
Basic analysis of the SARS-CoV-2 (Covid-19)
pandemic

Louis Boulanger

December 19, 2020

Contents
1 Foreword 1

2 Introduction 1

3 Data pre-processing 2
3.1 Downloading the data . 3
3.2 Checking for missing data . 5
3.3 Extracting the relevant information 5
3.4 Date conversion . 7
3.5 Conversion into a regular table 8
3.6 Transferring the data from Python to R 8
3.7 Quick analysis of the data . 9

4 Comparative analysis of the accumulated cases in the se-
lected countries 10
4.1 Linear scale . 10
4.2 Logarithmic scale . 12

1 Foreword
In order to process this computational document, you will need to install:

• Emacs 25.0 or greater (no guarantees on previous versions of Emacs)

• Python 3.6.0 or greater

• R 3.4

1

import sys
if sys.version_info.major < 3 or sys.version_info.minor < 6:

print("Please use Python 3.6 (or higher)!")

(unless (featurep 'ob-python)
(print "Please activate python in org-babel

(org-babel-do-lnaguages)!"))↪→

(unless (featurep 'ob-R)
(print "Please activate R in org-babel

(org-babel-do-lnaguages)!"))↪→

2 Introduction
The goal of this document is to provide an analysis of the Coronavirus
pandemic numbers, in particular the number of cases for a select number
of countries since the beginning of the pandemic. The data is provided by
the John Hopkins University Center for Systems Science and Engineering
(JHU CSSE), and freely available on GitHub. The analysis focuses primarily
on the time_series_covid19_confirmed_global.csv file, containing time
series for the confirmed cases for each state/province of each affected country.
Following the data pre-processing, the analysis will show the evolution of the
cases in:

• Belgium

• China (all provinces except Hong-Kong)

• Hong-Kong

• France (except DOM/TOMs)

• Germany

• Iran

• Italy

• Japan

• South Korea

• The Netherlands (except colonies)

2

https://systems.jhu.edu
https://systems.jhu.edu
https://github.com/CSSEGISandData/COVID-19

• Portugal

• Spain

• United Kingdom (except colonies)

• United States of America

3 Data pre-processing
The data containing the amount of confirmed cases of Covid-19 is taken from
the aforementioned JHU CSSE GitHub repository; specifically, the file used
is: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/
csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_
confirmed_global.csv . According to the information on the repository,
the data is updated every day at 23:59 UTC. The file contains the following
fields:

llX Column name Type Description
Province/State Text (can be empty) The state or province of a country, if

any.
Country/Region Text A country or region affected by the Covid-19

pandemic.
Lat Floating number The latitude of the general location of the country

or region
Long Floating number The longitude of the general location of the

country or region
<mm/dd/yy> Integer The number of cases for the specified

country/province on the specified day

Each of the columns corresponding for the data of a date are written in
the American date format of month/day/year.

3.1 Downloading the data
In order to save time and resources, the data is downloaded only if:

• the file has not been downloaded before,

• or if the file is obsolete, as in the last day recorded is in the past.

3

https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv

Particular care must be taken for the row containing ”Korea, South”:
since the document uses commas to separate the fields, we need to make
sure that we don’t separate the country name into two separate fields.

from urllib.request import urlopen
import datetime

temp_file_name = 'data.csv'

Downloads the data from GitHub
def download_data():

data = urlopen(data_url).read()
with open(temp_file_name, 'wb') as f:

f.write(data)

Tries to read data from the local file and returns the
content↪→

parsed as a series of lines
def read_data():

try:
with open(temp_file_name, 'r') as f:

data = f.read()
lines = data.split('\n')
table = [line.replace("\"Korea, South\"", "South

Korea").split(',') for line in lines]↪→

return table[:-2] # Removing the empty last line
except IOError as e:

raise e

Decides whether or not to download the file from GitHub
based on the↪→

presence of a local file and the last recorded date in the
local↪→

file
def try_download_data():

data = None
try:

data = read_data()
last_date = datetime.datetime.strptime(data[0][-1],

"%m/%d/%y")↪→

4

today = datetime.datetime.today()
if today - last_date > datetime.timedelta(day=1):

print("Data obsolete, downloading new data...")
download_data()
data = read_data()

except IOError:
download_data()
data = read_data()

finally:
return data

data = try_download_data()

Let’s print the first five lines for the last two dates.

Province/State Country/Region Lat Long 12/14/20 12/15/20
Afghanistan 33.93911 67.709953 48718 48952
Albania 41.1533 20.1683 49191 50000
Algeria 28.0339 1.6596 92597 93065
Andorra 42.5063 1.5218 7382 7382

3.2 Checking for missing data
The data is generated automatically, but it’s never too prudent to check if
some data is malformed or missing. We can assume that the first 4 rows,
containing information about the countries and provinces, are correct, since
they are the key of the real data.

valid_data = []

valid_data.append(data[0])
for row in data[1:]:

missing = any([value == '' for value in row[4:]])
if missing:

print(row)
else:

valid_data.append(row)

5

3.3 Extracting the relevant information
As mentioned in the introduction, we only care for a few countries in the
list; we will filter the rows in which we are not interested. There is also little
use for the Long and Lat columns, so we will drop them.

