkOpuVwxqx8noqlCXic876uK+BpzJiDlPIRYG710J3Ag+bjB4GftW3/opQyJaU8BRwH9gohBoA2KeV+aZT6fXbOa9R7fQW4TSxmOzc5hZYRfitz5EmzevfUWGnL6lZFWQ7BRcRhUbdSyGvNQ56IpekOeegLG+KgboiVBqSV71hZDvUWB5X6vBRUoNfrclpCsLk7YE3RC6zSvIal4HW3llspmcnPLw5BD+PRFBdND8FZ03KYimfKWg2KzqC7qbKV+qWUwwDmv33m9g3AOdt+Q+a2DebjuduLXiOlzAIzQHe5XyqEuFcIcVAIcXBsbKzcLnUln5dLyjo6P21cFBs6/daX99Cwkac/USYPulVRGTjVcCupecgT0RQ9QS/9bUaKq8qEqjQgrVISN3Y2RsxBpT4vBXVz8rkLbqXN3QEu6Vfi0EiWQ2u5lVLZnCXOc+kKekll8+TyEr/bafVMmoqni2ocSl/naYmAdLkVv1xg+0KvKd0o5QNSyj1Syj29vb3LPMTa8dn9p3nN3/xw0T4oQzbLQX2RVefMiTU0EzmWVpZD4Wa1LMvBVuswETXaEPQqy6GzYDmkKglIL2I5HB+NrGp6q2E5LC3moCaseV0FV8Xm7iCXrjNGrPobShxaK1spmclb538u3baA8w1bu5hJZJiJZ5iMpRe2HBrVrTQPI6arCPPfUXP7ELDRtt8gcMHcPlhme9FrhBAuoJ1SN1ZTcPhihIuzyUUv9vNTCTwuBz1BL16XA7sTbXwNiUM0ZQiifUWsKoBnEhnyeUk0nV20KtguDpOmW0kn64QHAAAgAElEQVS5kzZ3Gzd3r8tZoeVQaIzodTmYsXVmPXxxlts/8ggPHx6d7+VVp5KYg1q5GpaD8Zot3QFuu7yf975iK9du7KjZcVaKEXNoDrdSPi8XXRAsbDkUBOCW7YZz5MxkjOn4wuLQFfQwFU+veq3NcsXhm8A95uN7gG/Ytt9lZiBtxQg8HzBdTxEhxE1mPOHuOa9R7/U24GFZjxaEVWDUDIoulhM/NJVgsMOPwyEQQhQFCMeja8etVC4g7XI6CHldzCayxNJZpJy/dYaiN2RYCSOzSSbjabpDXta1+/jSvTfx1uuNNUmlKZOziQx+txO301EyxevRo+MAlu94NTCylSoMSLucVqr0pq4gbT43f/TmXfP6xOuB1908bqXf/Y/n+K0vPbvgPgvFHLps0/tu3maKw0ScyTlN9+bSGfCQlwVX52qx6NUmhPgC8BqgRwgxBPwx8FfAl4UQ7wXOAm8HkFK+JIT4MvAykAXuk1Kqb+T7MTKf/MB3zR+ATwGfE0Icx7AY7qrKJ6sDKmMmmiqdIWtnaCpuuTvAyB6x3EprLObgEKXZM+pmvNRmcz1h44t1dMQo9lLm+43bCqGrSgPS9oEtc8Vh/8kJa59q8pmfnCKbl/zqK7cVbU9n86Sy+aVnK9kshxu2dPGmq9Zx9WB7VY+1WjSTW+nEWJRMbjHLIT+v5aCuy56Ql539hovv5FispOneXOxN+zoW2K/aLHq1SSnfOc9Tt82z//3A/WW2HwSuLLM9iSkuzc5oxFhJRue5aZyZiNHmc3N+OlE0wlKtNLb1BNdUzCGayhL0lBZ2tc0Rh8ViDgGPi5DXxb5DI0BxQznFcgLSqq6gI+C2mqNlc3kOmK2/q72S+9bzw0zH0yXiUBiVWrnlMNgZ4GPvnn84UL3xNFERXDSZXbSQMpWZP5VV3eQ3dPoJeFz0hr08bi40uhYISKv+SqtdCKcrpKuE0UzLrOpNld40pJTc9cDj/OKnn2A8mi7qJ6QChDds6WIimq7LYI96EEuVz8Bp97uYTWQWHPQzl96wl9MTcXb0hXjtpaXJCpVXSGes5mn2bJEXzs9YN+tqDwFKZXOcm0yQm+NbtrK6lhqQtlkOjU4z1TlEU9lF/+YLWQ4hrwuP08GguXh505XrLCt0IYtA9Vda7YVj4189TcJUPG19qctZDqcn4gzPJHnxvJGyuqGj2K3UEXCzsz9E2uztvhaIpbNFNQ6KNl9llgMYtQ4AH3zDZbjKTEqrtEJ6NlHIkuoOeS13X+HL7K763ymZyZPO5UtiGbOWSFZuOTQ6zZTKGk1liaayCy7ekpn5A9JCCN66ewN3XLkOgPtet8NyqS4Uc7B3dF1NtDhUCRWMhoIbwM6Tpitik5kaaW9T3RX0cNm6MD3mDW5ijQSlo6lcWXFQPv7C4JTFb4q37ujhp68a4LbL+8o+X2nMIZY2XF4APablkMtLnj4zzfbeIJu7AjWxHADOjBuFkKOzSd7/b0/xwvkZwOizsxSUxTDfTaqRmDuprlHJ5SXxdI68ZMGpbKns/AFpgL/8+at5yzXrAegL+/jlW7cAWN/9cqj45Wq312mcUskmZ2wRcThwepLOgJtP3rOHf9x3rCjm8FdvvQrA6tI4EUuzrfHKOKpONJkh5C39IilxULnd7f7Fg3AfuH3ngs97XA6yeUkuL3E6Fi/AN8ZpmnMPzCK7qXiai7MJNnYFyOak5faqFknTvXJmMs4NuTz3ff5pnjw9ZbVbWGqdQ6F9RuNbDl1BD/F0juQCvvpGwP6dnk3Mn1a8kOVQjt+8bSfXbOzgEjNAXQ6300FPyFO0AF0NGn9p0STY/3DlsliePD3Jni1dXNIf5p/fdX1RC4OBdj8D7X66g2vLcoilcmW/ZO1+N4lMjsMXI4S9LnpCK8/Q8KjBMku0HhKZwsQ09XcZj6a4OJNiXZuPNr+rBm4lY0V6eiLGP/73MZ48PUXY6+L5IcNyWGqFdKF9RuN/vRebrdwoxGziMF+WWjaXJ5uXFYmcz+3kjivWLdpttzfsY3SVLYfGv3qaBGU5CFFqOYzOJjkzEWfvlq4F30PdBMfWSMZSNFU+5tBu9rV/6swUO/pDVRlE43FWJg5xm+WgfL4XZ5JMxIwJXm0+dw3cSsaxnR6P8eWD5/ipXf28dXehdrTSxnuNvBJXKF97oy+IiiyHeSxG9ferhSj3t3kZmU2RyeW5/9sv8+y56ar/jrlocagSo5EkIa+LDr+7JCD9hBlvuGHrwuLQLF+UahFLl++4qlpoHBuNsqN3fnO7EpSLJZVbPG0yl5eks3krWKj8wYcvRpAS03JwVzWVNW/+ToBHjo4zGknxxqvWsdd2zSy58Z4VkG78r3e3irM1uOVgtxbmcycqcaiFKPeHfYzMJjk3GecTj57i2Eik6r9jLjrmUCXGIil6w16y+XyJ5fBfL16kO+jhSlucoRwup4POgHtN1DpIKYkm58lWsk0m29FXJXGowHJQAdKANWvZEO2XLhiZZuvajS6wyUyedDZvuaxWgkqzFcJwaTkdgtde2mcVXbmdYsk3+9dd1sfZV24tyohrVNS5bfRrProEt5JyC9bKchiPpqy45LYqLZoWovGXFk3CaCRFb8hLyOsuWWX896ER3nz1QNkUy7l0h7xrooVGKmv4ZxeyHACrknSlqBv4UtIm1chWNU6zzefG5RC8dMHw/feFfVZwuFpBaXVj2Wxms92wpZOOgIfesJdtPUHCvqXPed7Q4ecPfnoXjiUE3utNofq3sa/52JyAtJSlfZZqaTn0tvnIy0Jr/+29war/jrlocagS45EUvW1ewl4XUVsR3PdfGiGVzfOWazcs8OoCPSHPmhCHcn2VFHZx2NEbrsrvqyQgrUa2BswvucMh6A55OGWmmK5r91mtNaoVlFY3FtVW+/bL+63n3nDlOi5bV53z0GiEvC48LkdDWA7PD03zjn/dX3Zkr91VPJvM8sfffIlf/syTRfvU1HIw01n3n5ygK+hZlTYa2q1UJcYiKV4V8pJI56w2GgDfeO4Cg51+rt+0tE6YGzsDPHx4FCllVQKxjUrM7Mg6X50DGPn69h5UK6GSgLTqc2Wfe9AdNAKCbqegK+CxWmtUKyitbiyvuqSXTV0B3mYLRP/eHZe27LUghDCH4NRfHA6enuLAqUlOjke5Yn1xL6rInID0c0MzHBuJFH1PaxpzaDOaS750YZbdmzoX2bs6aMuhCiTSOSJms72Q11W0yjh4epLbL+9f8pf7+s2dTMTSnDanRLUqhfnR5escALb1hJZUk7AULMthCS00lDj4bOLQY67c+sI+HA5hxUWqFZRWN5aOgJs/fPOuopVhqwqDwhifWX9rWbmDL0yXpoyq73RHwHAbD08niKdzRdXstY05GOIgJWxbBZcSaHGoCsoN1BvyEvK5rBtfLJUlns6xrt235PfavdlYFTx1prVnSZcbEapwOx0EPc6qBaOh8IVdiuWgvuQB2wqwx/SN95kT5tqsmEN13EqFG0vjp59Wm+6gl4lYmu+8MMxdD+wnU0EPrGqihH54JlHyXCydxe920hnwMBlNM2Z+50+MFsb6WqmsNbAcekIea+7LagSjQYtDVVBpeN0hD2Gvy7phKNFYqDR+Ljt6Q4R9rpYXh4ViDgB//DNX8GtzupOuhEpiDgW3UuHYVK3DOnMFp9JKq+VWKrgk1t5XsjvoYSKa5tsvDPP4yclVHaJkRyUXlLMcImZmXZvPxdFRI6UZ4OR41NqnlpaDy+mwijG39WjLoaH4weFRvv7MUNnnlEncHTLcSqmskeKoxKG7ggpfh0Nw/aZOnm5xcYguIg7vuGEjV1VxBkEhW6k02JjPS2vYOxRSWe3jNJXAK/O+2m4ldWNphsK1atMd8jARS/Gi2UPqS0+eW+QVtWE2odxKpZaDMabVRdjn5vR4wVo4MVoQh1rGHABrLrq2HBqMB/ef5qP7jpd9TgXTuoMeq8VBLJW1tvdWYDmA4Vo6Ohqp+1D7WhJbwK1UC7wLpLJ+5ekhXvd3P7QSCVS2il0cuueIQ9DjxCEKN5SVotpWN0PhWrXpCnpJZvKcmYjTGXDzwyOjZV07tUa12i/3u6PmmNawz4XKYA37XJy0CUUtLQeAvrAXp0NYzTtrzdq7EpdJIp1jfJ7GVyoNrzvksVbC0VR2WW4lMMRBSnhuFUrk68VCMYda4HEaN/pybqXHT06QzUtOjRlf9ESZmIPlVmo3/pZCGEHpqtU5ZNe25aD4f+64lLyEbz13YYFX1IaC5VDqVlJ9wNpszQ9v2d69qpbDni1d3LK9uypFl0tBi8MSSWbzRFJZa3VgZyKawu92EvC4LF90JJllPFIQjUpQK4PV7sK4mizmVqo2Xvf82UrPnjVE+Oyk4VqKl7Ecrhho45L+ENdtLKQRtvncjEZS/N5/PMfx0ZW1M1jLloO9seKbrhwg4HEWdTleLZTQX5xNlgxcipiDqdT3uyPg5sr17VyYSVpuyJSyHGoUN7rvtTv43HtvrMl7l2PtXYnLRP3hyxWoTcTSlgCEvMbKQlkOHQE37iVURttRq+noKg8UX01iKSP7o1qpqosxX53DdDxtuQbOTRnuhEQ6h0MU36j72nx8/7dfzRZbMDDsc/HQyyP8x1ND/PDI2IqOby1bDl1moHVDh5/OoAef22m1L19NZpNZ3E5BLi9LxCmaMtxKKtY00O5ne19hDjTUtvFePWiNT7EKJCxxKC3WGY+mLJ+0ijlEUxnGo6mKXUoAQTP3f6GhIs3OdDxjVRmvBvO1z7B3txwyLQejXXfpbOu5tPncZM0VppoxvVySa9hyUG27r9pgJCD4XI6yFnotkdKYz7HdDPZemBN3iCazVswBYEOHj63mQkFVziczOYQoLESandb4FKuAuljLxR0momkrD165SSJJw3LoXmD833x4XU48TkfZoUGtwkQsvSzhXC7zpbI+c3Yah4ArN7RxbqrgVlrKCt4ubisd/p5aw5ZDb9hLwOO0uhb73E5rMbZaJDN5MjlptSmZm7EUS+VMt1LBcugLF+Z8QGF+dKsULer2GUtEZbCMlXErTcbSXLnB6Lga9tkD0umiiW+VEPQ6y86ibmbOTMQYj6bYvblr2VbVcnE5BEKUEYdz01zSH+bS/jZ+cnwcgEQ6W9Q6Yz52DbRzcSZJJJldsTgoy6FVVp2V4HM7efh3X2PFHrx1cCupeMOl69qACwzbgtKpbI50Lm8GpI3v9/oOPx0BDw5hfP+Bhp9mVylr70pcJknzpjIeSfGJR07yrk88TiRpdGeciNncSla8IGs041vmDTDkcxV1gmwF/u77R/n1zz8DGOdxNcVBCKPl9dyA9MsXZrhmsIONXX5GIkmSmRzxdG5J4vCB23fyn/fdSnfIw1RsZW6lVDaHx+Voik6qtWBdu8/qWuxzO8rWo1Sb/7PvGM+cNeqJVL3K+g4fQY+zyK2kFmlhm+WwvsOH0yHoDBT6QqUy+ZZyC7bOJ6khOdsglvFoiu+/fJHHTkzwvs89xVg0RSYnLfdRwGO4hM5OxomksssecRn0uIqafbUCF6YTXJxNksnlGY+lqzL+sxI8TkeR5ZDPSyZjafravGzqCiAlnJ9OkMjkijKVFkIIQUfAs3K3UovdWFaCz+Wsecwhns7ydw8d5UNfe4F8Xlrdddv8bnb2h4s6FFhp1x4XV25o46evHuDm7d1AcV+oZFZbDmsO+ypmPJrm6EiUbb1BHjsxwT8/bBTGqWwlIQQ3buuy8rSXuzoOt6DlMDyTREo4MRYlnc2vquUA4HE5iwLS0XSWvDQCyxvN9OFzk3ES6Zw1BW4pdAbcKw5Ip1rsxrISfG5Hzd1KKqZw+GKE7788YrVBafO5efPVAzw/NMPJsShTsTTnJo19Vczhn991PX1hoxiyy2z9Aa0n8K3zSVbIM2en2P2/HyqbX23v7/7y8CwziQx337SZHX0hvvbMeaAwhB6M/vtqJbLcG2DQ62qpgHQ+L60K5BfPGxPVesKrazl4XcXuihnzht7ud7Ox0xSHqcSS3UqKzoCHyXgaKeXiO89DssVuLCvB76m95TBkpi17XQ4+uu9YwXLwuXjz1esRAj7z2Gne9NFHec+nngAgXKYmpzvkLcQcWkzg9dVo8uKFWSZiaY5cLC1mStpWmypt7ZL+MLdd3mc12bMXur1+V7/VQVG1eq6UVhOHiVjaGnmpeujYBXU18LiK3UqqPUmb301f2IvH5WBoMm66lZaeq9EZ9JDO5leUYaMthwI+l9Oq+6gWo5GkFV8Aw30I8Eu3bOHl4VkODxsLlja/m3XtPm7a2s1n959hIpbmV27dyqsv6S2bXGLMojCzlVpM4Fvnk6yQCfMPPDRVOkdBrWK6bGmpO/vDRdO67BZCX9hnDeRYTiorGKuUVspWGrH1vVfisNpuJe8ccVBByHa/G4dDMNjp58yE4VYKVOhWAphagWtJWw4FapGt9K8/Osm7P/mEVfl8fiqByyF43WV9ABw0Ywwq2/Ct5rClP3vLFfyvn9nFg7+yt+z0te6gl9lklnQ233KWg05lNVGmoTI37Si30mCnn8lYmo6Am56Qh66gh86Am6l4hs45F87b9wxyajxm9f+vlKC3tWIOwzMFcXh5uD5uJc+cbCXlZ1bDhbZ2Bzk9ESOezi45IA1YN42pWJoNHcubXKcthwI+t4PkMgtAXzw/QySZtQLGislYmng6x9BUnM3dQc5PJ1jX7uOyAcMaeO7cNC6HsGJNb71+A3s2dxZVxJdDeQym4mlSmTzdwdYR+Nb5JCtEBZWGpuLk85IfHxu3fMjKT6380pf0hRFC4HQIbr+833JJ2HnHno0c+IPblz28JeR1EUvnSoaYNytqYlbY6yKeNipJu1ZhDq6dudlKyq3Ubq78N3cHDcuhgmwlKFiUK8lY0pZDAZ97+W6ljzx0lD/4+gsl21Udw7ERo1HehekEGzr8tPvdDLT7SGXzhH2FqnghxKLCAAXPwEQ0TTKbq8mgn3qhr0aTiZhyKyV46NAI7/nUEzxt+igTaeOGMmjOM97ZX+in/kc/s4svve/mkvdT4rFcVL1ELN0a1sPFmQROh+By02/bGfBYee2rhcflKMpWmpljOWzpCZDI5Mjk5Kq7lbTlUMDncpLJyZLmd0thLJLi/HSiJDlAdVw9PmaIw/mphDWf/JJ+oypa9U2qBFXfNBFL6ZhDq1KwHBJWvx21ylAxh0Ez3VFdTGCkvm2twWSmwlyI1uivdHEmRX/Yy6DpdlntGgcoH5B2OgRB00rY3F34Oy7HrTStLYeqoKbhLSdjaSKaIpXNlwj1rM1yyOTyXJxNWtfipWbLDBVvqARlNU7G0i0n8PpqNFExh5FI0iqAUZlJKgvl+k0d/NItW3jjVetqfjxWZ9ZUa3RmHZlN0t/us+Zpr3amEpQGpGcSGdpsroQt3YUhKoEKspU6zBWnuoaWQ6vdWFaCOg+VioOUknHzbzC3N5LKKjw+GuHiTJK8xLIcdprdVe2zGpaKWuSMR9PacrAjhDgthHhBCPGsEOKgua1LCPGQEOKY+W+nbf8PCSGOCyGOCCHusG3fbb7PcSHER8Uqd67K5SWTcSOYKCUcPD0JFHdbBOPi+ZO3XGEVwNSSkNmZNdoilsPwTIJ1bT4GTHFYborvSvC4nHMC0lnLpQRGy2iX6Qr0e5b+1XA5HbT5XCsqhEtm8mtyfnQ5LMthCfO+7URSWUv87QkQYIs5jEatpJP1VbAc2nxunA7BZCzVctlK1bgaXyulvFZKucf8/weBfVLKncA+8/8IIXYBdwFXAG8APiaEUGfy48C9wE7z5w1VOK4lMx1PIyVcbc4szksQolQcVvMPb82FaJF01pHZFOvafaxrr6NbqUxA2i4OLqfDqpT2uyu7UXQGV9ZCI5nJLTt5odVYruUwYWunb7ccpJREU1m6gx7i6Zy1+FOZZTv6QgixPMvB4RB0BT2MRYw2OtpyWJg7gQfNxw8CP2vb/kUpZUpKeQo4DuwVQgwAbVLK/dKIIn3W9ppVYcI0Ra/Z2GFtu2V7N2cm4+Ty0sq5Xs2VXdCyHJpfHCLJDNFUtthyWOUaBygfkJ4bhNxsupYqqZAGI+6wMrdSvmYTxJqN5YtDobuBvXFeLJ0jL+E6s/bo8wfO4hAFyyHgcXH3TZu5zVa3VAndQY81WlRbDgUk8H0hxFNCiHvNbf1SymEA898+c/sG4JzttUPmtg3m47nbVw1V4XjF+jacDoHH6eCOK9aRzua5MJ2oi+UQtk2Ua3aUib+u3cfm7gA9IQ9XmoNdVpO57TNm51gOAFvMoHSl4tC1gv5KebOxo7YcDCoRh/M2C8E+iMveclvVs+ze3IlDGP//85+9quj7/Kd3XskbrlxeLLE75OGkmQXVSpbDSovgbpVSXhBC9AEPCSEOL7BvuTiCXGB76RsYAnQvwKZNmyo91nlRK76+sLGy7Qp62Nln+CFPT8RIZHK4HKLicZ8rwZoG1wLicNp0z23uDhL2uTn4h6+vy3F4TctBSokQoqzloILSlWQrgZGae8w2bL4SVBxExxwMfC6VrbRwzOGZs1P83Mce4+v/8xau29RppaNv6Q4wbLMcVDB6U1eAL957M5u6AlZiRDXoCXn5yfEJnA5h3TdagRWJg5TygvnvqBDi68BeYEQIMSClHDZdRqPm7kPARtvLB4EL5vbBMtvL/b4HgAcA9uzZU7XqMOWr7A55+K3bL6Hd72Zbb2EEoBEsXN1VXcg2NKjZOT1hiMPW7uqn/FbCYFeAdDbPW/7pJ/zjXdeWxBwAXntZH48cG684PXldu4+RWWPYfCWZTlBYIWvLwWCploOyGn54ZMwQB/N7fMWGdp49Wxj/qoLRYZ+Lvea0uWry66/dwU3bunn9rv66uEtrxbKXKkKIoBAirB4DPwW8CHwTuMfc7R7gG+bjbwJ3CSG8QoitGIHnA6brKSKEuMnMUrrb9ppVYSKWRghj9fe23YO8fpdR9RzwODk1blgOqy0OXpcTt1O0hDicGo/TGXBblcj14l17N/E3b7uaE2NRPvLQUbJ5WSIOm7uDfPqXbqj4Bn/Ttm4yOcmTp6cW33kOKg6iLQeDgjgsbDmoIsb9JyYAwz3c7nezqSvAyGzSKqKL2Ib11IKd/WHeuXdTSwkDrMxy6Ae+bmaduoDPSyn/SwjxJPBlIcR7gbPA2wGklC8JIb4MvAxkgfuklGpp8H7gM4Af+K75s2pMRFN0BjxFFc1CCDZ3Bzk1HqMr4KnLF7dZ+yulsjncjsJUs1Pj0ZoUClaK0yF4+56N/NeLF/nR0TGAEnFYLjds6cLjdPDY8XFefUnvkl938PSk1SZeWw4GSy2CU1XPz5ybIpHOMRFN0x3ysL7DTzYvGY+m6G/zWQVw4WVkI61