diff --git a/module2/exo1/toy_document_en.Rmd b/module2/exo1/toy_document_en.Rmd index d5417d3c34896551129aa3e468125f34cf2f7d49..06139c543d83076fc35f4c5f3d8d0dc2e0ed0b81 100644 --- a/module2/exo1/toy_document_en.Rmd +++ b/module2/exo1/toy_document_en.Rmd @@ -9,4 +9,28 @@ My computer tells me that π is *approximatively* ```{r} pi -``` \ No newline at end of file +``` + +##Buffon’s needle +Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation** +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) +``` +##Using a surface fraction argument +A method that is easier to understand and does not make use of the **sin** function is based on the fact that if ***X*∼*U*(0,1)** and ***Y*∼*U*(0,1)**, then **P[X^2+Y^2≤1]=π/4 **(see [“Monte Carlo method” on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach: +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` +It is therefore straightforward to obtain a (not really good) approximation to π by counting how many times, on average, ***X*^2+*Y*^2** is smaller than 1 : +```{r} +4*mean(df$Accept) +```