We also need to group the different Chinese provinces into one row, and
add the values together, while counting Hong Kong as a separate country.

target_countries = [
[None, "Belgium"],
["Hong Kong", None],
["Hong Kong", "China"], # China without Hong Kong
[None, "France"],
[None, "Germany"],
[None, "Iran"],
[None, "Italy"],
[None, "Japan"],
[None, "South Korea"],
[None, "Netherlands"],
[None, "United Kingdom"],
[None, "US"]

]

def is_target_country(province, country):
specific_province = lambda t, p, c: t[0] == p and t[1] is

None↪→

without_specific_province = lambda t, p, c: t[0] is not
None and t[0] != p and t[1] == c↪→

without_provinces = lambda t, p, c: t[0] is None and p ==
"" and t[1] == c↪→

check = lambda t, p, c: specific_province(t, p, c) or
without_specific_province(t, p, c) or
without_provinces(t, p, c)

↪→

↪→

res = [check(target, province, country) for target in
target_countries]↪→

return any(res)

extracted_data = []
extracted_data.append([data[0][1]] + data[0][4:])

for row in valid_data[1:]:

6

if "Korea" in row[1]:
print(row[1])

if is_target_country(row[0], row[1]):
print(row[0])
if row[0] == "Hong Kong":

extracted_data.append(["Hong Kong"] + row[4:])
elif row[1] == "China":

try:
idx = [row[0] for row in

extracted_data].index("China")↪→

extracted_data[idx][1:] = [int(a) + int(b)
for a, b in zip(extracted_data[-1][1:],
row[4:])]

↪→

↪→

except ValueError:
extracted_data.append(["China"] + row[4:])

else:
extracted_data.append([row[1]] + row[4:])

Let’s look at the last five days of the countries we selected.

Country/Region 12/11/20 12/12/20 12/13/20 12/14/20 12/15/20
Belgium 600397 603159 608137 609211 611422
China 8673 8742 8838 8920 9018
Hong Kong 7377 7446 7541 7623 7721
France 2350923 2350793 2376228 2379291 2390419
Germany 1314309 1336101 1350810 1357261 1391086
Iran 1092407 1100818 1108269 1115770 1123474
Italy 1805873 1825775 1843712 1855737 1870576
Japan 175310 178272 180639 182311 184752
South Korea 41736 42766 43484 44364 45442
Netherlands 594523 603603 613487 621944 628577
US 15913292 16134237 16325615 16518420 16716777
United Kingdom 1809455 1830956 1849403 1869666 1888116

3.4 Date conversion
The dates are currently expressed using the American format mm/dd/yy.
We will need to convert them into proper dates in order to analyze the data
further.

7

extracted_data[0][1:] = [datetime.datetime.strptime(date,
"%m/%d/%y") for date in extracted_data[0][1:]]↪→

Now, let’s take a look at the last two days again:

Country/Region 2020-12-14 00:00:00 2020-12-15 00:00:00
Belgium 609211 611422
China 8920 9018
Hong Kong 7623 7721
France 2379291 2390419
Germany 1357261 1391086
Iran 1115770 1123474
Italy 1855737 1870576
Japan 182311 184752
South Korea 44364 45442
Netherlands 621944 628577
US 16518420 16716777
United Kingdom 1869666 1888116

3.5 Conversion into a regular table
Right now, each date is represented as a column; we will flip the table and
have the dates as rows, and the countries as columns.

flipped_data = [[str(row[i]) for row in extracted_data] for i
in range(0, len(extracted_data[0]))]↪→

flipped_data[0][0] = "Date"
flipped_data[0] = [s.replace(" ", "") for s in

flipped_data[0]]↪→

Let’s look at the data for a few countries now:

Date Belgium China HongKong
2020-12-11 00:00:00 600397 8673 7377
2020-12-12 00:00:00 603159 8742 7446
2020-12-13 00:00:00 608137 8838 7541
2020-12-14 00:00:00 609211 8920 7623
2020-12-15 00:00:00 611422 9018 7721

This format is much more usable now.

8

3.6 Transferring the data from Python to R
We will switch from Python to R for the analysis, since R is a much better
tool than Python for that. We will use org-mode’s data exchange utility in
order to transfer the data.