lli0OUsqTwDVltk8At83zmvuB+8tsPwhcudxjWSmTsXRRx1XFhg4fQ1MJ/G5nRcNfqkWoyTqzvnxhll/6/w4wGknxpqvW8bF37wbg9HicW3Z0L/Lq1WPPli72HTa8ndUSB7/HyXWbOvixOYd6IR47MU5f2MuOvjB/+J8vcmbC6ASsLQcDy3JYpL+SuulncpKDZyaNueRBL+vNeMKF6QT9bT7LcmirkeXQqqzpq3EyluaTj57k1HisbGvt3rCP0UiqboPDQ0020+EjDx0hlc1z49YuHj48SiqbI5HOcXE2Wfd4g50btlh1mVUTB4BX7OjhpQuzi6a0/t5/PM8/7jMmCI5FUlYFvrYcDHyupbmVZhMZQl4XLodg/4kJJmIFywEKdUoFt5K2HCphTYvDfxw8x59/+xCHL0aKhvUo+sLGlKdIMls/y6FJxOHQ8Cz/fWiUX7l1K7/6ym0kM3meOTttBaOX0uFytbhyQzseM/OsmuJwy44egEWth4lYilHTJ24vnNOWg4HPszS30kwiQ1/Yy3WbOvj+yyOMR1N0hzxc0h9mfbuPrz1tTGmcTWZwO4U+vxWyps/WkZEIPSEPH7htJ79869aS59UshqGpRF0KlJoh5hBPZ3ngkRP8zpefI+hx8ku3bGHv1i4cAh47Pm6lsTZCzEHhczutavjlVMXOxzWD7Wzs8vMPDx2d98aWSOdIZvKMR1NMx9PkJZYbpJUKqFaCx+lAiCXEHJJZwn43v3DDJo6PRpmOZ+gOenE6BO/cu4kfHx/n1HiMSDJD2OdmlbvyND1rWhyOjUS5fKCN3379JdywpTTFTfVQujibrI/l4HMRaXBxeOjlEf7iO4eJpbL8yVuuoD3gpt3v5qrBDh47McGpBrQcwIg7AFXNoHI5HfzFz13FyfEYH913rOw+k6alMBFLW+6n37xtJ7//psu41lahv5YRQhijQhcNSBupyD9zzQC9Zq8u1ZblF27YiNMh+MKBs0SS2ZplKrUya1Yc8nnJ8dHogkUrfbbmcPVY1bX73cysoJnbanDRrH7+9m++grfvKZSx3Lq9m2fPTfPwoVF6Ql5rPkWjcO+rtvHxd19fVbcSwCt39nLntev55KOnyg5qmjIFYTqesQYgbeoKcO+rtq9qkWWj43M7Fo85JI2uul6Xk3tu3gwU5iv0tfm4/fI+/vOZ81oclsmavRqHphIkMjkusQ3umYt9xGc9LIfekJfJeJpsrrrzdKvJWCSF3+0sufm/cmcv2bzkmXPT3Hnt+jod3fx0BT288aqBmrz3NYMdpHN5K5vGjj3GcNScF9LdYvnx1cDnXprloCrcf/HmLdx982Zu3lbIinvFzl5GIylevjBrtaPRLJ01K6dHRyKAUcAyHz0hL0KAlPUJFvaGvUhpZFX1tdW+TfhyGI2k6A17S/y5N23r4iv/42Z29IXKDmZvZTqDhfkOcz+7fQjNkYvGLO1yadRrHWNU6PyLIillUcv1dr+bP7uzOBt+t9lo7+Js0ooxaZbO2hWHUSUO81sObqeDroCHiVgaX4W9dqqBqrgcjaQaVhzGIlt6EtsAABAKSURBVKki95tCCGH59dcaShDsQvDzH/sJP331emteBMCRkahZma9XtXPxuhwLWg6pbJ50Lr9gQsGl68JWxt9yRoCuddasW+nYSJSBdt+i2Soq0OWrQw66+t1jtlbEjcZoJGkdp8agc87Y0JHZJE+fnebAqYmiGohjIxE6/O5Vn6XdDCzmVlKtM9r8869vnQ7BdZuMIL+OOVTOmrwqJ2NpXjg/s6BLSaFW7PUISPealsN4pHHFYT7LYS3TNcdyeH5oBjAaxU3H03jMrqPxdE7HG+bB53aQWiAgrdpwL7a4u950LekCuMpZc+LwyUdPcsP9/83x0Sg3LqFDo7rx+esQc+gJGzeZRrUckpkcs8msthzm0GHGHFRm0vNDRofQoakEk/EM69t9VgxLxxvK43c7rcrxcqhg/2LZZrs3G+KgW2dUzpo7Y9dt6uD9r97OG65cxxXr2xbdX4lDPSyHgMdF0ONkPLL8CWO1RDWMW42Z2s1E2GzpoDKTlOUwHc9wfipOZ9BDNi8ZmkrUZVxqM7CYW0k13VsslrB7cyfXbeqw3EuapbPmxGH35i52b156oNSyHOoQkAYj7tColsOoKQ69bdpysCOEoCPgZiqeQUrJ80PThH0uIsksLw/Pcuv2HqQ0LAltOZTHyFZaQsxhEYsg6HXx9f95a1WPba2w5txKlaJiDvVqitYT8q5azOHF8zOkF0gfnMtYxCji6tV+8xI6Ax6m42mGphJMxTO8fpcxnziZydMZ9FiZaN1Bfe7KsVgR3FLdSprlo8VhEdRM4Xr51VfLcrg4k+Qt//Rjvv7M0OI7m1huJW05lNAZ8DAVT1supZ+2Fdx1BtyWO6lcw0eNsRhb2K2kZzTUGi0Oi7BrfRv7fvfVXF8nn2Vv2Mv4KojDyfEoeQnHK5iDPBpJ4RB69VuOjoCbqViGQ8OzOB2CW3f0WJ1gteWwOD63c+FsJbNTssr80lQffWaXwPbeUN06OvaEvEzHM6QWGXyyUs5Nxs1/jbm8yUwOKRce0z0WSdEd8hZN0NMYKMvh+GiUzd0BfG4n6zt81nPKctAxh/L43A7Subw16nMuM/HMgjUOmpWjxaHBUe4sNTy9VqhpZGcn48TTWW76y3185aliF5OUkns+fYAvHDgLmJXbOo21LJ1BD9PxDMdGI+zoNarwN3QaQ2g6Ax6294VwOgSbugP1PMyGJWAmgMw3CXE2mdHxhhqjxaHBUe6HWruWzlqWQ5xDwxGm4xlePD9TtM/piTg/OjrGw+aITV0dPT+dATfpXJ5T4zF29Jni0OG3nnvFjh72f+h11jZNMVeuN3ohPXV2suzzRkdWLQ61RItDg2O10KhxxpJyK0VSWR4/OQEYqZZ2Hj02BsDJsShSSs5PJRho1zUO5VAtNPLScEsCDHYaVkJX0IMQQteHLMD1mzvxuhz8+NhEyXPxdJbjo1HtkqsxWhwaHCUOI7O1FYczk3H6zayj7710ESgnDsb4y7OTcYZnkkzFM1yyhBYka5EOWzM9ZTncvL2bS/pDlntJMz8+t5MbtnTx2InSkasf/u5hRiMpfu1V2+pwZGsHLQ4Nzro2Hx6Xw5rFXAtmEhmm4xlesaMXKFT0Dk3FraB0Jpdn/4kJ2nwuMjnJvkMjgNH5UlNKp21Vu90Uhxu2dPH93341AY8OpC6FW3f0cPhixLKaHzk6xq999iAP7j/DL9+ytez0Rk310OLQ4Dgdgm09QU6OLT3FtFKUS+nWHYVBKR6Xg1g6x7TZPO65c9NEU1neYU57++6LhnVx2brFW5CsRZRbaaDd13BT8JoFdT0+dmKcTC7Pff/+NM+dm+bumzfze3dcWueja320ODQB23tDnBirneWggtGXrgtbKZa3bje+mMq19MixcRwC3n2TMY7x8ZMT9Ia92u87D2pGg4o3aCrnivXtdATc/ODwKM+emyaSyvJnd17Bn915Zd3a2awltDg0Adt7g5ydjFe91iGVzfG33zvCt18YBoxZxhu7jKDp63etAwzXEsCPj41x9WAHW7oDtPvd5CVcpl1K89Lud+N0CCveoKkcp0PwxivX8f2XR/jeixdxOgQ3b++p92GtGbQ4NAHb+0Lk8pKzZi1Ctdh3aJR/+sFxvv38MF1BD2Gfm01dARwCbru8DzBmEMwkMjx7bppX7uxBCMG2XqOlyKU6GD0vLqeDf3nPbt73ah00XQlvuWYD8XSOB/ef5tqNHbq2YRXRztAmQLkmToxFlzSgaKl8+4VhekIe/vCnd1lm+i/s2cj23hD9bT7CPhdDUwn2n5ggL+EVO4xV29aeIM+cndbB6EVQzfY0y+fGrV2sa/NxcTbJK3dqq2E10eLQBGztMVbqK407zCQyCGFMz0qkczx8aJSfv34DP3vdBmufW3b0cIspAoOdAYam4jx6LE/Q4+Q6c6qWEisdjNbUGodD8JZr1/PAIyd51SW99T6cNYUWhyYg6HWxvt3HCbMpnpSSXF5WNHs4mcnxc//8EzL5PN/5zVfy42PjJDK5om6hcxns9HNoeJaXLsxy07Zuq8nZm68eYHQ2yWUD2nLQ1J73vWobGzr8XDuoB/asJjrm0CRs7wtxwkxn/eSjp7j1ww+TzOR47MQ4d3/6ABOLtNf4+A9PcHI8xtBUgt/58nN85KGjdAc97F1gVOpgp5+hqQTT8QzvuXmztX1zd5A/vfNK3BWIk0azXLpDXu65ZQsO3eBxVdGWQ5Owsy/M5w+cIZrK8tWnhxiZTfHosXE+u/80jx4b5/3//jT/9t4by7YwPjsR5+M/PMGd165nY2eAf/rBcXrDXv72HdcsaH3cffMW+tt8vG33oNXjSaPRrA20ODQJb7pqHZ/+ySkeeOQkhy9GAHjwsdM8dmKcazd2cODUJB956CgffONlfOHAWfrbvLzuMiMg+u9PnCEvJb//psvpCnq4bCDMK3f2Lpr5sbUnyP949faafzaNRtN4aHFoEnZv7mRLd4B//sFxAG7Z3s2Pjxt9Z/7mbVfzLz86yad/fIptPUE+9LUXEAL+9C1X8M69m/jq00O87rI++s2Rp2++en3dPodGo2kOGsZpLIR4gxDiiBDiuBDig/U+nkZDCMFbrx8kl5dcti7M+19jrOgvH2hjZ3+Y37vjUhwO+H+/+jxbugPcdlk//+sbL/GrDx5kPJrmrr0b6/wJNBpNM9EQ4iCEcAL/DLwR2AW8Uwixq75H1Xj83PUbzKrRAW7e1s01g+388i1bAFjX7uN9r9qOEPCXP381//Ke63nHnkF+dHSM/jYvr9qp0wA1Gs3SEYuNglyVgxDiZuBPpJR3mP//EICU8i/ne82ePXvkwYMHV+kIG4djIxE2dhljJ+cipeTibJKBdr/1/wcfO81gZ4DbdUGWRqMBhBBPSSn3LLZfo8QcNgDnbP8fAm6s07E0NAtVSAshLGFQ//+lW7euxmFpNJoWoyHcSkC5BOYSk0YIca8Q4qAQ4uDY2NgqHJZGo9GsTRpFHIYAe8R0ELgwdycp5QNSyj1Syj29vdqHrtFoNLWiUcThSWCnEGKrEMID3AV8s87HpNFoNGuWhog5SCmzQohfB74HOIFPSylfqvNhaTQazZqlIcQBQEr5HeA79T4OjUaj0TSOW0mj0Wg0DYQWB41Go9GUoMVBo9FoNCU0RIX0chBCRIAjVXirdmCmCu+j6AHGq/h+1T6+Rn+/tXT+9LlrrPdr9fOnPt9mKeXitQBSyqb8AQ5W6X0eaMTjquHxNfr7rZnzp89dw71fS5+/Sj+fdivBt+p9AItQ7eNr9PerNo38efW5a6z3qzZN/Xmb2a10UC6hedRq06jH1Szo87d89LlbGa1+/ir9fM1sOTxQ7wOYh0Y9rmZBn7/lo8/dymj181fR52tay0Gj0Wg0taOZLQeNRqPR1AgtDosghNgohPiBEOKQEOIlIcQHzO1dQoiHhBDHzH87ze2vF0I8JYR4wfz3dbb32m1uPy6E+KgQolyr8paiyufvfiHEOSFEtF6fZzWp1rkTQgSEEN8WQhw23+ev6vm5VosqX3v/JYR4znyffzGnV7Y21Uy1asUfYAC43nwcBo5ijDL9a+CD5vYPAh82H18HrDcfXwmct73XAeBmjPkV3wXeWO/P12Tn7ybz/aL1/lzNdO6AAPBa87EHeFRfexVfe23mvwL4KnBXvT9fzc9fvQ+g2X6AbwCvxyjAGzC3DQBHyuwrgAnAa+5z2PbcO4F/rffnaZbzN2f7mhCHWpw787l/BH6t3p+nGc8f4MZIKf2Fen+eWv9ot1IFCCG2YKwungD6pZTDAOa/fWVe8lbgGSllCmMU6pDtuSFz25phhedvTVOtcyeE6AB+BthXy+NtNKpx/oQQ3wNGgQjwlRofct3R4rBEhBAhDHPyt6SUs0vY/wrgw8D71KYyu62ZVLEqnL81S7XOnRDCBXwB+KiU8mQtjrURqdb5k1LegWFpeIHXlXlpS6HFYQkIIdwYF9e/Sym/Zm4eEUIMmM8PYKwo1P6DwNeBu6WUJ8zNQxjjTxVlR6G2IlU6f2uSKp+7B4BjUsp/qP2RNwbVvvaklEmMKZV31vrY640Wh0UwM4o+BRySUn7E9tQ3gXvMx/dg+DOV2f5t4ENSyp+onU3zNSKEuMl8z7vVa1qZap2/tUg1z50Q4s8xGrf9Vq2Pu1Go1vkTQoRsYuIC3gQcrv0nqDP1Dno0+g/wCgz3z/PAs+bPm4BuDL/tMfPfLnP/PwRitn2fBfrM5/YALwIngH/CLEJs5Z8qn7+/xrDA8v9/e3cPGlUQhWH4Pbg2omgjdmIngohiJSrW9jYiJkYsBMFWsNHGTkVMEy0i/jRiJykUGwMi1mpIpY1FGiFGMe2xuBMMO7uRjVlvIu8Dy8LhMsxssd/OsPfc8n697fVthM+OZpeawOyy+oW217eBPr9dNM+5fw/MAONAp+31DfvlHdKSpIrHSpKkiuEgSaoYDpKkiuEgSaoYDpKkiuEgDUFEXIyIkQGu3xMRH4c5J2kQnbYnIP1vIqKTmRNtz0P6G4aD1ENp1PaCplHbIZp2zyPAPuA2sBX4CpzLzLmIeA28BY4CzyNiG0332JsRcRCYoGmd/Qk4n5nzEXEYmAQWgTf/bnXSn3msJPW3F7ifmQeA78AlmrtjT2Xm0hf7jWXX78jME5l5q2ucR8CVMs4H4FqpPwAuZ+aRYS5CWg13DlJ/X/J3j50nwFWah8C8Kg/x2wTMLbv+afcAEbGdJjSmS+kh8KxH/TFwcu2XIK2O4SD1191b5gcws8Iv/Z8DjB09xpfWDY+VpP52R8RSEJwG3gE7l2oRsbn0/u8rMxeA+Yg4XkpngenM/AYsRMSxUj+z9tOXVs+dg9TfLDAaEfdoOniOAy+Bu+VYqAPcoenUuZJRYCIitgCfgbFSHwMmI2KxjCutG3ZllXoo/1aaysz9LU9FaoXHSpKkijsHSVLFnYMkqWI4SJIqhoMkqWI4SJIqhoMkqWI4SJIqvwDF39RKFtFS4AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXe45FZ9//8+KlNvr9ubve69rDGYYmxjg2lxKHYKzYmBBxIC5Ef7AYEQB0MCBBJCcAjFlBgnJLHBVNvghtu6e3dt73p7u71Ol3S+f0hHc6SRZjQzmhndvef1PPvsvbozc3VnpPM5708llFIIBAKBQMAjdfoEBAKBQBA9hHEQCAQCQQXCOAgEAoGgAmEcBAKBQFCBMA4CgUAgqEAYB4FAIBBUIIyDQCAQCCoQxkEgEAgEFQjjIBAIBIIKlE6fQKMMDQ3RDRs2dPo0BAKBYEnx6KOPTlJKh2s9bskahw0bNmDr1q2dPg2BQCBYUhBC9gV5nHArCQQCgaACYRwEAoFAUIEwDgKBQCCoQBgHgUAgEFQgjINAIBAIKhDGQSAQCAQVCOMgEAgEggqEcRAIBMcss9kifvrk4U6fxpJkyRbBCQQCQS0+cPMTuPv5CZyxphfrB9OdPp0lhVAOAoHgmOXwbA4AkCvpHT6TpYcwDgKB4JhFlggAQDdoh89k6SGMg0AgOGZhxsEwOnwiSxBhHAQCwTELMw4lYR3qRhgHgUBwzEKIaRyKmjAO9SKMg0AgOGaRTduAgjAOdSOMg0AgOGZhbqWCyFaqG2EcBALBMQtzKwnlUD/COAgEgmMW2WUc/uRbD+ELv3y2k6e0ZBDGQSAQHLPYbiXNdCvdt2sS3/jdCxifz3fytJYEwjgIBIJjFsmOOTjdSj9/+kgnTmdJIYyDQCA4ZpG4bCW+SjovYhA1EcZBIBAcs0ik7Fbiax00XRiHWgjjIBAIjlmYWsiXDIdxKOmi11IthHFoEEopvnP/HsznS50+FYFA4EPJUggFTUdBL9c6aKKdRk2EcWiQPZMZfPan23HH9rFOn4pAIPBBsxRCQTNcbiWhHGohjEODsP7w2aKovGwXeyczeO7oQqdPQ7CEYA33Ci63kiZaeNdEGIcGYUU1eVGW3zY+/4sd+OhPnur0aQiWEGXloKOoi4B0PQjj0CDMKOSEcmgb2aKObFHr9GkIlhDlmIPhqHUoGRQHprOdOq0lgTAODcKUg9f4wdlsERf/4++w/fB8u0/rmKakGyLLRFAXvHHglcP9uybxsn/4rTAQVRDGoUHYLsTLOOyZzGDPZAbbjwjjECaaTkVffkFdsNhCoeSsczgymwelwGxWZBv6IYxDg7BeLV4xh4W86frIFIQLJExKBrV3ggJBEEoapxw448BUhJgQ548wDg1iKwdXzOHgTBZH5nIAgEVhHEJF0w1hHAR1UTLKqaxebbtFSqs/SqdPYKnClIPbrXTRF35rfy2Cp+Gi6VTEHAR1oXFFcEwtxBTJVhGiGM4foRwaJG/HHPwvrkxBZDKFSclwBhUFglrYqaxcnUNXXKn4uaASYRwaxI45VEllFW6lcGEBaUrFDS0IRpFPZbXu2aQq2z8XysGfmsaBELKWEPJbQsgOQsg2QsgHrOMDhJDfEEJ2Wv/3c8/5OCFkFyHkOULI5dzxcwkhT1s/+xqxZvgRQuKEkB9bxx8ihGwI/08Nl2qprAwRkA4X5iIQ1a2CaugGxft/9Bge3Tftma2UjnPGQSgHX4IoBw3AhymlJwN4EYD3EUJOAfAxAHdSSjcDuNP6HtbPrgZwKoArAPwrIYR9Gt8AcB2Azda/K6zj1wKYoZQeD+ArAL4Qwt/WUuwiuCrGQSiHcGE3ughKC6qxdyqDnz11BH/14yfsrqyZoma7glMxzq0kNhq+1DQOlNIjlNLHrK8XAOwAsBrAGwB8z3rY9wC80fr6DQBuppQWKKV7AOwCsIUQshJAD6X0AWr6BW5yPYe91n8DuISpiqhiKwfOreR2dwjlEC62cdDEDS3wZ+9kBgAwmI4DAIa6YjAoMLlYAOBSDsI4+FJXzMFy95wN4CEAo5TSI4BpQACMWA9bDeAA97SD1rHV1tfu447nUEo1AHMABus5t3bDUlmZHxMA3NeZCEiHC1MMIigtqMYLE4sAgOHuuPV/AgBwdD4PiQAJhXcriWvJj8DGgRDSBeAnAP6KUlqt9Ndrx0+rHK/2HPc5XEcI2UoI2ToxMVHrlFtKXqvsreQObmVEKmuoMP+wcCsJqvHCuKkc2IjQEctIjM3lEVMkKHJ5uRExB38CGQdCiArTMPyQUvo/1uExy1UE6/9x6/hBAGu5p68BcNg6vsbjuOM5hBAFQC+Aafd5UEpvpJSeRyk9b3h4OMiptwy+fQZzJ7kvNOFWChdmfIVxEFRjl6Uc5nPm/ceMw9H5PGKyBEUuL3vCreRPkGwlAuA/AOyglH6Z+9FtAN5uff12ALdyx6+2MpA2wgw8P2y5nhYIIS+yXvNtruew13oTgLtoxPMVmTvJoGU3h/tCE26l8KC0XAAnjIOgGvumzGZ6bErjSI+lHObziCkyVIlTDiKV1ZcgFdIvAfCnAJ4mhDxhHfsEgBsA3EIIuRbAfgBvBgBK6TZCyC0AtsPMdHofpZStku8F8F0ASQC/sP4BpvH5PiFkF0zFcHWTf1fLyXPFb/migbgi25kRAECIaTSKmoGYIspJmoV/b4siIC2oAjMKtnGwYg4lnSKuSJAlTjkIt5IvNY0DpfQ+eMcEAOASn+dcD+B6j+NbAZzmcTwPy7gsFfhAdK6koxeqYxeyfiCFvVNZZAoaYkqsE6d4TMGrMqEcBH4UtHI9A3Mr9aVUxGQJRd1AXJGgykI5BEFsaRuEb+LFah3YLuTPX7oR1160EYCodQgL3iB4ZSt95L+fxPt+9Fg7T0kQQXhXLlMOiiShL6UCQEVAWvTq8kcYhwbJl3Qolu+SZSwx18eJK3owYOVYi4ylcODlf8mju+YtWw/i9qeOtPOUBBFkMV++31jUUpUJBtKmeo8pEhTOraSLgLQvwjg0SEEz7N2IrRysC02RCFIxM5c6K8aIhgLfd1/UOQj8YGphqKvsylVlCf0pyzjILreSuJZ8EcahQUzjYF5wrJWGbi1gskQQt4LQUZpcVtD0JTvz2qEcargC7np2TKQRL1OYG5cVvgGAIhOs6U8CMDdrIpU1GMI4NEi+pKMvaSkHa8Fli5YiEcTV6BmH62/fgXd+9+FOn0ZDOI2D/3v6xIFZvOu7W/EPv3quHacliBjMrcSqowFTOfzZSzcBALYfmXelsgrj4IcY9tMgvHLIlZwxB1kiiMmy/biocHg2h4MzuU6fRkPwbqVqxuGZQ3MAyqNaBcsLphxGHMaB4MQV3fjUa0/Bip6E3V4DEJlv1RDKoQFKVv2CX8xBlSVbOfApr52moBnHhFupmhpjTddW9SV8HyM4dlnwMA5so3btRRtx5RkrIXPKQQSk/RHGoQG+9/u9AIALN5m9Ab1iDjE5em6lQslwBMjzVdqNRw1+h+eOOfBBxWePLgCI1vsuaB8LduFb2TiweANDFamsgRDGoQFuemAfLtw0iCtOWwGgHHPQPGIOUXIrFTQduZIOw6B4+uAcTvrUL/G758ZrPzECVCuCy3JGbvsRsyekyBJbnizmNSgSQX+6nK3EFD5DcVRIR+f+jBrCODRArqRjw1DaHjfoditFVjlY55LXdPzkMbN7OvPRRx1N94858K6y6UwRgKgvWa4sFjR0JRTHQB/3aBheOQi3kj/CODSAblDIEiBZKasVdQ6yhLjKAtLR2cHyA4oePzALAOhNLY3WHrz8d6sxL5WQFU0PlyWLeQ1dccWuM+LdSww+lbUkjIMvwjg0gG5QyNZuJBmTkS86Yw5KVJWDZcQyBd1WDNklUg+gVclWynqoBKEclicLBdM4qNb9xzqy8iiOgHR07s+oIYxDAxgGtTs7JlW5oreSLBGoMgEh0Yo5sMrisYU8N1t3aeywq9U5eAXWl2pWlqA5FvIldCcUe8bKqSt7Kx6j8spBBKR9EXUODaBT060EAAlVRq7knOegyASEmOohWsrBPBfmlweWjnKolq3k5VZaKkZPEC7TmSLWD6axZeMAPn/V6XjjWasrHsOnsoqAtD9COTSAblBI1gWWUGXkijoOzmRtVw3LhogrUqSUAzuXGc44LJVF1DnPofye7p/K4uu/3VXxeC9Xk+DYhlKKA9M5rO1PgRCCa7asQzImVzzO2bJbKAc/hHJoAEfMQZWQL+n40q+fx/8+fghA2acZU+TIGAfDoLZbaTrLKYclsoiWfFJZ3/2DR7HjiHOkuSIRMYVvGTKVKSJX0rF2IFn1cYoY9hMIoRwawHQrlQPSuZKOuVzJ/jn7makcorFI8Z1MHcphiSyifqmsXvGG3qSK3BIxeoLwODBtjgdd25+q+jhFpLIGQhiHOqGUgtKyAUhabiU+AMouvrganZhDgRtrOp0pG7Iodi89MJ3F2Hze/v6WrQfwoVueBGC+73zMoTepVjy/N6UiaxX7CZYP+y3jsG6wunFwBKRFtpIvwq1UJ3ZzPVKOOeRLumNONDMcMTk6MQdewcxYbqXuhBJJt9JLv/hbAMDeG64EAPwrF1NIqbLD4KbjlT7l3qQKSs1iP74YSnBsw5pKuttluFEcAWmxgfBDKIc6YQEsiVcOJadyUFlA2rWQdRLeSLFspcF0bEkEpLsTZXXQn47ZA12A8pxgHqYmlorLTBAOB6azGOqK1dwQiHkOwRDGoU4MWq5lAMoxhxzn+5aZW0mOTszBSzkMdsU7ksr6xIFZ/Hrb0cCP706Ub/bRnrgjFXeGC64zel1zNgTLg8nFgmPIjx9iElwwhHGoE50bBQpwMQfOOLCfxdXouJXypUrlMGAph6nFAp4+2L4eS2/8+v247vuPBn48bxxGehIO4zCbLcHVOqesHCLoMhO0jrlcCb3J2m7Etf0pnDDahVNX9YiAdBWEcagTFr+SuJhDQTMcO3A+5hBFtxIbhDOYjiFb1PCqr9yD1/3LfW0/J36Rr0Y6zimH7gSmMkUs5Et49/e3YrGg4a8uOQFfvfos+zHMOEQxniJoHaZxqExQcNOfjuHXH3w5ThztFgHpKgjjUCcaN7MBgF1kk/GMOUiYXCxg1/giOo2Xe2sgHUNJp5hyLdITCwW85Ia7Wnbe7L0L+vqU29yN9MRR1Az8atsYfrVtDADQn1YdGSg9CWYchFtpORHUODBkiYiAdBWEcagTnVYGpN1InHIYmy/g0i/fjaNz+YrHtRMv99ZA2tmRlaV+HprN4dBsrmXGYeNQGgCwc3wh0OP5WoZB65x5Y9eXijlaIjCDLW785UW9xkGRJRGQroIwDnXCVCiLK/AuDzdxpWw4vnnPCy09r1ow9xZLuY3JksOXD5QL5VinSq1Fknuoy1zgd44FMz68YRu0nnt4tjwLuz+lOoKMzGCL+cDLh4KmI18y6jIOqkxEQLoKwjjUCVMOrM6hr8rFyNc+3L9rsrUnVgO2wK7sNbM54qpUkfLHCuXYjrtVO28WBHx8/0ygx/PKYSBttmA+PFtWYjFZsrvkApxyELvCZQNLaRZupfAQxqFOdN3pVupP+1+Mcc44dDowzWY5jPaYxiGhyjh5ZY+jIIi5atji3aqdN6twfvLgHHZP1FYPDuVguZUOWQVPV56xEues74cqCeWwnGHta3rqUg7CrVQNYRzqxFYO1jvXm/SfpOace9zZi9CtHBKqhONHurDjc1fgk1eebD/mNV+9F9++fw+A1u28NcPAaat7IBHgticP+z6O9eTPl3RcctII9t5wpR0nOWS5lT7zulOhypIj5pBQRcxhucGMQ10xB4m0zHV6LCB6C9QJ21WzVFb38HIelgUUVyRH47t2oxvUbkq2otdZJKTKkq0mCpqOFyYWueFFrTlnTadYN5DCxEKhaqC+pFPEFIKCZiCumtY4FZMRVyQctXovMRcSX/XKRkSKHPblw3zDxkFcI34I5VAnrEKatf2tFnOYXCgAAFb1JTvq4rjpgb345j27AQArLUOQK5bPh7m/8iUDmkFtF1Sr1E5JN6DKEtQadSDMzVXQdDu4TwhBd0KxF/6Ede6KR7aSyGFfPjSkHGQJlIpNhB/CONSJ3XjPeuf4HasbdqGuH0yh1MGYA+tWCZSVAx/kjVtumHxJh25Q2wXVKsmtGWbL85gioeAympQramDnkS8ZSKi8MjAFryIR+/1XPLKVhFtp+dCYcTCvGRGb8kYYhzpxu5Wq8fmrTsfXrjkbJ6/saXvM4YK/vwP/dMfzAJw3TH/K9Nnz1cNMOSxaVd5sUW7VOWs6hSKbY1TdRtNr4luhpDvSgln6MF9jonhkK4mbfvnQSECaqU3hWvKmpnEghHybEDJOCHmGO/YZQsghQsgT1r/XcD/7OCFkFyHkOULI5dzxcwkhT1s/+xoh5upKCIkTQn5sHX+IELIh3D8xXMrKobZx6E/H8PozV5nuE90ApRS6QfGd+/e0tLXDodkcxuYL+Kc7dgKAHUP4/FWn2wFd/n5gxoF1MWXunKNzedz6xKHQz6+kG1AlCTGPWAx/o9rKgYs5AECX1aY7zhsHL+Ugbvplw/hCHr1JZ6V8LYa7zbToI1zNjKBMkHfyuwCu8Dj+FUrpWda/nwMAIeQUAFcDONV6zr8SQtgd/A0A1wHYbP1jr3ktgBlK6fEAvgLgCw3+LW1Bp8GNAyMml3co//nwfnz2p9vx3d/vbcXpAQAe2j0FAFjdZ/a1zxd19CZVXLNlHfrTldlVbFfOBv8wxfD9B/fhAzc/gQkrdhIWmlFWDu6Yg0GdyoFSiqJmeCoH3tXEdoGyROwFQhQ4LR/2TWWxocaQHzebR7oBADs72N5m2+E5nPSpXziKOqNCTeNAKb0HwHTA13sDgJsppQVK6R4AuwBsIYSsBNBDKX2Amk7lmwC8kXvO96yv/xvAJUxVRBGjDuXAYItVSTfwxIFZAM4ZBWHzoGUc2NCTbFG3M3i8AuhsV77g076bH4EaBiwgHVOkCtePUznotnrga0bSMQ+3klwOTKu2L1koh+XCvqks1g2m63rOccNdIAR4fixYG5dW8MOH9iNfMnDHjrGOnYMfzcQc3k8IecpyO/Vbx1YDOMA95qB1bLX1tfu44zmUUg3AHIDBJs6rpbDFS67DftnGQaP2hVhP4Kxetu4zK4+ZOylX0u2FlC2im4bLN1LZrdQe46Dp1FrEK5WDrjvdSqxqO6HyykGuOKZw/awIIWb1q8hWWhaUdAOHZnN1K4dkTMa6gVRHlUPCUsT8GN+o0Khx+AaA4wCcBeAIgC9Zx71WTFrleLXnVEAIuY4QspUQsnViYqK+Mw4JphwkTjl8+rWnYEWP/5AR1Vp8i7phG4dWzTdeLGjYM5mxvwbMLCR+Ib3jQy/H/7z3xfb3breSm1mPgTrNoBkGFEs5uBsCaq6ANIt/OJRDFbcSiz0oojXCsuHQTA66YdbO1MvmkS7s7KByYKo9KkPBeBoyDpTSMUqpTik1APw7gC3Wjw4CWMs9dA2Aw9bxNR7HHc8hhCgAeuHjxqKU3kgpPY9Set7w8HAjp94w4/N5/PbZcTvmwOfVv+uijXjwE5f4PpfFHLJFzR6606rc6m2H5kCpGWxjiz3vVgKA40e60Jcqxx7YBbroYxyCzl0IAqUUJZ1ClYmnW0l3uZXyHsqhyzYOldlKTBmpsiTcSsuEvVPmZmh9nW4lAFjTn+pox2S2jvDDwqJCQ8bBiiEw/gAAy2S6DcDVVgbSRpiB54cppUcALBBCXmTFE94G4FbuOW+3vn4TgLson+weEa6+8UG887uP2IuZ1EDMYXKxHNjVW/QnPn3InOj2ok2DdvZRrqTb6Z1e1HIrzWbDcyuVJ+lJiMuV2Ur8+1Io1VIOldlKMa7uQbiVlgdHrMWdxdjqodNV0uwenc6E67oNg5rtMwgh/wngFQCGCCEHAfwNgFcQQs6C6f7ZC+DdAEAp3UYIuQXAdgAagPdRSplJfC/MzKckgF9Y/wDgPwB8nxCyC6ZiuDqMPyxsdtuuGvPPaSTmMJ8vL76tUg7PHV3AcHccGwZTyBQ1UEqRK+oY7or7PoctqL7KIUS3ErsRFbl2zKGoG57KIR2rjDnIHm4loRyWB2yoUzpWfzegTs90YBuyqcVwMwLDoOa7SSm9xuPwf1R5/PUArvc4vhXAaR7H8wDeXOs8Oo0sEegGtT9Mr2ylPzxnjWeg2TYOXGC3VcYhV9LRk1CQjiug1LxxaikHQgjiiuRrHGZCdCsx5VV2KznfB363X1M5KB4xB/t/SaSyLhNYtT9fCxMUMzbVueuE3XPuaYxRQDTeCwgzDovW7t+rQvpLbznT87kxxXzsAqccjBa5lXSDQpEkewHNFDTkirrnxDqeuCLZEtfNTJjKQS+7lWKKh3LgYw664Z3KyiqkY5XKQXW4lYRyWA4USjoIcV4jQVFkAoOaCSL1uIrDYiHCykG0zwgI25GyD5OvyK1F2a1UVg6tyqRhfYtYFfEiMw5VlANgVhv7xRxmQvSHsgVb9XMrOWIOur0rrBWQJoTY6bHm64te/UuVfVMZu1YnCHnNQFwxU5jrpdMtNBatNSGKykEYh4CwnWk15eAHW7DaphxkYvtfMwXdUefgRzW3UrgxB9MYsFRW1lbE/jlnNP/u9h2489lxAE6VwDKvEq6doiITVyqrcCstRV7+D7/D1Tc+6DjGt5t5YWLRMSSq4ErVrgeW3dap5AWm1hfyWuTSWYVxCIhtHAolx/dBYMZhrg0xh7JyMI3DbK4IzaCOVFYvqhmHMOscym4lYrsB+LiD+3350UP7ATgru23l4PqbFEni3EoilXUpwm8UFqxd9a7xRZz+mV/b9QiXfOluvPJLd9uPy5eMhlxKQASUA3fP8ZvHKCBiDgFRbONgBaTrUA4xj4B0qy5G3TCgSMT2y7P02Vo7q7gi21kfbsK8aMsBacluc1HUDXvett/7wnfbLAekXcZBLrfOUEUq65LkwHTO8fVDew6CwNw0HJnLY/Nod8Vz8loTyoEZhw5tJBbyJXTFFdv9GyWEcQhIWTlYqaz1xBy8AtKtUg66qRxs47Bg7vprxxz8d14FzUBRKy/gTZ0fl8oas9uKGICVaeulqJKq7Lj5R3sSeMt5a3DR5iHH4/iYQycqpLNFDYt5DSNVquUF1Xl0f7n+9amDs/jsT7fb3/u1YM+X9IqNQlDkDrqVKKVYLGhYP5jGYkFzzFiJAsKtFBCmFJjUbazOgXMrtThbqculHIK4larh53KqF3aDm9lK5jmxQriSbtiZUR+67ASMWC2V3aNYZYngi286Eye4dpGKJDkqpds9z+EPv/EAtvz9nW39nc2QL+m4/vbt9gjZKLB3snwuv97ubEbnbxycw6DqQe2gcsiXDBgUGOoyuxVErUpaGIeASO6AdB3vXMwrIN3imANrTvfQHnMnVjsgXf3niyG5lthNyOocgPJQn+tu2op3f/9RAMCFxw3ixBXm4h+0SaEsud1K7b3hdxyZb+vva5bP/nQ7/v3ePfi/x8Of2dEo2aKGpCqjK67gLpaMoLJNhPfnmS/pjtke9cA8Ap0YFbpgxS+HrALVqLmVhHEICPNNZhqJOSjOmINEWhlzMDuedsUVXHHqCrtFeLJG9aifcui2FAi7kJuFz1ZiCzmrZfjtc+VmirJE7P5PbuXgR09SRY/VCl0UwVXHsGaLAOXGkFFgsaAjHVccrTCY6nVPDSxqBr51725MLBQajjnw7fTbDdtwsaFDQjksUVgOtV3nUId04FNZY4oERZZa5lZiyoEQgm/8yTn24q7WiJH4uZ0GLMkbVlCaZRCpjmylyhtTJgT9llHoS1YOKPLim39yLv6/K040X18W7TOqMcslR/glInSCbFFDOi7j8lNX2MfYoum+Tu56dhx/d/sO7J7MVKQ1B6WTyoG972w6o4g5LFGY64P53utxK7GFOVfSkVAkKBJpmVtJNww7158Qgl9+8GW46pzVOH11b9Xn+QWs2YUbtluJ1TkA5nvr3uU3ohzWDaZsia5IUseylVr12YYJX5GbDSmeFAaZgo50TMFfXboZ/3zN2QD8jQOf/de4cujcYChmDNhcd6EcligsaMo2/I3UOQDmIiyT1vnDTeVQ/n2r+5L48lvOqjl5Lql6u50GrAs3tIC07VYqZxYVdQOHZ51tkxWZ2LUNjQxGkuXOzXMoLYEU2snFcu1KNkKLUqZgKgdCCF535iqsHUja95w75pDnisYar3Mwn9cJ5cCaSrLNTz5iA3+EcQiIu81DIxXSgBlck1qqHKhj1kRQkjHvS4EpB78RovViB6QlyZHKunvSOY1LkQj605ZxCKgceFSJdGyRXgrurKlMNJVDtqghxcXHVG6j41YOU5yBa1Q5sJT0TlwrFcohQu49QBiHwLiNQz3KQZaI/fiEKkORSOtiDladQ72kfALWLOYQnluprByYW6mgG9g35UynlAjnVgoYc+BRZKlzykGL1g7QC7awDnXFIxVzWCxodho24OxhVtIMxw6fn4/SeCprB5WDJtxKxwTuoTT1ZCsBZd9mwlIOrboYG1UOfjuvnoQKRSJ2fUczPD+2gPf+8DEAlamsR1zTuBRJwlDajB8MpBtQDh0MSC8Ft9LUYgGEAKv7k5EyDu6phYpLOfDqYWKBNw7NpbJ2IluJuZF6kgok4h2Q1g3asUl1wjgEQDeoYzEnpL5JcEDZtZRQJcikdcaBZSvVi1+2UkyW0JVQQok5/P//+7T9tcK7lXQDR+dyjsfKMsFpq3vwpTefiYtPGqn7dymSBF24lXyZzBQxkIqhO64gU4yOW8mMOXBuJV45GNSxSeM7mTYbkO6EymSN9hKqjKQqe7qVPvaTp/Ciz9/ZkUwmYRwCUOFSaqA1MFsIk6pszYYI5dQqYL2V6sWvSC6mmNXWYbiVejn3kOJSDkfn3crBTMf9w3PX1CzQ80LpZEB6SbiVChjqiiMV816UOgGlFJmibhdwAuWuqYD5vvLvLe9WajQg3clUVnvKoSIjGZM93Ur/9ehBAOHOcQ+KMA4BqAhGN7D4lpUDMw6tWUDc2UpB8UtlVWXTOIQRkO4B+iWmAAAgAElEQVTnAsuqK5X16Fweoz3lUab1BPy9UGWpgwHppWAcihjsiiEVkyOjHApWTIFXDvxGx3QrlRfxMNxKnSyC4yfYJdRK48DPVwlz4FZQhHEIQEF3fmiN7MxZ8z1bObRoo8LmOdRLNeXQnQhHOfSnOeUgOVNZj8zlsX4w7fh5M3Si8R4j6m6lxYKGXROLWNGTQCquREY5sMWQnwXNZ/oVderYqPGxkmZjDp1QDvwEu6QqV7iOHtlbbkI4lw1v4FZQhHEIALsgWRZFI24llhURt4xDq3sr1YtfzEGVzQ6vYcQcHDOfOeUwsVBAQTOwfiBl/7yerrdesMHxtEVZYW74zzNKyoFSiu/9fi9++cwR+xxvvGc3ZrMlvO3FG5BSZd/xsNWYyRTx4Vue9J0e2AhsseeVg+xSDu7EkGaxi+A6kq1UnmCX9HDv7ZnM2F/zFe3tQhiHADDjwPLuG3Er7bY+6E1D6ZYGpMPOVoorEuIes54bgb8BVa5l914rjXXDUHjKwe622aabnl+0omQcxuYL+JvbtuE9P3gM978wCQB4ZM80zlrbh7PW9pnKoaTXvVnZum8GP3nsILYdDq/ZIHNvpbmNiiMg7cpW4mn0+pTtVNbOuJXYfeflVjo0U07SEG6liMJufFYt3EhDt4+9+iR86LITcO1FGyFJramQptTMqgpXOZittcPYsfHBREWS7CAiaxm9llcOzbqVWJ/+Nrl4CiXeOETHrcQvKsxHX9B0dCfM3TlbiOvNsWcukDBz85kKSTliDs5UVj8j0OiITcVOZe1M+ww2hyKpysi5KqQPzuTsBoSzHXAriWE/ASjYZe6NF6u85+XH2V8rEmnJDGl7kE5DFdL+MYeYHJJy4AyMKpvZSDFFssenDnIxiUZcdzwqV/maRGP+6HrgF6coKQfeOLAFJl8yMJA2F122KcgUnSmktWDGIcwUS+be6nJkK5Wvg6JG7fc25lKza/rLG4t6YK/fqWwlVryXVOWKeoaDs1kcN9yFycWCY8RwuxDKIQC2crAWr2avo1YVwbHXbCRbKeXTW0mVJcRVKZTh5yVHrYh5U8YVyW6g1sP1f2paObR5iEu+FE23Eh/IZH7rgqbb6cGsMp75u/dOZhy+bj/y1sIcpnFgnX9TPgFpPuYwbDVYPG44jVvf9xJcdspoQ7+TKZNOtHfn3UpeqayHLOXQl4zh0GwulELUehDGIQB2zCFVfxsHL2QS7k5l1/gCXnLDXdg1bvYnaijm4NNbiSmHQhjKwXqNP7pgnX0srkj2hLyeZHlRIE0qB3v8Y5tueqdyiI5biQ9kzlkqoqAZ9lhYWzlYu/ZP/t8zjmJFPwrMrRRSplO+pOOrdz6P/pTqcC/6pbIOWm1dkjEZZ67ta/j32kVwHQxIA2ZxLG8cMgUNM9kSVvcn0ZdScftTR3BBm6cMCrdSAJhxaKSNgxdyyMrhticO49BsDnc/P2G/fr3EZB/jIIcYkNYNrB9M4e//4HT7WFyRUdLNRaset0YtWEC6XVkovPGMknJgrqTRnjhmOLeSrRys9zxXMnftM9lioGsz7JjDM4fm8PzYIv7prWe5eit5xxyYC9Lvug2K3GaFycNPsEu4KqQPz5rB6NV9SVtdtLvNiVAOASjY2UohKYcQGu/d9MBefOve3QCAO61xio/tmwGAhuoc3Dv19YMpxBQJIz1xxBVTOTSbFlrSKzOp+MrWRnPVvWBpsu1qOxDVmMNsroiYImFFT8LhVmK+brbIstnNmYKGhbyGG37xLN76zQewc2zB83WZGy0s48BebzU3AQ5wZisV9XLMgc3taHaTxdxWnVAOBc6tlI4pyBY1+x5jMYb+VAwvjC/6vkYrEcYhAO5spWYJQzl8+tZt+Lvbd2BqsWCnEz66f8Z+/WY5d30/tn/2cox0J+yFtll3SVE3HD5koLyIA423QPBi/aDpmtgzUdt/HgZRjjn0p1T0pWJltxKnHE5Z2YPVfUn87KnDAIBMUcfkYgH/dvcLeGjPNB63xsy6sQPSIbqVgMprwJGtpJVTWYes0ZrNujvLyqEzjfdY7U8qLsOg5b8nY9d8yLaiDvP+CIIwDgEohqwcpBDrHFg2yqbhtO1CaLZGgL0Gk/R2m4smbyBNNxzGAChf8BIJ57wZJ4x2AwCe89n5hk1UYw4z2SL6kjH0pVTM5kowrOZ1TDlIkjlU556dk5jLlpAtaI4F1+86Ze2m8yG4G4Hyoujuo+Wuc2D3IlMOzV6TSpvrYXjymlM5AOV03pxV85FUFfzwzy/A8SNdbT8/YRwCwLJpVvYmQnm9MFNZc0Xz5tjMXTyNZCu54V+D+XULTboQSjqtUA5sMYgrctNBaJ7uhIrVfUk8d7RNxiGiymE2W0JvSkVfUsVstuS5CJ++uhe6QXF4LmfvWBl+i6btVgpJOTDjWqEcOOOwc3wRn/vZdgDAkBWQLjQ5PY0Qc9ZKJ0bKFrhUVpYYwOIK7P9UTMZxw114/Zmr7N5T7UIYhwDMZosgBFjZm6z94ADIIfb9OWK1uuYH4jS6A9/6yUtx45+eW/EaLGjW7C7NdCu5Yg5qOVsjbE5c0Y3n26Ycomkc5nIl9CVV9KZimM+XkLV2pPz73WUVxPGN7Bi6z98SdkCavX/uuJPi2ujMW+muYSkH83d0pg+XQzlYrqOj83lki5rDOPD/Z9vYJFEYhwDMZEvoTaoVLpFGkUh4yuGAVWLPj9JsNOYw1BW3azn412DKodmMpZJHzIHtFBtpy12LzaNdeGFisWV9rHii6laazZbQn4qhP6WCUmDCanPNv98sO2jcwzjUVA6hBaS9lYN7M8GwjUMIbi2lRR0LasHXObDF/4///SF8+tZtthFgxanJWPszloRxCMBMthhajQNgSuWw5OHBGTPLpDdZNg7N+O6ZUXAYB6WVxsFyK7VAOQyl4yjpFItt2G1FNiCdK6EnqdhD7FkVLr8IM+MwNl85cczvOmXGMKyAtO3uUt1uJe/rgtU5hGIcZKntAWlKqSMgzZRDUTewbyrDKQfW5sT8v53GQdQ5BMA0DuHUOABWQLoJ5cAvPgeZckiGU13MZLzDrcRmPTd5I2o6rdgJxmzlEL5xYP2DFvKao/q6FfAps1ExDpRSK21VthcZlsDAu2+YW8nLOPgrBxaQDsk4lLwD0n4bnf5UDC/dPIR3XbSx6d/dCeVQNoZO5QCYg31yRR1xRbLv5aRdrBghtxIh5NuEkHFCyDPcsQFCyG8IITut//u5n32cELKLEPIcIeRy7vi5hJCnrZ99jVjRR0JInBDyY+v4Q4SQDeH+ic0zkymFqhyaTWXlpbyXcWikzoE/N/5/oLyAN2scvFJZW+lW6rYMQjvaDsznS5Algrgi2Td3p9EMCoOabkE2r4NltAVVDn6++FYEpFWZVGxs3NcLQ5YIvn/tBbj4xPpHyLrpxNRAFithnwNf+DeTLVXM0mbKIcxGh7UIsl37LoArXMc+BuBOSulmAHda34MQcgqAqwGcaj3nXwkh7C/8BoDrAGy2/rHXvBbADKX0eABfAfCFRv+YVjGbLdpN9/pTZhZMMzRrHHgp7+VWaiZbiRmWVrmV3BWtcZdyGAwpXRhwKodWM5s1A78xRcJ/PnwAV37t3pb/zloUOVdNwmUceOXAOrOOzZdjDiz25NfKuhyQDi+V1WuD0MxGJyiKJLVdOTBjxJQR309qNlvEYkFzHOtEzKGmW4lSeo/Hbv4NAF5hff09AL8D8FHr+M2U0gKAPYSQXQC2EEL2AuihlD4AAISQmwC8EcAvrOd8xnqt/wbwL4QQQts1pSUA09mi3Tpj6ycvQ7OXq0yaG/bDXyBs4WtlzIHdtM023ytplVPq+PYBAHDvRy8OLaDLjEMYU+xqMZszU0bZ4rs7QPO6VsOnrTLlwCpved++YimLcU459KVULORL/m4lFnMIMSDt5VpUQ0jLroUitz+VlcU4WEyFn5ttUDM25FAO1s+zUXIr+TBKKT0CANb/TNutBnCAe9xB69hq62v3ccdzKKUagDkAg16/lBByHSFkKyFk68TERIOn7s2eyQz+/KatFRd7vqQjXzJs5SBLpKFhPzxykz5OL2nZF0K2ElC+Gb1iDq0ISDMlwX5HKqY4DF0zMLfSfIhuJd2gnkZyzlIOrd/nBod9XjFFQtJqrDjLYg6uXXpXQsEYl63Ul1SrKtzw3UqGp3Foj3Jof8yB9fxiMTj353FoNucwDqxr8lLOVvL6JGmV49WeU3mQ0hsppedRSs8bHh5u8BS9uXfnBH6zfQx7p5w7PhbACzvm0Ewqq9cFEppysN1KXBFcSBXSVVNZW5Ct1Aq30r/fuxuv+Wqly2g2Z7oe2+HCCgpfWMbU36yHcgBMnzdvCHqTalV3i7vOYXwhj5lM49PKCprh2VvLL1spTBSp/dlKuu5sr+/ecB6azTlmrCQ7UOfQaLbSGCFkJaX0CCFkJYBx6/hBAGu5x60BcNg6vsbjOP+cg4QQBUAvgGm0GRaMcy+809YFH1ZHViCEmAOXE17QTD8+fyE1l63EjEP5mJ2t1KR/uaTTyvYZaisD0uEbhz0TGbu2hGc2W8IJI92hzzhuBqdyMN9f1pm1QjlwAdHVfUmMdCeqXqfsWmDX4pbr70RSlbHjc+7wZDAKJd2zjkh1Xct/8qJ1OH11b0O/w48wU8v9cE9oLFluLL86Dt2gjpiD7VZaAsrhNgBvt75+O4BbueNXWxlIG2EGnh+2XE8LhJAXWVlKb3M9h73WmwDc1Yl4AwvGZV3D1icXmXGIh/a7JNKkW8m6QFghUNyaucBwV5XWQznm0Crl4O7KytpnhL9DTKoyZIlgsRCeW2mxqKHo0aF2zmpTESU8Yw6WEvZSDoDp5vvOO8/Hh191guVuqfzMdas/k0TgaOnQTCZNXjPs+BOPWzlcevIo3nr+uorHNYMikZYWLj53dAEnf+qX9jhcgA9I+1/3vFuJGXN3e5NWEiSV9T8BPADgRELIQULItQBuAHAZIWQngMus70Ep3QbgFgDbAfwSwPsopeyveS+AbwHYBeAFmMFoAPgPAINW8PpDsDKf2g1TDhmXbNtvuZnWDTQ2htALRWoyIG3dhMNWZ8q46uxL1Ixy6IqbBVNrudbJYVRIGwaFZtCKm6GVdQ6EEHQnlFCVA8szd7fLWChojhYmUaDAKQc7WylXmcoKlIuwUnEZJ4x2Y6THXzkwdxWLw+3nFr2g/PKZo/gEN1So4BOQZjGHy04ZxZWnr8SLNnmGI5tCkaWWKof901kUdcNOOwfKtTDVYiq8cZAkglRMthvytYMg2UrX+PzoEp/HXw/geo/jWwGc5nE8D+DNtc6j1ZTdSs43f99UFglVwkh3eMqh2XkOeZdycPclaiaIl1BlPP6pyxzH2I7ub27bhqQq4y3nr/V6alWYjPbryhrmLAeesI0Dy3zifeS/f2EKgDMpAKh0JbQbPuYgSwQxWfJMZQXKLjg+tubXcyhvz1RXMZ0pYseR+brP7T0/eBQAcP0bTwMhBAXNsM+BhyVIbB7pwkeuOKnu3xMEWSItLVy0q8m5RAbNFZDmYfOxebcSYBqLpeBWOuaw3UrWm68bFK/56r341n17sH4g3XSGEk+zM6SZAbOVg2vBbXZBIoQ4lAjvsvrIT55q6DXZItNOtxIAdMXVUIvgFm3lYF4nj+2fwdu//TCASuPgVqHthlcOgHMT4a43YdfMyzYPlY/J3u5PFmcYslyt2w7Peb5mEJgryj8gTaz/W7dUqS2OObD4DB+zs1NZPdxKZ60xx57ycUT2faTqHJYD+ZJu539nCzoOTGfxzKE5bLd2ROsGw3MpAWadQ3MV0mzIurcbI8y5CIBzQW+0jQjbmflnK7VOOcyH6VayFnx2o++fKrtU3Cm42YLe8rYd1bCL4Dh1Np/XEFOkis3OE9ZQn8tOWWEf88tWYsaBFcqxYVP9DSRtTGeKSMUUX7cSu/bcgekwkSUJJaN1iy4z0gUP5cDfqx+94iQcns1htCeOh/dO22sSIx1T7M1JOxDGAc62AZmihsv/6R6HhQ77BjdTWc3eN43MMMiVdBDCV7E6b+CwXRn8OQ52NeZeK/oZB7V1MQcA6EkoODxb2RaiUTKF8k4XcPrb3W6Adt7IXhRcxoHtRL3e679+1Ym4/ufbccGmAfuYGXOodLewz5IZg2ePmG3R6wnqMhfJ1GIR/3b3C9g9mcHZ6/orHsd21nIL6x1iMgmlgZ8fBY+CQTsgzd0P733FcQDMedr/+OvnKzZ5PYlwVXAthHGAs21ArqhXSLcVveHFG4Dy4m1QoJFrPlfUkFRldFlGy727ayZbqRaNtrdgC4fb9eAuggub7oSK+Xx4Mx3cbqV9lnJ47RkrcfrqXjz8iUvwq21H8albt7W1SZoXRS5bCShnvCQ9VNoVp63AFaetcBzzizmUNPMYC0iPLZjGt55q6e6EgmxRx61PHMYPHtxvnqdHrYtiK4fWXdOpmNLSQC8z0o7OvYZ/QPq01b246V1bcNa6PsfxroSC8YXwNjq1EMYBlcqBBTEvPnEY1160CedtqNzRNIM9t9YwIEv1uVPu3TmBf793DwCgy8p9dt/ArQyCuv2gfjxzaA6HZ3N41anmgvOs5aLza5/RKrdSH9fSolmKWnlMZdFWDhls2TiAf/mjcwCY78/xI+aI0s7HHMzF2o45WJ/dUED155f/756pznIr8iU9sBruSagYmy/g2/fvsY+5ay+AstJsZaV0Oq60NEXUXRMCcDE4H6P3shMqi3y7EwpemIh++4xjCmYcmFFYLGh4x4s34Bt/ci4u2jwUeiaNrRwaULIPWJkxWzYM2OmHlcqhdTdS0N3ha//5Plz3fTMjZffEIq793lYAVWIOLVIOg+kYFgta032hAGe7ZLYb3DeVrUhzZjUDmUL7godeuGMOSWtnPhQw8072iTmw+JE7AG/Q4K4lr8wkT+UgtT4gnY7JLVV57Nrj05+1AKmsbroTCiYXCvj8L3bg8f0z4Z6kB8I4wDQOCVXCyt4EDs/mQCmwcSjdsvRK2dpZNZLOaqa4ybjlPRfaxsHtF26lfzZfZ5V0UTPsqlyg0jhsHunCdS/bhJduDrcdCoMVL0430dqBsegyDrmijvGFAta7jEMq3v7e+15UZiuZ5zUcVDn4ZNWVjUOlizHofAdegY72mOfjdTuw66WVAelU3HRxtWpiYNmtxM38qJLK6kdXXEWmqOObd+9uy/hbYRxgxhxGexJIxRQcmDYLVQZCbB3thmWK6A1UZfJzZ7vaqBy+964tWN2XrLsL59h83rFIxhTnuSmyhE+85uSWvd/sdacWmzcOvJuoUNKx46jpKts82u14HPtcOh2QtttnWAssc9sMB1YO3hXSzDjwmWvsbw56ffCu0FecYPbt9JphvaoviT+7aKOnmyUsmHu2VbMSih4xB7ahq6e9Pq+2groGm0EYB5hDvUd7EkjHZRy1XEyDPmmiYcAW70aUQ75U7l5ZVg6tjzm8/IRhnLehP/ANxNzOY/N5R1dUv+EtrYIZhzCUg9ut9MwhM7//jDXOXj/sc2lnkzQvCpoOWSK2S4bFCoYCXtt+yqFoBaRTMcU2PMzgBO2/xW9oXnqCWVvhNWxIlgg++dpTsKrJGSrVYFlmrVJ6fBEca7tScs1zCEIPZxwazRqsB2EcAIxbxiGpcm9+iL2U3NjKoQEZyxcLdVkXtTsg3apspaQqB94ZsqymI3N5zOfKN507d7vVhGkcFrkYQkEz8PTBOQymY1jZm3A8LmV9PosdjjkUSs422Ky6uz7l4O9WiinEdqExV1Vg5cC97oVWS4yrzlnt9/CWwprahRWU/vpvd+HPb9pqf8/cSj96aD9e+aW7AfBFocHv1S7eOLTQs8FY9tlKlFKMzRdwaXccE4uVk7BagR1zaMA48ENR2EV98qoex2Na5Z5NqHLg/v0D6RgmF4sYm887gpTHDXe15uR8YDfRVOjKQcfTh+Zw2ureiuwcSSLoS6mYWqx0k7STou40DguF+oyDXyorc5OosoR0TMFstoThHmYcAioH3QAhwFevPhuDXXHsveHKQM9rBemQlcM//Oo5x/e8mtozmUG2qNnuuroC0vGyG68dbqVlbxzm8xpyJR0rehP2zoGQxiuBg9CcW6kcc1BkCbe8+0JsHjEX3Gu2rMN/Pry/ocK6ICRUOfDNz87xyFweMUWCKhM8+7lXt73XUK81tKaZWQMMfqJcoWRg71QGFx0/5PnYtf0pz9be7aRQMhy9rFh32qAB6VrZSqos2bEGWzkEDEhrOsWrThnF689cFejxrSQdb49biTG1WLQ3TPXUb/Axh6Ap5c2w7N1KbDTiSE/CnqXbl1Rbmjon2amsjbmV+N3glo0D6Ld2x9e/8TTsvP7V4ZykB0lVRlE3Aiketrs8OpfHfK6EnoTakSZ0kkTQn1JDUQ58gDlb1JAvGfa0OTdrB5I42EC30jAxlQM3MMYy2P0BVbHiUyFdditJtnplaiSoW6lkGG0Z5BME1v30rTc+iB89tD+0182XKlNYAWBysdBQKmuXR/pvK4nGp9NBWHX0aHfcVg5XnbOm2lOaht0TDcUcOOXgRpJISwO+bNRkkAWABT+fODCL2VwJPSGN/myEgXQM05nmXTz8znI6Y+7C+dm/PGv7Uzg4k2tZemQQCppzgM633nY+Pv3aUwK7JPwa7xU5fznbdZeNQ1C3Em1pemo98IOO+DbizcLia5XGoWi/r/VsmNrdp2vZu5VYhsRoTwLXbFkLVSb4aItaAzNY+lojA3/yJaOiRXe7YDvPXEm3FwU/Sro5oe7QbA5j83mcGvL0rnroS8UctRZBufWJQ+iKK7jk5FEA5qAflp3DjE2Xz/uwZiCFom5gbCGPlb2ty7SpRtGlMtcNpvCuizYGfr7qylaazRZBUG5vHbNiDkD9ykHTI6QcXJ+hYdBQujDP50oY7UlUuJVM5VB/QNqrcLCVROPT6SBHOeNwxpo+/O0bTvMcVxgmLCDdyBzpvKa3ZKRmEFiLi0DKQTNw5Rkr0ZNQoBnUkYbXbuJWf/x6+cDNT9iV3YCpHLoSCuKKZLup/Iwkq5pmdTOdoKAZTV3LsiQ5AtJn/e1vcP71d6BkB6RJWTnUma1UMmhdBWCtJO3y3++eXAzldZlycF97U4sFaIYZkK9HOdTakIXNsjcO4/N59CSUtgR4GMzHeWSu/iZahQgohyALQEmn6IoruMBKU+ykW6lR4+AmU9CRjsuIq5JdVOenHNgkvQMdjDu4U1nrxavOoagbKOnlha3LHXMI+D53ehASj7ub7hMH5kJ53WpupZJO624myFTGX77y+FDOrxbL3jiw6uh2cuFxgxhIx/CDB/fV/Vy+Qrrd2G6lYu0FoKgZUGUJ51tNC4MWR7UCVZZCmfS1kNeQjimIK7JdN+EXJGStJdrZYtlNQTcQa0Jl8jEHfkNQ1ClUWQIhBOduGMArThy2Nzyf+r9n7OE/1SjpRku7B9eDW13Nh1SLw4o/3dc+C0g30kxw7w1X4kOvOjGU86tFND6dDsKqo9tJQpXx5vPW4I4dY3VX0eZ9hqK0A2aUgqQrFnXTpXHeBnM+wM7x1veC8SOmSHaAvBkyBQ1dcdOtxIxDOuZtHNhnFMbvbRS/ATpB4bOVDs+W3WNFzbBjL68/cxW++84tjg3L5362veZra3p03EpuvFqGNMJclikHj5iDQVvaIDMMlrVxyBY1PHNoru3GAQDW9CVBabDOnRMLBRSs0nu/cYrtgGUr1SqEo5RaCwjBaavMQPS7X3Zcy8/PD1UOya1U1JCOKw5j4+dWYrvRTiqmfJXMtiDwFdIHuZqNuVypYmHnA6sbh9I1X1uLUCqrm3qGFnnByozmcuV54wxZIphaLEb672dE++xazDu+/Qg0g2LTcO2LOWyCBncppTj/+jvwvh8+jqJugNLK4fDtIsFlK1WDLSgxRUJMkbD3hivxRxesa/n5+RFTmnMrsX44i0w5cO+/XyqrIhFIpNLf3E4WC7odE2gEvkKaNw7jC/mqge5a1yel1PK5R2vnzApfm7lWdIPa3WW9Yg4j3XFkCho0XSiHSHNwJosz1/bhPS9v/66W3UC15gywHeodO8bsHPKOu5VqGAe+vUIUiMlSU4s0e98zBc0MSHPvv18GCSEkNHdWvRyezeHB3VPm+fq4vYIgS5IdkD44Uw6sj88XPD9bVj9RS1my14zSzvmJT1+Gez/6ShBS2ausHvh7Yz5fguYqGh1Ix5Ap6qZxjNDf70W0z67FZIo6zlrT25GsiYTCCsqqLx78jcYMSaumptWiHJCufvPzFbRRINZkttKlX74b//v4QWQKOrriqm0cFIlUNdRxRUahRW2gq3HjPbtx3U1bA9WjVEPhWnbzmXVjC/mKca8AsPWTl2L9YKpizK4bzTYO0dk596Vi6IorZvJCAzGHxYKGz/50Gya5flpzuVLFpmQgHbN7K0Xp7/diWRfBZYtaRQFMuwi6C+dvNOa/TnRYOdTaDUdROTTjKjg0m8MHf/wkALP3PzOS6bhStY9VXGlOsTTKdKaIeasPlF9MJAiyRGBQsygsU9AsY0Exmy1htNs7TpdU5eDGIYJuFdWn2WAtfv7UEXzn/r2OupZDMzn78//jC9ahoBlY25/CvTsnkS3qkfz7eaJx93aAomagpNOKAph2UTYO1RcP/kZjhqRTyiEeMMhajKByMGh5NGMQqE+BYjquYJPVWbaWe69ZxdIo/PyMZpQDCzrrlCKvGY6ZCqrivbClYjJypeoZeHZfoYiksvIoslTXdcJg78c9OycAAKv7knh+bAG7J8yCutNW9+If33wmepLm52EG9aP39/NE++xaCEshbXfVIYMVstVSDjmHceiscrAzcGrFSVwTyDoNuwmrZaEcmcthw8dux2+2jwHw73uVjis4eaU5+W3cY3IZT6eUA5+n7xcwDwJr8zO05/UAAB+tSURBVKIbFPmijhU9CTsTx29hS8WUmsrB7kgaQbeKKhO7d1Q9sLRVdu2fv6EfmkHxpn97AEB5I8FiQPO5UmSKAP2Ixt3bAViTvWYCds0QtGaAr4NgXUE7la0UNAOH3fxRUg5AZRsDnu2HzZGfP3zILEz063vVFVdw8soez5+5iStyTUPaCha41uLNuJWY20MzKPKajlRcRp9V6e5nHJKx2jM/yrMMonF98ChSfcrhmUNzODybw6yrcI7V9wDACaNdON/6nm1G53KlSP79PMs25pC1FtpUEzurZmDzfGu6lThlcWTO9Gd2yjgQQqwFb6nFHMxFrqDrALzbeJTVhXnu7rjKip4Ejs7nTbdSgDx+wDRKHVEOIbmV2M5W1ylyRR3JPhn9VhNDP1WYigWIOTQwIrNdqIp3J1o/XvvP9wEA3vHiDY7jbKjV6r4kfv3Bl9vH2XozlythdQtHn4bBsjUOnVcO9buVWJVqp1JZASCuSjUzcKIYcwCqu5WYG6lkzUd2ByXXDaZwdD4PRTZnMnfHFZyzvr/q7+2cWykk5SAz5WAgZxXU9adjwGTG97MNYhz4YUFRQ5WqJy8sFjT8/KkjePN5axzJCO6WGwlVwr0fuRh9rqFhbL3JFvXIZytF79NpE7Zy6FBAOmgRHH+jHZo10wk7pRwAq4ld4GylaFz8QdxKzGW3UNDwyN7pigXi0pNHAJR76j/5N6/C9961pervjau1VVbYlHTDUaTYzPVtKweDWq3iTeUA+H+2SVWpeU1HMZWVocjVs5V+9cxRfOQnT2HPZMZxfDZXwtqBshJIqDLWDqQqhkHxMaAoGkeeaJ9dC7GVQ4cD0rUWjxwXc2CFSJ0yaIDlKqnhCmMLaycVDg+7CasZBxbb2XFkHm/55gM46uqY++cv3YSf/cVFONdSC0H6/cdCattRD3y8AQgn5lAyqNWKQ8JAunrMwVQOmm+2FxBtt5JSQzmwRoru+SCz2aLdph3wv/Z5T0UU/36eaNy9HYAtBp1aaGOyBELqUw5PHJgFIcBIT+uHi/uxNGMOzniCF3yPK0rN2gYeQghOq3NgUVyV2h6Qdrs3mos5WNlKumkckpxy8Is5JGMyDFp902MHpCOYyqrKBKUqMQe2qWTVz4yJxQL6kuXxq37qno9xyhH8+3mifXYthLkROqUcCCFIKHJg49CXUrGQ1zDanejYsB+A+dGXVoW0qtRWae7uuEw5nLOuD//1ngsb+r3xACorbHjlQEhzmx+2s81rOjSDmsYhzdxK/soBqF5Fz2I/UXQrqTXqHNio2PlcyTG74sB0Dr1cfMHPOPDKISpuVz+aunsJIXsJIU8TQp4ghGy1jg0QQn5DCNlp/d/PPf7jhJBdhJDnCCGXc8fPtV5nFyHka6Ra2WlIZK2dYiddNAlVqt0+w2q7zDpd8n7NThAkyFqMWMAxHkA5LLq6444tmMbhupdtstMQ6/69Heit5MhUilWv4K4Fizkwg5NQZQywmEOVIjjAmWXnRovY9cFTK+bgMA6uv7E3yRsHH2WlynatSNRTWcM4u4sppWdRSs+zvv8YgDsppZsB3Gl9D0LIKQCuBnAqgCsA/CshhK3M3wBwHYDN1r8rQjivqmRst1LnErYSahDloCEVk7He8meu7U9VfXyrCZKeGbUiuCABabdyGLOUQzMLWCd6KzG3kiyRpgrggLJyYAtiIlZbOSSt+ylXZU5JpNtn1OitxDYRXn2T+njj4KPuJYkgZamKqHWlddOKu/cNAL5nff09AG/kjt9MKS1QSvcA2AVgCyFkJYAeSukD1Ixi3cQ9p2Vki2aArZNViglVrjlWMVvUkYopWD9oKoc1/Z1WDgFiDlFzKwUISLvnarDZ4s3s7jqhHNguf0VPommXKfvbmQvWjDmYC6BvKqu18FVLZ2UKLoo7Z0UiVRUm20TM57WKjV1/KobvvON8/MHZq6smLLB+blF0q/E0u22mAH5NCKEAvkkpvRHAKKX0CABQSo8QQkasx64G8CD33IPWsZL1tft4S5jOFLF3KtN0O+MwiCuSr3KYWChgYqFgFh/FZKwfNBXDmoHOKgfTj14j5hBR5RDkpmeMzZutMZrZ3TGVRSltyr1TD2yGwIXHDdacu1ELtrMvV+ZLtnKoVgQHVDcOWoTbZ5i9lSrdSuMLefQmVfu9mMtWupVedeoo+lIxXHzSSMXzeeyuvhG5P/xodnV8CaX0sGUAfkMIebbKY72uBFrleOULEHIdTPcT1q1rbHjMzY/sxxd/+RwuP3W0Y9XRjGpupX+5ayfu2DGO40e6kIrJOGNNH1SZ4PQ6M2bCJq7KNdMzI9s+o0ZxE8+YpRzUJv6GuCKBUvP9iPn46MNmOluEKhP8w5vOaNogMVW9mC8rBzvmUCVbCagekGZupSj2FvLr4Lvl+jvxypNGbKPHu5Wue9kmXPeyTfbc8Fow43NKwDYsnaIp40ApPWz9P04I+V8AWwCMEUJWWqphJYBx6+EHAazlnr4GwGHr+BqP416/70YANwLAeeed19BEjhGr1fC+qWzHlUNC9c9mmcoUMZMtmspBlXH8SBe2/+0VHQ/iLcWANNvlVs9W0nHGml6cs64fTx2cxWP7ZwE05xdnWWVsnnY7mFosoD8VC0WpDHebKdNfvXMnAHMz05tUcdXZq/Hi4wY9n8OCsmzGthcslTUq1wePIle2z2AB9LueHcdJK8ymi/P5snK4+MQRe9BREL7+x+cgU9DwshOGQzrr1tDwp0MISRNCutnXAF4F4BkAtwF4u/WwtwO41fr6NgBXE0LihJCNMAPPD1suqAVCyIusLKW3cc8JnRHrgt89mbGrXTuFGXPw3mEtFjTkSjoyVkAaiMbNFAuQysrcTlFxGwRxK2UKGlb0JPCZ15+K1VzQv5n3vDxHun1B6elMEQPpYDvYWpy8sgd/eclm21WVUGVIEsGX33qWo7Ecz5r+FGSJYO9UxvPnQPSL4NxuJT4uaLuVciV7Yxf3yUzy49z1/ZE3DEBzAelRAPcRQp4E8DCA2ymlvwRwA4DLCCE7AVxmfQ9K6TYAtwDYDuCXAN5HKWV3zXsBfAtmkPoFAL9o4ryqwnZDRc3Aqj7vgSXtolqdQ6aggVJgNlvqaEaVmyDKYaGgobvGIJx2EqxCujw1bZBbXJvLVgpWBR8GzPBNZYp17WJr8YoTy4tYMkDblpgiYW1/ErsnvI1DvqTjvx49ACAamx03Zstu5+fFu8iYcZjPl+xNkl9m0lKn4VWHUrobwJkex6cAXOLznOsBXO9xfCuA0xo9l3pgygGAY3hJJ6hW58BS5iYWCx2txXATJFtpIa+hJ9lZVcYTJJU1UygrNP7cm8koYTvKVrbQoJTiLd98AI/sncHXrjkb05liqOnOfEsIv9x9N5uGu/CCNeSG52dPHcbTh+Zw/64pANHM1vEqguM3cLNW2wwzIG3NV6lTOSwVorMlbRP9qZg97nB1h9NCqwWkWW55UTPQlYjOxxS3pptVy8CZz5XQHaFzrtU+47fPjmMqU7T7EHVzKaDNZFzFZNPYtFI57J7M4JG9MwCAx/bNYHoxPLcS4FRRyYCblI1Dafz+hUkYBrVTOmcyRbz/R4872lRHsX2GVxGc242qSAQLBQ0L1j3aqcmMrSZ6n06LkSRiy+5OK4dUTLGNgBv+eDPN08ImHqBh4Hy+1PF4Dg+Lffjt4N/53Uesx5l/G2/YmlIOASfnNcO9z5tjKXsSCp49Oo+FguZY0JuF3wAEcSsBwKbhNPIlA0fmy80LmTuGzwqLSkyKx6sILld0fn/2uj5QahpjoHOTGVvNsflX1YDFHTo9bGOoO4ZMUa/IsQdg70qAaBmHIJk/8znNnpUbBQghZodUj/x1Xrm94axVAOBQas3sboO4s5rh+bEF3PzIAWwYTOHlJ47gsX1mhtVAV3jGgSdoq/gz1/QBAH733Lh9jE8BZUQxz1+RKpWDO2nk5VYw+b5dkwA620K/lUTv02kDLO6wsrezAWmWVvuZ27bhJ4+W6wBLuuFYUDrVHNALJqG9MnCKmoH/uG8PpjPFij72nSameLfPnrDmQH/xD8/A5lEzTbErJLcSUw61+mc1ypd+/Rz2TGbwl5dsxsahtB1IDVM5AMCo1QU4aAv2U1f1YPNIF/7nsUP2sYxrA/T5q06P1KaHocgSNIM6Wo67Xb/rBtNYN5Cyr52otKYPm2Pzr6rB6v4kBtOxji9gzEjdsvUgPvxfT9rH3a6mKN1E7EbY8vd34qt37HT87OZH9uNzP9uOo/N59EQo5gCwLJRKgzaxaN7gw1yiQlhuJbsgrEWprHO5Es5c04erzlnjGF06kA63pftt778I33nH+YGzzwgheN2Zq/Dovhm7ESCf8dOfUnHNlsaKWFsNGynLTw1kxn3LRjN9dyFfsud6KBKJpAIKg2Pzr6rBX16yGT/4sws6fRoVcxmYe8ldrRtF4wAAX7njeYc/ne9PFKVsJcBUDmwEKM/4vJdxKJ97M+mW7HPziys1y2JBs11gJ1rFWQlVwskru0P9PaM9iZotIdywjQ+rrubbaUQpNdsNW+g1Lu7AjPvHX30S3n7herz+zFXYMBhsjvhSJrqfUgsZ6oqHmgveKMytxHjywBwuPG6woglcpNxKLgmdLxp2JTBf1BSlbCXAfK+90isnrNbcfIozb4ybCZqy11lolXHIa9g0ZP6Ok1f24KfvvwibR7si4QNPunos8XG1KG123NjT7/RKt9JQVxyffYOZcb9u0IxXuqupjyWWpXKICv2u4eOPHzCzHxYLzmleUVpo3YOG+GDdbK7cMiFK2UoAcPGJw3hs/wxmXG0dJhYKkAgwyG0W+IB0M4V87HXaoRwA4PQ1vZEwDEBZHeSKOl71lbvxgZufKP+swz3NqsGUIl/rwOJr/Hvb6db57UAYhw7CLzyqTHDYGk3pHjwTJeXgrh7lg3V8P52ouZVeefIoDArcbaV+MsYXChhIxx1N4MLquZVUZUikdcZhIa85ajKiRLk7q4bnx5yKrdM9zaqheMQcmFuJr/NY2+HuyO1AGIeIsKY/hbmcuYhEOSDNVAxrvMZn4vDGIUpqBwDOWN2LmCxhx9F5+xilFIdmcw6XEhBet1BCCNJxxTG6MyyKmoGCZkTq2uBhC+lMtrIBX5Qq/t2oHgWTdiU051IdjoBbutUI49BhXrRpACt7E+hJqpi1bqQoB6RffNwQfv6XL8WfvXQjAGcmDm8conTOgFn82J9WHW6lG+/ZjXt3TuKMNa1rg94V9y90bAb2mlGqnudhBuAFjx5LUbs2eFiMiY8l5Et6RVZStWE+xwrR/ZSWCTdfZw6vf/u3H7aNA7vxY7IEzTAi17vllFU99rnybqUpbuGNYq/+gXQc05lyPOex/TPYMJjC597YurZeXXGlwtiHAXvNqC60KdU8r13jlUkAUY45sKJHzaUcvKrD33LemsjMLGkF0byyliG9SRX7rDbHM5kiJGKmVy7kS5HpbsrDiuF44zCTKeJ1Z67CWWv7Oj6UyIuBtIrpTMH+PlvUMZCOtbQ7aLpFxoG5qqLmvmMwt5KXcYhyzEH1iTl49U/64psq+o4eUxy7Zm+J0ZtUMWu1Ftg/ncXK3iS6E0pkd4ZJ2ziYOyzdoJjNlbBxKI1rL9oYSYNmKoeyulksaC0P9ncnGjcOC/kSdo0veP6srByiFfhnpKoYh0jXOUiVMYdCSY+cem8Hy+8vjih9KRXzuRIMg2L/dBbrBlJIxeTI+pQTdgM+UzlMLRZAafitG8JkIKU6jEO2oPvuYsPKAkpXaa5Yi2/duwdv/PrvHa0cGCzdOarXB9s8eFWHpyPsVmJjYfkiuLymB246eCwRzStrGdKbVGFQs2Bq/3QWl548iplsMbK7LJbzzdoifOf3ewHAbisQRQbSccznNZR0A6osVVUO93/8lb4jXOuhK6HYVcL1cmQuh0WrNbS7boS5laKqLCWJ+M4riVJqthvVswjOiEz9SDuJ7qe0zGCzdy+64S4sFDSsG0zhry8/EUZEKzATXMyhoOn49n178IazVuG0CMYaGANp8z2eyRYx0p1Atqj57mJ7EioQQl/GZgLSLHg+sVBASpUd2TLsNaMacwBM91G+VMRwd9xuUmcej+5Ca7fP4GMOReFWEnQQZhxYq4V1AykMdcUx0tPZzrF+sJslrxl49sgCCpqBy09d0eGzqg5rSMdcS5mC3vJdLDMOXq6hWrCMsEu+dDcu/6d7AJg+/Eu/fDf2WCmiUVUOQNm1tHmkyz5GCLCmw0O2qhHzmMGR1/RlqRyEcYgIva6K4nURr8Bkc3PzJR1PH5oDgEhmKPH0W8phOlNEUTNQ1A2kW7yLTccVGLSxtt3TXAEZqxd44IVJ7BpfxKP7Z0BItHfhbANxPGccHvrEJTh3/UCnTqkmq6w2/gdncvax5epWEsYhIvSlyoHcL/zh6ZFfaCWJIKaYPuWnD86hP6VGekcIAIOccmCN4FqvHMxFpRHXEptXzMOMxAvji+hJqJHMCmMwg7iRayfubjYZNYa740jHZOy2mjQaBsXkYiHSCq1VCOMQEZhyuGDjAN56/rpI3/SMhCLZyuG01b2RP+dBa0La5EIBGSuQ3uqce5ZNtJCvXOirYRjUdivxsM6y83nNHsITVZgBHu1JYGVvAh+54sQOn1FtCCHYNNyF3ZOmEX5w9xQmFgp4xYnDHT6z9rP8zGFEWdGbwD9fczZedsLSuQgTqox8ScfR+TzOXtfX6dOpyUAqBlkiGF8o2OmlrVYOfJxjUx0f7Xy+BHcugmFQ7ObaUUR9F84M8FBXHA98/JIOn01wNg2nsXXvDPZMZvC523egO6FEPp7WCoRyiBCvO3NVRewhyiRjMrJFHbPZIgYiXN/AkCSCoa4YJjjj0OpWDkNMrSwWajzSyXSmUjWMLeRxaLbsC3cPi4oabCzrUItmWreKjUNpHJ7L4Qu/eBb7pjK4/g9OFzEHgaAeEoqM8YU8DAr0p5bGAjDSnbCUg7mrbbUvmQ2VmlisXOyrMeMRb3h8/6zj+6grB8ZQd7SNmJvjhrtAKXDPzgmct2EArz9zVadPqSMI4yBomIQq4cicOUltKSgHwJz4NrFQsAfetzrbh70vU3Uoh0xBw6dvfQaAc/LeY/vMYVCsxXjUYw5smFVUZ074ceqqHgBm763jho/9caB+COMgaJi4KtsDivqXiHEY7o5j+5F5fPiWJwG0XjmosoT+lFqXW+nX249i22Fz7gSf6cPSV1kVetSVw23vvwjffef5kU9UcLNhMG0bND4Nd7khjIOgYZKqbLcZGFgybiVr8D2LObShPclgVxyTC8HdStstw/DRK07CX7/qRLztwvUATLfSmv4kVveZKcNRVw5rB1J4xYkjnT6NupEkYlf6HzcsjINAUDd8SwFWYBZ1hl3+73bkrw91xQIph7H5PBYLGrYdnscZa3rx3lcch0tPGcVfXXqC/ZjjhrvseddRVw5LGTYAajkbh6XlDBRECj6DY6kEpOFycbSjZ85QVxzbDs+DUgpKvaeIlXQDr/vn+3D+xgFsPzKPK7jUyR6uf9KmoS5cfuooJhcLWB3xosOlzDtesgGbR7srNhPLCWEcBA3DOoVKEW/jwPOa01bgvp0T+MgVJ2Eu155BSkNdcUwuFPDBHz+BfMmAZhi46pw1eM3pK+3H3LdrEuMLBdz+1BEA5rQ9Bt9w79JTRrBpuAufeu0pLT/v5czK3iTedO6aTp9GRxHGQdAwL908hO8/uA8GxZIJOg52xfHNPz2vrb9ztCeBhYKGu54dR7aoQzMo7tgxjl3Xv9pe+H/6xGGkrLqRmCJVpE9+8U1nYG1/ChceN9jWcxcsX4RxEDTMUqrm7iSnrTZVwLxrrsNND+zDdKaIv7jkeNz/wiQuPXkUV29ZixNGux29tgDgLeetbdv5CgSAMA6CJkioMj5wyWYoHj50QZkzVjtbi8gSQTom43O3bwel5ryGsfkCzl3fjxcfN9ShsxQInEQmW4kQcgUh5DlCyC5CyMc6fT6CYHzwshPwF5ds7vRpRJrelIpNVr0CIcDJK7vxmtNXglLTUPx46wEAwDnrojtFT7D8iIRxIITIAL4O4NUATgFwDSFERNwExwznbxjAyt4EXn3aCrzm9JV47RlmTOHzV52O7oSChCrhpJXdHT5LgaBMVNxKWwDsopTuBgBCyM0A3gBge0fPSiAIiU9ceTL+In881vSXhzjd9eGXY9NwF4a74jgwk4UqR2KvJhAAiI5xWA3gAPf9QQAXdOhcBILQ6U2qFR13N1kFVheftPSqiAXHPlHZqnhFNCuG7hJCriOEbCWEbJ2YmGjDaQkEAsHyJCrG4SAAPldvDYDD7gdRSm+klJ5HKT1veFikUQoEAkGriIpxeATAZkLIRkJIDMDVAG7r8DkJBALBsiUSMQdKqUYIeT+AXwGQAXybUrqtw6clEAgEy5ZIGAcAoJT+HMDPO30eAoFAIIiOW0kgEAgEEUIYB4FAIBBUIIyDQCAQCCoglFaUEywJCCE5AEGD1r0A5gI+dgjAZB2nUs9rt+qxQH3n3crz+H/tnW2MXFUZx3//uJWktPLSUlKi0i9GqAQoLxEUNWIaA4nRRBLYGFowqICJ8k0gJvBBEmmUYGlMaQSDL2mqopFCKIFGCS8BpKG01C2UNkRKGuSlQAvBaHz8cM7iZWe27d25Z/be5f9LbubOuWee+c2Zu/PMOXvnnLqPKeVdt77PkeF5+PwYjke/uvOBwyPi4L8FSKtTdW8DXqlRd02Nuk/W9KgTu0jdut4lPUq29xTapNR743NkeO+Lz48G69Zx6/Kw0hs16q4vZlEvdqm6dSntUcq9btyZ3t5ddJ5K/VJxZ3pbD+Tc5WGlJyOi8SW9SsUtjb2HRxedoZvedm6WOm5d7jms6Vjc0th7eHTRGbrpbedmOWS3zvYcjDHGlKPLPQdjjDGFmPHJQdLHJP1F0pikbZK+n8uPlnS/pB359qhcPi/X3y9pVSXOXEmbK9urkm5uu3c+Nippq6QtkjZIKrZQccPeF2bnbZJWtMh5qaRNuU03STq3Euv0XP68pJWSii2w3bD3DZJelLS/lG+TzpJmS7pH0vYc58dtd87HNkh6OsdZrbQKZjupc8lVFzdgIXBa3p8LPEdainQFcHUuvxq4Me8fDpwDXA6sOkDcTcDn2+5Nmj/rn8D8fH8FcH0HvOcB/wCOyffvAL7UEuclwHF5/yTgpUqsJ4CzSWuU3Auc16K2PpD3WTne/lK+TToDs4Ev5v0PAw+VauuG2/kj+VbAncBFJdt7oNc93QJDf8HwZ2Ap8CywsPLmPzuh3iVMkhyAT5BWrlPbvYFZwCvA8fmEXA18uwPeZwIPVO5fDPy8Tc65XMBrwGG5zvbKsVHg1ra19UTvCeVFk0MJ53zsZ8C3uuKc/y7XAxcOs73rbDN+WKmKpEWkrP44cGxE7AHIt3XWahwF1kV+l0sziHdE/Bu4AthKWkBpMXBbQd33GLC9nwdOkLRI0gjwNd6/IFQRpuD8deCpiPgXabnb3ZVju3NZcQb0nhaacpZ0JPAVYGNJ3/xcixjQWdJ9pN78PuAPhZWnzAcmOUiaQ+rGXRURbw0Y7iJg7eBWB2dQb0mzSMlhCXAcsAW4plHJ/s87kHdE7CV5ryMNGbwA/KdJx4nUdZb0KeBG4DvjRX2qFf8C0YD30GnKOX9xWAusjIhdJVwrz9WIc0R8mdTTOAw4t89DW8EHIjnkD8g7gd9GxB9z8cuSFubjC0mZ/FBinQKMRMSmIrLvf64mvE8FiIiduafzO+AzhZTJXo20d0Ssj4hPR8TZpC78jrY4S/oo8CdgWUTszMW7SUvcjtN3udsWeg+Vhp3XADsiotjFIQWciYh3SatdfrWk9yDM+OSQrxa5DRiLiJsqh+4Cluf95aRxxENhlCH0Ghr0fglYLGl8oq2lwFiTrlWabG9JC/LtUcCVwC+atX3veWo552GMe4BrIuKR8cp5aGGfpLNyzGUc+nk1bd7DpElnST8iTS53VRecJc2pJJMR4Hxge0n3gZjuf3qU3khXwgRpOGVz3s4nXQ2zkfRtdCNwdOUxLwCvA/tJ3wYXV47tAk7okjfpSqCxHGs9MK8j3muBv+et2FUddZ2BHwJvV+puBhbkY2cAzwA7gVUUvGihYe8Vue3/m2+vb7MzqVcW+bweL7+s5c7HAn/LcbYBt5BGIYp9jgyy+RfSxhhjepjxw0rGGGPq4+RgjDGmBycHY4wxPTg5GGOM6cHJwRhjTA9ODsYUQNLlkpbVqL9I0jMlnYypw8h0Cxgz05A0EhGrp9vDmEFwcjCmD3mCtQ2kCdaWkKZpXgacCNwEzAFeBS6JiD2S/go8CnwWuEvSXNIMpz+RdCppNtzZpB/HfTMi9ko6HbgdeAd4eHivzpiD42ElYybnk8CaiDgZeAv4LulXrRdExPgH+w2V+kdGxBci4qcT4vwK+EGOsxW4Lpf/EvhepLmjjGkV7jkYMzkvxv/nxvkNcC1p8Zb703Q7fAjYU6m/bmIASUeQksaDuegO4Pd9yn8NnNf8SzBmajg5GDM5E+eW2QdsO8A3/bdrxFaf+Ma0Bg8rGTM5H5c0nghGgceAY8bLJM3Kc/ZPSkS8CeyV9LlcdDHwYES8Abwp6Zxc/o3m9Y2ZOu45GDM5Y8BySbeSZt68BbgPWJmHhUaAm0kzbB6I5cBqSbNJs/pemssvBW6X9E6Oa0xr8KysxvQhX610d0ScNM0qxkwLHlYyxhjTg3sOxhhjenDPwRhjTA9ODsYYY3pwcjDGGNODk4MxxpgenByMMcb04ORgjDGmh/8BZcHEUQFnrG4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-350:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Study of the annual incidence" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And here are the annual incidences." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHApJREFUeJzt3X9wXWV+3/H3x5ZXBmKzNtjUPwCTwaWxYWLWGpuUtIUla5smg70NEAUCmsQdb4iTbNLOgJ3Q8RY8U+h0SuIyUDxLFgPLDw9dBjeLlxUmTGjr2pYXiNewjrTFa7x4kYgcMNuxurK//eM+iq+ELJ0rXd1zj/R5zdy5R1+d5+g8vpa+9/l5FRGYmZllMSnvGzAzs+Jw0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwya8j7BqrtwgsvjAULFuR9G2ZmhbJ///6PImLWcOeNu6SxYMEC2tra8r4NM7NCkfSjLOe5e8rMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMBvnOj85ya2P7abzxMm8b8XGAScNs3Fuy6529h3uZsur7Xnfio0D426dhpmVXHHvTnp6T//D10/vOcLTe47Q2DCJQ5tvzPHOrMjc0jAbp964+3puWjKXqVNKv+ZTp0xi9ZK5vHHP9TnfmRWZk4bZODV7+lSmNTbQ03uaxoZJ9PSeZlpjA7OnTc371qzA3D1lNo599GkPty+/lNuWXcIze4/Q5cFwGyVFRN73UFVNTU3hvafMzCojaX9ENA13nrunzMwsMycNs4Ly+gvLg5NGGf8SWpF4/YXlwQPhZcp/CTd/+aq8b8dsUF5/YXnyQDif/SXs419Cq0edn5xk88vv8t2DP+Hkz04zdcokVi7+R/zpr/6Cp9PaiHkgvAJeBGVF4vUXlid3T+FfQiser7+wvDhpJP4ltCJ57I4zvQib11yZ453YRJNpTEPSHwP/GgjgAPDbwLnA88AC4DBwa0QcT+dvBNYCp4A/jIhXUnwp8ARwDvAy8NWICEmNwJPAUuDvgN+IiMOpTAtwb7qVzRGxbah79eI+M7PKVW1MQ9I84A+Bpoi4EpgMNAMbgF0RsRDYlb5G0qL0/cXAKuARSZPT5R4F1gEL02NViq8FjkfE5cBDwIPpWjOBTcByYBmwSdKMYWtvZmZjIutAeANwjqQGSi2MD4DVQN+7/m3AmnS8GnguInoi4j2gA1gmaQ4wPSJ2R6l58+SAMn3XegG4QZKAlUBrRHSnVkwrZxKNmZnV2LBJIyJ+DPwn4AhwDPg4Ir4LXBQRx9I5x4DZqcg84P2ySxxNsXnpeGC8X5mI6AU+Bi4Y4lpmZpaDLN1TMyi1BC4D5gLnSfqtoYoMEosh4iMtU36P6yS1SWrr6uoa4tbMzGw0snRP/QrwXkR0RcTPgG8B/xT4MHU5kZ470/lHgYvLys+n1J11NB0PjPcrk7rAzge6h7hWPxGxNSKaIqJp1qxZGapklfIWK2YG2ZLGEeAaSeemcYYbgHeBHUBLOqcFeCkd7wCaJTVKuozSgPfe1IV1QtI16Tp3DijTd62bgdfSuMcrwApJM1KLZ0WKWY15nyMzgwzrNCJij6QXgO8BvcCbwFbg54DtktZSSiy3pPMPStoOvJPOXx8Rp9Ll7uLMlNud6QHwOPCUpA5KLYzmdK1uSfcD+9J590VE96hqbBXxPkdWRJ2fnOT3n32Th2+72ot0q8x7T9mQvM+RFdG9Lx7gm3uPcPuyS7z5aEZZ12l4RbgNyVusWJG4ZTz2vGGhDatvi5UXf+9abl9+KV2f9uR9S5/hgXoDbz5aC25p2LCKsM+RPwvFwC3jWnDSsEJzd4QN5M1Hx5YHwq3QPFBvVh3+ECabENwdYVZb7p6ywnN3hFntuHvKzMzcPWVmZtXnpGFWZ7zmxOqZk4ZZnfHmkFbPPBBuVie85sSKwC0Nm1DquevHW2BYEThp2IRSz10/XnNiReDuKZsQitL14zUnVu+8TsMmBG83YjY0r9MwK+OuH7PqcPeUTRju+jEbPXdPmZmZu6fMzKz6nDTMzCwzJw0zGzP1vJjSRsZJw8zGTD0vprSRGTZpSLpC0ltlj08k/ZGkmZJaJbWn5xllZTZK6pB0SNLKsvhSSQfS97ZIUoo3Sno+xfdIWlBWpiX9jHZJLdWtvlntTKR33Vfcu5MFG77N03uOEFFaTLlgw7e54t6ded+ajdKwSSMiDkXEkohYAiwF/i/wIrAB2BURC4Fd6WskLQKagcXAKuARSZPT5R4F1gEL02NViq8FjkfE5cBDwIPpWjOBTcByYBmwqTw5mRXJRHrX7X20xq9K12ncAPwwIn4kaTVwXYpvA14H7gFWA89FRA/wnqQOYJmkw8D0iNgNIOlJYA2wM5X5WrrWC8DDqRWyEmiNiO5UppVSonm24pqa5aQoW5hUkxdTjl+Vjmk0c+YP9kURcQwgPc9O8XnA+2VljqbYvHQ8MN6vTET0Ah8DFwxxLbPCmKjvuvsWU774e9dy+/JL6fq0J+9bsirI3NKQ9DngJmDjcKcOEosh4iMtU35v6yh1e3HJJZcMc3tmtTVR33U/dseZdWKb11yZ451YNVXS0rgR+F5EfJi+/lDSHID03JniR4GLy8rNBz5I8fmDxPuVkdQAnA90D3GtfiJia0Q0RUTTrFmzKqiSWW34XbeNF5Ukjd+k/1jCDqBvNlML8FJZvDnNiLqM0oD33tSFdULSNWm84s4BZfqudTPwWpT2N3kFWCFpRhoAX5FihTCRZsvY0B67o4nNa65k0dzpbF5zZb934WZFkilpSDoX+BLwrbLwA8CXJLWn7z0AEBEHge3AO8B3gPURcSqVuQv4OtAB/JDSIDjA48AFadD835BmYqUB8PuBfelxX9+geBHkNVvGycrMxoo3LBwDA2fL9KnVbJl7XzzAN/ce4fZll7D5y1eN+c8zs+LLumGhk8YYyOsDf/JOVmYj1fnJSX7/2Td5+Larx/0EgXrlXW5zlNdsmYk6tdOKbyItfCw6fwjTGMnjA38m6tROK66JuPCx6Jw0xkhec9T96XRWJG/cff1Zu3KtPjlpjDOVJiv3JVue3DouHo9pTHDuSx49T3EeHS98LBbPnpqgPNNqeFlbYZ7ibOOBZ0+NofHwzjLvmVZF+DccrhXmz4ywichJYwSq3aWTxx/QvPuS67lbLGsyyDvxmuXBA+EVGKvpgeV/QGvZvZHHTKsiTLHMOqMn78RbbZ4UYVk4aVSg2tMD8/4Dmse04CJMsawkGYynKc55vXmxYnHSqEC131kW4Q9otRXl3XnWZDAePjMi7zcvVh21aik6aVSomu8si/IHtNqK8O58PCSDrCbim5fxqFYtRSeNClX7j0kR/oBW20T6g1wEE/XNy3hR65aik0bO/AfU6sFEfPMyXtS6peikYWZ+81JgtW4pOmmYmRVcLVuK3kbEzCrmNR3jj7cRMbMxU88r+m1suXvKzDLLe02HWzj5c0vDzDLLe78tt3Dy55aGmWWW15qOvFs4doZbGlZVRdjy3EYnjw9NyruFY2dkShqSPi/pBUk/kPSupF+SNFNSq6T29Dyj7PyNkjokHZK0siy+VNKB9L0tkpTijZKeT/E9khaUlWlJP6NdUkv1qm5jwd0H499jdzSxec2VLJo7nc1rruy3xmOseNV6/cjaPfXnwHci4mZJnwPOBf4E2BURD0jaAGwA7pG0CGgGFgNzgVcl/eOIOAU8CqwD/jfwMrAK2AmsBY5HxOWSmoEHgd+QNBPYBDQBAeyXtCMijlel9lY17j6wseZV6/Vh2HUakqYDbwM/H2UnSzoEXBcRxyTNAV6PiCskbQSIiP+QznsF+BpwGPiriPgnKf6bqfxX+s6JiN2SGoCfALMoJZ/rIuIrqcxj6ec8e7b79TqNfHR+cvKsWxn43aBZ/avmOo2fB7qAb0h6U9LXJZ0HXBQRxwDS8+x0/jzg/bLyR1NsXjoeGO9XJiJ6gY+BC4a4ltUZdx+YTQxZkkYD8AXg0Yi4Gvgppa6os9EgsRgiPtIyZ36gtE5Sm6S2rq6uIW7NxlIeA6RmVltZxjSOAkcjYk/6+gVKSeNDSXPKuqc6y86/uKz8fOCDFJ8/SLy8zNHUPXU+0J3i1w0o8/rAG4yIrcBWKHVPZaiTjQFvemc2/hcgDtvSiIifAO9LuiKFbgDeAXYAfbOZWoCX0vEOoDnNiLoMWAjsTV1YJyRdk2ZN3TmgTN+1bgZeS+MnrwArJM1Is7NWpJiZWV0a7zMIs86e+gPgm2nm1P8BfptSwtkuaS1wBLgFICIOStpOKbH0AuvTzCmAu4AngHMozZrameKPA09J6qDUwmhO1+qWdD+wL513X0R0j7CuZmZjZqLMIPQut2ZmVVD0GYTe5dbMrIYmygxC7z1lZlYlE2EBorunzMzM3VNmZlZ9ThpmZpaZk4aZTVjeyr9yThoF4v/gZtU13hfijQXPniqQ8v/gm798Vd63Y1ZYE2Uh3ljw7KkCGPgfvI//g5uNTNEX4o0Fz54aR/xRl2bVNVEW4o0FJ40C8H9ws+qrZCt/jyee4TGNgpgIK03NaqmSrfw9nniGxzTMzM5iIo0nekzDzGyUPJ74WU4aZmZn4fHEz/KYhpnZEDye2J/HNMzMzGMaZmZWfU4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpZZpqQh6bCkA5LektSWYjMltUpqT88zys7fKKlD0iFJK8viS9N1OiRtkaQUb5T0fIrvkbSgrExL+hntklqqVXErBm8UZ1ZfKmlpXB8RS8rm8W4AdkXEQmBX+hpJi4BmYDGwCnhE0uRU5lFgHbAwPVal+FrgeERcDjwEPJiuNRPYBCwHlgGbypOTjX/+ZDWz+jKaFeGrgevS8TbgdeCeFH8uInqA9yR1AMskHQamR8RuAElPAmuAnanM19K1XgAeTq2QlUBrRHSnMq2UEs2zo7hvKwB/sppZfcra0gjgu5L2S1qXYhdFxDGA9Dw7xecB75eVPZpi89LxwHi/MhHRC3wMXDDEtfqRtE5Sm6S2rq6ujFWyeuaN4szqU9aWxrUR8YGk2UCrpB8Mca4GicUQ8ZGWOROI2ApshdI2IkPcmxWEN4ozq0+ZWhoR8UF67gRepDS+8KGkOQDpuTOdfhS4uKz4fOCDFJ8/SLxfGUkNwPlA9xDXsgmgkk9WM7PaGHbDQknnAZMi4kQ6bgXuA24A/i4iHpC0AZgZEXdLWgw8QymxzKU0SL4wIk5J2gf8AbAHeBn4LxHxsqT1wFUR8buSmoF/FRG3poHw/cAX0u18D1jaN8YxGG9YaGZWuawbFmbpnroIeDHNjm0AnomI76QEsF3SWuAIcAtARByUtB14B+gF1kfEqXStu4AngHMoDYDvTPHHgafSoHk3pdlXRES3pPuBfem8+4ZKGGZmNra8NbqZmXlrdDMzqz4nDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDLLnDQkTZb0pqS/TF/PlNQqqT09zyg7d6OkDkmHJK0siy+VdCB9b4skpXijpOdTfI+kBWVlWtLPaJfUUo1Km5nZyFTS0vgq8G7Z1xuAXRGxENiVvkbSIqAZWAysAh6RNDmVeRRYByxMj1UpvhY4HhGXAw8BD6ZrzQQ2AcuBZcCm8uRkZma1lSlpSJoP/Crw9bLwamBbOt4GrCmLPxcRPRHxHtABLJM0B5geEbsjIoAnB5Tpu9YLwA2pFbISaI2I7og4DrRyJtGYmVmNZW1p/BlwN3C6LHZRRBwDSM+zU3we8H7ZeUdTbF46HhjvVyYieoGPgQuGuFY/ktZJapPU1tXVlbFKZmZWqWGThqRfAzojYn/Ga2qQWAwRH2mZM4GIrRHRFBFNs2bNynibZmZWqSwtjWuBmyQdBp4DvijpaeDD1OVEeu5M5x8FLi4rPx/4IMXnDxLvV0ZSA3A+0D3EtczMLAfDJo2I2BgR8yNiAaUB7tci4reAHUDfbKYW4KV0vANoTjOiLqM04L03dWGdkHRNGq+4c0CZvmvdnH5GAK8AKyTNSAPgK1LMzMxy0DCKsg8A2yWtBY4AtwBExEFJ24F3gF5gfUScSmXuAp4AzgF2pgfA48BTkjootTCa07W6Jd0P7Evn3RcR3aO4ZzMzGwWV3tCPH01NTdHW1pb3bZiZFYqk/RHRNNx5XhFuZmaZOWmYmVlmThpmZpaZk4aZWR3r/OQktz62m84TJ/O+FcBJw8ysrm3Z1c6+w91sebU971sBRjfl1szMxsgV9+6kp/fMzk1P7znC03uO0NgwiUObb8ztvtzSMDOrQ2/cfT03LZnL1CmlP9NTp0xi9ZK5vHHP9bnel5OGmVkdmj19KtMaG+jpPU1jwyR6ek8zrbGB2dOm5npf7p4yM6tTH33aw+3LL+W2ZZfwzN4jdNXBYLhXhJuZmVeEm5lZ9TlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmQ2bNCRNlbRX0tuSDkr69yk+U1KrpPb0PKOszEZJHZIOSVpZFl8q6UD63hZJSvFGSc+n+B5JC8rKtKSf0S6ppZqVNzOzymRpafQAX4yIXwSWAKskXQNsAHZFxEJgV/oaSYuAZmAxsAp4RNLkdK1HgXXAwvRYleJrgeMRcTnwEPBgutZMYBOwHFgGbCpPTmZmVlvDJo0o+TR9OSU9AlgNbEvxbcCadLwaeC4ieiLiPaADWCZpDjA9InZH6UM8nhxQpu9aLwA3pFbISqA1Iroj4jjQyplEY2ZmNZZpTEPSZElvAZ2U/ojvAS6KiGMA6Xl2On0e8H5Z8aMpNi8dD4z3KxMRvcDHwAVDXGvg/a2T1CapraurK0uVzMxsBDIljYg4FRFLgPmUWg1XDnG6BrvEEPGRlim/v60R0RQRTbNmzRri1szMbDQqmj0VEX8PvE6pi+jD1OVEeu5Mpx0FLi4rNh/4IMXnDxLvV0ZSA3A+0D3EtczMLAdZZk/NkvT5dHwO8CvAD4AdQN9sphbgpXS8A2hOM6IuozTgvTd1YZ2QdE0ar7hzQJm+a90MvJbGPV4BVkiakQbAV6SYmZnloCHDOXOAbWkG1CRge0T8paTdwHZJa4EjwC0AEXFQ0nbgHaAXWB8Rp9K17gKeAM4BdqYHwOPAU5I6KLUwmtO1uiXdD+xL590XEd2jqbCZmY2cSm/ox4+mpqZoa2vL+zbMzApF0v6IaBruPK8INzOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNM7McdH5yklsf203niZN530pFnDTMzHKwZVc7+w53s+XV9rxvpSJZPrnPzMyq5Ip7d9LTe/ofvn56zxGe3nOExoZJHNp8Y453lo1bGmZmNfTG3ddz05K5TJ1S+vM7dcokVi+Zyxv3XJ/znWXjpGFmVkOzp09lWmMDPb2naWyYRE/vaaY1NjB72tS8by0Td0+ZmdXYR5/2cPvyS7lt2SU8s/cIXQUaDFdE5H0PVdXU1BRtbW1534aZWaFI2h8RTcOd5+4pMzPLzEnDzMwyGzZpSLpY0l9JelfSQUlfTfGZkloltafnGWVlNkrqkHRI0sqy+FJJB9L3tkhSijdKej7F90haUFamJf2Mdkkt1ay8mZlVJktLoxf4txHxC8A1wHpJi4ANwK6IWAjsSl+TvtcMLAZWAY9Impyu9SiwDliYHqtSfC1wPCIuBx4CHkzXmglsApYDy4BN5cnJzMxqa9ikERHHIuJ76fgE8C4wD1gNbEunbQPWpOPVwHMR0RMR7wEdwDJJc4DpEbE7SqPvTw4o03etF4AbUitkJdAaEd0RcRxo5UyiMTOzGqtoTCN1G10N7AEuiohjUEoswOx02jzg/bJiR1NsXjoeGO9XJiJ6gY+BC4a41sD7WiepTVJbV1dXJVUyM7MKZF6nIenngP8G/FFEfJKGIwY9dZBYDBEfaZkzgYitwNZ0n12SfnS2m6tjFwIf5X0TVeK61J/xUg9wXcbKpVlOypQ0JE2hlDC+GRHfSuEPJc2JiGOp66kzxY8CF5cVnw98kOLzB4mXlzkqqQE4H+hO8esGlHl9qHuNiFlZ6lRvJLVlmSNdBK5L/Rkv9QDXJW9ZZk8JeBx4NyL+c9m3dgB9s5lagJfK4s1pRtRllAa896YurBOSrknXvHNAmb5r3Qy8lsY9XgFWSJqRBsBXpJiZmeUgS0vjWuAO4ICkt1LsT4AHgO2S1gJHgFsAIuKgpO3AO5RmXq2PiFOp3F3AE8A5wM70gFJSekpSB6UWRnO6Vrek+4F96bz7IqJ7hHU1M7NRGnfbiBSVpHVpbKbwXJf6M17qAa5L3pw0zMwsM28jYmZmmTlpjBFJfyGpU9L3y2K/KGl32krlv0uanuKfk/SNFH9b0nVlZV5P27G8lR6zB/lxY12XMd9KpqB1ye21qbQeki5I538q6eEB1yrUazJMXXL9fRlBXb4kaX/6998v6Ytl18r1dTmriPBjDB7APwe+AHy/LLYP+Bfp+HeA+9PxeuAb6Xg2sB+YlL5+HWjKuS5zgC+k42nA3wKLgP8IbEjxDcCD6XgR8DbQCFwG/BCYnL63F/glSmtwdgI3Frguub02I6jHecAvA78LPDzgWkV7TYaqS66/LyOoy9XA3HR8JfDjenldzvZwS2OMRMRfU5oJVu4K4K/TcSvw6+l4EaX9u4iITuDvgbqZux212UqmJqpVl1re82AqrUdE/DQi/gfQ79N+ivianK0u9WAEdXkzIvrWqx0Epqq0XCH31+VsnDRq6/vATen4Fs4sgnwbWC2pQaW1LUvpv0DyG6mp/e/ybqJq7LaSqblR1qVP7q9NxnqcTRFfk+Hk/prAiOry68CbEdFDnb0u5Zw0aut3KO0SvJ9S0/X/pfhfUPpP0Qb8GfC/KK1xAbg9Iq4C/ll63FHTOy6jAVvJDHXqILHM28LUQhXqAnXw2lRQj7NeYpBYvb8mQ8n9NYHK6yJpMaXdvb/SFxrktLqY6uqkUUMR8YOIWBERS4FnKfWPExG9EfHHEbEkIlYDnwfa0/d+nJ5PAM+QU9eIhthKJn1/tFvJ1EyV6pL7a1NhPc6miK/JWeX9mkDldZE0H3gRuDMifpjCdfG6DMZJo4b6ZnJImgTcC/zX9PW5ks5Lx18CeiPindRddWGKTwF+jVIXV63vuxZbydREteqS92szgnoMqqCvydmuk/vvS6V1kfR54NvAxoj4n30n18PrclZ5j8SP1wellsQx4GeU3jWsBb5KaTbF31LahqVvceUC4BClQbNXgUtT/DxKM6n+htIg2Z+TZu7UuC6/TKlp/DfAW+nxLyltX7+LUqtoFzCzrMyfUmpJHaJs1gelAf7vp+893PdvULS65P3ajLAehylNzvg0/Z9cVODX5DN1yfs1GUldKL15/GnZuW8Bs+vhdTnbwyvCzcwsM3dPmZlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpn9f/zatDjH/Ln2AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A sorted list makes it easier to find the highest values (at the end)." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 229363\n", "2021 363278\n", "2002 502271\n", "2018 543281\n", "1996 553859\n", "2017 557449\n", "2019 584926\n", "2000 605096\n", "2015 613286\n", "2012 620315\n", "2022 638443\n", "2011 645042\n", "1995 648598\n", "2001 650660\n", "1993 653058\n", "2005 654308\n", "2006 657482\n", "1998 660316\n", "2014 673458\n", "1997 679308\n", "1994 682920\n", "2007 701566\n", "2013 708874\n", "2004 736266\n", "2008 745701\n", "2003 770211\n", "2016 780645\n", "1999 784963\n", "1992 821558\n", "2009 822819\n", "2010 848236\n", "dtype: int64" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHApJREFUeJzt3X9wXWV+3/H3x5ZXBmKzNtjUPwCTwaWxYWLWGpuUtIUla5smg70NEAUCmsQdb4iTbNLOgJ3Q8RY8U+h0SuIyUDxLFgPLDw9dBjeLlxUmTGjr2pYXiNewjrTFa7x4kYgcMNuxurK//eM+iq+ELJ0rXd1zj/R5zdy5R1+d5+g8vpa+9/l5FRGYmZllMSnvGzAzs+Jw0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwya8j7BqrtwgsvjAULFuR9G2ZmhbJ///6PImLWcOeNu6SxYMEC2tra8r4NM7NCkfSjLOe5e8rMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMBvnOj85ya2P7abzxMm8b8XGAScNs3Fuy6529h3uZsur7Xnfio0D426dhpmVXHHvTnp6T//D10/vOcLTe47Q2DCJQ5tvzPHOrMjc0jAbp964+3puWjKXqVNKv+ZTp0xi9ZK5vHHP9TnfmRWZk4bZODV7+lSmNTbQ03uaxoZJ9PSeZlpjA7OnTc371qzA3D1lNo599GkPty+/lNuWXcIze4/Q5cFwGyVFRN73UFVNTU3hvafMzCojaX9ENA13nrunzMwsMycNs4Ly+gvLg5NGGf8SWpF4/YXlwQPhZcp/CTd/+aq8b8dsUF5/YXnyQDif/SXs419Cq0edn5xk88vv8t2DP+Hkz04zdcokVi7+R/zpr/6Cp9PaiHkgvAJeBGVF4vUXlid3T+FfQiser7+wvDhpJP4ltCJ57I4zvQib11yZ453YRJNpTEPSHwP/GgjgAPDbwLnA88AC4DBwa0QcT+dvBNYCp4A/jIhXUnwp8ARwDvAy8NWICEmNwJPAUuDvgN+IiMOpTAtwb7qVzRGxbah79eI+M7PKVW1MQ9I84A+Bpoi4EpgMNAMbgF0RsRDYlb5G0qL0/cXAKuARSZPT5R4F1gEL02NViq8FjkfE5cBDwIPpWjOBTcByYBmwSdKMYWtvZmZjIutAeANwjqQGSi2MD4DVQN+7/m3AmnS8GnguInoi4j2gA1gmaQ4wPSJ2R6l58+SAMn3XegG4QZKAlUBrRHSnVkwrZxKNmZnV2LBJIyJ+DPwn4AhwDPg4Ir4LXBQRx9I5x4DZqcg84P2ySxxNsXnpeGC8X5mI6AU+Bi4Y4lpmZpaDLN1TMyi1BC4D5gLnSfqtoYoMEosh4iMtU36P6yS1SWrr6uoa4tbMzGw0snRP/QrwXkR0RcTPgG8B/xT4MHU5kZ470/lHgYvLys+n1J11NB0PjPcrk7rAzge6h7hWPxGxNSKaIqJp1qxZGapklfIWK2YG2ZLGEeAaSeemcYYbgHeBHUBLOqcFeCkd7wCaJTVKuozSgPfe1IV1QtI16Tp3DijTd62bgdfSuMcrwApJM1KLZ0WKWY15nyMzgwzrNCJij6QXgO8BvcCbwFbg54DtktZSSiy3pPMPStoOvJPOXx8Rp9Ll7uLMlNud6QHwOPCUpA5KLYzmdK1uSfcD+9J590VE96hqbBXxPkdWRJ2fnOT3n32Th2+72ot0q8x7T9mQvM+RFdG9Lx7gm3uPcPuyS7z5aEZZ12l4RbgNyVusWJG4ZTz2vGGhDatvi5UXf+9abl9+KV2f9uR9S5/hgXoDbz5aC25p2LCKsM+RPwvFwC3jWnDSsEJzd4QN5M1Hx5YHwq3QPFBvVh3+ECabENwdYVZb7p6ywnN3hFntuHvKzMzcPWVmZtXnpGFWZ7zmxOqZk4ZZnfHmkFbPPBBuVie85sSKwC0Nm1DquevHW2BYEThp2IRSz10/XnNiReDuKZsQitL14zUnVu+8TsMmBG83YjY0r9MwK+OuH7PqcPeUTRju+jEbPXdPmZmZu6fMzKz6nDTMzCwzJw0zGzP1vJjSRsZJw8zGTD0vprSRGTZpSLpC0ltlj08k/ZGkmZJaJbWn5xllZTZK6pB0SNLKsvhSSQfS97ZIUoo3Sno+xfdIWlBWpiX9jHZJLdWtvlntTKR33Vfcu5MFG77N03uOEFFaTLlgw7e54t6ded+ajdKwSSMiDkXEkohYAiwF/i/wIrAB2BURC4Fd6WskLQKagcXAKuARSZPT5R4F1gEL02NViq8FjkfE5cBDwIPpWjOBTcByYBmwqTw5mRXJRHrX7X20xq9K12ncAPwwIn4kaTVwXYpvA14H7gFWA89FRA/wnqQOYJmkw8D0iNgNIOlJYA2wM5X5WrrWC8DDqRWyEmiNiO5UppVSonm24pqa5aQoW5hUkxdTjl+Vjmk0c+YP9kURcQwgPc9O8XnA+2VljqbYvHQ8MN6vTET0Ah8DFwxxLbPCmKjvuvsWU774e9dy+/JL6fq0J+9bsirI3NKQ9DngJmDjcKcOEosh4iMtU35v6yh1e3HJJZcMc3tmtTVR33U/dseZdWKb11yZ451YNVXS0rgR+F5EfJi+/lDSHID03JniR4GLy8rNBz5I8fmDxPuVkdQAnA90D3GtfiJia0Q0RUTTrFmzKqiSWW34XbeNF5Ukjd+k/1jCDqBvNlML8FJZvDnNiLqM0oD33tSFdULSNWm84s4BZfqudTPwWpT2N3kFWCFpRhoAX5FihTCRZsvY0B67o4nNa65k0dzpbF5zZb934WZFkilpSDoX+BLwrbLwA8CXJLWn7z0AEBEHge3AO8B3gPURcSqVuQv4OtAB/JDSIDjA48AFadD835BmYqUB8PuBfelxX9+geBHkNVvGycrMxoo3LBwDA2fL9KnVbJl7XzzAN/ce4fZll7D5y1eN+c8zs+LLumGhk8YYyOsDf/JOVmYj1fnJSX7/2Td5+Larx/0EgXrlXW5zlNdsmYk6tdOKbyItfCw6fwjTGMnjA38m6tROK66JuPCx6Jw0xkhec9T96XRWJG/cff1Zu3KtPjlpjDOVJiv3JVue3DouHo9pTHDuSx49T3EeHS98LBbPnpqgPNNqeFlbYZ7ibOOBZ0+NofHwzjLvmVZF+DccrhXmz4ywichJYwSq3aWTxx/QvPuS67lbLGsyyDvxmuXBA+EVGKvpgeV/QGvZvZHHTKsiTLHMOqMn78RbbZ4UYVk4aVSg2tMD8/4Dmse04CJMsawkGYynKc55vXmxYnHSqEC131kW4Q9otRXl3XnWZDAePjMi7zcvVh21aik6aVSomu8si/IHtNqK8O58PCSDrCbim5fxqFYtRSeNClX7j0kR/oBW20T6g1wEE/XNy3hR65aik0bO/AfU6sFEfPMyXtS6peikYWZ+81JgtW4pOmmYmRVcLVuK3kbEzCrmNR3jj7cRMbMxU88r+m1suXvKzDLLe02HWzj5c0vDzDLLe78tt3Dy55aGmWWW15qOvFs4doZbGlZVRdjy3EYnjw9NyruFY2dkShqSPi/pBUk/kPSupF+SNFNSq6T29Dyj7PyNkjokHZK0siy+VNKB9L0tkpTijZKeT/E9khaUlWlJP6NdUkv1qm5jwd0H499jdzSxec2VLJo7nc1rruy3xmOseNV6/cjaPfXnwHci4mZJnwPOBf4E2BURD0jaAGwA7pG0CGgGFgNzgVcl/eOIOAU8CqwD/jfwMrAK2AmsBY5HxOWSmoEHgd+QNBPYBDQBAeyXtCMijlel9lY17j6wseZV6/Vh2HUakqYDbwM/H2UnSzoEXBcRxyTNAV6PiCskbQSIiP+QznsF+BpwGPiriPgnKf6bqfxX+s6JiN2SGoCfALMoJZ/rIuIrqcxj6ec8e7b79TqNfHR+cvKsWxn43aBZ/avmOo2fB7qAb0h6U9LXJZ0HXBQRxwDS8+x0/jzg/bLyR1NsXjoeGO9XJiJ6gY+BC4a4ltUZdx+YTQxZkkYD8AXg0Yi4Gvgppa6os9EgsRgiPtIyZ36gtE5Sm6S2rq6uIW7NxlIeA6RmVltZxjSOAkcjYk/6+gVKSeNDSXPKuqc6y86/uKz8fOCDFJ8/SLy8zNHUPXU+0J3i1w0o8/rAG4yIrcBWKHVPZaiTjQFvemc2/hcgDtvSiIifAO9LuiKFbgDeAXYAfbOZWoCX0vEOoDnNiLoMWAjsTV1YJyRdk2ZN3TmgTN+1bgZeS+MnrwArJM1Is7NWpJiZWV0a7zMIs86e+gPgm2nm1P8BfptSwtkuaS1wBLgFICIOStpOKbH0AuvTzCmAu4AngHMozZrameKPA09J6qDUwmhO1+qWdD+wL513X0R0j7CuZmZjZqLMIPQut2ZmVVD0GYTe5dbMrIYmygxC7z1lZlYlE2EBorunzMzM3VNmZlZ9ThpmZpaZk4aZTVjeyr9yThoF4v/gZtU13hfijQXPniqQ8v/gm798Vd63Y1ZYE2Uh3ljw7KkCGPgfvI//g5uNTNEX4o0Fz54aR/xRl2bVNVEW4o0FJ40C8H9ws+qrZCt/jyee4TGNgpgIK03NaqmSrfw9nniGxzTMzM5iIo0nekzDzGyUPJ74WU4aZmZn4fHEz/KYhpnZEDye2J/HNMzMzGMaZmZWfU4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpZZpqQh6bCkA5LektSWYjMltUpqT88zys7fKKlD0iFJK8viS9N1OiRtkaQUb5T0fIrvkbSgrExL+hntklqqVXErBm8UZ1ZfKmlpXB8RS8rm8W4AdkXEQmBX+hpJi4BmYDGwCnhE0uRU5lFgHbAwPVal+FrgeERcDjwEPJiuNRPYBCwHlgGbypOTjX/+ZDWz+jKaFeGrgevS8TbgdeCeFH8uInqA9yR1AMskHQamR8RuAElPAmuAnanM19K1XgAeTq2QlUBrRHSnMq2UEs2zo7hvKwB/sppZfcra0gjgu5L2S1qXYhdFxDGA9Dw7xecB75eVPZpi89LxwHi/MhHRC3wMXDDEtfqRtE5Sm6S2rq6ujFWyeuaN4szqU9aWxrUR8YGk2UCrpB8Mca4GicUQ8ZGWOROI2ApshdI2IkPcmxWEN4ozq0+ZWhoR8UF67gRepDS+8KGkOQDpuTOdfhS4uKz4fOCDFJ8/SLxfGUkNwPlA9xDXsgmgkk9WM7PaGHbDQknnAZMi4kQ6bgXuA24A/i4iHpC0AZgZEXdLWgw8QymxzKU0SL4wIk5J2gf8AbAHeBn4LxHxsqT1wFUR8buSmoF/FRG3poHw/cAX0u18D1jaN8YxGG9YaGZWuawbFmbpnroIeDHNjm0AnomI76QEsF3SWuAIcAtARByUtB14B+gF1kfEqXStu4AngHMoDYDvTPHHgafSoHk3pdlXRES3pPuBfem8+4ZKGGZmNra8NbqZmXlrdDMzqz4nDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDLLnDQkTZb0pqS/TF/PlNQqqT09zyg7d6OkDkmHJK0siy+VdCB9b4skpXijpOdTfI+kBWVlWtLPaJfUUo1Km5nZyFTS0vgq8G7Z1xuAXRGxENiVvkbSIqAZWAysAh6RNDmVeRRYByxMj1UpvhY4HhGXAw8BD6ZrzQQ2AcuBZcCm8uRkZma1lSlpSJoP/Crw9bLwamBbOt4GrCmLPxcRPRHxHtABLJM0B5geEbsjIoAnB5Tpu9YLwA2pFbISaI2I7og4DrRyJtGYmVmNZW1p/BlwN3C6LHZRRBwDSM+zU3we8H7ZeUdTbF46HhjvVyYieoGPgQuGuFY/ktZJapPU1tXVlbFKZmZWqWGThqRfAzojYn/Ga2qQWAwRH2mZM4GIrRHRFBFNs2bNynibZmZWqSwtjWuBmyQdBp4DvijpaeDD1OVEeu5M5x8FLi4rPx/4IMXnDxLvV0ZSA3A+0D3EtczMLAfDJo2I2BgR8yNiAaUB7tci4reAHUDfbKYW4KV0vANoTjOiLqM04L03dWGdkHRNGq+4c0CZvmvdnH5GAK8AKyTNSAPgK1LMzMxy0DCKsg8A2yWtBY4AtwBExEFJ24F3gF5gfUScSmXuAp4AzgF2pgfA48BTkjootTCa07W6Jd0P7Evn3RcR3aO4ZzMzGwWV3tCPH01NTdHW1pb3bZiZFYqk/RHRNNx5XhFuZmaZOWmYmVlmThpmZpaZk4aZWR3r/OQktz62m84TJ/O+FcBJw8ysrm3Z1c6+w91sebU971sBRjfl1szMxsgV9+6kp/fMzk1P7znC03uO0NgwiUObb8ztvtzSMDOrQ2/cfT03LZnL1CmlP9NTp0xi9ZK5vHHP9bnel5OGmVkdmj19KtMaG+jpPU1jwyR6ek8zrbGB2dOm5npf7p4yM6tTH33aw+3LL+W2ZZfwzN4jdNXBYLhXhJuZmVeEm5lZ9TlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmQ2bNCRNlbRX0tuSDkr69yk+U1KrpPb0PKOszEZJHZIOSVpZFl8q6UD63hZJSvFGSc+n+B5JC8rKtKSf0S6ppZqVNzOzymRpafQAX4yIXwSWAKskXQNsAHZFxEJgV/oaSYuAZmAxsAp4RNLkdK1HgXXAwvRYleJrgeMRcTnwEPBgutZMYBOwHFgGbCpPTmZmVlvDJo0o+TR9OSU9AlgNbEvxbcCadLwaeC4ieiLiPaADWCZpDjA9InZH6UM8nhxQpu9aLwA3pFbISqA1Iroj4jjQyplEY2ZmNZZpTEPSZElvAZ2U/ojvAS6KiGMA6Xl2On0e8H5Z8aMpNi8dD4z3KxMRvcDHwAVDXGvg/a2T1CapraurK0uVzMxsBDIljYg4FRFLgPmUWg1XDnG6BrvEEPGRlim/v60R0RQRTbNmzRri1szMbDQqmj0VEX8PvE6pi+jD1OVEeu5Mpx0FLi4rNh/4IMXnDxLvV0ZSA3A+0D3EtczMLAdZZk/NkvT5dHwO8CvAD4AdQN9sphbgpXS8A2hOM6IuozTgvTd1YZ2QdE0ar7hzQJm+a90MvJbGPV4BVkiakQbAV6SYmZnloCHDOXOAbWkG1CRge0T8paTdwHZJa4EjwC0AEXFQ0nbgHaAXWB8Rp9K17gKeAM4BdqYHwOPAU5I6KLUwmtO1uiXdD+xL590XEd2jqbCZmY2cSm/ox4+mpqZoa2vL+zbMzApF0v6IaBruPK8INzOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNM7McdH5yklsf203niZN530pFnDTMzHKwZVc7+w53s+XV9rxvpSJZPrnPzMyq5Ip7d9LTe/ofvn56zxGe3nOExoZJHNp8Y453lo1bGmZmNfTG3ddz05K5TJ1S+vM7dcokVi+Zyxv3XJ/znWXjpGFmVkOzp09lWmMDPb2naWyYRE/vaaY1NjB72tS8by0Td0+ZmdXYR5/2cPvyS7lt2SU8s/cIXQUaDFdE5H0PVdXU1BRtbW1534aZWaFI2h8RTcOd5+4pMzPLzEnDzMwyGzZpSLpY0l9JelfSQUlfTfGZkloltafnGWVlNkrqkHRI0sqy+FJJB9L3tkhSijdKej7F90haUFamJf2Mdkkt1ay8mZlVJktLoxf4txHxC8A1wHpJi4ANwK6IWAjsSl+TvtcMLAZWAY9Impyu9SiwDliYHqtSfC1wPCIuBx4CHkzXmglsApYDy4BN5cnJzMxqa9ikERHHIuJ76fgE8C4wD1gNbEunbQPWpOPVwHMR0RMR7wEdwDJJc4DpEbE7SqPvTw4o03etF4AbUitkJdAaEd0RcRxo5UyiMTOzGqtoTCN1G10N7AEuiohjUEoswOx02jzg/bJiR1NsXjoeGO9XJiJ6gY+BC4a41sD7WiepTVJbV1dXJVUyM7MKZF6nIenngP8G/FFEfJKGIwY9dZBYDBEfaZkzgYitwNZ0n12SfnS2m6tjFwIf5X0TVeK61J/xUg9wXcbKpVlOypQ0JE2hlDC+GRHfSuEPJc2JiGOp66kzxY8CF5cVnw98kOLzB4mXlzkqqQE4H+hO8esGlHl9qHuNiFlZ6lRvJLVlmSNdBK5L/Rkv9QDXJW9ZZk8JeBx4NyL+c9m3dgB9s5lagJfK4s1pRtRllAa896YurBOSrknXvHNAmb5r3Qy8lsY9XgFWSJqRBsBXpJiZmeUgS0vjWuAO4ICkt1LsT4AHgO2S1gJHgFsAIuKgpO3AO5RmXq2PiFOp3F3AE8A5wM70gFJSekpSB6UWRnO6Vrek+4F96bz7IqJ7hHU1M7NRGnfbiBSVpHVpbKbwXJf6M17qAa5L3pw0zMwsM28jYmZmmTlpjBFJfyGpU9L3y2K/KGl32krlv0uanuKfk/SNFH9b0nVlZV5P27G8lR6zB/lxY12XMd9KpqB1ye21qbQeki5I538q6eEB1yrUazJMXXL9fRlBXb4kaX/6998v6Ytl18r1dTmriPBjDB7APwe+AHy/LLYP+Bfp+HeA+9PxeuAb6Xg2sB+YlL5+HWjKuS5zgC+k42nA3wKLgP8IbEjxDcCD6XgR8DbQCFwG/BCYnL63F/glSmtwdgI3Frguub02I6jHecAvA78LPDzgWkV7TYaqS66/LyOoy9XA3HR8JfDjenldzvZwS2OMRMRfU5oJVu4K4K/TcSvw6+l4EaX9u4iITuDvgbqZux212UqmJqpVl1re82AqrUdE/DQi/gfQ79N+ivianK0u9WAEdXkzIvrWqx0Epqq0XCH31+VsnDRq6/vATen4Fs4sgnwbWC2pQaW1LUvpv0DyG6mp/e/ybqJq7LaSqblR1qVP7q9NxnqcTRFfk+Hk/prAiOry68CbEdFDnb0u5Zw0aut3KO0SvJ9S0/X/pfhfUPpP0Qb8GfC/KK1xAbg9Iq4C/ll63FHTOy6jAVvJDHXqILHM28LUQhXqAnXw2lRQj7NeYpBYvb8mQ8n9NYHK6yJpMaXdvb/SFxrktLqY6uqkUUMR8YOIWBERS4FnKfWPExG9EfHHEbEkIlYDnwfa0/d+nJ5PAM+QU9eIhthKJn1/tFvJ1EyV6pL7a1NhPc6miK/JWeX9mkDldZE0H3gRuDMifpjCdfG6DMZJo4b6ZnJImgTcC/zX9PW5ks5Lx18CeiPindRddWGKTwF+jVIXV63vuxZbydREteqS92szgnoMqqCvydmuk/vvS6V1kfR54NvAxoj4n30n18PrclZ5j8SP1wellsQx4GeU3jWsBb5KaTbF31LahqVvceUC4BClQbNXgUtT/DxKM6n+htIg2Z+TZu7UuC6/TKlp/DfAW+nxLyltX7+LUqtoFzCzrMyfUmpJHaJs1gelAf7vp+893PdvULS65P3ajLAehylNzvg0/Z9cVODX5DN1yfs1GUldKL15/GnZuW8Bs+vhdTnbwyvCzcwsM3dPmZlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpn9f/zatDjH/Ln2AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 229363\n", "2021 363278\n", "2002 502271\n", "2018 543281\n", "1996 553859\n", "2017 557449\n", "2019 584926\n", "2000 605096\n", "2015 613286\n", "2012 620315\n", "2022 638443\n", "2011 645042\n", "1995 648598\n", "2001 650660\n", "1993 653058\n", "2005 654308\n", "2006 657482\n", "1998 660316\n", "2014 673458\n", "1997 679308\n", "1994 682920\n", "2007 701566\n", "2013 708874\n", "2004 736266\n", "2008 745701\n", "2003 770211\n", "2016 780645\n", "1999 784963\n", "1992 821558\n", "2009 822819\n", "2010 848236\n", "dtype: int64" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ " yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1990,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "ename": "AssertionError", "evalue": "", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m first_august_week[1:]):\n\u001b[1;32m 5\u001b[0m \u001b[0mone_year\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mweek1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m52\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0myear\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myear\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAssertionError\u001b[0m: " ] } ], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 229363\n", "2021 363278\n", "2002 502271\n", "2018 543281\n", "1996 