[flipped_data[0], None] + flipped_data[1:]

In R, we get the data in the form of a data-frame, and the strings must
be converted.

data$Date <- as.Date(data$Date)
summary(data)

Date Belgium China HongKong
Min. :2020-01-22 Min. : 0 Min. : 10 Min. : 0
1st Qu.:2020-04-13 1st Qu.: 30589 1st Qu.:2276 1st Qu.:1009
Median :2020-07-04 Median : 61838 Median :2527 Median :1258
Mean :2020-07-04 Mean :132884 Mean :3903 Mean :2682
3rd Qu.:2020-09-24 3rd Qu.:108768 3rd Qu.:6338 3rd Qu.:5056
Max. :2020-12-15 Max. :611422 Max. :9018 Max. :7721

France Germany Iran Italy
Min. : 0 Min. : 0 Min. : 0 Min. : 0
1st Qu.: 110836 1st Qu.: 130072 1st Qu.: 73303 1st Qu.: 159516
Median : 197994 Median : 197198 Median : 237878 Median : 241419
Mean : 494998 Mean : 278940 Mean : 301025 Mean : 362680
3rd Qu.: 513732 3rd Qu.: 281346 3rd Qu.: 436319 3rd Qu.: 304323
Max. :2390419 Max. :1391086 Max. :1123474 Max. :1870576

Japan SouthKorea Netherlands US
Min. : 2 Min. : 1 Min. : 0 Min. : 1
1st Qu.: 7773 1st Qu.:10537 1st Qu.: 26551 1st Qu.: 585518
Median : 19461 Median :13091 Median : 50548 Median : 2833290
Mean : 45932 Mean :15651 Mean :118150 Mean : 4329085
3rd Qu.: 80490 3rd Qu.:23455 3rd Qu.:103141 3rd Qu.: 6972152
Max. :184752 Max. :45442 Max. :628577 Max. :16716777
UnitedKingdom
Min. : 0
1st Qu.: 97068
Median : 284900
Mean : 420031
3rd Qu.: 416363
Max. :1888116

9

3.7 Quick analysis of the data
Now, we can inspect the data and look at the curve for a country, for ex-
ample, France.

plot(data[,'Date'], data[,'France'], xlab="Date",
ylab="Confirmed cases in Metropolitan France,

cumulative")↪→

4 Comparative analysis of the accumulated cases
in the selected countries

4.1 Linear scale
Let’s build a graph showing the confirmed cases for all of the selected coun-
tries, on the same graph. The goal of such a graphic is to compare the

10

countries, determine outliers from a glance, and see the general shape of
the phenomenon across different places in the world. An interactive graph
might be easier to read and parse, such as the excellent ones in the Financial
Times website.

library(tidyverse)
library(ggrepel)
library(scales)

last_date <- data %>%
gather(Country, Cases, Belgium:UnitedKingdom) %>%
dplyr::filter(Date == tail(data$Date, 1), Country %in%

c("US", "France", "Germany", "China"))↪→

Color-blind friendly palette taken from
https://bconnelly.net/posts/creating_colorblind-friendly_fi ⌋

gures/↪→

with added grayscale values
palette <- c("#000000", "#E69F00", "#56B4E9", "#009E73",

"#292929", "#555555", "#999999", "#BBBBBB",
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")

data %>%
gather(Country, Cases, Belgium:UnitedKingdom) %>%
ggplot(aes(x=Date, y=Cases, colour=Country)) +
geom_line() +
scale_x_date(breaks = pretty_breaks(8), labels =

date_format("%b %Y")) +↪→

scale_color_manual(values=palette) +
scale_y_continuous(labels = comma_format(), breaks =

pretty_breaks(8)) +↪→

geom_text_repel(data=last_date, aes(label = Country)) +
ggtitle("Cumulative confirmed cases of Covid-19",

subtitle="In selected countries since the beginning of
2020") +

↪→

↪→

theme_bw()

11

https://www.ft.com/content/a2901ce8-5eb7-4633-b89c-cbdf5b386938
https://www.ft.com/content/a2901ce8-5eb7-4633-b89c-cbdf5b386938

This graph is dominated by the spike of the confirmed cases in the United
States, which outweighs the other countries’. It is also clear that the second
wave, which started for the selected countries in mid-October of 2020, was
significantly larger than the first wave.

4.2 Logarithmic scale
Let’s now take a look at the same graph, but with a logarithmic scale.

last_date <- data %>%
gather(Country, Cases, Belgium:UnitedKingdom) %>%
dplyr::filter(Date == tail(data$Date, 1))

data %>%
gather(Country, Cases, Belgium:UnitedKingdom) %>%
ggplot(aes(x=Date, y=Cases, colour=Country)) +
geom_line() +
scale_x_date(breaks = pretty_breaks(8), labels =

date_format("%b %Y")) +↪→

scale_color_manual(values=palette) +
scale_y_continuous(trans="log10", labels = comma_format()) +
geom_text_repel(data=last_date, aes(label = Country)) +
ggtitle("Cumulative confirmed cases of Covid-19",

subtitle="In selected countries since the beginning of
2020, on a logarithmic scale") +

↪→

↪→

theme_bw()

12

This graph shows in better details the different waves of infection among
the selected countries. We can clearly see how the pandemic started in
China, starting in January, and was mitigated in mid-February; while the
other countries experienced the rapid growth of the cases in March. The
period of international lockdown during the spring and summer is visible,
as well the different waves of infections later in the year.

13

	Foreword
	Introduction
	Data pre-processing
	Downloading the data
	Checking for missing data
	Extracting the relevant information
	Date conversion
	Conversion into a regular table
	Transferring the data from Python to R
	Quick analysis of the data

	Comparative analysis of the accumulated cases in the selected countries
	Linear scale
	Logarithmic scale