553859\n", "2017 557449\n", "2019 584926\n", "2000 605096\n", "2015 613286\n", "2012 620315\n", "2022 638443\n", "2011 645042\n", "1995 648598\n", "2001 650660\n", "1993 653058\n", "2005 654308\n", "2006 657482\n", "1998 660316\n", "2014 673458\n", "1997 679308\n", "1994 682920\n", "2007 701566\n", "2013 708874\n", "2004 736266\n", "2008 745701\n", "2003 770211\n", "2016 780645\n", "1999 784963\n", "2009 822819\n", "2010 848236\n", "dtype: int64" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG+BJREFUeJzt3X9wXWV+3/H3x5ZXBmKzNtjUPwCTwaGxYWLWGpuUtIUla5smg70NbBUIaBrPeEOcdJN2BuyEjrfgmUInUxKXgeJZshhYfnicZXCz62WFCRPaurLlBWIM60hbWOHFi0TlgNmO1RX+9o/zaH2llaUj+eqee68+r5k7997vPc/ReThG3/v8lCICMzOzPKYUfQFmZlY7nDTMzCw3Jw0zM8vNScPMzHJz0jAzs9ycNMzMLDcnDTMzy81Jw8zMcnPSMDOz3BqKvoByu/DCC2PRokVFX4aZWU05ePDghxExZ7Tj6i5pLFq0iPb29qIvw8yspkj6YZ7j3D1lZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZjVme6PT/KlR/fRfeJk0ZdidchJw6zObNvbwYF3e9n2UkfRl2J1qO7WaZhNVlfcs4e+/lM/e/9UWxdPtXXR2DCFI1tvLPDKrJ64pWFWJ16963puWjaf6dOy/62nT5vC2mXzefXu6wu+MqsnThpmdWLuzOnMaGygr/8UjQ1T6Os/xYzGBubOmF70pVkdcfeUWR358JM+blt5KbeuuISn93fR48FwKzNFRNHXUFZNTU3hvafMzMZG0sGIaBrtOHdPmZlZbk4aZjXC6y+sGjhpmNUIr7+wauCBcLMq5/UXVk3c0jCrcl5/YdXEScOsynn9hVUTd0+Z1QCvv7Bq4XUaZmZW3nUakv5Y0mFJb0p6RtJ0SbMltUrqSM+zSo7fLKlT0hFJq0viyyUdSp9tk6QUb5T0XIq3SVpUUqYl/YwOSS1j+Y9gZmblNWrSkLQA+DdAU0RcCUwFmoFNwN6IWAzsTe+RtCR9vhRYAzwsaWo63SPABmBxeqxJ8fXA8Yi4HHgQeCCdazawBVgJrAC2lCYnMzOrrLwD4Q3AOZIagHOB94G1wI70+Q5gXXq9Fng2Ivoi4h2gE1ghaR4wMyL2RdYn9sSQMgPn2gXckFohq4HWiOiNiONAK6cTjZmZVdioSSMifgT8GdAFHAM+iojvAhdFxLF0zDFgbiqyAHiv5BRHU2xBej00PqhMRPQDHwEXjHAuMzMrQJ7uqVlkLYHLgPnAeZJ+Z6Qiw8RihPh4y5Re4wZJ7ZLae3p6Rrg0MzM7G3m6p34deCcieiLip8A3gX8CfJC6nEjP3en4o8DFJeUXknVnHU2vh8YHlUldYOcDvSOca5CI2B4RTRHRNGfOnBxVsqG8r5GZ5ZEnaXQB10g6N40z3AC8DewGBmYztQAvpNe7geY0I+oysgHv/akL64Ska9J57hhSZuBcNwMvp3GPF4FVkmalFs+qFLMy875GZpbHqIv7IqJN0i7ge0A/8BqwHfgFYKek9WSJ5ZZ0/GFJO4G30vEbI+LTdLo7gceBc4A96QHwGPCkpE6yFkZzOlevpPuAA+m4eyOi96xqbIN4XyOrJ90fn+QPnnmNh2692ivmJ4gX901y3R+fZOu33+a7h3/MyZ+eYvq0Kaxe+o/409/4Zf9PZzXnnucP8Y39Xdy24hK2fvGqoi+npuRd3OdtRCY572tk9cAt5srxhoX2s32Nnv/9a7lt5aX0fNJX9CWdkQfsbTjeCbhy3NIwHr39dIt067orC7yS0ZUO2Lv7wQa4xVw5ThpWE9z9YKPxTsCV4YFwqwkesDebWGXd5dasaO5+MKsO7p6ymuHuB7PiuXvKzMzcPWVmZuXnpGFWIK87sVrjpGFWIG8UabXGA+FmBfC6E6tVbmlYXar2bh9ve2G1yknD6lK1d/t43YnVKndPWV2ppW4frzuxWuR1GlZXvN2I2fh4nYZNSu72MZtY7p6yuuNuH7OJ4+4pMzNz95SZmZWfk4aZmeXmpGFmZVXtCyvt7DhpmFlZVfvCSjs7oyYNSVdIer3k8bGkP5I0W1KrpI70PKukzGZJnZKOSFpdEl8u6VD6bJskpXijpOdSvE3SopIyLelndEhqKW/1zSbGZPy2fcU9e1i06Vs81dZFRLawctGmb3HFPXuKvjQro1GTRkQciYhlEbEMWA78X+B5YBOwNyIWA3vTeyQtAZqBpcAa4GFJU9PpHgE2AIvTY02KrweOR8TlwIPAA+lcs4EtwEpgBbClNDmZVavJ+G3b+2lNDmNdp3ED8IOI+KGktcB1Kb4DeAW4G1gLPBsRfcA7kjqBFZLeBWZGxD4ASU8A64A9qcxX07l2AQ+lVshqoDUielOZVrJE88yYa2pWAbW0jUm5eWHl5DDWMY1mTv/CvigijgGk57kpvgB4r6TM0RRbkF4PjQ8qExH9wEfABSOcy6wqTfZv2wMLK5///Wu5beWl9HzSV/QlWZnlbmlI+gxwE7B5tEOHicUI8fGWKb22DWTdXlxyySWjXJ7ZxJns37Yfvf302rCt664s8EpsooylpXEj8L2I+CC9/0DSPID03J3iR4GLS8otBN5P8YXDxAeVkdQAnA/0jnCuQSJie0Q0RUTTnDlzxlAls/Lzt22rZ2NJGr/N4LGE3cDAbKYW4IWSeHOaEXUZ2YD3/tSFdULSNWm84o4hZQbOdTPwcmT7m7wIrJI0Kw2Ar0qxQk3GmTGW36O3N7F13ZUsmT+TreuuHPTt26zW5Uoaks4FvgB8syR8P/AFSR3ps/sBIuIwsBN4C/gOsDEiPk1l7gS+BnQCPyAbBAd4DLggDZr/W9JMrDQAfh9wID3uHRgUL1LRM2OctMysKN6wcAyGzowZUOmZMfc8f4hv7O/ithWXsPWLV1Xs55pZ/cq7YaGTxhgU/Qd+qiVpmZVD98cn+YNnXuOhW6+eNBMFqpl3uZ0ARc+MmezTOa2+FN3Na+PjP8I0RkX+gZ+ik5ZZOUzmBZD1wEljjIqeh+6/Sme17tW7rj9jN69VPyeNGjOWpOU+Y6tGbjHXNo9p1DH3GZeXpzqXjxdA1i7PnqpDnmU1NnlbZJ7qbPXMs6fGoV6+SVbLLKta+e85WovMfyfC7DQnjRIT0Z1TxC/OaukzrvbusbzJoFqSsFk18EA4EzsFsPQXZyW7NIqcZVUrUyrzzuKpliQ8ETxZwsbKSYOJmQJY9C/OIqcG18qUyrEkg3qd6lzUlxqrXU4aTMw3yVr5xTkRaumbed5kUPT6nHIr+kuNlV+lWo1OGkm5v0nW0i/OiVAr38zrLRnkNZm/1NSrSrUanTSSifjlUSu/OCfCZP1lXCsm+5eaelLpVqOTxgTyL06rZpP5S009qXSr0UnDbJLyl5r6UOlWo5OGmVmNq2Sr0duImNmovJ6j/nkbETMrm2pf3W+V4+4pMzujalnP4ZZO9XBLw8zOqFr23XJLp3q4pWFmZ1T0eo5qaenYaW5p2JjUynbnVj5F/sGkamnp2Gm5koakz0raJen7kt6W9KuSZktqldSRnmeVHL9ZUqekI5JWl8SXSzqUPtsmSSneKOm5FG+TtKikTEv6GR2SWspXdRsPdxNMPo/e3sTWdVeyZP5Mtq67ctD6jolWdEvHfl7e7qm/AL4TETdL+gxwLvAnwN6IuF/SJmATcLekJUAzsBSYD7wk6Zci4lPgEWAD8L+AbwNrgD3AeuB4RFwuqRl4APhXkmYDW4AmIICDknZHxPGy1N5yczeBFcUr16vLqOs0JM0E3gB+MUoOlnQEuC4ijkmaB7wSEVdI2gwQEf8xHfci8FXgXeBvIuIfp/hvp/JfHjgmIvZJagB+DMwhSz7XRcSXU5lH08955kzX63UaE6P745Nn3KrA3/rMal8512n8ItADfF3Sa5K+Juk84KKIOAaQnuem4xcA75WUP5piC9LrofFBZSKiH/gIuGCEc1mFuZvAzCBf0mgAPgc8EhFXAz8h64o6Ew0TixHi4y1z+gdKGyS1S2rv6ekZ4dLsbBQ5IGpm1SHPmMZR4GhEtKX3u8iSxgeS5pV0T3WXHH9xSfmFwPspvnCYeGmZo6l76nygN8WvG1LmlaEXGBHbge2QdU/lqJONgze4MxvZZFiEOGpLIyJ+DLwn6YoUugF4C9gNDMxmagFeSK93A81pRtRlwGJgf+rCOiHpmjRr6o4hZQbOdTPwcho/eRFYJWlWmp21KsXMzKrOZJhdmHf21B8C30gzp/438K/JEs5OSeuBLuAWgIg4LGknWWLpBzammVMAdwKPA+eQzZrak+KPAU9K6iRrYTSnc/VKug84kI67NyJ6x1lXM7MJMZlmF3qXWzOzs1QPswu9y62ZWYVMptmF3nvKzKwMJssiRHdPmZmZu6fMzKz8nDTMzCw3Jw0zm5S8zf/4OGlUCf8DNqusybAQbyJ49lSVKP0HvPWLVxV9OWZ1azItxJsInj1VsKH/gAf4H7DZxKiHhXgTwbOnaoT/nKVZZU2mhXgTwUmjYP4HbFZ5Y9nm3+ONg3lMowpMlpWkZtViLNv8e7xxMI9pmJkNY7KNN3pMw8zsLHi8cXhOGmZmw/B44/A8pmFmdgYeb/x5HtMwMzOPaZiZWfk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbrmShqR3JR2S9Lqk9hSbLalVUkd6nlVy/GZJnZKOSFpdEl+eztMpaZskpXijpOdSvE3SopIyLelndEhqKVfFrXp4Qziz2jGWlsb1EbGsZB7vJmBvRCwG9qb3SFoCNANLgTXAw5KmpjKPABuAxemxJsXXA8cj4nLgQeCBdK7ZwBZgJbAC2FKanKw++C+omdWOs1kRvha4Lr3eAbwC3J3iz0ZEH/COpE5ghaR3gZkRsQ9A0hPAOmBPKvPVdK5dwEOpFbIaaI2I3lSmlSzRPHMW121Vwn9Bzaz25G1pBPBdSQclbUixiyLiGEB6npviC4D3SsoeTbEF6fXQ+KAyEdEPfARcMMK5BpG0QVK7pPaenp6cVbKieUM4s9qTt6VxbUS8L2ku0Crp+yMcq2FiMUJ8vGVOByK2A9sh20ZkhGuzKuIN4cxqT66WRkS8n567gefJxhc+kDQPID13p8OPAheXFF8IvJ/iC4eJDyojqQE4H+gd4VxWJ8byF9TMrHijblgo6TxgSkScSK9bgXuBG4D/ExH3S9oEzI6IuyQtBZ4mSyzzyQbJF0fEp5IOAH8ItAHfBv5LRHxb0kbgqoj4PUnNwL+MiC+lgfCDwOfS5XwPWD4wxjEcb1hoZjZ2eTcszNM9dRHwfJod2wA8HRHfSQlgp6T1QBdwC0BEHJa0E3gL6Ac2RsSn6Vx3Ao8D55ANgO9J8ceAJ9OgeS/Z7CsiolfSfcCBdNy9IyUMMzObWN4a3czMvDW6mZmVn5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmueVOGpKmSnpN0l+n97MltUrqSM+zSo7dLKlT0hFJq0viyyUdSp9tk6QUb5T0XIq3SVpUUqYl/YwOSS3lqLSZmY3PWFoaXwHeLnm/CdgbEYuBvek9kpYAzcBSYA3wsKSpqcwjwAZgcXqsSfH1wPGIuBx4EHggnWs2sAVYCawAtpQmJzMzq6xcSUPSQuA3gK+VhNcCO9LrHcC6kvizEdEXEe8AncAKSfOAmRGxLyICeGJImYFz7QJuSK2Q1UBrRPRGxHGgldOJxszMKixvS+PPgbuAUyWxiyLiGEB6npviC4D3So47mmIL0uuh8UFlIqIf+Ai4YIRzDSJpg6R2Se09PT05q2RmZmM1atKQ9JtAd0QczHlODROLEeLjLXM6ELE9IpoiomnOnDk5L9PMzMYqT0vjWuAmSe8CzwKfl/QU8EHqciI9d6fjjwIXl5RfCLyf4guHiQ8qI6kBOB/oHeFcZmZWgFGTRkRsjoiFEbGIbID75Yj4HWA3MDCbqQV4Ib3eDTSnGVGXkQ14709dWCckXZPGK+4YUmbgXDennxHAi8AqSbPSAPiqFDMzswI0nEXZ+4GdktYDXcAtABFxWNJO4C2gH9gYEZ+mMncCjwPnAHvSA+Ax4ElJnWQtjOZ0rl5J9wEH0nH3RkTvWVyzmZmdBWVf6OtHU1NTtLe3F30ZZmY1RdLBiGga7TivCDczs9ycNMzMLDcnDTMzy81Jw8ysinV/fJIvPbqP7hMni74UwEnDzKyqbdvbwYF3e9n2UkfRlwKc3ZRbMzObIFfcs4e+/tM7Nz3V1sVTbV00NkzhyNYbC7sutzTMzKrQq3ddz03L5jN9WvZrevq0KaxdNp9X776+0Oty0jAzq0JzZ05nRmMDff2naGyYQl//KWY0NjB3xvRCr8vdU2ZmVerDT/q4beWl3LriEp7e30VPFQyGe0W4mZl5RbiZmZWfk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpbbqElD0nRJ+yW9IemwpP+Q4rMltUrqSM+zSspsltQp6Yik1SXx5ZIOpc+2SVKKN0p6LsXbJC0qKdOSfkaHpJZyVt7MzMYmT0ujD/h8RPwKsAxYI+kaYBOwNyIWA3vTeyQtAZqBpcAa4GFJU9O5HgE2AIvTY02KrweOR8TlwIPAA+lcs4EtwEpgBbClNDmZmVlljZo0IvNJejstPQJYC+xI8R3AuvR6LfBsRPRFxDtAJ7BC0jxgZkTsi+yPeDwxpMzAuXYBN6RWyGqgNSJ6I+I40MrpRGNmZhWWa0xD0lRJrwPdZL/E24CLIuIYQHqemw5fALxXUvxoii1Ir4fGB5WJiH7gI+CCEc419Po2SGqX1N7T05OnSmZmNg65kkZEfBoRy4CFZK2GK0c4XMOdYoT4eMuUXt/2iGiKiKY5c+aMcGlmZnY2xjR7KiL+AXiFrIvog9TlRHruTocdBS4uKbYQeD/FFw4TH1RGUgNwPtA7wrnMzKwAeWZPzZH02fT6HODXge8Du4GB2UwtwAvp9W6gOc2IuoxswHt/6sI6IemaNF5xx5AyA+e6GXg5jXu8CKySNCsNgK9KMTMzK0BDjmPmATvSDKgpwM6I+GtJ+4CdktYDXcAtABFxWNJO4C2gH9gYEZ+mc90JPA6cA+xJD4DHgCcldZK1MJrTuXol3QccSMfdGxG9Z1NhMzMbP2Vf6OtHU1NTtLe3F30ZZmY1RdLBiGga7TivCDczs9ycNMzMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxyc9IwM7PcnDTMzCw3Jw0zM8vNScPMzHJz0jAzs9ycNMzMLDcnDTOzCuv++CRfenQf3SdOFn0pY+akYWZWYdv2dnDg3V62vdRR9KWMWZ6/3GdmZmVwxT176Os/9bP3T7V18VRbF40NUziy9cYCryw/tzTMzCrk1buu56Zl85k+LfvVO33aFNYum8+rd19f8JXl56RhZlYhc2dOZ0ZjA339p2hsmEJf/ylmNDYwd8b0oi8tN3dPmZlV0Ief9HHbyku5dcUlPL2/i54aGwxXRBR9DWXV1NQU7e3tRV+GmVlNkXQwIppGO87dU2ZmlpuThpmZ5TZq0pB0saS/kfS2pMOSvpLisyW1SupIz7NKymyW1CnpiKTVJfHlkg6lz7ZJUoo3SnouxdskLSop05J+RoeklnJW3szMxiZPS6Mf+HcR8cvANcBGSUuATcDeiFgM7E3vSZ81A0uBNcDDkqamcz0CbAAWp8eaFF8PHI+Iy4EHgQfSuWYDW4CVwApgS2lyMjOzyho1aUTEsYj4Xnp9AngbWACsBXakw3YA69LrtcCzEdEXEe8AncAKSfOAmRGxL7LR9yeGlBk41y7ghtQKWQ20RkRvRBwHWjmdaMzMrMLGNKaRuo2uBtqAiyLiGGSJBZibDlsAvFdS7GiKLUivh8YHlYmIfuAj4IIRzjX0ujZIapfU3tPTM5YqmZnZGORepyHpF4C/Av4oIj5OwxHDHjpMLEaIj7fM6UDEdmB7us4eST8808UV5ELgw6IvoozqrT5Qf3Wqt/pA/dWp2upzaZ6DciUNSdPIEsY3IuKbKfyBpHkRcSx1PXWn+FHg4pLiC4H3U3zhMPHSMkclNQDnA70pft2QMq+MdK0RMSdPnSpJUnue+c+1ot7qA/VXp3qrD9RfnWq1PnlmTwl4DHg7Iv5zyUe7gYHZTC3ACyXx5jQj6jKyAe/9qQvrhKRr0jnvGFJm4Fw3Ay+ncY8XgVWSZqUB8FUpZmZmBcjT0rgWuB04JOn1FPsT4H5gp6T1QBdwC0BEHJa0E3iLbObVxoj4NJW7E3gcOAfYkx6QJaUnJXWStTCa07l6Jd0HHEjH3RsRveOsq5mZnaW620akGknakMZd6kK91Qfqr071Vh+ovzrVan2cNMzMLDdvI2JmZrk5aYyDpL+U1C3pzZLYr0jal7ZJ+W+SZqb4ZyR9PcXfkHRdSZlX0lYrr6fH3GF+3ISrxFYxNV6nwu/TWOsj6YJ0/CeSHhpyrpq8R6PUqRbv0RckHUz34qCkz5ecqyru0bAiwo8xPoB/BnwOeLMkdgD45+n17wL3pdcbga+n13OBg8CU9P4VoKkK6jMP+Fx6PQP4e2AJ8J+ATSm+CXggvV4CvAE0ApcBPwCmps/2A79KtsZmD3BjHdSp8Ps0jvqcB/wa8HvAQ0POVav3aKQ61eI9uhqYn15fCfyo2u7RcA+3NMYhIv6WbJZXqSuAv02vW4HfSq+XkO3NRUR0A/8AVNXc7KjMVjEVVa46Vfaqz2ys9YmIn0TEfwcG/YWfWr5HZ6pTtRhHfV6LiIG1aoeB6cqWKlTNPRqOk0b5vAnclF7fwukFjm8AayU1KFu3spzBix+/nprT/74amqCauK1iCnOWdRpQNfcpZ33OpJbv0Whq+R79FvBaRPRRpfdogJNG+fwu2Q7AB8mapv8vxf+S7Ka3A38O/E+y9SsAt0XEVcA/TY/bK3rFQ2jIVjEjHTpMLPe2L5VUhjpBFd2nMdTnjKcYJlYr92gkNXuPJC0l29n7ywOhYQ6rmmmuThplEhHfj4hVEbEceIasT5yI6I+IP46IZRGxFvgs0JE++1F6PgE8TYHdIRphq5j0+dluFVNxZapT1dynMdbnTGr5Hp1Rrd4jSQuB54E7IuIHKVxV92goJ40yGZitIWkKcA/wX9P7cyWdl15/AeiPiLdSd9WFKT4N+E2yLq4irr0SW8VUVLnqVC33aRz1GVaN36Mznacm75GkzwLfAjZHxP8YOLia7tGwih6Jr8UHWUviGPBTsm8F64GvkM2W+HuyLVYGFk4uAo6QDYq9BFya4ueRzaT6O7JBsL8gzdYpoD6/Rtb8/Tvg9fT4F2Tb0+8laxntBWaXlPlTstbUEUpmdpAN8r+ZPnto4L9DrdapWu7TOOvzLtmEjU/Sv9MldXCPfq5OtXqPyL5c/qTk2NeBudV0j4Z7eEW4mZnl5u4pMzPLzUnDzMxyc9IwM7PcnDTMzCw3Jw0zM8vNScPMzHJz0jAzs9ycNMzMLLf/D84rZU3Lj7hwAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1992,\n", " sorted_data.index[-1].year)]\n", "\n", "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)\n", "yearly_incidence.plot(style='*')\n", "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }