diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 41f5462ebc19d05bc1604afa01e63319fd1c0edd..2eeedcb8a614926a4e6ccc763613605655b7aa1a 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -60,26 +60,974 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 3, "metadata": {}, "outputs": [ { - "ename": "FileNotFoundError", - "evalue": "File b'incidence-PAY-3.csv' does not exist", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mraw_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskiprows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mraw_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 707\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 708\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 709\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 710\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 711\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 449\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 817\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 818\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 819\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 820\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1047\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1048\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1049\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1050\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1051\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'python'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 1693\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'allow_leading_cols'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex_col\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1694\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1695\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparsers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1696\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1697\u001b[0m \u001b[0;31m# XXX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._setup_parser_source\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: File b'incidence-PAY-3.csv' does not exist" - ] + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020210932262117527.027715.03426.042.0FRFrance
120210832090316885.024921.03226.038.0FRFrance
220210732239318303.026483.03428.040.0FRFrance
320210632318319134.027232.03529.041.0FRFrance
420210532242618445.026407.03428.040.0FRFrance
520210432580421491.030117.03932.046.0FRFrance
620210332181017894.025726.03327.039.0FRFrance
720210231732013906.020734.02621.031.0FRFrance
820210132179917778.025820.03327.039.0FRFrance
920205332122016498.025942.03225.039.0FRFrance
1020205231642812285.020571.02519.031.0FRFrance
1120205132161917370.025868.03327.039.0FRFrance
1220205031684513220.020470.02620.032.0FRFrance
132020493129399923.015955.02015.025.0FRFrance
1420204831380410641.016967.02116.026.0FRFrance
1520204731908515285.022885.02923.035.0FRFrance
1620204632480120503.029099.03831.045.0FRFrance
1720204534251636857.048175.06556.074.0FRFrance
1820204434456738521.050613.06859.077.0FRFrance
1920204334373737523.049951.06657.075.0FRFrance
2020204233514529812.040478.05345.061.0FRFrance
2120204132787723206.032548.04235.049.0FRFrance
2220204032044316381.024505.03125.037.0FRFrance
2320203931981015900.023720.03024.036.0FRFrance
2420203832555921141.029977.03932.046.0FRFrance
2520203731848514649.022321.02822.034.0FRFrance
262020363103907646.013134.01612.020.0FRFrance
27202035399186842.012994.01510.020.0FRFrance
28202034360843090.09078.094.014.0FRFrance
29202033361063411.08801.095.013.0FRFrance
.................................
186719852132609619621.032571.04735.059.0FRFrance
186819852032789620885.034907.05138.064.0FRFrance
186919851934315432821.053487.07859.097.0FRFrance
187019851834055529935.051175.07455.093.0FRFrance
187119851733405324366.043740.06244.080.0FRFrance
187219851635036236451.064273.09166.0116.0FRFrance
187319851536388145538.082224.011683.0149.0FRFrance
18741985143134545114400.0154690.0244207.0281.0FRFrance
18751985133197206176080.0218332.0357319.0395.0FRFrance
18761985123245240223304.0267176.0445405.0485.0FRFrance
18771985113276205252399.0300011.0501458.0544.0FRFrance
18781985103353231326279.0380183.0640591.0689.0FRFrance
18791985093369895341109.0398681.0670618.0722.0FRFrance
18801985083389886359529.0420243.0707652.0762.0FRFrance
18811985073471852432599.0511105.0855784.0926.0FRFrance
18821985063565825518011.0613639.01026939.01113.0FRFrance
18831985053637302592795.0681809.011551074.01236.0FRFrance
18841985043424937390794.0459080.0770708.0832.0FRFrance
18851985033213901174689.0253113.0388317.0459.0FRFrance
188619850239758680949.0114223.0177147.0207.0FRFrance
188719850138548965918.0105060.0155120.0190.0FRFrance
188819845238483060602.0109058.0154110.0198.0FRFrance
1889198451310172680242.0123210.0185146.0224.0FRFrance
18901984503123680101401.0145959.0225184.0266.0FRFrance
1891198449310107381684.0120462.0184149.0219.0FRFrance
189219844837862060634.096606.0143110.0176.0FRFrance
189319844737202954274.089784.013199.0163.0FRFrance
189419844638733067686.0106974.0159123.0195.0FRFrance
18951984453135223101414.0169032.0246184.0308.0FRFrance
189619844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1897 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202109 3 22621 17527.0 27715.0 34 26.0 \n", + "1 202108 3 20903 16885.0 24921.0 32 26.0 \n", + "2 202107 3 22393 18303.0 26483.0 34 28.0 \n", + "3 202106 3 23183 19134.0 27232.0 35 29.0 \n", + "4 202105 3 22426 18445.0 26407.0 34 28.0 \n", + "5 202104 3 25804 21491.0 30117.0 39 32.0 \n", + "6 202103 3 21810 17894.0 25726.0 33 27.0 \n", + "7 202102 3 17320 13906.0 20734.0 26 21.0 \n", + "8 202101 3 21799 17778.0 25820.0 33 27.0 \n", + "9 202053 3 21220 16498.0 25942.0 32 25.0 \n", + "10 202052 3 16428 12285.0 20571.0 25 19.0 \n", + "11 202051 3 21619 17370.0 25868.0 33 27.0 \n", + "12 202050 3 16845 13220.0 20470.0 26 20.0 \n", + "13 202049 3 12939 9923.0 15955.0 20 15.0 \n", + "14 202048 3 13804 10641.0 16967.0 21 16.0 \n", + "15 202047 3 19085 15285.0 22885.0 29 23.0 \n", + "16 202046 3 24801 20503.0 29099.0 38 31.0 \n", + "17 202045 3 42516 36857.0 48175.0 65 56.0 \n", + "18 202044 3 44567 38521.0 50613.0 68 59.0 \n", + "19 202043 3 43737 37523.0 49951.0 66 57.0 \n", + "20 202042 3 35145 29812.0 40478.0 53 45.0 \n", + "21 202041 3 27877 23206.0 32548.0 42 35.0 \n", + "22 202040 3 20443 16381.0 24505.0 31 25.0 \n", + "23 202039 3 19810 15900.0 23720.0 30 24.0 \n", + "24 202038 3 25559 21141.0 29977.0 39 32.0 \n", + "25 202037 3 18485 14649.0 22321.0 28 22.0 \n", + "26 202036 3 10390 7646.0 13134.0 16 12.0 \n", + "27 202035 3 9918 6842.0 12994.0 15 10.0 \n", + "28 202034 3 6084 3090.0 9078.0 9 4.0 \n", + "29 202033 3 6106 3411.0 8801.0 9 5.0 \n", + "... ... ... ... ... ... ... ... \n", + "1867 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1868 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1869 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1870 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1871 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1872 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1873 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1874 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1875 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1876 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1877 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1878 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1879 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1880 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1881 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1882 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1883 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1884 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1885 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1886 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1887 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1888 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1889 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1890 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1891 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1892 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1893 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1894 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1895 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1896 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 42.0 FR France \n", + "1 38.0 FR France \n", + "2 40.0 FR France \n", + "3 41.0 FR France \n", + "4 40.0 FR France \n", + "5 46.0 FR France \n", + "6 39.0 FR France \n", + "7 31.0 FR France \n", + "8 39.0 FR France \n", + "9 39.0 FR France \n", + "10 31.0 FR France \n", + "11 39.0 FR France \n", + "12 32.0 FR France \n", + "13 25.0 FR France \n", + "14 26.0 FR France \n", + "15 35.0 FR France \n", + "16 45.0 FR France \n", + "17 74.0 FR France \n", + "18 77.0 FR France \n", + "19 75.0 FR France \n", + "20 61.0 FR France \n", + "21 49.0 FR France \n", + "22 37.0 FR France \n", + "23 36.0 FR France \n", + "24 46.0 FR France \n", + "25 34.0 FR France \n", + "26 20.0 FR France \n", + "27 20.0 FR France \n", + "28 14.0 FR France \n", + "29 13.0 FR France \n", + "... ... ... ... \n", + "1867 59.0 FR France \n", + "1868 64.0 FR France \n", + "1869 97.0 FR France \n", + "1870 93.0 FR France \n", + "1871 80.0 FR France \n", + "1872 116.0 FR France \n", + "1873 149.0 FR France \n", + "1874 281.0 FR France \n", + "1875 395.0 FR France \n", + "1876 485.0 FR France \n", + "1877 544.0 FR France \n", + "1878 689.0 FR France \n", + "1879 722.0 FR France \n", + "1880 762.0 FR France \n", + "1881 926.0 FR France \n", + "1882 1113.0 FR France \n", + "1883 1236.0 FR France \n", + "1884 832.0 FR France \n", + "1885 459.0 FR France \n", + "1886 207.0 FR France \n", + "1887 190.0 FR France \n", + "1888 198.0 FR France \n", + "1889 224.0 FR France \n", + "1890 266.0 FR France \n", + "1891 219.0 FR France \n", + "1892 176.0 FR France \n", + "1893 163.0 FR France \n", + "1894 195.0 FR France \n", + "1895 308.0 FR France \n", + "1896 213.0 FR France \n", + "\n", + "[1897 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -96,9 +1044,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
166019891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1660 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1660 FR France " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -112,9 +1124,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020210932262117527.027715.03426.042.0FRFrance
120210832090316885.024921.03226.038.0FRFrance
220210732239318303.026483.03428.040.0FRFrance
320210632318319134.027232.03529.041.0FRFrance
420210532242618445.026407.03428.040.0FRFrance
520210432580421491.030117.03932.046.0FRFrance
620210332181017894.025726.03327.039.0FRFrance
720210231732013906.020734.02621.031.0FRFrance
820210132179917778.025820.03327.039.0FRFrance
920205332122016498.025942.03225.039.0FRFrance
1020205231642812285.020571.02519.031.0FRFrance
1120205132161917370.025868.03327.039.0FRFrance
1220205031684513220.020470.02620.032.0FRFrance
132020493129399923.015955.02015.025.0FRFrance
1420204831380410641.016967.02116.026.0FRFrance
1520204731908515285.022885.02923.035.0FRFrance
1620204632480120503.029099.03831.045.0FRFrance
1720204534251636857.048175.06556.074.0FRFrance
1820204434456738521.050613.06859.077.0FRFrance
1920204334373737523.049951.06657.075.0FRFrance
2020204233514529812.040478.05345.061.0FRFrance
2120204132787723206.032548.04235.049.0FRFrance
2220204032044316381.024505.03125.037.0FRFrance
2320203931981015900.023720.03024.036.0FRFrance
2420203832555921141.029977.03932.046.0FRFrance
2520203731848514649.022321.02822.034.0FRFrance
262020363103907646.013134.01612.020.0FRFrance
27202035399186842.012994.01510.020.0FRFrance
28202034360843090.09078.094.014.0FRFrance
29202033361063411.08801.095.013.0FRFrance
.................................
186719852132609619621.032571.04735.059.0FRFrance
186819852032789620885.034907.05138.064.0FRFrance
186919851934315432821.053487.07859.097.0FRFrance
187019851834055529935.051175.07455.093.0FRFrance
187119851733405324366.043740.06244.080.0FRFrance
187219851635036236451.064273.09166.0116.0FRFrance
187319851536388145538.082224.011683.0149.0FRFrance
18741985143134545114400.0154690.0244207.0281.0FRFrance
18751985133197206176080.0218332.0357319.0395.0FRFrance
18761985123245240223304.0267176.0445405.0485.0FRFrance
18771985113276205252399.0300011.0501458.0544.0FRFrance
18781985103353231326279.0380183.0640591.0689.0FRFrance
18791985093369895341109.0398681.0670618.0722.0FRFrance
18801985083389886359529.0420243.0707652.0762.0FRFrance
18811985073471852432599.0511105.0855784.0926.0FRFrance
18821985063565825518011.0613639.01026939.01113.0FRFrance
18831985053637302592795.0681809.011551074.01236.0FRFrance
18841985043424937390794.0459080.0770708.0832.0FRFrance
18851985033213901174689.0253113.0388317.0459.0FRFrance
188619850239758680949.0114223.0177147.0207.0FRFrance
188719850138548965918.0105060.0155120.0190.0FRFrance
188819845238483060602.0109058.0154110.0198.0FRFrance
1889198451310172680242.0123210.0185146.0224.0FRFrance
18901984503123680101401.0145959.0225184.0266.0FRFrance
1891198449310107381684.0120462.0184149.0219.0FRFrance
189219844837862060634.096606.0143110.0176.0FRFrance
189319844737202954274.089784.013199.0163.0FRFrance
189419844638733067686.0106974.0159123.0195.0FRFrance
18951984453135223101414.0169032.0246184.0308.0FRFrance
189619844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1896 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202109 3 22621 17527.0 27715.0 34 26.0 \n", + "1 202108 3 20903 16885.0 24921.0 32 26.0 \n", + "2 202107 3 22393 18303.0 26483.0 34 28.0 \n", + "3 202106 3 23183 19134.0 27232.0 35 29.0 \n", + "4 202105 3 22426 18445.0 26407.0 34 28.0 \n", + "5 202104 3 25804 21491.0 30117.0 39 32.0 \n", + "6 202103 3 21810 17894.0 25726.0 33 27.0 \n", + "7 202102 3 17320 13906.0 20734.0 26 21.0 \n", + "8 202101 3 21799 17778.0 25820.0 33 27.0 \n", + "9 202053 3 21220 16498.0 25942.0 32 25.0 \n", + "10 202052 3 16428 12285.0 20571.0 25 19.0 \n", + "11 202051 3 21619 17370.0 25868.0 33 27.0 \n", + "12 202050 3 16845 13220.0 20470.0 26 20.0 \n", + "13 202049 3 12939 9923.0 15955.0 20 15.0 \n", + "14 202048 3 13804 10641.0 16967.0 21 16.0 \n", + "15 202047 3 19085 15285.0 22885.0 29 23.0 \n", + "16 202046 3 24801 20503.0 29099.0 38 31.0 \n", + "17 202045 3 42516 36857.0 48175.0 65 56.0 \n", + "18 202044 3 44567 38521.0 50613.0 68 59.0 \n", + "19 202043 3 43737 37523.0 49951.0 66 57.0 \n", + "20 202042 3 35145 29812.0 40478.0 53 45.0 \n", + "21 202041 3 27877 23206.0 32548.0 42 35.0 \n", + "22 202040 3 20443 16381.0 24505.0 31 25.0 \n", + "23 202039 3 19810 15900.0 23720.0 30 24.0 \n", + "24 202038 3 25559 21141.0 29977.0 39 32.0 \n", + "25 202037 3 18485 14649.0 22321.0 28 22.0 \n", + "26 202036 3 10390 7646.0 13134.0 16 12.0 \n", + "27 202035 3 9918 6842.0 12994.0 15 10.0 \n", + "28 202034 3 6084 3090.0 9078.0 9 4.0 \n", + "29 202033 3 6106 3411.0 8801.0 9 5.0 \n", + "... ... ... ... ... ... ... ... \n", + "1867 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1868 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1869 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1870 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1871 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1872 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1873 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1874 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1875 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1876 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1877 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1878 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1879 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1880 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1881 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1882 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1883 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1884 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1885 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1886 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1887 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1888 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1889 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1890 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1891 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1892 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1893 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1894 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1895 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1896 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 42.0 FR France \n", + "1 38.0 FR France \n", + "2 40.0 FR France \n", + "3 41.0 FR France \n", + "4 40.0 FR France \n", + "5 46.0 FR France \n", + "6 39.0 FR France \n", + "7 31.0 FR France \n", + "8 39.0 FR France \n", + "9 39.0 FR France \n", + "10 31.0 FR France \n", + "11 39.0 FR France \n", + "12 32.0 FR France \n", + "13 25.0 FR France \n", + "14 26.0 FR France \n", + "15 35.0 FR France \n", + "16 45.0 FR France \n", + "17 74.0 FR France \n", + "18 77.0 FR France \n", + "19 75.0 FR France \n", + "20 61.0 FR France \n", + "21 49.0 FR France \n", + "22 37.0 FR France \n", + "23 36.0 FR France \n", + "24 46.0 FR France \n", + "25 34.0 FR France \n", + "26 20.0 FR France \n", + "27 20.0 FR France \n", + "28 14.0 FR France \n", + "29 13.0 FR France \n", + "... ... ... ... \n", + "1867 59.0 FR France \n", + "1868 64.0 FR France \n", + "1869 97.0 FR France \n", + "1870 93.0 FR France \n", + "1871 80.0 FR France \n", + "1872 116.0 FR France \n", + "1873 149.0 FR France \n", + "1874 281.0 FR France \n", + "1875 395.0 FR France \n", + "1876 485.0 FR France \n", + "1877 544.0 FR France \n", + "1878 689.0 FR France \n", + "1879 722.0 FR France \n", + "1880 762.0 FR France \n", + "1881 926.0 FR France \n", + "1882 1113.0 FR France \n", + "1883 1236.0 FR France \n", + "1884 832.0 FR France \n", + "1885 459.0 FR France \n", + "1886 207.0 FR France \n", + "1887 190.0 FR France \n", + "1888 198.0 FR France \n", + "1889 224.0 FR France \n", + "1890 266.0 FR France \n", + "1891 219.0 FR France \n", + "1892 176.0 FR France \n", + "1893 163.0 FR France \n", + "1894 195.0 FR France \n", + "1895 308.0 FR France \n", + "1896 213.0 FR France \n", + "\n", + "[1896 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -140,7 +2119,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -170,10 +2149,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -197,9 +2174,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -217,9 +2202,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcHMV5//955tjZW+dKCB1IIIEQmFMWYOML2QiMbUhiYjmxUWxsHP8wsZ3EsUjs8AVMYhKf+Awx4go2YIwNGBsQ4hCXBRKSEZIQum9pV1pptdrV7uzM1O+Prurp7unqY6bn0j7v12tf09tHdXV1dT31HFVFQggwDMMwTKnEqp0BhmEY5tiABQrDMAwTCSxQGIZhmEhggcIwDMNEAgsUhmEYJhJYoDAMwzCRwAKFYRiGiQQWKAzDMEwksEBhGIZhIiFR7QxUkrFjx4qpU6dWOxsMwzB1xYoVK/YLITr8zhtWAmXq1KlYvnx5tbPBMAxTVxDRtiDnscmLYRiGiQQWKAzDMEwksEBhGIZhIoEFCsMwDBMJLFAYhmGYSPAVKES0iIg6iehNy77RRLSYiDbI31GWY9cT0UYiWk9E8yz7zyWi1fLYbUREcn+KiB6Q+5cR0VTLNQvkPTYQ0QLL/mny3A3y2obSi4JhGIYphSAayl0ALnHsWwhgiRBiBoAl8n8Q0SwA8wGcJq/5KRHF5TU/A3ANgBnyT6V5NYCDQojpAL4P4FaZ1mgANwA4D8AcADdYBNetAL4v739QpsEwDMNUEV+BIoRYCqDbsftyAHfL7bsBXGHZf78QYlAIsQXARgBziGgCgHYhxCvCWHP4Hsc1Kq2HAMyV2ss8AIuFEN1CiIMAFgO4RB67SJ7rvP8xjRACv16+A4OZbLWzwjAMU0CxPpTxQog9ACB/x8n9EwHssJy3U+6bKLed+23XCCEyAHoAjPFIawyAQ/JcZ1rHNH98cy++9tAb+NGSjdXOCsMwTAFRO+XJZZ/w2F/MNV5pFWaI6BoiWk5Ey7u6unSn1QUH+tIAgO7+dJVzwjAMU0ixAmWfNGNB/nbK/TsBTLacNwnAbrl/kst+2zVElAAwAoaJTZfWfgAj5bnOtAoQQtwuhJgthJjd0eE7FU1Nk83mAADJmJtMZRiGqS7FCpRHAaioqwUAHrHsny8jt6bBcL6/Ks1ivUR0vvSBXOW4RqX1cQDPSD/LkwAuJqJR0hl/MYAn5bFn5bnO+x/TZHKGIhaPcbQ3wzC1h+/kkET0KwDvBzCWiHbCiLz6NoAHiehqANsBXAkAQog1RPQggLUAMgCuFUIoD/IXYUSMNQH4o/wDgDsA3EtEG2FoJvNlWt1EdDOA1+R5NwkhVHDA1wHcT0TfArBSpnHMowRKIs4aCsMwtYevQBFCfFJzaK7m/FsA3OKyfzmA0132D0AKJJdjiwAsctm/GUYo8bAiqwQKm7wYhqlB2HZSRwxJHwoLFIZhahEWKHVETmooMRYoDMPUICxQ6gljthoIbZA0wzBM9WCBUkcovYTlCcMwtQgLlDqCTInCIoVhmNqDBUodQVJHYXHCMEwtwgKljlAaCisoDMPUIixQ6ggV3CVYR2EYpgZhgVJHEEd5MQxTw7BAqUNYnjAMU4uwQKlDWENhGKYWYYFSRxD7UBiGqWFYoNQRsbxEYRiGqTlYoNQRPFKeYZhahgVKHZEfh1LbImXRi1swdeHjGMxk/U9mGOaYgQVKHaFGyudqW57gx89uBAD0DmSqnBOGYSoJC5Q6gupk1vo6ySbDMBHDAqUOqXGLF8MwwxQWKHWEOVK+TtzyLPgYZnjBAqWO4NnrGYapZVigMAzDMJHAAoWJnHoJHmAYJlpYoNQR3FAzDFPLsECpI+rNd1IvwQMMw0QDCxSmDLAqxTDDERYoDMMwTCSwQGHKB1u8GGZYwQKljqgXp3y95JNhmGhhgVJH1JtTnmGY4QULlGOMGx55E5+589VqZwMAW7wYZrhRkkAhoq8S0RoiepOIfkVEjUQ0mogWE9EG+TvKcv71RLSRiNYT0TzL/nOJaLU8dhvJSauIKEVED8j9y4hoquWaBfIeG4hoQSnPcSxx9yvb8Oz6rqrmgS1eDDM8KVqgENFEAP8AYLYQ4nQAcQDzASwEsEQIMQPAEvk/iGiWPH4agEsA/JSI4jK5nwG4BsAM+XeJ3H81gINCiOkAvg/gVpnWaAA3ADgPwBwAN1gFF1MbsImOYYYXpZq8EgCaiCgBoBnAbgCXA7hbHr8bwBVy+3IA9wshBoUQWwBsBDCHiCYAaBdCvCKMpQjvcVyj0noIwFypvcwDsFgI0S2EOAhgMfJC6JilXpzd5sqSbPRimGFF0QJFCLELwHcAbAewB0CPEOIpAOOFEHvkOXsAjJOXTASww5LETrlvotx27rddI4TIAOgBMMYjLaaGYA2FYYYXpZi8RsHQIKYBOB5ACxF9yusSl33CY3+x1zjzeQ0RLSei5V1d1fUtlEq9NdB1ll2GYUqkFJPXBwFsEUJ0CSGGADwM4F0A9kkzFuRvpzx/J4DJlusnwTCR7ZTbzv22a6RZbQSAbo+0ChBC3C6EmC2EmN3R0VHko9YG9dJAk5T3ot4kIMMwJVGKQNkO4HwiapZ+jbkA1gF4FICKuloA4BG5/SiA+TJyaxoM5/ur0izWS0Tny3Suclyj0vo4gGekn+VJABcT0SipKV0s9zE1BMsThhleJIq9UAixjIgeAvA6gAyAlQBuB9AK4EEiuhqG0LlSnr+GiB4EsFaef60QIiuT+yKAuwA0Afij/AOAOwDcS0QbYWgm82Va3UR0M4DX5Hk3CSG6i32WeoF7/AzD1DJFCxQAEELcACN818ogDG3F7fxbANzisn85gNNd9g9ACiSXY4sALAqZZYZhGKZM8Eh5pmywQsUwwwsWKHVIrZu+eBwKwwxPWKDUETUuRwqot/wyDFMaLFDqCNXjpzoZMs/yhGGGFyxQ6pCaN3nJ31LyuWLbQXzu7teQzdX2szIMk6ekKC+mstS4HCmglOxe98vXsbtnAHt6jmLSqObI8sQwTPlgDYUpG1EIwHox7zEMwwKlrqgXBSUvBOolxwzDRAELFKZs1JuJjmGY0mCBUkfUWwNdSnbr7FEZhgELlLqi3gYKliIA1bXsQWGY+oEFClM2ohCA7JNnmPqBBUodUS8mL3PqlTrJL8Mw0cAChSkbLFAYZnjBAoUpG6WYvOrNX8QwDAuUuqLWp1xRRGnyInbLM0zdwAKFYRiGiQQWKHVEnSgokTCcnpVhjhVYoDBlg4UCwwwvWKDUEfXWPpfmlGcYpt5ggcKUjSg0FI72Ypj6gQVKHVEvJiQVmRVFduvlmRmGYYFSV9Rbbz2KMOf6emKGGd6wQGEixxyHUkIaShbVy9gbhmFYoNQV9da2lpbfOntYhmFYoNQj9dPURmDy8khib88Asrn6KQ2GOdZhgRKCNbt78OSavVW7f700neYCwGXMcOfhAZz/n0vw30+uL99NGIYJBQuUEFx224v4wr0rqp2NujF9lTPKq+vIIADgufWdEdyFYZgoYIFST9SLJJGUcxyKSjvGK3AxTM3AAqWOEOavf0tdzegoko18KXkIeinLE4apHVig1CFBGttaUGZKChtWv5pEauH5GIaxU5JAIaKRRPQQEb1FROuI6AIiGk1Ei4log/wdZTn/eiLaSETriWieZf+5RLRaHruNZBeXiFJE9IDcv4yIplquWSDvsYGIFpTyHPVCmEa0mu1tlE55XRJKS2MNhWFqh1I1lB8CeEIIMRPAmQDWAVgIYIkQYgaAJfJ/ENEsAPMBnAbgEgA/JaK4TOdnAK4BMEP+XSL3Xw3goBBiOoDvA7hVpjUawA0AzgMwB8ANVsF1rBOkna6FAYFRjOzXPYfazQtwMUztULRAIaJ2AO8FcAcACCHSQohDAC4HcLc87W4AV8jtywHcL4QYFEJsAbARwBwimgCgXQjxijBaj3sc16i0HgIwV2ov8wAsFkJ0CyEOAliMvBA6ZlENdCCTV5nzEogSMuEnENVR1lAYpnYoRUM5EUAXgDuJaCUR/YKIWgCMF0LsAQD5O06ePxHADsv1O+W+iXLbud92jRAiA6AHwBiPtBhJrpoaSgRTryi0Ji/5fCxPGKZ2KEWgJACcA+BnQoizAfRBmrc0uH37wmN/sdfYb0p0DREtJ6LlXV1dHtmrffIyIkiUV1mz4nPzCJPSOeXVBqsoDFMzlCJQdgLYKYRYJv9/CIaA2SfNWJC/nZbzJ1uunwRgt9w/yWW/7RoiSgAYAaDbI60ChBC3CyFmCyFmd3R0FPGYtUNNmLFCUIpQEy5bbrA4YZjaoWiBIoTYC2AHEZ0id80FsBbAowBU1NUCAI/I7UcBzJeRW9NgON9flWaxXiI6X/pHrnJco9L6OIBnpJ/lSQAXE9Eo6Yy/WO6rCNV2eNd82LBp8irfXF41EHPAMIyDRInXXwfgPiJqALAZwGdgCKkHiehqANsBXAkAQog1RPQgDKGTAXCtECIr0/kigLsANAH4o/wDDIf/vUS0EYZmMl+m1U1ENwN4TZ53kxCiu8RnCUw2J5CIV75vnJ/S3f/cqvpQJCVpKL7Xctgww9QaJQkUIcQqALNdDs3VnH8LgFtc9i8HcLrL/gFIgeRybBGARWHyGxWZnEAi7n9eNam+OCm3U974ZXnCMLUDj5Qvgmr1/s2w4VqfeiXCPPg55YlVFJOzb3oKX7l/ZbWzwQxjWKAUQdXW4KiTkfKKaDQUv4GNjOJg/xB+t8o1NoVhKgILlCLI5ap7/1p3ylMEawAr7cbvOYaDgrJmdw+27u+rdjYYxpdSnfLDkmzVTF72X89za8EpX4JE8buyFp6vUlx224sAgK3fvqzKOWEYb1hDKYJ6WHa2FtrbSCaH9POhsNGrpli/t5e1qWEMC5QiqJpTPqAZCDiWZhv29qGUW568tHE/vvsULzMclHk/WIr3f+e5ameDqRIsUIqg2hpKrUd5mXmIIg2thlKZubz+9hfL8KNnNpb5LgxzbMACpQiqJVDCyIhasMqVVahV+PlqQUAzlWPt7sOYuvBxvLqlYuOljwlYoBRB1QRKwYbXudVcAljloQR8Lo5y+vrOwwMYGMp6njOYqXJoH1NRlm05AAB4/A0Oww4DC5QiqFaUVyhqIItRTA6pSyNKP9ac/1iCz971muc5fgKHObZoaTACYPvS/N7DwAKlCHJVNnkFChsua06CEsFIeT+nfES8vOmA636lAQ0MsYYynGhqMOZW6k9nqpyT+oIFShFUW0MJYs+v5uSQKpS3EmHDpeJnvkzEjGcZyrJAGU6o917tQcz1BguUIqieDyX4fWvBKldKFnyXAI7oAdM+vpG4bFgyJbzzgaEsXthQ34u7DVeq6YusR1igFEG1ey31Y/IqHe1swxGl7ydQkjHjEylFQ/nG797Ep+94FRs7e4tOoxIIIfDblTvZX4ThMaVPOWCBUgRVm3olxHootRDmGo3JS+dDUeNQSvvyB7NG46k0ESdxue6Nn+DxYnPXEQBAz9GhotOoBM+93YWvPvBnfOdJHsjJFAcLlCLIeqgo97yyFW/u6qlcZjTUgDyJZC4vv/VQSjVJKEGR1CyYlojA5KWEVTFKTiU7BoelwNt7eKBi9ywHA0NZzLnlaTz7Vqf/yT7UwndUT7BAKQKvhuHfH1mDj/zoxbLeP9jkkGXNgifmOJRyOuUjer5+GRba3OA+T2oiApOXmn25GN9bJd9jTOaz3tvQnQePorN3EDf/fm0JqbDNqxhYoIRANZTVGykfwilfA81CaU758qVtpW/QCAttSrovwRmPIMorLitOMZF3lXyLpt+g+lWnJBqTRrMWhS+ozoui4rBACUGshIYhSoIIllpQ1aMx17inkYvIh6I0FDXuQJuLEh5FKjnFCZQqvMhydUZ6B4awo7u/LGlbUVrlQAl+L3bKFwcLlBDEfDSUcn/8YdZDqbbQi4pym7yU5pHQOOVVw1JKecZKMXkVfdfwRDl+yI2P/uhFvOe/ni1P4haUQKz1IIhjERYoITBt4ZovrhYmZFTUQlaimb4+/JFQ6ctkdGvT5wVK8fdQZrNiyqOS/YIofV9ubD1Qfu0EyL+rUkzTYSIqmTwsUEKgOrG6qVcyZR6gIkKoKNUMGybTuRvB1Ctl1lCCah6laCjxkjSUyr3HY8XKE83USCxJioEFSgj8TBflHvCoGpdg66GUNy9BKG1ySJ+R8sUnbUO9Sl1jmjcDlWDyKiH0uBrvsVghVgtjn6KilqwN9QQLlBD4CZRqz/FlpRY+iJIEimly8HbKl0pgDaVKsyMEfcwoGnNTsywyqVqp/lHUjVwYcwBjwgIlBKZTXlNhs9kyO+XDjJSv5nooZh5Kx29gY8npB22wo7ldaIK+xyg6EKWuY1MrTW85xz8x3rBACUEsVkcaSg3MkhpFr7ncsw2bU7hobF5RRHmV4puopIYS9p7lzEMpRKuhMGFggRICv3Eo5R7waCrhNa6h5PMQRRrlDdE2fSg6gRLp/UoLG/bKQyQaSonXV7/GGUTypjjKqyhYoIQgPw7F/XjZBYqq5DXulI9ixLXfpcJHEAQl6ADJUl5tKXkMKsii6EBQhYbKl328VhSacc2Ix/qCBUoI1AenC0usJZNXLWSlpI/SxydqRryV+Jx+pg2q8uwIdg3F47wINZRyO+Ur1fEqhVowGdcjLFBC4OeUL//SwMEb0VqwAZdzYGPUTnk/LSKKV1vOgY1Rvu7infLBrix3xyuKd6W+n+p/RfVFyQKFiOJEtJKIfi//H01Ei4log/wdZTn3eiLaSETriWieZf+5RLRaHruNZLeQiFJE9IDcv4yIplquWSDvsYGIFpT6HEFQPhTdeIJqTRrpRjVzUmq0kJVKDWzUj0NR96uShmK5r1cOouhA5EfKFzsOJdrziiWKsqidL7m+iEJD+TKAdZb/FwJYIoSYAWCJ/B9ENAvAfACnAbgEwE+JSM3I9zMA1wCYIf8ukfuvBnBQCDEdwPcB3CrTGg3gBgDnAZgD4Aar4CoXMR+TVylrZgQh70Pxp941lEoPbNQSQZSXopgUKhnWHGVHwIt6MHkpoVorkWv1QkkChYgmAbgMwC8suy8HcLfcvhvAFZb99wshBoUQWwBsBDCHiCYAaBdCvCKMt3eP4xqV1kMA5krtZR6AxUKIbiHEQQCLkRdCZUPNGqsdKV+hyhcoyusY+Q50gsXULCJyyvslVIpNXTn8S52+3jvKKwINpcTJIYNeV+7vJBLhf4x8P5WmVA3lBwD+BYD1cxsvhNgDAPJ3nNw/EcAOy3k75b6Jctu533aNECIDoAfAGI+0yorfuha11PP6wdNvly8jASnnXF5RdaPzSwm7o/ZHM7Yh/DVBTV6RNIAlCufAgzDrwOFdQ9bruqJogUJEHwHQKYRYEfQSl33CY3+x19hvSnQNES0nouVdXV2BMqrDd+qVso9D8Ql9svDChv1lzUsQIpl6RXc8Ioni98pKnY7ESjHmk6BXRGKaCWFSdc9DsPPqQUOpFaf8nzYfwBNv7qlyLoJTiobybgAfI6KtAO4HcBER/R+AfdKMBfmrFnbeCWCy5fpJAHbL/ZNc9tuuIaIEgBEAuj3SKkAIcbsQYrYQYnZHR0dxTyohnyivSjnla10dN00nEaSlaygjd8r7RnkVf8NSRttbLyl32HA+FLtIp3zA88od5VXO6MJKM//2P+Hv/+/1amcjMEULFCHE9UKISUKIqTCc7c8IIT4F4FEAKupqAYBH5PajAObLyK1pMJzvr0qzWC8RnS/9I1c5rlFpfVzeQwB4EsDFRDRKOuMvlvvKip9Tvh4+lIpSQob9roxKdvtlMW/yKv1exZh6gs/lFUGvvEKmqHKH10fjQ6m3j602SJQhzW8DeJCIrgawHcCVACCEWENEDwJYCyAD4FohhFr0+YsA7gLQBOCP8g8A7gBwLxFthKGZzJdpdRPRzQBek+fdJIToLsOz2MibvNyPl38cikG57/LMW/tw2vEjML69saR0ItFQtPujKYWgDUfVQlGtGkqZlxsLksah/jQS8RhaU4VNR/CyDJmxkESRvPqWWa6EIxKBIoR4DsBzcvsAgLma824BcIvL/uUATnfZPwApkFyOLQKwqNg8F4Np8tJ05coeNlzW1PN89q7lOH5EI16+3vU1+hLpyn+aNKIzeRm/fv7oKHqsxQiloFUqUr+BR1Jn3bQYI5uTWPXvFxccqx2TV5WEP8Mj5cOg6mn1RsqrfJT/Prt7BkpOo5xzKkVVAnkfSvnm8lIU55S3RHl5hnkVkSFnEjINP+F0qN99rfbATvmym7xqI43hCAuUEKiPe3DIXUOplA+lnHeJZKEmlVbJKXmNlK9MlFf+vCic8uGvDR45FT5tl7tV5PJyR3lFOrCx9KSGFSxQQqAqal8643q8/CYv7/TLuf5IpdPye5bo5vKSGorPeVHODxWGwGHDETR96hmLHthYwcXAvNOvre9gOMECJQSqjvUNZl2PV87kFW5/qLRLTyKStNS15ddQgoUNR+NDCX+NbWCjx/VRTl5Z/Jrywc6rpQHAOmph6qJ6hAVKCNTHfXTIXaCUfRyKj8krGhNTBKmYgwHL5xyNzodi/PqvhxJhi12GS6IMGiheQwl4Xh045fPaGguWMLBACYGqWtUaKe/HsRjdUqmBjf7nRXGv0q73DBuuAe00aP0ru68xkjRq7UuoD1ighEFFeVVrYKP61TWyEdwjSlW/nI1cVJNDmnnUpKMOl7amfAmTQwbWUEIn7ZJGZRzR5e54sQ+lerBACUHtayi1kUY+yqv4xCr1QSu/l/84lAjuVUQa1sbR24cSYSNadpNXcekHpVrzrjEsUEKhKllGM7Cx/OGQ9VXJyyngoh7Y6J+PEm5YwsJVwaO8Ssecy0s39ieiyLt60FB4HEpxsEAJgZ+GkslWyuSlO15bqn40SenMe5WN8iqpgRH2e4W61KqheJxn12SKy6zqJ+ku9xMElZx3zDMfHOVVNVighEDVMd14k6gqYSabQ1fvYOjrovFZlJ5IlFOv6NII08Dv6O7H5+9ZjgGX6Lz8ynzeaVRtPZSg5wn37WLupbvcd5xVwPuWXaBE2LFiuRIOFighUBVV70OJ5j43PrYW77zlaRwZtA+gLHWcQBDq5QMKk88bH1uLxWv3Yenbhevh+A3mUwKnJA2lBAFrFxReUV7BNBkv8mHDGg3cV0MJep8wuQpPFLMm5wMU6uSDqBFYoITA1FA0pi3dpJFheXLNXgDAkQH3Efk6ak3Vj6SnGEHagxlDM0kl4wXHcj4NR76nGoWGUkwawQSF9VjR71BeppvXLOPTY4rCh/L821045+bF2FvCXHJR1GCVxXpYXbKWYIESAvXBlHsJ4GTceC1O539FfCglp2BJq0ac8oMZoxxTicLq7qeh5EwNpfiHMaPeyhg2bM1fsXn101CGfHyEwZcA1p/30Iqd6O5LY9WOg4HSck0/kvFYwd775T9+Ef+7dHPJ9ztWYIFSBDrVP4hPfvuBfuzo7vc8JybfilMT8rP310rYcJREISS9BIrwERhmTzUS7S/8NdZLvN5NlD4UHbroxrB4lYPS8ksxHwc1E3oRdF6zP+/swS1/WFfUPa5a9KppjThWYIESAlU59T4U/6/gvf/9LN7zX896npOIKQ0l3McQiSyIIJFSeuROtJpDiLIZkgIlHis05fitHR6FhuJMqxzXRKGh+F3mF8UY2OTlcWI85q6dhyHo/GdeRPne3RBCYOnbXfjCvSsCn18PsEAJgXqlusoelVM+EVMrQzo0FPNXZ++PTtX3Y2Aoi8Vr93mnVcZvIEzSqhzd8uPvlPc+HoaSp68PqKEUq035NZ5hnPJeddHrPnFzETvvey1Zt0+r6UfpTyqXQAn7juplXAwLlBCoupXV9NSiqnyqJz2kkVB6H0rpBK2433p8LT5/z3K8vl1v644iP7o0whR11qO36ec3MHuqJXzRZtJl9KHYBUqRGorP8XTGu8dkLSOv4vIqS6Wh+AmUq+9ejkt+sNQ9fREsH17kNRSPc0qoE2H9rfUyLoYFSghU713rQ4moG6HWri+4TwXqVFAtZ3v3UQBAz9HC1fvInG24fPkJ41tRH77bR5kPxdZcG6BhefyNPVj4mze0x/MOXv+86q51bnueV6Sm7PfufQVKwMGVXuUg41Hw6xU7Pe8FAH1pzTISEQjXILMND5Vglgubr2pP6xQUFigh8IvysgqAKMxPukoURa9dR9AkYgGWZSxnDH/QsM5cTmDz/j7bNfZ09OYw2308CvfaX76O+1/b4ZEH/zR0BI/ysm6Xx4eSzro34IpMQA3Fq3FsbkgAAF7d0u2dGQ+i8KHkv3X9OX5Rb16EfUd1oqCwQAlD3oeiMY/kSq/IgHXJWKcPxSfRSDSCYOcpeeL1YZQ16kwFSPjcZNFLW8xtNxOF3zgUdU0pHYQgWk4QvKO8rI15sb1y7+sGQ5i8vOqq133am5IAgAtOHKM9J8ycYqWWhdf1Qz7lsXjtPqze2eN6LKzGUe6ZzKMiUe0M1BN+PpSs46OO+c5h6w5pHJN5W7wmf5GMQwmWRiyAWaucn4BK2+/D3CK1E0CnochfTdsQhTAwX1uJGorX1XYNJfRtbPfSXe5n8sp4dKiCCjwllLwa0DBzipXqe/DUUHzU48/fsxwAsPXbl4VK1z0f9SFQWEMJhfFSg/hQIhm3oDV5afZ7fMSBCaqhaLQozwwVgd+z+jUuCUuosFt5+K0BEsTk5YffWBfPa4uYb1j33vf2DODZtzoDpOCOn4kn6ylQ3M9zosrI6xy/3rq1nS/VKe/pQ/Eoj96BQt+iLf2wQwLqZMQ+C5QQ+DVidoFSfAOkFmRyfjh+SUbRhwlez0l7zygXatJHtPk3PEA+agjQaCjmDLsak1cUGoqw/4bBet+gjm5dXj9x+yv4zF2v6TsqPhn0K2uv+h90XZdsAIHi5zezXln8wMbSTF67D3lPHRPWhFUvJi8WKCFQr1Q/DkW4brum5VFBdCav/LXB0ixOQQlq8tLfI2/i8U9n2eYDmOMyEaaZliYNVTS+Gko8r6F4hw27X58XBv4Po2uoSxFKQRtE62m6+rmrakNXAAAgAElEQVTroBGZdyQdrqyD5sVp8rVifXavdxZE8/Qb9BhF2HAwp7w+H0ddZra2ErbDySavYxDrzLNuH5dNoPip5QHqh84pr7vUub+YKhjYKR9g0aggwuk7T61HZ+8g1uxyd15qnzWgKco6Ot5doHjnNcyIad07L8VsJjTbhffIH9WNaG9JGS7Tnn53c4xf/vzqrM3k5TgW1K+h0vAaROkbrWvT1orVUPyv9zJ5eQkbIMAzFJzPAuWYw/pK3XpQth6aTwXw6mWpJtBZJ/17kN7HgxA0CWWWc/vww5h4qMjABb8xQYo4eQsUv/nRwmgXfmHeXsJ33Z7D+PXywtDjoO/Uep6uMVOTjuqitfxu5TuS3tLAOm3+QSOvVBl6fT/hNJTiPoog6+R4CQ2/AIYgJix7IIPv6TUBR3mFwG5WEEg4ZkO3fgR+DZ3nN0HuU68EGWxlxTgvXIMdNG3VTrt9VMLxG+i+YfOjepC+PhSLQHEpcz8NJIx2oXvnQdZUufSHLwAArpw92Xm1JR399dZy0gkMNWiw2CWswxx3anxBzVB+y2wD/o2xTasr2eRVnBYSZlYBHVH5ZCsJayghsH60rhqKtQJEoKEUViK/D6n0She03qqwYVeBEqB3Z+Kz+JQuiZzZ8HjfJBHY5KW5f4hn0YWTBzXPAYXlGVhD8UhDobQ1nUnMT7P0y4vXwMagPpQgTnk/v1mUU/kXa/JK+5m8gvjkApZZLcECJQTWV+rWkIXyoQSwoerGoWhTFp7/BiKsD8XtowrjyM4PuA8nUYI4bwEgbnPKFx7P+RRqGA1FNy7Bb0ZjK85F1Wy97YCDBXUNHXl0AoLgq6F4zBQRdByKyppXR8FfoLhvhyHITAwlmbwCZCxoZFwtwQIlDCIf3eSmgViFiF+F8dRQNGM8fCOSnP97ZOH5t7uwqeuISxpBTV4eGoo5d1XpX4EuDeFzXGH1obiPQ/FOx6/M3c7Vp+GfyEDGHh1ku8TTVJTf1jV0KoJaJ3D8tGq/NtBTQ7GODfF0uIsA5/jkw/L8xTqzzQCYIk1eYYSe/pzgHdRaoWiBQkSTiehZIlpHRGuI6Mty/2giWkxEG+TvKMs11xPRRiJaT0TzLPvPJaLV8thtJFsrIkoR0QNy/zIimmq5ZoG8xwYiWlDsc4RBAEjE9WuV2E1e3mkFqSC66eu1+QtR5xYsehVzv/t80WmoZtrNfJLXHoLnR4fuw1P38HXKx4JpKG6pCCFCmat079xMI0B5OMuzmPVQdOaWvMmrPE55e5SX/VxbZ8sjGfU+vd6rn1PeWoalzmvmHTZcnLAx0g33/Q8HH0oGwD8JIU4FcD6Aa4loFoCFAJYIIWYAWCL/hzw2H8BpAC4B8FMiUm7tnwG4BsAM+XeJ3H81gINCiOkAvg/gVpnWaAA3ADgPwBwAN1gFV7kQQqAhrp9eO4zJK4jKG9bk5fyIi/GpBL1CdfzdGq8wZiLK27xc0ZWjqQWV7EPRa1PWXYF8KLq8hjGbefhQvK62HtMNuIupZRF8xsto61cYgeLUUGzmGy9zllqx0UND8cmH1fSoS+Y3K3Zi6sLHtSPag/hQXtjQpT0Wxs+jP8eyrUnv8MAQfvLsxprxsRQtUIQQe4QQr8vtXgDrAEwEcDmAu+VpdwO4Qm5fDuB+IcSgEGILgI0A5hDRBADtQohXhFHT7nFco9J6CMBcqb3MA7BYCNEthDgIYDHyQqhs5ER+oJxbL8lvYKOfU1+RX/HQeX/hfkBzfjEEjvKSv95O+QACxScKTTt9vdKCfO5BPmHDXrbysM5dv6lygnzzzp550E6BtZx0PeeYj4aibq17I77jUDxs/jmfbyOfRmFaTvy00iAayv8s3QQA2CkHezoJoqHct2x70XkM5EPxMCEq/uPxdfjvJ9fj6XXei91Vikh8KNIUdTaAZQDGCyH2AIbQATBOnjYRgDXQfqfcN1FuO/fbrhFCZAD0ABjjkZZb3q4houVEtLyrS9+jCEJOCHN5Xr8GyK3CBI3aUI2g30A5J87dxQiYoB0ddZrXsrBhOk26c/2mCdFFVuXT9W5cvJZ1tjt3g/Qovd9XEAFbIKADakmBfCgeod5Avqx1+bRrIG4aulUzsB+3j6J3Td6Whtd79fVPWp5P9yxqTI62LEJ0itzw1VCCBOUE6ND0yzVhBnxG5leKkgUKEbUC+A2ArwghDnud6rJPeOwv9hr7TiFuF0LMFkLM7ujo8MiePwJAQwkainVfkPXiC8eh6Bs/oPjK70gl0FlKkLhrKMZvED+RUiC009n4CM8wMxK4dwLU/d0ESrBGUKF7L2GivJwCOugbtd5aF2GUD/UuLp9+GraXZhBUOAcZKe/XWFtNerpT8wJFp1Wq6/3fQCpR2IxG4UPx66ACeZNuKWuzRElJAoWIkjCEyX1CiIfl7n3SjAX5q6Y33QnAOmprEoDdcv8kl/22a4goAWAEgG6PtMqKEALJhN6HYo9y8WmgApi8CqZeEe77oySoVqEEgFtFDtO785+3zLvx813n3KeXlxfSesHolQ+3tHTpBBsc6eVD0V9vzZ/WKR/Td4aAvHD207Sc2/l9Vg3GcSyoySvn3WnyOwY4ory0GorfMtuqLPT3OfcEw207uqUhdB6DdLasr0l3ujLBu9XfalBKlBcBuAPAOiHE9yyHHgWwQG4vAPCIZf98Gbk1DYbz/VVpFuslovNlmlc5rlFpfRzAM9LP8iSAi4lolHTGXyz3lZWcyPcI/Hq0pWgofuuhBJ00UlcJvWet9TZrKFQevEbKh6njYZdVzkdO+Xy4Ho5iwKKheAhG63ne93LfH6RxUjgFdFAfShQaio+Lztd86LUeStCIJZVGKeuhWJ9PVweVWVk7oWeAVTbVmCG/snBd2C2ID8XanmjyoWbTrhUNpZSpV94N4NMAVhPRKrnvXwF8G8CDRHQ1gO0ArgQAIcQaInoQwFoYEWLXCiGU4e+LAO4C0ATgj/IPMATWvUS0EYZmMl+m1U1ENwN4TZ53kxCi+DVDA5ITwlSVi4nyslYyb6e8buoV/4/Niq4xCjrxXk4AcY2HNuMlUAJEyCh0z2rNg9f+UCYvDx+Kaxh4SKe831xegTSUgrBhSzqel/vn1c+HYs6j5VPmunt4rdgYdJ47q4YihLAFVTjP0WH1J+jKwgwq8Qmk8CpzNUO2W3E62wLnYnvW2w5lc2a7oktD+xxqpgl9NitK0QJFCPEi9AEhczXX3ALgFpf9ywGc7rJ/AFIguRxbBGBR0PxGgRAILFD8eiVhR8oC1p5/MA1FR9CQzEwuh3gs7npe3ofi0kir+4TyoegEiu5Z8x98LifMkFiv673MNK5O+QC2+CB5DWMCdI62t62P7nnv/Lbu/aoy0gVS+OXT14fiUV5H01ntMStOP2TCpUfjV6+sU8f7FblfxFuQubzcysuabjYnkHR8Rtbn3HagH9PHtRakEcTkSvkTtPmsJDxSPiDqhSbjepNXNifMXqDfbMSeH4WZhjMT3tcWjEPR3MLLYWi9pvPwoPa8vA9F73sIU8dtEUI+gtmZtldZ+vpQzKk+Cp/DbsIJ3wFw3sPLBGgK1iKd8kHKI+4z9Uo+ysv9Hn7C2SsK7MbH1vjmz5mG7jy/zphdeHmfqzf/+WvZeY3OW7j6mcf7NevT2GfecM9DrWkoLFACoupEwktD8dFggmooOqe8OdjKZ0S2H0E1lAV3vuqbhltDXMySt9YPJojgDRIB40zXTSjkB7AVCi+7huL/LKWYvLTjegL0Up1p64SwOQ7Fx7wYxCnvtx6Q8xYbOo9YjgUUKCH9agqrhqKrP37RhflACv19TH+Pn/nbV6C4h/yGGQdVIwoKC5SgqBfqPVI+hwYVBVaCD0V3jtDsdx7X/e+WDyfWirt1f5/2PJVGOlOYVr4B1V5egFVD8WqY3PYHFZBhAyXsjlXtLVzvZSXMksgFI+WDDmy0bPv1ZnVmnqxPPn3D4m3Pbz9uNVx5r3Xi3bPX3duKdfp+P82yWPOfNR9up/h969Z9Og0liKbu54OsNCxQAqIqWD5Mz62S5GPSi+m1KPRRXrJH5NNwnT6x3fa/k6CDEWMuDlGFV5RXXpPyr+Tk0msO0tu2NrTBTV6Fx9NZd0Hm/D+YhqLLQ2FenJjl4DR5Cfftwnv4l4d6n+kizTx+PqVsVn/c6lz3GqJh6wBo8unXeKYzOTMa028+Of3ARvuvG0q7cTV5WdJ104KCaSju21a81iWqBixQAqLef9KcHNKlkuTyUWB+41C8tYTC8237fTQUv+lMvCbXszZMXgJF2Z7dTV4yn6FMXu7C1m9sB6BveIzrrduF51lDbJ3P4jWuIr/fP69Ws5ofXuNQvPALCLHmQ6uhqOs09/QbZ+UVNtxgiWLyDBu2vMtifSiDmRwapRfcrw76aUFBzHN+1gjXAbWWff2D7gIlUJSX/GWBUmfkBYqHhiKsYcWFaQT56I17Cdd7qP/8JiGM+TjqgmoojUl99VAmqiE3k1cIgeI2a7EzdNk9n8E0FK/5pQC7QHGWt18DCgB3vrQ1f45PQx7Mh+LQkgJKlCDObL/BoH4+FL8Gzsu8+JfnGDMjJeNUug/Fp0zSmWxeoPiYinTCVQl2ITw0fVPouOTRZrpzmVXDkuZTa93n4Qpax4FjYxzKsGFHdz9W7TgEwD9suCGgySuIhlJQiTSCpgAPzcL/3vljx41o9E1Dt6iUkZZnNgC4m/eCOCNtGkrA53FLy2pvd36UQZzyj6zalc+HLq9mGtpsmjgbuKC28WAaivHrG+Wlu4ePP0rnN3jmrX346XPGZIztjUlvgRJAi3dGkznHqqSzOTQ1KEuB9lYA9A2xc0Cs85PK5YSnKdPPh2J9R7qJHYMMMvYaD1YNWKAE4MM/fAG9chCTmhxSJzC8VO2gC3DpnH1+Ji/VFOhmKw5yb2u+3zl1tG8evXwoYVZstH2AAXwoQaO8VGMghN6Hoo4X+FB8/C/G9f75COZDMX6djai1fL2KM0jd8npngL8m5TvrgOV4Ops34/x2ZX5WJCLy9GvYNJQAjX1OFA6+TWdyGNGUNM7VmYp8fA9O7dQ5MFEdJ9IIVw/fnMq34qzJI13zYNfWXE/xnFOvGrDJKwBKmAAWk5ebwAihoXg1gkpFLjR5Ce29gUKTl66rGXQcipdpzKzIHiavMJEnunEofs/qd59cTpgOWp0PpVl2ApymCevz64RBOuM/5iHIuvTKBFNg8rI24l5LAIcxeWkjm1R+3e/hZ/KyNsJWza/ZMqovHvOPnDK11gCCza0upwP4UPwG1PpFGqrjDfGY63HfKC+ZrxM7WrQzBfv5/4C8haBWTF4sUEISj3n4UHICKc9xKJZzAzgmC6O8CtOxHZe/btNVOPOpw1pxvcxZ5sBGN6d8iPU/8um5N4haZzi8P1hrWvklBwrPG8xk0dSQcE0nyFxeQeaN8vNNADBVNafJy0uoWwli8lLn7DrkvgaIVxis8x5+HSarb6o5lRcoMSJf7Twfmu8TPAB3gWATKD5ao1ZD8VlTRdV/lVenkLRe7zqwUe5rTSVs42Zs5wTQ1FlDqXN0UVy5nMDewwNIJvSjke1mCX0F0EWYaH0rkkKnvKYSBvR7eDVmXuaTME55c0ElTWOla3yCCmchvGc3SGdyaEnFXY+r/xMxvSM5jDPc2zQny1OTB/UsOlQ5JmLku46ObgYE9S4DPWsYgdJgFyheHY2MZSyXVnsQ7vdR2KO83O9jDszV1HHrN+JWHOp63ezj1uu9Bja2NCRsI/tt5/hoSda0daHHlYYFSkh08e0PvW6sEfbSxgMA3FVQqxDxNCfldBqKd8Ok9istStcAeUd5WXtWXhqK/oP0M51YUcvV2nvY7vnR5dNP44rHCPFYYc84k80hJ4AmZfLSOOXjMX0jOGg1efn0hr3NnKo8HRqKx6JVbnlNxmNae7s658ig+0A6lQdtvdGYtBS2hj5rFSh5V20s5heKC6QScbntL9icHZpcTiCTE2hK6i0F1vzrtPCgIdINcXfnf9CBjS0pvUAJMjmpev7frtwVyGdZblighERNveJsPDoPD9j+d9VQAjSUgH7AlPVf18knhV2g6AjSUwa87bJZT1Xbv0eucPMXBfmQrEn7mVBiZAgUZ+OhGj3Vg3YKUKudXPexDgxZeqLaSBzVeOm0rXzEUKFTPv//T57d5Hq99bqGRExv8pI3OaxZR91fQ8k/q9uaK1YnulVzsI5BifuavHKeg4Od+50aispXk48PRV2n61z5+YvyGoq7f87P5KVOb03FtSYv2/fuE+UFAK9vP+R6TiVhgRISU0PxaOwB94bW2mB5rkin86HAu5KqSqcGJOruoGvYALt2oIvRN9IwjrmZHMKYvFSUlK5Hp1eSgmooxiy7yRgVNB4q780aH4r6PxEnba/d2tvXN4DG75BmnRKroHPWG2sjvnqXvsFQZZ2Me5i8ZP7ctAvjXlJD0dwj49GQq+PKfWcfMJq/LuZhPlR58DN5Wd+jU7CpZ2tq8BEoWSVQNO/Ekn+3bKi86Uzg1vfoFfHZkkogkxOaDmhwDQUA9h/RT+ZaKVighEQ3DsX5Ebv17q0fmdfARtXgF8wT6NNjcZq8dHj5b8w5yxKxQMuwuva+XPKrw83kFWQaEettD/antekLYcwA7WbySjsaH+ezZEW+0dB90OPaUpZ7uefBHATqN0IdKDB/WOuRridrTSMZ12soqrFNZ3KaKdelQNE8yKBFG3MTKDkhzIgu+5Q2xvb7Tu6QPhQfgeIR2AJ4C2CVL+VD0Zu8sjIt9+O2CSbdTFZZf5NX3GO5AJVma8rozLj5QOxmXddsIpMVGCNXjNR1FCoJC5QAWNvn1kajAjg/CvUyY5poHUDfa3Oid8p798rVLjVNua5h8DJlqTRS8Zhn5IjXgKogI8Pz6eRsv0BQk5fAqGZjrMG2A/3a9HPCMHklXZ5n0NRQ3Bsfay9Ul4+Tx7eZjYKu8cp4CF/n/u4+u3C0pmlt0J1YtSmdELY+v5vJSjXUutfWn86YGohb45XJCTNizlrXVX278+/eiTiR50SbmZxAysf/YQ1Vdwo2JSiUQNE9S97k5Z6Z/nQWI2X9cgvrNaO8dE75rLfpTlg0FN09ggzwzeRyZhSdbqXOSsICJQDWHr9b43PL42vxMzkSeOKoJgCa+HifwU4Kt16783+3RsPpQ9HdIcigylQyrj3P6OEawnMoKwoEl+mEDiBQzDnBNAMEvRzd49uNkfw9R919AkZaMH0oBRqK6UNJyLwUOngBb5PXYCZrrinuZ2rSffDWZz/gECj29dHd8wAoX5Ex8FbbEFvSchUIWe+OQH86i5FywKCrhpIT5vdhTV/lLRYjYyCgV3CBEL4+lEwADaXJV0PR+1ByOYHBTA6jm4336tbYq3QbzYAOZzCF5Tk8rAktXhqKJUmvzmGLrL/WAJFqwQIlANYe5HnTjNHj1or6vy9sMbfv/Ls5aIjHXFVpr3mjrOeogZReZjS3hjaoyctLO1Ifa1NDTKvJqOm2R8kPzplemDXU0y7CM+hcXo3JOBriMa2T2chbDom40lDsiSnzUotGQ7GZkXRmoEzObES1YwVMDUUXUZTf79RQgswnBuSXkY2RtyNaNXJu2s5GuWaJ7i5Hh7IYKd+5dSS89TnU/G+2KW1yOTOYJR4jz2ikTAAfypDN+a/rJLgHWuSv0wdKKHNXXkNx18aAvOBy1q1MVljMbm4RccZvmxQobpFeQRbYyuaEKZRYQ6kT1Hu97IwJGCd7xbqPdsroZiTi5OqA/ccH/2xu63ppe3vy0WLOBmrIR8MxnfK+YcMepixZ0xsTce3HqBzRI+QHV7iGh/wNpKEUF+WlNKT2piQOe2gomawxUt7QUOz5/MHTbwMAuqQzs8CHojQUj7DhdCan9cE4n0EnoFWZpxIxHHA4VoOuoZPOGuM34jG9SWkoK9AmTbZOk9fW/X1mQ6oTjP3prDmliVvjlc0ZGlJDPGbvPGXzsxV4DWxU0W4NmkjK/HPoTXfqviqfbsIAsGoohceVtqA0zwGXnn+2QKDY0xmyRKu5aUFOk9fRocJQ7iBzyQ1lc2Ya7EOpM2ZNaDf9E7o2OSl7w87GxbmIjm6eon/+tUXouAgUr2kpVEMS95sc0mP+KasqrwupVB+cMn/opgsJ5kORja0uyksnUGBMCjiiKeFp8srkckjEYoaQdzzrzoPGiHHTCayZ6bch4a2hKE1NN57AbwI/9bzj2lM4PJCxmVis70D1mN0YyubQEI8ZDbZLXoUQSGdzpr9n0GHGOWQpQ91rO5rOmn4rd4GSQzxGaEjECvyFpkCJEXQuPGt5q+vcsAoBZ8fNKVDcAhmyOWEZmOuioaj67WHycmpCzsbcqqF4BdCoQbVH024+Lf/vYGDIW8hXGhYoAXjfyR0AgL9/30mQs3h4zBFESMapoOfUO2AXKG5OUQDYcdBwMLc3JgpHbmcFGhPKvFJ4rfogE6YPRVMJLT0uZyVUjtlUQu+UVxqK+uCc5+UHZrpebr+fafJyD7P06m0nYoS2xmRB2drykhWGySsWKxAYHz3zeADAJ8+bYsu3wqqhuL3uTDaHLfv7zPJ2GzBoHWOiK0+1f8a4NgDAmt09+Xvk8kLgHRNHaJ8znTFMXoaGUphZ1XCqoBJnA2ib2VZzj/50xnzn7gMbkRcoFpNYJpczoyNj5D81TENCbyoC7BNy6nwo7bKRdfNNeK2BA+SFkKmhuAkUmYYqz4JvIJtDKqnXXNW32mpqKIX3sAp9XZkdHcqiNRVHIkbsQ6kX/uMv34Hnv/Z+xGNkzgvl1RtIxmMFPac+2dj8cP5ZAIAfPbOx4Lqeo0PY0zOAE8e24OTxbQUVeSiXn0XVtfFymLx0LYO1J+18DlOVb4hre4hqQSDlFN/cZV8qWPUgg5i88uMB3DUU7WBB6TNoTSU8p50YygkkZEPrbDwGh7IggunU1A1sTGh8KE+s2QvAWM+ipSHu+k5U/on8p0o/YUwzAOCIZcGlIdnTnXlcm6dJYygrkExI055LXlWD16qxt6s6ceakEd5OeamhuAoUpaE4TF6ZbD6EtsEjetAMCPHRUI5atH1nPtT/qUQMjcmYqzA4qtEAFcqakBco+ohNZW4qNHl5BxdkHQLebRlg67PprJ1H08baL06tsFqwQAnAxJFNOGFMCwCjB9bcEHetADdffhoAIyrI+TH0yUbCOg2FkzNvfAqAUckak/GCj2UoK9Ahxz24jb3ImT087w/S+oEMOpyreXu+3uSlGs6zJhs9ZqvJKZcTwSZDVPcztZn8uUFm+R3KCiTjxrvo00wlYqSVQzJmaI3O8hjI5NCYiJtzfek0rZRmTI51V2tjwjUfKs0mGTXnpT20N0ozTdo6WNJYztatPlhJm055dx+F2aNOuQsEJZSbGxLauasG5bTwDQn3QAglOFLJQpOX0lBSHs+RcdRfna/F6stxCgyVdkMihqZk3NUM2WvJu5twU9eM8ggbdgrowgGp3gIlnc0hRkBbo/4edoGi/5abpEBhH0qd0ppKuPZGP3X+CQAMDcVp0lICwGoH1znH//a8KUgl7L2roWwO2ZzArAnGevGrd/YUXGf6PxLujkJFv8UBqPN/NCb1PUnlxJ48yuhRW3t8Qzn/XpX1Xm4DJJW5JBEjHB3K4qybnrL5lox8G5FDunehUCavuMtIeaN3FzMbhb5B98aprTHh+q6Slmi6fYcHcf9rOwoE4JEBe0Sc29xRB/oGzfs483FkMIPmhnhBfXByNJ1Fc0Nczjum11DaGt1DTNU7bEnFXa8/JOtvc0McI5uS6OkvFCg5IRAnQmMibuu0ZLI5U0NJeTR8ysTT5hO11J/OmoP5nGWivrtUIobmBveZfK0mUreOgrpmVHMADUXjQxnK5ieodLvHYMYIolADQd207EGfpREy2ZyxmFjSqB+sodQpTQ1xLH17PwB7hVbTxrelEgWRRyocdHRLA278mKHJWB2hf/3zV8ztVCJe0CP9yG0vAgBOndCGEU1JbN5/xJb+UDaH38nVA1XopptAeOLNvfif5zeb/+t8KI0e41A6Dw8gHiNMHi0FiqVHbZvDyMeJYtXyrOYmFQo6ri2Fg31DONQ/hIdW7LRda/R6CS0pd83A+jzJeAwJF1PLwFAWTcm4abZwCibVwLWmEq7mqlisMPhh6Yb9tv/X7+sFAIxplSHWLul8+o5XAQAnjGlBjPJ+NADo6h1ER1vKs2ffeXgAz7zViU2dfdq5stJOgeJoJNU7bGtMIpMrHFukBPqRgQw6ew3h6aRfCrW2xgR6By1agMUpbwgUd8GotB5lStWN/3hx435TKz7qeA5VFxqTcTQmY54CRecnVI37KC8fStZp8ir0d3ppKINDWaQS+brnVoet+9yE2oBlpgenyetgXxrfX/y2Z0h9OWCBUgTbDvRj16Gj2Lq/D1+5fxUA4GPSwQsAk0c3Y+3uw7aP8rE/G6vWjWlpMBsXJWT29BzFq1u7zXMbkzGkLPZfIYTZMGWFoYr3HLVXwLtf3oo/rDZs+mq2VmeMPgD8erm9IXAKlP7BLGJk9Lx0Gsqbu3rQ0ZrKhzxaelfW3piXsxzIR1kB7vMzdbQ3aucnymSN6K3mVBx9Hj6UgSEjfDPhMrBxQE5z3twQB1HhRz1oMRM5Nc6BoSy+cO8KAMAHTunA598zDUBeI1EoYTFBLqfc1aufb2lUcxItDQkctrzbzt5BjGtvRFsqgV5NNJtak/zoUNYwt7oIrYdfNzob5piFrFOgGGU4pqUB2ZwoOP7s+q6CNJ1Cpz+dRXMqgfamJA4cyZtkj6azZmh1KhHHgOZ9HZZlpwSKmzDYKYWtGgDqPGfdnsNoaYjj+BFNaHXp2AF5k9folgbXjsKmriOIETBtrGHmdgsb3rK/D0SGORwojDYzxuToB1cOyjFBDYkYUomYbRE/xW9fz3cQe10Eg+qQNYgDcp4AABuiSURBVCbjSCXsHY5fvbYdP1yyAb9evrPgunLCAqUEjgxmTMfspacfZ+6ffcIoHOhLm43Hpq4jWPJWJwDDTq5G4CqBsvuQfaZio5LlK4i1orzrpDEyssldAwLyvVA3gTC2NWX739lbPNifxsjmBlNDcjYa6UwOz7/dhbmnjjNj8I86zBuA0avvOTrk6Zi/9IcvADAaUpvZTD7v+LYUOjUN8JA0ZbU2JJDO5Fyf9b5l27Buz2G0NSYNDSVXaPJKJeMgMtJx01CIDDPPUNZeFpu68hridXNn4LMXGgJF1yO84MQxAIwGz4rVp9LUEEfS0msWQqDz8CDGtaXQ0ZYyTY1OrPlq0ZgAv7fYGHOj5h5zvvd+FdnU6h4CfaZcpnbuqePNfc5ec99gBi0NcUwf14r1+3rNhrR3YMiskyeMacaewwOuod6q8R/XbuTRzQy0VU6z88X3n4TGZKwg/HnbgX6c2NGKWIwwYUQTdrssJqY6OiObG1y16N2HjqKjLWUxqxWec6h/yPiWWwsjHbM5IUew6wXKwFDWnGKmrTHh2vnaLcek6SIZX91idEKb5ABfaztxSJokvULqywELlCI4faLhx7B+4CqcEgBOkD2b7d1G5f/HB1aZx2IxMlXpg1II/Psjb9rSjxHZIlRUZfrGZafi1AntaGtMFPSErZV2pGbAoTVPituW5KPNtu7vw33LtqOtMYExrQ0YzORsvf9MNoeP/uhF5ISxDrZS6W3CQPb4xrY2IJMTWu3hj6v3mNtzpo22CUSVb9WwuJGW4y68TAb/9lujXLt6B5GMFQ427U9nzHEELSl7ma7acQhrdh82e5FC2Mv4kMWHkIzFzGALnfltxngjJHjLAXtE3BGL2a81lUAyTubzr9vTa2gdMUJHWwq9jjEqigdlL9TobNgbJyGE7ZrZJxgzPThNXgNpQ3iqzo5TKM2a0IaxrQ04c/JI3CSDT/rS9vsc6h/CiOYkJoxohBBGY7ZqxyG8tvWgLfRZCGDl9oMFz3HY9DclkUq4m6sWLDI0vg/NGm843R3nHB4YMuv/qJYG1wb1TRmWPXFkk6t/Y9/hQYxvbwQ5vkMrd728FT1Hh8xgA6tG128xHwLuPpSeo0NmYEFrqvB7BgwrweVnHa8VOF/65UrjvFQcqaTdlLhfdsS8Bv2WAxYoRfCdK88EAKyyrD+gzFiAMVoeyE9a+MYuowL/jRzvoMIRl23pxprdPViz295rjcfIpqEobURpF24VzGpKUR/UQRfHqRIo7zrJ6DG/LU1pAPDxn79s5ltFk1nTXb+v1zS9TRrVbPoQ7nllq3mOaojUnGZuH3QuJ/DF+143/580qtkUrkBeQB0nTR9AfmwNYDRePbLxatX4P6z8afMBjGhOmo5lALj3la1Yvu2g2QttbUzYGsgrfvISlrzViVQibjYaukkc4zEye6PfenwdAKMH+pEfvWCe866TxmBcWwpbHCHWh/qM8pkzdTSmjG42Ajrke39rr1EvTjmuzTSZqV6p4vP3LMdqWb/+96rZaG9M2rSk363ahZnffAKAoR1MHm28F6eg708b/iT13p2aYe9AxoxCU8Kz3xI8cKh/COlsDse1N5rvbf3eXlxzz3JbOmp8yN/d+RqcqMavvTGJpgb3CC3F2JYUGl2iuHr6h8x7tDcmTCGlyOUEHnhtB2Ye14b2xkRBp2vr/j5sPdCHcW3GM4xsarDVG8A+TbwaFGs1HecHRqqIusLnsAmUxkKtMpsT6B/K4oQxLQXv1Mn0cW22UO3uvjQeXmmYyzbv78PUhY/jC/cu95xpISpYoBTBKeMNx/gPl2ww96mIJwCYNKoJRMC27n4IYQxG/OCp43HLFacDyEeP3PXyVlx224u4eJZhRjhjkhGGGyejgUpncujuS5vCQzWeralkgW9hr1zgq6MthZM6WgEYjY2qqANDWcz97nPYdego/vnik/HLz5+Pkc1JnDNlpJmGuk9DIoaO1kKb/y6Lz2PW8e3mtrW3/qw07akwa+tUMs68AsBv/793YXRLA/rSWQwMZdE7MIT7lm03yqklL6QF8ppLfzqLdNYYoa5MKSstwl0IgRsfW2P+/79XzUZHWwq7ewawbPMBdPUO4puPrEE6k8NY2YAapiL3D1+NZrYKcWsjM5DJmnNVqWe+/uHVeHOXIRD+7l1TQUSYdXw7Vmyz98x/sMQwRX3lQzNAJMdwZPMNAwDMnTkeZ0mT01Wyhw4YDdti6T9Rz9AmGydlBrvvT9vN4//5F+/AiKYkRjQlbSa7//jDOvzixS1oSsbNQAurf2vdnsP4/Rt7zEgtJTytjeC+XuOdjm9vxLlTRwEwOiuqc3Xl7MkA8p0pJzsP9uMbvzM0yvamJJodwkIIgakLHzf/nzSqCU3JuGmqA4CP/OgFbN7fZwq09qYk0pmcTcNY9NIW9KeziBFhdEsDOnsHzcZaCIH3f+c5bDvQj/FSOx7T2mDzB3UeHsDNv19r/q+El7XjpPw7HW0pxMgueBU9R4cwsskoi/bGZMEwgC37j0AIQ9Mf0ZS0fWOAIXDaUglcee4kTB/XivamfBqL1+41z1v6tuH7enLNPtuA2XJR1wKFiC4hovVEtJGIFlbwvqYTFgC++sGTTacjYDgeY0S4bckG7D08gKNDWVw4fYwZBabi7BXNDXFMGtVkOvGICBedOg4A8Pgbu82GTDWeAgIH+tKYuvBxrN9raAx7Dw/gg6eOw9P/+D6bcFMCYf3eXmySveP3ypH/Ha0p/G7VbrNno3rrP//UOWZPdacl4khd//vrLjR7V7MmtGOS1EayOYFb/mD00N990ljECHjmrXyDBxjmv3d9+xkAwB0LZuPsKaNMAbtsSzfuemmrOUnhledORnNDHKdOaEc2J8xGbk+P8Tu6uQHnSd/Edb9aaX7Uj72xB3e+tBWAYSb8wMxx6JDa3Sdu/xNe3Jh3MI9VGkoqjiOaXqBqoH7xwmY8u94QmFbt76xJRmP/4785GwBw0Xefw29lDxGA2UjPPmEUNu/vw7zvL0V3Xxrn3rzYdJafLkfBW6fZf259FxoSMbQ3JUyNDwBelJFk1kZf0ZoyxpGoxt5qVz//RKMOzhjXik2deYFy+1Ij6u+4EY2mk9n63pWva4O8Jj9Dbl6gqHc2vj2FjtYUmhvi2LK/D8ulAJ13muFjnDa2BZNHN2HmcW22fN/4WL6RTiViaGyI23woj8qgFgC44qzjEYsZAkGZdnqODpkCXHVY1Pcy85tPYPnWbgwMZU0N8qKZ4/D+U8YhncnhjR1GQ2ud6VnV7zGtKey37L/h0TV4ZJWRlxs+OgvtjQk0JGLmd5bO5PBXPzM0/bMnj0KLwzc3lM3hH361Epu6+sx2YOLIQl/P8q1GuZ0yvg1TRjdj64E+m69sc9cR9A5mcL6s/yePb8Wmrj4c7EuDUBh9eOPHTsMZk0YW7I+auhUoRBQH8BMAlwKYBeCTRDSrUvf/0kUzzG03W79SLz/0vaUAgImWRt7J71btxokdrThnitGzG9+eMsebfPORNfjUHcsAGJUbgHkeAMz7wVLc+6dt2NzVh0mjmjGiKYlYjPDF958EAHhufSeWbT6ALfvzphZVsdRUHl++fyX6BjPoOjKIL7zvRFw0c7zZiC78zWrTcbxiWzcmjmwyGz/AMMd09Q7ix89ssJnP5p02HmdMGolXNh3AgSODZi9RqeJjWhpMB++Ekca9bnpsjc2n0JCIYe1Nl5g2+zd2HsLAUBYflGUKsvd4fyNDi1/ZdMDcN1VqStZghK8+kB/TooRrWyqJg/1GEMH/PG9faldpMf+zdDM+c+dr2Hmw3+wN/v66C03T33nTjI/b6UyePs7QGJUZZf2+Xvz4mY22BkyZkxob4nhyzT4s23wAnb0DGNPSACIyI/cA4FN3LMM19yzHBkt5qxkYlOD5g/RRHexPozEZw5c+MN3MZ2MyjmVbjAbWOp7kk3OmoCWVwOiWBry+7aDZWVHc/dk5Rl5lY7tlfx8GM1ms2d1j2vOV72FUcwPuenkr3PjYmcfjrb292NNzFCu2dWNvj91JT0Q4cWwrVmw7aNa9pyya2Hf/Ov+suw4dhRACT7yZ98n9xVkTAeQFCgDct2w7rvvVSvP/f/zQyZg61vgmV24/iGxO4FfL8trc/Hca5umO1pTZ2B9NZ/HHN43e/wdPHYfPvHsaiAgdrSlToDy9bp/5/qeMaUY8Trjr5a1me/Da1m5TOKqVVce0GuHxSmB096Wx8OHVaErG8c6pozFtbAt6BzJmfRnMZPGh7xvfgPoW33fyOGRzAj9fugn/9eRbAIAvvPdE49k/dx4WvGuq67uIGv2w7dpnDoCNQojNAEBE9wO4HMBaz6si5MaPnYYbHl2DUxy9LQD4v6vPw6fuWGb2Ts49YZTt+BNfeQ8u/eEL5qjkMyaOwFc+OAN/cfZEnChNVpe9YwIetzivj5cN79+eNwWrd/bgARkC/E1pKhhr8eP8y7xT8LPnNpk9v4tmjgMRsO6mS8xzFl46Ew+v3IU/vrnX/FBOGG00wCOak/jchdPwixe34MR//YN5zftP6bA9x5gWw3n/nafexneeMsw3S7/2ASTiMZw8vhUPLt+Jc7/1tO2ayaObcN/V5+fTPLkDo1sasKmrD2LtPkwc2YQXv/4B8/g5U0ZhZHMSX75/ldk4A/lQ7ds+eTb+4VcrcdPv1+L7i9+2hWCq/Dqj2wDgtX/7oKmJHT+yCU+s2Ytp1+eflQh4z4wOnHpcu+26C2991ty2Cldr+Stu/at3mHPBjR+R9wktemmLuf3Wzfl3cvbkkfjzjkP4xO1/AgB8Wg6WBYD7rzkf8+X+p9buMxvZtTfNM/0aZ0w0Ogtf/81qfP03qwEAn7twGv553ilmOn/eYZgHZ37zCXzNsl9pEe2NCTy9rhNPr+vE8TLP11003XyO06W582sPvYGvPfSGeX0qEcMk2XG64KQx5tih7/31mbYyuXjWcfjJs5twwX8+U1Ben5PRch85YwKeXrfPVvcAww+pTG/HtTdi58Gjtne2+KvvNQMgZlrem1Vj/MEnzjKjwADgu4vfxndlFBwAvLzwIhwvNbW2xgS6egcx+1tP493TjQ7DZ949FQsvnWnL18Mrd5mdJQD4948YfdtLTjsO97+2A1+4dwWyuZwt/Pq6i6YDANqbEkhnczjlG0/g+g/PxE+eNTo0c6aNRixGOLHD+Cb/7ber8eF3TLD5XE+Sx5S5XI0xO3l8K67/8Kn46odONi0flaBuNRQAEwFYB1XslPsqxoJ3TcXr3/yQTWNQXDhjLD5yxgQAxst22o5nHteOJ778XgBG1Njfv/8kJOIxm3C67ZNnm43U1y+ZaTYaRIRbP34Gnv7H95kNIgBcfFo+dFmZ1xTPvNWJU49rt1Wuce2NuP+a823nWe9/3dwZpr1ccY3s9Sjmz5lS8OxT5JxUV10wteAYANz6l2eY56i8Ki1kc1cfLj39OFv+4zHCFbLXqUwrLy28yHyWj54xARdOHwsApjC5aOY4bPnPD5u+jbOnjMRfz55kOvcvOe04W9k5BSVgNPT3fHYOmhri+NP1cwuOTx1j1zqJyCbwJo5swifemS+fC6ePNc2Dil9+7jzbO/mkozynyohBwDBZfeOyU83oOgA4dUK7bTof5XS3Mkeu4aP4j798h7n930+uBwAs+9e5ZnkowQHkQ1etz5WIx/CeGWML7vPmjfPy6X78DFzz3hPxpQ9Mx1+eM8l23pmTR+JfPzzTeTme+Mp78A3ZEH/UMq5L8c8Xn4yb5KBgADjb8d01N8RNYQKgwKwGAHNnjsMVZxt1KR4j0y+puOqCE0xhAgDz5xi+n/1HBk1T17UfmG7TGP/lklNsaVx2xgQzjPxLUmg8vW6fKUwmjmzCywsvMt/t2ZON50hnc7jxsbXYf2QQnzp/ihn8o8xaT67Zhy/fvwq3L92MGeNa8cb/u9is343JOK48N1/O//XxM839lYSCTOBXixDRlQDmCSE+J///NIA5QojrHOddA+AaAJgyZcq527Ztq1geB4ay+N3KXXj39LGmHd2JEbpavKI4MJTFCxv246KZ4woW1uruS+OXy4znXfJWJ279qzNw8vjCj0wIgV+8sAXnnDCqQJOyjpPIivycTE62H+hHcypummis3LdsG5Zt7sbUMc34wvtOMm3wTt7YeQgrth3Ep84/oeA+uZzAmt2H8esVO3D2lJH4i7PtjVR/OoPt3f3406YDaEzGXQUdYNjaX9q4HxfPGm9zpANGWTbEY3hh435cOH2s60JlPUeHcOkPluJjZ03EtR84yQwNtbKjux/ffORNfOOyWbaGWHHgyCCef7sLqUQcl8lOh5X9Rwaxvbsfr287iE9fcIKt8bKyaschnDK+zea/AwyTyJGBDB5+fRdOm9iOd51U2PgbgQtrcdfLW/HD+Wfh8rPsfbF9hwfw8Ou7cPfLW3H5Wcfjny4+xeb7E0Lg8dV70J/O4qSOVoxrS2nruI639h7GiKYk/nfpFnz4Hcdh9lS74BsYyqLz8CAeen0nPvHOyaZ/R5HLCWzoPIJEnDAwlMVpxxfOxrxqxyFkcwLr9/ZiZHOyoLOiwp2Hcjn0DmQwcWRTQSMshMD27n48/3YXYkTmFEtOlm/txr7Dg5h3mr1u3bdsGzZ2HsHUMS2Ye+o4jGxuKBBkj6zahU2dR3Du1NEgAO+ZMdaWz42dvXhufRe27O/DiR2t+MgZE8wBoFbSckqXqCGiFUKI2b7n1bFAuQDA/xNCzJP/Xw8AQoj/1F0ze/ZssXz5ct1hhmEYxoWgAqWeTV6vAZhBRNOIqAHAfACPVjlPDMMww5a6dcoLITJE9CUATwKIA1gkhFjjcxnDMAxTJupWoACAEOIPAP7geyLDMAxTdurZ5MUwDMPUECxQGIZhmEhggcIwDMNEAgsUhmEYJhJYoDAMwzCRULcDG4uBiHoBrPc4ZQQArzmepwDY7nE8SBp+x6NIoxL5jOI5OJ/Bjwc5xy+flah7Qe4xXPJZiecAyp/PsQBahBCF8xM5EUIMmz8Ay32O3+5zvCvAPfzS8DweRRqVyGdEz8H5rGA+K1T3gtxjWOSzEs9RiXz6tZvWPzZ52XnM5/ghn+NB0vA7HkUalchnFM/B+Qx+PMg5fvmsRN0Lco/hks9KPAdQmXwGYriZvJaLAPPRlOv6SsH5jBbOZ7RwPqOl3PkMk/5w01Bur/L1lYLzGS2cz2jhfEZLufMZOP1hpaEwDMMw5WO4aSgMwzBMmRj2AoWIFhFRJxG9adl3JhG9QkSriegxImqX+5NEdLfcv06twSKPPUdE64lolfwbV8V8NhDRnXL/n4no/ZZrzpX7NxLRbeRcDas28ljuspxMRM/Kd7iGiL4s948mosVEtEH+jrJcc70ss/VENM+yv5zlGWU+y1amYfNJRGPk+UeI6MeOtGqmPH3yWUvl+SEiWiHLbQURXWRJq2zl6UrQcLBj9Q/AewGcA+BNy77XALxPbn8WwM1y+28A3C+3mwFsBTBV/v8cgNk1ks9rAdwpt8cBWAEgJv9/FcAFAAjAHwFcWoN5LHdZTgBwjtxuA/A2gFkA/gvAQrl/IYBb5fYsAH8GkAIwDcAmAPEKlGeU+SxbmRaRzxYAFwL4ewA/dqRVS+Xplc9aKs+zARwvt08HsKsS5en2N+w1FCHEUgDdjt2nAFgqtxcD+Ct1OoAWIkoAaAKQBnC4BvM5C8ASeV0njLDC2UQ0AUC7EOIVYdS2ewBcUUt5jCovXggh9gghXpfbvQDWAZgI4HIAd8vT7ka+bC6H0ZEYFEJsAbARwJwKlGck+YwqP1HlUwjRJ4R4EcCANZ1aK09dPstNEflcKYTYLfevAdBIRKlyl6cbw16gaHgTwMfk9pUAJsvthwD0AdgDY2Tqd4QQ1gb0Tqn+frPsqqV3Pv8M4HIiShDRNADnymMTAey0XL9T7qulPCoqUpZENBVGD28ZgPFCiD2A8VHD0JwAo4x2WC5T5Vax8iwxn4qyl2nAfOqotfL0oxbL868ArBRCDKIK3zsLFHc+C+BaIloBQ+VMy/1zAGQBHA/DpPBPRHSiPPa3Qoh3AHiP/Pt0FfO5CEblWQ7gBwBeBpCBofY6KXeYX9g8AhUqSyJqBfAbAF8RQnhpmrpyq0h5RpBPoAJlGiKf2iRc9lWzPL2oufIkotMA3ArgC2qXy2ll/d5ZoLgghHhLCHGxEOJcAL+CYYsGDB/KE0KIIWmmeQnSTCOE2CV/ewH8EpUxNbjmUwiREUJ8VQhxlhDicgAjAWyA0YBPsiQxCcBuZ7pVzmNFypKIkjA+1vuEEA/L3fukmUCZXzrl/p2wa0+q3MpenhHls+xlGjKfOmqtPLXUWnkS0SQAvwVwlRBCtVcV/95ZoLigIjaIKAbgGwB+Lg9tB3ARGbQAOB/AW9JsM1ZekwTwERimnqrkk4iaZf5ARB8CkBFCrJVqci8RnS9V9KsAPFJLeaxEWcpnvwPAOiHE9yyHHgWwQG4vQL5sHgUwX9qlpwGYAeDVcpdnVPksd5kWkU9XarA8denUVHkS0UgAjwO4Xgjxkjq5Gt972bz99fIHo9e8B8AQDIl+NYAvw4iseBvAt5EfANoK4NcwHF9rAXxN5KNBVgB4Qx77IWR0TZXyORXGrMrrADwN4ARLOrNhVP5NAH6srqmVPFaoLC+Eofq/AWCV/PswgDEwAgU2yN/Rlmv+TZbZelgiZcpcnpHks9xlWmQ+t8II4Dgi68qsGi3PgnzWWnnC6Kj1Wc5dBWBcucvT7Y9HyjMMwzCRwCYvhmEYJhJYoDAMwzCRwAKFYRiGiQQWKAzDMEwksEBhGIZhIoEFCsPUCET090R0VYjzp5JlZmeGqTaJameAYRhjsJwQ4uf+ZzJM7cIChWEiQk7k9wSMifzOhjGY8yoApwL4HoyBsfsB/J0QYg8RPQdjDrN3A3iUiNoAHBFCfIeIzoIxq0AzjEFpnxVCHCSic2HMg9YP4MXKPR3D+MMmL4aJllMA3C6EOAPG0gbXAvgRgI8LYz6zRQBusZw/UgjxPiHEdx3p3APg6zKd1QBukPvvBPAPQogLyvkQDFMMrKEwTLTsEPn5lP4PwL/CWPRosZzhPA5jehrFA84EiGgEDEHzvNx1N4Bfu+y/F8Cl0T8CwxQHCxSGiRbnXEa9ANZ4aBR9IdIml/QZpmZgkxfDRMsUIlLC45MA/gSgQ+0joqRct0KLEKIHwEEieo/c9WkAzwshDgHoIfr/27tjEwSCIAqgf8DIWizBTgzEljTRxCpMLETMLMP0DG5zQQbO4L1wg2GyzwzLbm3H+a6/ffidCQV6PZPsq+qS+VXYU5J7kuNYWa0yfyj2+FJnn+RcVeskrySHcX5Icq2q96gLf8Nrw9Bk3PK6TdO0WbgVWISVFwAtTCgAtDChANBCoADQQqAA0EKgANBCoADQQqAA0OIDT1ZK+344XAgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -233,9 +2241,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmcnGWZ7/29qqqr9+70moR0QkIWIEQEEsMqIlviMoIKH6MOZBzOG0U8h9F5zxxxfAfFw1FmFBycAUXJYXEBxg0UEQMIioRAgiEhG+lsZO9Oekl3V3et1/vH81SnulPdVdVdne6qur6fT32q6q7nvut+nqSfX13Lfd2iqhiGYRhGOnjGewKGYRhG7mCiYRiGYaSNiYZhGIaRNiYahmEYRtqYaBiGYRhpY6JhGIZhpI2JhmEYhpE2JhqGYRhG2phoGIZhGGnjG+8JZJv6+nqdOXPmeE/DMAwjp1i3bt0RVW1IdVzeicbMmTNZu3bteE/DMAwjpxCRPekcZ+4pwzAMI21MNAzDMIy0SVs0RMQrIn8Vkd+672tFZJWIbHefaxKOvU1EmkVkm4gsSWhfKCIb3c/uFRFx24tF5HG3fY2IzEzos9z9ju0isjwbJ20YhmGMjEwsjVuBLQnvvww8r6pzgefd94jIfGAZcBawFLhPRLxun/uBFcBc97HUbb8JaFfVOcA9wF3uWLXA7cD5wGLg9kRxMgzDME4uaYmGiDQBHwJ+lNB8DfCw+/ph4NqE9sdUNaiqu4BmYLGITAWqVHW1Opt4PDKoT3ysnwNXuFbIEmCVqrapajuwiuNCYxiGYZxk0rU0vgv8ExBLaJusqgcB3OdGt30asDfhuH1u2zT39eD2AX1UNQJ0AnXDjDUAEVkhImtFZG1ra2uap2QYhmFkSkrREJEPAy2qui7NMSVJmw7TPtI+xxtUH1DVRaq6qKEhZZqxYRiGMULSsTQuBj4iIruBx4DLReTHwGHX5YT73OIevw+YntC/CTjgtjclaR/QR0R8QDXQNsxYhjGu/Hl7K7uO9Iz3NAzjpJNSNFT1NlVtUtWZOAHuF1T1b4GngHg203LgSff1U8AyNyNqFk7A+zXXhdUlIhe48YobB/WJj3Wd+x0KPAtcLSI1bgD8arfNMMaVWx9bzwN/2jne0zCMk85oVoR/C3hCRG4C3gGuB1DVTSLyBLAZiAC3qGrU7XMz8BBQCjzjPgAeBB4VkWYcC2OZO1abiHwDeN097g5VbRvFnA1j1ESiMdoDIXpDkfGeimGcdDISDVV9EXjRfX0UuGKI4+4E7kzSvhZYkKS9D1d0kny2EliZyTwNYyzp6A2jCn3hWOqDDSPPsBXhhpEh7T0hAPoi0RRHGkb+YaJhGBnSFheNsImGUXiYaBhGhrQH4qJh7imj8DDRMIwMaesJA2ZpGIWJiYZhZEhbTxCAYMQsDaPwMNEwjAwxS8MoZEw0DCNDjsc0TDSMwsNEwzAy5Hj2lLmnjMLDRMMwMqQtYZ2GU+3GMAoHEw3DyJC4aKhCKGrWhlFYmGgYRoa0B0J4PU7VfnNRGYWGiYZhZEBfOEogFGVKVQkAQQuGGwWGiYZhZEDcNTW12hENszSMQsNEwzAyIC4ap0wqBaxooVF4mGgYRgbE12hMnRS3NEw0jMLCRMMwMqDf0qh2LQ1zTxkFRkrREJESEXlNRN4UkU0i8nW3/Wsisl9E1ruPDyb0uU1EmkVkm4gsSWhfKCIb3c/udbd9xd0a9nG3fY2IzEzos1xEtruP5RjGONIRcEqITKk2S8MoTNLZuS8IXK6q3SJSBLwsIvFtWu9R1W8nHiwi83G2az0LOAV4TkTmuVu+3g+sAF4Ffgcsxdny9SagXVXniMgy4C7gEyJSC9wOLAIUWCciT6lq++hO2zBGRlwkasr8A94bRqGQ0tJQh273bZH7GG4Z7DXAY6oaVNVdQDOwWESmAlWqulqdZbSPANcm9HnYff1z4ArXClkCrFLVNlcoVuEIjWGMCyG3sm1VqfN7q88q3RoFRloxDRHxish6oAXnJr7G/egLIrJBRFaKSI3bNg3Ym9B9n9s2zX09uH1AH1WNAJ1A3TBjDZ7fChFZKyJrW1tb0zklwxgRoWgMESj3u6JhloZRYKQlGqoaVdVzgCYcq2EBjqtpNnAOcBD4jnu4JBtimPaR9kmc3wOqukhVFzU0NAx7LoYxGkKRGEVeD8VFzp+OLe4zCo2MsqdUtQN4EViqqoddMYkBPwQWu4ftA6YndGsCDrjtTUnaB/QRER9QDbQNM5ZhjAvBSIxir4eSIi9g2VNG4ZFO9lSDiExyX5cCVwJb3RhFnI8Cb7mvnwKWuRlRs4C5wGuqehDoEpEL3HjFjcCTCX3imVHXAS+4cY9ngatFpMZ1f13tthnGuBCOxvD7PJT44qJhloZRWKSTPTUVeFhEvDgi84Sq/lZEHhWRc3DcRbuBzwKo6iYReQLYDESAW9zMKYCbgYeAUpysqXgW1oPAoyLSjGNhLHPHahORbwCvu8fdoaptozhfwxgVoYgjGkVewSO2ItwoPFKKhqpuAM5N0n7DMH3uBO5M0r4WWJCkvQ+4foixVgIrU83TME4GIdfSEBFKirzmnjIKDlsRbhgZEA+EA65omKVhFBYmGoaRAaFIDH9cNHweszSMgsNEwzAyIO6eAtfSsJiGUWCYaBhGBsQD4QDFRV5bp2EUHCYahpEBoWiM4n5Lw9xTRuFhomEYGTAwpmGBcKPwMNEwjAwYmD3lsZiGUXCYaBhGBoQHB8LNPWUUGCYahpEBiYFwW6dhFCImGoaRAQNTbi0QbhQeJhqGkQHBhEB4sc9L0GIaRoFhomEYGTDYPRU0S8MoMEw0DCMDwtGElNsiD6FojGhsuN2PDSO/MNEwjDSJRGPElAGWBmAuKqOgMNEwjDQJRR1XVL9ouM8WDDcKCRMNw0iTUMQVDe9AS8PSbo1CIp3tXktE5DUReVNENonI1932WhFZJSLb3eeahD63iUiziGwTkSUJ7QtFZKP72b3utq+4W8M+7ravEZGZCX2Wu9+xXUSWYxjjRFw0ivoLFnoGtBtGIZCOpREELlfVdwPnAEtF5ALgy8DzqjoXeN59j4jMx9mu9SxgKXCfu1UswP3ACpx9w+e6nwPcBLSr6hzgHuAud6xa4HbgfGAxcHuiOBnGySTunip2LQ2fx3kOR000jMIhpWioQ7f7tsh9KHAN8LDb/jBwrfv6GuAxVQ2q6i6gGVgsIlOBKlVdraoKPDKoT3ysnwNXuFbIEmCVqrapajuwiuNCYxgnlX73lGtpxGtQhUw0jAIirZiGiHhFZD3QgnMTXwNMVtWDAO5zo3v4NGBvQvd9bts09/Xg9gF9VDUCdAJ1w4xlDMOrO4/y6Ord4z2NvGNwINzvEwAiUUu5NQqHtERDVaOqeg7QhGM1LBjmcEk2xDDtI+1z/AtFVojIWhFZ29raOszUCoMnXt/Ld5/bPt7TyDsGB8Ljloa5p4xCIqPsKVXtAF7EcREddl1OuM8t7mH7gOkJ3ZqAA257U5L2AX1ExAdUA23DjDV4Xg+o6iJVXdTQ0JDJKeUlgVCUnlBkvKeRdwwOhJt7yihE0smeahCRSe7rUuBKYCvwFBDPZloOPOm+fgpY5mZEzcIJeL/murC6ROQCN15x46A+8bGuA15w4x7PAleLSI0bAL/abTOGoScUoS9sK5WzTb97qt/ScAzhsLmnjALCl8YxU4GH3QwoD/CEqv5WRFYDT4jITcA7wPUAqrpJRJ4ANgMR4BZVjSey3ww8BJQCz7gPgAeBR0WkGcfCWOaO1SYi3wBed4+7Q1XbRnPChUBvyLncgVCEypKicZ5N/jBUIDxiloZRQKQUDVXdAJybpP0ocMUQfe4E7kzSvhY4IR6iqn24opPks5XAylTzNI4T6BeNqIlGFomLRrHPYhpG4WIrwvOQXneFcnfQ4hrZZHD21PGYhrmnjMLBRCMPCbhB8EDQyltkk/5A+OCYhq0INwoIE408JO6esgyq7BIewtIw95RRSJho5BmqmhDTMNHIJkOu07AsNaOAMNHIMxI3Beo291RWCQ7KnoqLh7mnjELCRCPPiKfbAgQsEJ5V+gsWxt1Tvvg6DRMNo3Aw0cgzAgmi0RMySyObDA6EW5VboxAx0cgzAmZpjBnhaAyvR/B6HAvDVoQbhYiJRp6R6J7qtkB4VglFYv1xDAARocgrZmkYBYWJRp6RmGZr6zSySygS6w+Cxynyekw0jILCRCPP6B0Q0zBLI5uEokOJhrmnjMLBRCPPiMc0PGKWRrYJDnJPgRPXsNLoRiFhopFnxBf01ZYXm6WRZcJRTWppWJVbo5Aw0cgz4sUKGyqL6bHsqawSikSTWBrmnjIKCxONPCPunqqv8A9IvzVGT/JAuLmnjMLCRCPPiK/NqCv3m3sqywwZCLcyIkYBkc52r9NF5I8iskVENonIrW7710Rkv4isdx8fTOhzm4g0i8g2EVmS0L5QRDa6n93rbvuKuzXs4277GhGZmdBnuYhsdx/LMYYlEIpS5vdSUeKzQHiWCUVi/Qv64hR5PUSsYKFRQKSz3WsE+EdVfUNEKoF1IrLK/eweVf124sEiMh9nu9azgFOA50Rknrvl6/3ACuBV4HfAUpwtX28C2lV1jogsA+4CPiEitcDtwCJA3e9+SlXbR3fa+Usg7IhGud9nmzBlmVBUqfYP/JOxxX1GoZHS0lDVg6r6hvu6C9gCTBumyzXAY6oaVNVdQDOwWESmAlWqulpVFXgEuDahz8Pu658DV7hWyBJglaq2uUKxCkdojCHoDUUp9XspL/YRjMQssyeLDF4RDo6lETL3lFFAZBTTcN1G5wJr3KYviMgGEVkpIjVu2zRgb0K3fW7bNPf14PYBfVQ1AnQCdcOMZQxBIBShrMhHmd/rvA+biypbhCLR/gq3cfw+WxFuFBZpi4aIVAC/AP5BVY/huJpmA+cAB4HvxA9N0l2HaR9pn8S5rRCRtSKytrW1ddjzyHcCoShlxY6lAbbAL5vYinDDSFM0RKQIRzB+oqq/BFDVw6oaVdUY8ENgsXv4PmB6Qvcm4IDb3pSkfUAfEfEB1UDbMGMNQFUfUNVFqrqooaEhnVPKW+KB8LilYXGN7JEsEO7zWEzDKCzSyZ4S4EFgi6rendA+NeGwjwJvua+fApa5GVGzgLnAa6p6EOgSkQvcMW8EnkzoE8+Mug54wY17PAtcLSI1rvvrarfNGIJAKEppkY9yN2BrW75mj6Qrws09ZRQY6WRPXQzcAGwUkfVu21eAT4rIOTjuot3AZwFUdZOIPAFsxsm8usXNnAK4GXgIKMXJmnrGbX8QeFREmnEsjGXuWG0i8g3gdfe4O1S1bWSnWhj0hiJO9pTrnuox91TWcALh3gFtfnNPGQVGStFQ1ZdJHlv43TB97gTuTNK+FliQpL0PuH6IsVYCK1PN03CIu6fKi91AuFkaWWOoFeFmaRiFhK0IzzN6Q1HK/D7KXPeUxTSyQzSmhKIxSooG/sn4zNIwCgwTjTxCVY8v7nMtDXNPZYf4WoxiXzL3lFkaRuFgopFHBCMxojGl1O+lqqQIgGN94XGeVX4QjDjiO3idhrmnjELDRCOPiO/aF0+5LfZ5aOsJjfOs8oOga2mUFA20NGy7V6PQMNHII+Krv8v9PkSEunI/R7tNNLJBX3goS8OJaTgZ4oaR/5ho5BH9NzY3WFtT7qc9YKKRDeKWRnHRie4pwCrdGgWDiUYeEQwPDNbWlvs5au6prDD42sYpcgsYmovKKBRMNPKI/mCt+2u4rtxPW09wPKeUN8Sv7eCU237RiJilYRQGJhp5RL8LxfW715YX02YxjazQN5Sl4V5r2/LVKBRMNPKIwWsJ6ir89ISi/bEOY+QMlXLr749pmGgYhYGJRh5xoqXhB7C02ywwVMqtz2PuKaOwMNHIIwb/Gq4pM9HIFkOm3Jp7yigwTDTyiMEZPnUVJhrZYqiU27h7yrKnjELBRCOPGHxjM/dU9gj2WxqWcmsUNiYaecRg91SdKxq2VmP0HI9pDJFya5VujQLBRCOPGJw9VVVShNcjtlYjC8RTbv3ewaXRzT2VKbGYsrctMN7TMEZIOtu9TheRP4rIFhHZJCK3uu21IrJKRLa7zzUJfW4TkWYR2SYiSxLaF4rIRveze91tX3G3hn3cbV8jIjMT+ix3v2O7iCzHGJL4r+H4RkEej1BTVmTuqSwQjETxeQSfd3BMw9xTmfL0xoNc9u0XOdjZO95TMUZAOpZGBPhHVT0TuAC4RUTmA18GnlfVucDz7nvcz5YBZwFLgftEJO4Ivh9YgbNv+Fz3c4CbgHZVnQPcA9zljlUL3A6cDywGbk8UJ2Mg8Rub13N8o8VaK1qYFYKR2AnptmAxjZGwcX8n0ZjS3NI93lMxRkBK0VDVg6r6hvu6C9gCTAOuAR52D3sYuNZ9fQ3wmKoGVXUX0AwsFpGpQJWqrlanJOgjg/rEx/o5cIVrhSwBVqlqm6q2A6s4LjTGIILh2AkpobVWtDAr9IWjJ1xbsJjGSNh+uAuAvW1maeQiGcU0XLfRucAaYLKqHgRHWIBG97BpwN6Ebvvctmnu68HtA/qoagToBOqGGctIQjASo3jQr+G68mILhGeBYOREQQbw+yymkSnNrY6F8Y7FNXKStEVDRCqAXwD/oKrHhjs0SZsO0z7SPolzWyEia0VkbWtr6zBTy29CkdgJgVpzT2WHZIIMCSvCTTTSIhCKsK/dsTAsGJ6bpCUaIlKEIxg/UdVfus2HXZcT7nOL274PmJ7QvQk44LY3JWkf0EdEfEA10DbMWANQ1QdUdZGqLmpoaEjnlPKSYCR6wuKzpppSOnvDdAZs29fREBzKPeWzMiKZsLO1B1XwesQsjRwlnewpAR4Etqjq3QkfPQXEs5mWA08mtC9zM6Jm4QS8X3NdWF0icoE75o2D+sTHug54wY17PAtcLSI1bgD8arfNSEIyF8ppDRUA7DhiQcfR0DeEpRHfhMnKiKRHPPi96NQa9rabaOQi6VgaFwM3AJeLyHr38UHgW8BVIrIduMp9j6puAp4ANgO/B25R1XiZ1ZuBH+EEx3cAz7jtDwJ1ItIMfAk3E0tV24BvAK+7jzvcNiMJjmgMvLHNbigHnF94xsgZytKIuwMjJhppsb2lC59HuHReAx2BMJ29ZgHnGr5UB6jqyySPLQBcMUSfO4E7k7SvBRYkae8Drh9irJXAylTzNFz31KAb2/TaMnweYWerWRqjIRiJUVly4p+Lz7KnMqK5pZtT68r6f8zsbQtQPa16nGdlZIKtCM8jQpFY/8K+OEVeD6fWlbHDRGNUDL1Ow9xTmbC9pZs5jRU01ZQBFgzPRUw08oih0kJPa6gw99QoGTIQbtlTGXG0O8TU6lJm1DmiYcHw3MNEI49wFved+Gt4dkMFu4/2mN99FCSLF4FTqsXnESLmnkqLQChCqd9LVUkRk8qKLBieg5ho5BHJUm4BTmsoJxzV/vx4I3OCkegJFW7jFHk9ZmmkQSgSIxxVyv2O+E6tLuVQZ984z8rIFBONPGIo99RsN+12p6Xdjpi+Iaw4cCrdWkwjNYFQBIAyv5NQUFNWRLutH8o5TDTyiGSBcDiedvvbDQeJxcyNMhKGsuLASbs1SyM1gZCTeV9e7IhvjdVFy0lMNPKIofzuk8r8fPbS0/jlG/v5519vHIeZ5TbRmBKOalIrDhz3lMU0UpPU0rC6aDmHiUYekWydRpwvf+AMbrjgVH722l7bXyNDQv279iV3TxX5zD2VDj3BgZZGbZmfjt4wUbN+cwoTjTzh+K/h5Dc2EeHK+ZMBeNstTW2kR1944Da6gynyevqFxRiankGWxqQyP6pwzFaF5xQmGnlCaNCufck4Y0olYKKRKcFB2+gOptjn7T/GGJpA3NJwRaPW3cO+zeIaOYWJRp4QjAz/axigsbKY6tIith0y0ciEVNe2pMjTb40YQxO3NEr9xwPhAB0mGjmFiUaeELc0hsrwAcdFdfrkSrM0MqQvPHxMo7TIa6KRBidkT5UVAdDWY+6pXMJEI09I5UKJM29KBVsPdeFUnjfSIbWl4e0XFmNoeoKDs6ccS8PSbnMLE408IR33FMDpkyvp6otw6JitxE2XYAorztxT6dHrWhplg9xTlnabW5ho5AnxX7rDBcIB5k12guEW10ifYAr3VInPS6+JRkp6QlH8Pg9Fbjn5cr8Xv9djq8JzDBONPOG4e8pEI9ukSrktNvdUWgRCkf66U+DE2CbZAr+cI53tXleKSIuIvJXQ9jUR2T9oJ7/4Z7eJSLOIbBORJQntC0Vko/vZve6Wr7jbwj7utq8RkZkJfZaLyHb3Ed8O1khCKM2YRk25n4bKYra3WB2qdEkVLyot8hI0SyMlPcFofzwjTm2531Juc4x0LI2HgKVJ2u9R1XPcx+8ARGQ+sAw4y+1zn4jE/9LuB1bg7Bk+N2HMm4B2VZ0D3APc5Y5VC9wOnA8sBm539wk3ktAf0xgmeyrOnIaK/r2ajdSklXIbMdFIRSAU6c+cijOprMhSbnOMlHcYVf0TkO6+3NcAj6lqUFV34ewFvlhEpgJVqrpanbSdR4BrE/o87L7+OXCFa4UsAVapapuqtgOrSC5eBum7pwDmNFawo6XbMqjSJJiijEhJkZdwVG2/khT0hKKUJrM0zD2VU4wmpvEFEdnguq/iFsA0YG/CMfvctmnu68HtA/qoagToBOqGGctIQqai0RWM0NIVHOtp5QWpYhrxfTb6bFX4sASCA2Ma4JQS6bBAeE4xUtG4H5gNnAMcBL7jtkuSY3WY9pH2GYCIrBCRtSKytrW1dbh55y3B/hvb8DENcEQDMBdVmqRKuS11LRBLux2eQChJTKPMKY9uJftzhxGJhqoeVtWoqsaAH+LEHMCxBqYnHNoEHHDbm5K0D+gjIj6gGscdNtRYyebzgKouUtVFDQ0NIzmlnCdeZTVdSwNMNNKlL4UgF5topEWymEZNuZ+YQldfZJxmZWTKiETDjVHE+SgQz6x6CljmZkTNwgl4v6aqB4EuEbnAjVfcCDyZ0CeeGXUd8IIb93gWuFpEalz319Vum5GE+FqCdCyNxspiKot9Jhpp0uuuL/B6khm/x2MdJhrD05PE0ugvJWLB8JzBl+oAEfkZcBlQLyL7cDKaLhORc3DcRbuBzwKo6iYReQLYDESAW1Q1/pd0M04mVinwjPsAeBB4VESacSyMZe5YbSLyDeB197g7VDXdgHzBkcqFkoiIMLvRyaBqbummwS1kaCTHcasMLcYlrnVnazWGJ1lMI17p9mh3kFn15eMxLSNDUoqGqn4ySfODwxx/J3Bnkva1wIIk7X3A9UOMtRJYmWqOxvG0UL83PeNxTmMFT60/wFX3vMRH3n0K/77s3LGcXk7TG45SNkTmFByv2mqWxtDEYkogHKWseOAtp6GyGIAj3ZaUkSvYivA8IRiJUeQVPEO4UAYzf2oVoWiMunI/qzYfthveMPSGov3CkIzj7imzNIaiLxJFlRMstoYKRzRau809lSuktDSM3CA0xP7gQ/HpC2Zw7oxJ9ASj/O2Da3hxWytLF0wZwxnmLoFQ5ARffCIl7nW3+lND07/VaxL3lAi0Wvp3zmCWRp4w3P7gySj2eTl3Rg0XnFZLTVkRz7x1cAxnl9sEUloa8ZiGicZQHK9wO1B8fV4PtWV+E40cwkQjTwiGYykr3CbD5/Ww5KwpPL+lxW56Q9AbThEIt+yplMR37RuccgtOXMNiGrmDiUaeEIzEMrI0Erlkbj3dwQg7Wi0FNxmBULR/AV8yTDRSEwgN3IApkYbKYrM0cggTjTyhLxzNKKaRyKm1Tqrj3rbebE4pb0gdCLeU21T0xzSSWBr1FWZp5BImGnlCIBRN+geZDtNrSwHY2xbI5pTyBicQbpbGaEjH0rACmrmBiUae0BOKUF48smS46tIiKkt87G030UhGsppJiRR5ndXiVh59aI5nT514Hesr/AQjMbqCVkokFzDRyBN6U6xaHg4RYXpNmVkaSYjFlGAkNmxMA5yihb0hc08NRdzSSObm61/gZ3GNnMBEI0/oSbGWIBUzast4x0TjBOJrL1IJsm3ENDzH3IKElSXJLA13gZ+JRk5gopEnBIIjtzTAiWvsa+81v/IgAqH0RKPY57WYxjB09oYpKfIk3cjqeCkRWxWeC5ho5AmjiWkATK8tIxiJ2a+9QcQXpQ3ecW4wJUWe/krDxol0BEJMKvUn/ay/lEhX38mckjFCTDTygGhM6QvHRmlplAGYi2oQgXA86ydFTMPvtTIiw9ARCDOpLHkl5ZoyP16P0Oqm3faFo/1ibUw8TDTygHiQMVlmSrpMr3FEwzKoBhLotzRSxDTMPTUsnb3hIcvvezxCXbmfI12Oe+pzP17Hdd9/hajt5jchMdHIA/rr+oxwnQZAU018rYYt8Euk3z2VInuqpMhEYziGEw2Axqpidh7pZs/RHl7c1sqmA8f49V/3n8QZGuliopEH9ISGzoFPl5IiL5Oritlz1CyNRNINhJcUeWxF+DAM554C+PDZp/D67na+/IuNeMTZ7+XuVW9z/4s7eGHr4ZM4UyMVKUVDRFaKSIuIvJXQVisiq0Rku/tck/DZbSLSLCLbRGRJQvtCEdnofnavu+0r7tawj7vta0RkZkKf5e53bBeR+JawxiB6gkPnwGfCvMmVbDl4LBtTyhuOr2Q2S2M0dPSGmFSWPBAO8HcXzWTapFJW7zzK+09v5I6PnMX+jl7u+v1WvvbU5pM4UyMV6VgaDwFLB7V9GXheVecCz7vvEZH5ONu1nuX2uU9E4n9t9wMrcPYNn5sw5k1Au6rOAe4B7nLHqsXZWvZ8YDFwe6I4GccJZMHSADi7qZq3D3fZzS+B9LOnTDSGoi8cpS8cG9Y9VVLk5f9dMg+AT50/g4vm1PPnf3o/n1w8g6NWl2pCkVI0VPVPOHt3J3IN8LD7+mHg2oT2x1Q1qKq7gGZgsYhMBapUdbU6CwEeGdQnPtbPgStcK2QJsEpV21S1HVjFieJlcLzs9GhiGgDvmjaJSEzN2kigf3FfypiGh76IuaeScaw3DJByH/qPntvEc1+6lCvOnAw4GX1NNaWYB++kAAAgAElEQVT0hKImyBOIkcY0JqvqQQD3udFtnwbsTThun9s2zX09uH1AH1WNAJ1A3TBjGYMIDFPXJxPObqoGYOP+zlHPKV/IJHvK0kST0+GKxnAxjThzGisHvK8rd1xaR3ts4d9EIduB8GQbVOsw7SPtM/BLRVaIyFoRWdva2prWRPOJnjT97qmYWl1CfYWfDftMNOL0hqJ4hJR7lZQUed19sC1NdDAdAVc0hljcNxx17sI/c1FNHEYqGoddlxPuc4vbvg+YnnBcE3DAbW9K0j6gj4j4gGocd9hQY52Aqj6gqotUdVFDQ8MITyl3if/CHc2KcHAKFy6YVs1GE41+4hVu3byNISn1e1GFUNRcVIPpzMDSGEytWRoTjpGKxlNAPJtpOfBkQvsyNyNqFk7A+zXXhdUlIhe48YobB/WJj3Ud8IIb93gWuFpEatwA+NVumzGIbFkaAGdPq2Z7S1d/1lCh0xuOpJWVFrdELO32RDoCzg0/VUwjGfUVrmhYXaoJQ8qfpiLyM+AyoF5E9uFkNH0LeEJEbgLeAa4HUNVNIvIEsBmIALeoatzRezNOJlYp8Iz7AHgQeFREmnEsjGXuWG0i8g3gdfe4O1R1cEDewIlppONCSYf5p1QRU2hu6ebspklZmF1uE0iz5HziRkwjuTnmM3FLo3oElkbcPdXWY+6piUJK0VDVTw7x0RVDHH8ncGeS9rXAgiTtfbiik+SzlcDKVHMsdHpCEcrTcKGkw7RJTjmRQ519nN2U4uACINX+4HFs976h6QiE8XqEyhG4T8v9Xvw+j1kaEwhbEZ4HBILRUafbxplc7fyyO3TMKo5C6v3B45T2i4a5pwYTLyEykh81IkJ9ud/Kpk8gTDTygLilkQ3qy4vxeYRDnSYakHp/8DjxzYWO9YXHeko5R0eKulOpqK3wm3tqAmGikQf0hrJnaXg8wuSqEhMNl95wjNKi1IIcz/JpsyyfE+gIhEYlGnXlxZY9NYEw0cgDRrvV62CmVJdw0EQDgN40LY0aVzTa7eZ2Ap29wxcrTEVdhd9iGhMIE408IBCKUp6FdNs4U6pKOGwxDSD97KlatxhfW8BuboPp7A0zaVSWhp+jPUFbODlBMNHIA3qCY2Np2B9pBoFwv5fSIq9ZGknoCIwuplFXUUxfONZf0sUYX0w08oB0fw2ny5SqEnrDUY71FfYCP1UlEE7/2taW+2nrsUB4Ir2hKJ29YRoqi0c8Rp3FiyYUJhp5QE8wMuoSIolMqS4BKPhgeG84SjSmVBSn9yu5przIsnwGsb/D2Qmyyd1OeCTUuavCj1j9qQmBiUYekHVLIy4aBR7XOODe8E6ZVJLW8TVlftoCZmkkEheNae52wiOhrjy+KtwsjYmAiUaOE4rEiMQ0u5ZGVdzSKOz9wve1uze8Send8GrL/RbTGMS+dmf74KbRiIZZGhMKE40cJ93tSDNhcr9oFPYfaaa/kk00TmR/ey8+j9BYmZ61lox4PKTlWGH/f5womGjkOD1Z2uo1Eb/PQ32Fn0PHCtvSyPSGV1vmpysYIWQ7+PWzr72XUyaV4vWMvC5asc9LTVkRh7sK2106UTDRyHECQcfSSCctNBOmVpf2u2cKlf0dvUypLkn7hhdf4NdhazX62d/Rm7Z7bzgaK0vM0pggmGjkOPGtNOO1j7LFgmnVrN/bQSxWuGs19rdndsPrLyViotHP/vbeUcUz4jRWFXO4y0RjImCikePEM3yy8WsukUWn1tDVF+Htlq6sjptLHOjozSjrpya+KtxKXgBOksbhrr5RZU7FaawsobXAs/kmCiYaOU68RtTUbIvGzBoA1u5uz+q4uUI4GuPQsT6aMriu8SwfszQcDnb2ojq6NRpxGquKaekKFrTlO1Ew0chxDnT0UlXioyKLKbcAM2rLaKgsZu3uwtws8VBnHzHNbH1B3NKwDCqHTFOWh2NyZTGRmNJugjzujEo0RGS3iGwUkfUistZtqxWRVSKy3X2uSTj+NhFpFpFtIrIkoX2hO06ziNzr7iOOu9f44277GhGZOZr55iMHOpzslGwjIiw6tYa1ewrT0uhPt52U/q/keCVXKyXisL89vho8GzENJ4PtsAXDx51sWBrvV9VzVHWR+/7LwPOqOhd43n2PiMzH2f/7LGApcJ+IxFN+7gdWAHPdx1K3/SagXVXnAPcAd2VhvnnF/o6+MRENgEUza9nX3luQ5UTiN7xMLI0ir4eqEp/9GnbZ09aDzyP9FQZGw+Qqd62Gpd2OO2PhnroGeNh9/TBwbUL7Y6oaVNVdQDOwWESmAlWqulqdsqqPDOoTH+vnwBWSjY2w84iDnb1pl7nIlHOmTwJg4/7OMRl/IhO3NKZmeMNzihaaaABsPdjF7IYKiryjv83E18pY2u34M9p/TQX+ICLrRGSF2zZZVQ8CuM+Nbvs0YG9C331u2zT39eD2AX1UNQJ0AnWDJyEiK0RkrYisbW1tHeUp5Q49wQgdgfCYWRpzGioA2NnaPSbjT2Q2Hehkem0pJUWZrX9pqCwu+JpdcbYcPMaZUyuzMlb/qnCzNMad0YrGxap6HvAB4BYRuXSYY5NZCDpM+3B9BjaoPqCqi1R1UUNDQ6o55w0H3dpQp1SPjWhUlxVRX1FMc0thiUYspry2q43zZ53w+yQlcxorCu56JaMzEOZAZx9nTK3KynglRV6qS4sspjEBGJVoqOoB97kF+BWwGDjsupxwn1vcw/cB0xO6NwEH3PamJO0D+oiID6gGCjOdJwn7O5xfXWNlaQDMaSxnR4FZGs2t3bQHwpw/qzbjvnMaK2nrCRV8cb0th44BcMaU7FgaAI2VxTljaTS3dHHHbzZzw4Nr+OPWltQdcogRi4aIlItIZfw1cDXwFvAUsNw9bDnwpPv6KWCZmxE1Cyfg/ZrrwuoSkQvceMWNg/rEx7oOeEFtO7l+DmZYunskzG6oYEdrT0Ht4rdm51GAEVka8yY7Lr23DxfuokiArQcd0ZifJUsDnEKaLTmwKlxV+cxDr/OTNXvYfribzzz0Ovc+v328p5U1RmNpTAZeFpE3gdeAp1X198C3gKtEZDtwlfseVd0EPAFsBn4P3KKq8f0bbwZ+hBMc3wE847Y/CNSJSDPwJdxMLMPhQEcvIser0o4Fsxsq6OwNc7QAgruRaIzeUJRXd7UxtbqE6bWZW3DzJju/rLcfLizrbDBbDnZRW+4f1Y59g2msKs6JTL51e9rZ29bLNz/2Ll76p8u4ZE49j7++N3XHHGHEK8JUdSfw7iTtR4ErhuhzJ3Bnkva1wIIk7X3A9SOdY76zv6OPyZUlWclOGYrZjc4v5+aWbuorsncDmIh885mtPPrqHjwCS8+awkgS9Rori6kq8ZmlccgJgmcz2XF2QwW/fGM/x/rCVJWMfM/xsebX6/dTUuTh6rOmUOzzctGcOl5uPkJXX5jKCTzvdLEV4TnM7qM9WVk4NRyzG8oB8j6uoar8/q1D1Jb58YqwdMGUEY0jIsybXFnQlkYoEmPb4S7OmJI91xQcj4+8fWjiCnI4GuPpDQe58szJ/VUaTnetz7fz5P+EiUaO0heOsnFfJwtPrUl98Cg4pbqU0iIvO1p6xvR7xpt32gLs7+jllvfPZtMdS1m6YOqIx5o7uZK3W7oKJg60bk8bP1mzp//9n7e30heOcfGczGNCwxHPxNoygUXjpW2ttAfCXHPOtP62ef2iMXHnnQkmGjnK+r0dhKIxFo8gwycTPB7htIZytud5tduXm48AcNGc+lGPNW9yBR2BMEcKpNrtN367hX/+1Vs8t/kwAE+uP0BNWRHvnZvd9PdTqkuoKvH1B9knIj9es4fGymIuO/34uU+bVEq538u2CSx2mWCikaO8tqsNEVh06tiKBsC5Myaxdnc7feFo6oNzlL80H2FqdQmn1ZePeqzTXTfKhn0dox5rorP7SA/r93ZQ5BW+/MsN7DrSw6rNh/nAu6ZmPdYmIpwxtYqtE/Tmu+doDy+93conF88YcO4ejzjWp1kaxnjy+u42Tp9cSXXZ2AfWrjxzMr3hKKt3HB3z7xoPYjHllR1HuXhOfVYCtwtPraGy2Mezmw5lYXYTmyfXH0AEHrhhEV19Ea68+yV6w1E+8u5TxuT7zpxSybZDXROyRPpP17yDR4RPLp5xwmenm2gY40k4GmPdnvYRLT4bCRfOrqPc7+W5LYdPyvedbNbuaacjEOa9c0fvmgJnT+srzmzkD5sPE47m737hqsqT6/ezeGYt7z+jkWdufS9LzprMBafVsnjm2PzfPGNqFd3BSH9tsPEiEo2x+8jxOF9fOMrja/dy9fzJSQs0zp1cwZHu0S367AtHeWXHkXGPlZlo5CBv7e8kEIrynpMkGsU+L5fOa+C5LYfH/T/sWPBfa/dS7vdy1fzJWRtz6YKpdATCrNmZvwUMfvCnnew80sPHz3MKOpzWUMF9n17IYysuxJPmvuqZEs+g2jzOcY37X9zB5d95kc0HnHk8veEgHYEwN1xwatLj4y7LkRb/VFX+8b/e5FM/XMM9q94GSPqD5GT8fZpo5CCvuG6iC07LbnbKcFxx5mQOHwvy5r78qnjbE4zw9MaDfOjsqZT5s7eR1fvmNVBa5OV3bx3M2pgTiSfW7uVbz2zlb959CtctbErdIUucMaWKimIfT60/kPrgMSIUifHw6j3EFL79h20APPrqHk5rKOfC2cn/JheeWkN9RTH3/bE56Y09FIn1b90M8M7RAH/YdKjfMnlk9R6e3nCQuY0V3PtCM5fc9QLzvvoMH/j3P/O957ezs7Wbr/xqI//rFxvG4IwHYqKRg7yy4whnTKk8qYvtrjpzMuV+Lytf3nXSvnOsaW7p4gd/2kkgFOX6RdNTd8iAUr+XpQum8Ou/7qc1B0pfZMKanUf5yi838t659Xzn+nePmVWRjFK/l89cPJOnNx5k66HxsTae3niAI91BLp3XwAtbW/inn7/J+r0d3HDBqUPGxMr8Pr541Vxe393OHzYPdPOqKjf/eB2Xf+dF9rYF+N7z27n03/7IikfXseKRtWw5eIw7n97C5Wc08rtb38vfXTSTM6ZU8tlLZ1NV4uM7q97m8u+8xBOv76W82Dfm1obkm7th0aJFunbt2vGexpjRF45y9tf/wA0XnMr/9+H5J/W7v/m7Lfzwzzt54R8vY2YWsozGk5+s2cM//+otwKlMu+qLl2Z19TLAriM9XHX3S3zq/Bnccc0JBQ9ykq2HjvGpH65hUlkRv/r8xVSXnvwVzh2BEJfc9UcWz6rl/r89j2JfZuXrR8s1//EyXcEIv/3vl3DV3X/i0LE+Fs+s5Qc3Lhx2pXokGmPpv/+ZaEz5wxcv7c+w+s2bB/jvP/sr4Fgkb+7t4PIzGll4ag3ffGYrlcU+inwe/vDFS5P+UNx84BjPbTnMh86eymx3O4ORICLrEjbTGxKzNHKMdXvaCUViXJKF9QSZctMls/B5PXz/pR0n/buzyZ/ebuVfntzE+09v4Fefv4hf3HxR1gUDYFZ9OZ94z3R+uuadvCiX/krzEa67fzVFXuFHNy4aF8EAmFTm5/Pvn80LW1u48u6XeHPvyUtt3nzgGG/u6+Rvzz+VMr+PVV+6lE1fX8LPVlyQsrSJz+vhKx88g11HevjpmncAaO0K8vXfbOJd06r54pXzWLennarSIr718bNZcelpLD1rCl3BCP/nowuG9CzMP6WK/3HF3FEJRiaYaEwA/u9fdvHh7/2Zv74z9H7cgVCEH7+6h8df34vPI2O+qC8ZjVUlfOTdp/D0hoNEcjQrqK0nxBcfX8/cxgq+96nzOHdGzZje/G69ci6VJT5u/vE6eoKRMfuesaYvHOUfHl/PlOoSfn3LxZx2km5QQ/H5y+bwyN8vJhpVbn3srydtDdEv3thHkVe49lxnxXeZ35fRRl3vP72Ri2bX8d3n3qa5pZsv/PQNuoMR/u36s/ns+07jw2dP5dvXn01tuR8R4e5PvJsnPnvhqCoUZBsTjXHmtxsO8PXfbObtQ91c//3VLHtgNf/y5Ft09oYHHHfPqrf56q/f4qk3D3DejBrKi7MXtM2Ey05voCsYYUMObgEbica44zebONYX5rvLzumvDTSWNFaW8J+fOo8drd388682jvn3jRU/fnUPLV1B7rx2AVPHaNOvTLl0XgP/dv272X00wHefG/vS4+FojF//dT9XnDGZ2nL/iMYQEb7ywTPpDjprWtbsauP/fPRdnDGlipIiL//xqfO4/IzjWXxlft+4/EAcjvG58xh09ob5t2e38tM17/CemTXc9+mFfO+F7Ww5eIyfrnmHV3YcZeXy9zCjrox3jgZ4+JU9XHvOKXx8YROzxjGecNFsxy32SvMRzpsxtnWvskUsptz8k3U8u8kJQN56xdysF9Mbjovm1PO5983mvhd38IXL5zKncXx/paeDqtIRCFNT7qe9J8R9L+7gvXPrOf8kZuylw8Vz6vnEoul8/6UdeD3wpatOxzsGgfk/bmvh9xsPcbQnxPWLRpcttmBaNc9/6TKe23KYkiIvHzvv5GWfZQMTjXHi9iff4jcbDnLjhTP50tXzqCop6g+Wrt5xlJt/so5r/vNl/uVv5vPYa3vxeODLHzgz6cKhk0ltuZ/5U6t4ufkIX7h87rjORVVpD4QpKfLQF3ZSFjfu7yQaU6bVlHLx7Hr8Pg8PvbKbZzcd5lPnz+C8GTVcc87YrFYejr+/ZBY/enkXD768i29+7F0n/fuHY2drNz9Z8w4NlcVce840drR28+/Pbee13W1cdnoD2w9309UX5n8uOX28p5qUr19zFh4P/Ocfd7DrSA/3LjsXXxolTF7YephfvLGfI11Bpk0qZemCKVx91onVjZ9cv59bH1uPzyO8b14Dl84bfU2tGXVl/P0ls0Y9znhgopEF+sJRin2etIOphzr7+O2Ggyy/cCb/8jcnZkBdOLuOX33+Ym566HW++PiblBR5+OqH5o+7YMS5ZG49D/1lN4FQJKtrGzKhszfMlx5fz/PDbKVZX+HnrFOqeXXnUS4/o5E7r10wJgHvdKivKObj5zXxizf28cUr59I4hhtnpUswEuVbz2zloVd24/MI4ajyrWe2AlBX7ufvLprJL97YR1VJEf/1uYs4u2nSOM84OSVFXr75sbM5rb6CO3+3hZKiDfzrx88eVji2HjrG5378BpNKi5hRW8afth/hV+v389BnFjNtUimv7WojGIkSCEX53gvbec/MGh696fyM4hf5Sk6IhogsBf4d8AI/UtVvjcX3vLW/k9OnVKZVaK0jEGL1jqP89LV3+PP2IxR5hbObJrHsPdM5Z/okZtSVDZkK+Mjq3cRU+czFM4ccf1Z9Ob/6/MW8+HYLl53eOG6ZKsm4eE49D/xpJ4+9tpfPXDyT1q4g9RXFJ+Trq2r/TbovHOWXb+xn9c6jvLupmvNOrWFuY0XGm9KoKqs2H+Z/P72FA24p84riIkqKPDRWlrBgmuMb3nSgkyde38fBzl4umVPPNz/2rnETjDj/7b2z+Pm6vVzzn3/hqx+azyVz6vtrh8ViiggnbY6vNB/h67/ZzLbDXfztBTO49Yp5tHT18ZfmI8xprGDxrDoqin38zyWn4xGh1D/xb5b/z6Wn0ReO8p1Vb3OkO8THzp1Ga1eQy89sZHZDBeFojD9ubWHP0QCPr91LVUkRv7v1vdRXFBMIRfjYfa/wuUfXEYxESSxtNbOujP/89HkmGC4Tfp2GiHiBt3G2jt0HvA58UlU3Jzt+pOs0jnQHWfS/n6Pc7+V9pzfwpavmMau+gpauPg509KGqTCorYkZtOXevepsH/rSDmDo7tX3svKb+m9lOtx6NR2BaTSmz6iuoKSsiEIoSCEUIhKJsOXiMy+Y18v0bFo74uownoUiMG1eu4dWdbTRWFtPS5Sx0+tylp/Hw6t30BKP0hZ3zvHB2HR86eyp3PbONQ8f6qCv3928d6/MIn3jPdN43r4H2QIhkCVkecQT0lEmlHOzs4+5V23h1ZxuzG8r51sfP5j1jVONorHhzbwdfemI9O1p7EIFr3n0K72qaxPde2E5fOEpjZQmTq4pprCyhsaqYyVUlLDq1hoWn1nCgs4+9bQEOdfbx5r4Oasv8fPDsqWw+cIzDx/oo9nk4dKwPrwjnnVpDRbGPaExR4LSGcoLhGI+/vpfnthxm66Eupk0q5RvXnjUg8JoPPP76O3z1128Rjh6/t9WV+wlHYxzrczLYSou8/OCGhQNcTe8cDfD5n67j4tn1fPr8U6ko8eH3eSgt8o5JnGSike46jVwQjQuBr6nqEvf9bQCq+s1kx49UNHpDUf64rYVXdhzhyb8eoCcUQUSIDqqm6fd6CEVjXL+wiesXOVaF3+dYJqrKpgPHaG7pZueRHnYd6WFnazddfRHK/F7Ki32U+b1Ulvj44pXzmOtuzpKLRKIxfvCnnby5t4NZ9eWs/MsuwlGlttzPzLoyPCLMqi/nNxsO0BeOcfrkSm7/yHwuPK2Og519bD5wjBffbuGx1/YSyaBiaW25ny9eOZdlg8pP5xLBSJR1e9p5cVsrD72ym1AkxkWz6zjrlCoOHwvS0tVHy7EgLV1But003TK/l0DoeFppPI4zGK9HUFWGuqRej7B4Zi1LzprMssUz8vbX8962AD2hCFUlRTzz1iF2tnYTiSpLFkzmPTNr8fs8J31R4EQnn0TjOmCpqv439/0NwPmq+oWEY1YAKwBmzJixcM+ePUnHSpej3UGntkxMmTqphKnVJfg8Hlq6gmzY18HiWbV8+OyTH0ydyKzb08ba3e186vwZA1xOe472sGZnG9eeO61fXBM52NlLy7EgdRX+pCIQisRobummtStIRYmPS+bWT+j9oTNlb1uAQ8f6WHRqTVLXVGdvmFWbD/PGO+2cMaWS0+oraKwq5rT6cva19/Lithbe1TSJOY0VBCNRasv89IajvLX/GOFoDK9HiKmy7VAXfeEoHzuviVMmTYyUWWNikU+icT2wZJBoLFbV/57s+HwvI2IYhjEW5FMZkX1AYjW5JmD8SlwahmEUMLkgGq8Dc0Vkloj4gWXAU+M8J8MwjIJkwqfcqmpERL4APIuTcrtSVTeN87QMwzAKkgkvGgCq+jvgd+M9D8MwjEInF9xThmEYxgTBRMMwDMNIGxMNwzAMI21MNAzDMIy0mfCL+zJFRLqAbUk+qgayuXPQRB8vTj1wJAvj5ML5ZnvMbF27OBP9Gtr1mxhjwcm/dvVAuaqmrvuuqnn1ANYO0f5Alr9nQo+X6nqM9/zG4nzHYI5ZuXa5cg3t+k2Mscbj2mXyfYXknvpNgY2XbXLhfO0aTqzxss1EPt+CuXb56J5aq2nUTykU7HqMHLt2o8Ou38g52dcuk+/LR0vjgfGewATDrsfIsWs3Ouz6jZyTfe3S/r68szQMwzCMsSMfLQ3DMAxjjDDRyDFEZLqI/FFEtojIJhG51W2vFZFVIrLdfa5x2+vc47tF5D8GjfVJEdkoIhtE5PciUj8e53SyyPK1+4R73TaJyL+Ox/mcbEZw/a4SkXXu/7F1InJ5wlgL3fZmEblXxnsD9zEmy9fuThHZKyLd43Iy2UzrssfYP4CpwHnu60qc/dPnA/8KfNlt/zJwl/u6HLgE+BzwHwnj+IAWoN59/6842+qO+znmwLWrA94BGtz3DwNXjPf5TcDrdy5wivt6AbA/YazXgAsBAZ4BPjDe55dD1+4Cd7zu8TgXszRyDFU9qKpvuK+7gC3ANOAanJsX7vO17jE9qvoy0DdoKHEf5e6vvCryfHOrLF6704C3VbXVff8c8PExnv64M4Lr91dVjf+f2gSUiEixiEwFqlR1tTp3wUfiffKVbF0797NXVfXgyZx/IiYaOYyIzMT5RbIGmBz/j+Q+Nw7XV1XDwM3ARhyxmA88OIbTnVCM5toBzcAZIjJTRHw4f+jTU/TJK0Zw/T4O/FVVgzg3y30Jn+1z2wqCUV67ccdEI0cRkQrgF8A/qOqxEfQvwhGNc4FTgA3AbVmd5ARltNdOVdtxrt3jwJ+B3UAkm3OcyGR6/UTkLOAu4LPxpiSHFUQaZxau3bhjopGDuDf8XwA/UdVfus2HXbMf97klxTDnAKjqDtdF8ARw0RhNecKQpWuHqv5GVc9X1Qtxap1tH6s5TyQyvX4i0gT8CrhRVXe4zfuApoRhm8hz1yhk7dqNOyYaOYYbf3gQ2KKqdyd89BSw3H29HHgyxVD7gfkiEi9QdhWOnzVvyeK1Q0Qa3eca4PPAj7I724lHptdPRCYBTwO3qepf4ge7bpguEbnAHfNG0rjmuUy2rt2EYLyzCuyR2QMnm0dx3Enr3ccHcTJ6nsf5xfs8UJvQZzfQBnTj/Mqb77Z/DkcoNuDUpqkb7/PLoWv3M2Cz+1g23uc2Ea8f8FWgJ+HY9UCj+9ki4C1gB/AfuAuN8/WR5Wv3r+7/xZj7/LWTeS62ItwwDMNIG3NPGYZhGGljomEYhmGkjYmGYRiGkTYmGoZhGEbamGgYhmEYaWOiYRgnGRH5nIjcmMHxM0XkrbGck2Gki2+8J2AYhYSI+FT1++M9D8MYKSYahpEhbsG53+MUnDsXp8z1jcCZwN1ABXAE+DtVPSgiLwKvABcDT4lIJU5Z62+LyDnA94EynIVuf6+q7SKyEFgJBICXT97ZGcbwmHvKMEbG6cADqno2cAy4BfgecJ2qxm/4dyYcP0lV36eq3xk0ziPA/3LH2Qjc7rb/X+B/qFPbyjAmDGZpGMbI2KvHawL9GPgKzmY5q9xN6LxA4p4Hjw8eQESqccTkJbfpYeC/krQ/Cnwg+6dgGJljomEYI2Nw/Z0uYNMwlkFPBmNLkvENY0Jg7inDGBkzRCQuEJ8EXgUa4m0iUuTuhTAkqtoJtIvIe92mG4CXVLUD6BSRS9z2T2d/+oYxMszSMIyRsQVYLiI/wKlQ+j3gWeBe173kA76Ls1XncCwHvi8iZcBO4EQMQPQAAABhSURBVDNu+2eAlSIScMc1jAmBVbk1jAxxs6d+q6oLxnkqhnHSMfeUYRiGkTZmaRiGYRhpY5aGYRiGkTYmGoZhGEbamGgYhmEYaWOiYRiGYaSNiYZhGIaRNiYahmEYRtr8/1sGKp3nRzCuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -270,10 +2301,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 11, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -292,7 +2321,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -316,9 +2345,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -332,9 +2384,55 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2053781\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -349,9 +2447,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGbhJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDkr7QAjIqDgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq27dvsXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvbqdwAzM6uXC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJeTnzVqlUxNDQ067AHH3yQFStW9HL2lTU5GzQ7n7NV1+R8zlZd2Xxbt269JyIO6mqmEdGzv7Vr18ZcrrrqqjmH9VuTs0U0O5+zVdfkfM5WXdl8wER0WXvdFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZpkpVdglvUfSzZJuknSRpH17FczMzKrpuLBLWg28G2hFxNHAEuB1vQpmZmbVlO2KWQosl7QU2A+4s/5IZmbWDUWJ3zyVdBZwDrAb+GpEnDrLOKPAKMDg4ODasbGxWac1NTXFwMBAlcw91+RsUH++yR27apvW4HLYubvz8desXlnbvBfyq/a61snZqiubb2RkZGtEtLqZZ8eFXdKTgEuAU4D7gX8ALo6Iz8/1nFarFRMTE7MOGx8fZ3h4uGzeRdHkbFB/vqENW2qb1vo1e9g02fk3VWzfuK62eS/kV+11rZOzVVc2n6SuC3uZrpiXA7dHxE8i4lHgUuDF3czczMzqV6aw/wj4D5L2kyTgZcC23sQyM7OqOi7sEXEdcDFwAzBZPHdzj3KZmVlFpb62NyI+CHywR1nMzKwGvvLUzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMdF3ZJR0j6TtvfzyT9US/DmZlZeR3/NF5E3AI8H0DSEmAHcFmPcpmZWUVVu2JeBvyfiPi/dYYxM7PuKSLKP0n6DHBDRPzFLMNGgVGAwcHBtWNjY7NOY2pqioGBgdLzXgxNzgb155vcsau2aQ0uh527Ox9/zeqVtc17Ie3tVucylzHf8jZ5vXO26srmGxkZ2RoRrW7mWbqwS9obuBN4TkTsnG/cVqsVExMTsw4bHx9neHi41LwXS5OzQf35hjZsqW1a69fsYdNkxz18bN+4rrZ5L6S93epc5jLmW94mr3fOVl3ZfJK6LuxVumJeSdpan7eom5lZf1Qp7K8HLqo7iJmZ1aNUYZe0H/BbwKW9iWNmZt3qvDMUiIiHgCf3KIuZmdXAV56amWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZabsT+MdKOliST+QtE3Scb0KZmZm1ZT6aTzgXOCKiDhZ0t7Afj3IZGZmXei4sEs6AHgpcDpARDwCPNKbWGZmVpUiorMRpecDm4HvA88DtgJnRcSDM8YbBUYBBgcH146Njc06vampKQYGBqon75HJHbsYXA47dy/+vNesXtnReHW33eSOXbVNq2zbdbrMdWhvtzqXuYz5lrep7wlwtm6UzTcyMrI1IlrdzLNMYW8B/wIcHxHXSToX+FlEvH+u57RarZiYmJh12Pj4OMPDw+UT99jQhi2sX7OHTZNle6m6t33juo7Gq7vthjZsqW1aZduu02WuQ3u71bnMZcy3vE19T4CzdaNsPkldF/YyB0/vAO6IiOuK+xcDL+hm5mZmVr+OC3tE3AX8WNIRxUMvI3XLmJlZg5Ttb3gX8IXijJjbgLfUH8nMzLpRqrBHxHeArvp+zMyst3zlqZlZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmSv2CkqTtwAPAz4E93f6StpmZ1a/sb54CjETEPbUnMTOzWrgrxswsM4qIzkeWbgd+CgTw1xGxeZZxRoFRgMHBwbVjY2OzTmtqaoqBgYEqmXtqcscuBpfDzt2LP+81q1d2NF7dbTe5Y1dt0yrbdp0ucx3a263OZS5jvuVt6nsCnK0bZfONjIxs7babu2xhf2pE3CnpYOBrwLsi4pq5xm+1WjExMTHrsPHxcYaHh0vG7b2hDVtYv2YPmyar9FJ1Z/vGdR2NV3fbDW3YUtu0yrZdp8tch/Z2q3OZy5hveZv6ngBn60bZfJK6LuylumIi4s7i/93AZcALu5m5mZnVr+PCLmmFpP2nbwOvAG7qVTAzM6umTH/DIHCZpOnnXRgRV/QklZmZVdZxYY+I24Dn9TCLmZnVwKc7mpllxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmdGGXtETSjZIu70UgMzPrTpUt9rOAbXUHMTOzepQq7JIOBdYBf9ubOGZm1i1FROcjSxcDHwH2B/44Ik6aZZxRYBRgcHBw7djY2KzTmpqaYmBgoErmnprcsYvB5bBzd7+TzK3J+cpmW7N6Ze/CzNC+zk3u2LVo82033/I29T0BztaNsvlGRka2RkSrm3ku7XRESScBd0fEVknDc40XEZuBzQCtViuGh2cfdXx8nLmG9dPpG7awfs0eNk123DSLrsn5ymbbfupw78LM0L7Onb5hy6LNt918y9vU9wQ4Wzf6ka9MV8zxwGskbQfGgBMkfb4nqczMrLKOC3tE/JeIODQihoDXAVdGxGk9S2ZmZpX4PHYzs8xU6qiNiHFgvNYkZmZWC2+xm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMdFzYJe0r6duSvivpZkkf6mUwMzOrpswvKD0MnBARU5KWAd+Q9E8R8S89ymZmZhV0XNgjIoCp4u6y4i96EcrMzKpTqtcdjiwtAbYCzwbOi4g/mWWcUWAUYHBwcO3Y2Nis05qammJgYGDOeU3u2NVxrroNLoedu/s2+wU1OV/ZbGtWr+xdmBna17l+rV/zLe9C74l+eqJma8LrXLbtRkZGtkZEq5v5lyrsv3iSdCBwGfCuiLhprvFarVZMTEzMOmx8fJzh4eE55zG0YUvpXHVZv2YPmyYr/c73omhyvrLZtm9c18M0/177Otev9Wu+5V3oPdFPT9RsTXidy7adpK4Le6WzYiLifmAcOLGbmZuZWf3KnBVzULGljqTlwMuBH/QqmJmZVVNmf/4pwAVFP/tewBcj4vLexDIzs6rKnBXzPeCYHmYxM7Ma+MpTM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8yU+c3Tp0m6StI2STdLOquXwczMrJoyv3m6B1gfETdI2h/YKulrEfH9HmUzM7MKOt5ij4h/i4gbitsPANuA1b0KZmZm1Sgiyj9JGgKuAY6OiJ/NGDYKjAIMDg6uHRsbm3UaU1NTDAwMzDmPyR27Sueqy+By2Lm7b7NfUJPzOVt1vc63ZvXKys9d6P3aT/Nl61cdaW/rsm03MjKyNSJa3cy/dGGXNABcDZwTEZfON26r1YqJiYlZh42PjzM8PDznc4c2bCmVq07r1+xh02SZXqrF1eR8zlZdr/Nt37iu8nMXer/203zZ+lVH2tu6bNtJ6rqwlzorRtIy4BLgCwsVdTMz648yZ8UI+DSwLSL+tHeRzMysG2W22I8H3gicIOk7xd+repTLzMwq6rhDLyK+AaiHWczMrAa+8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM2V+8/Qzku6WdFMvA5mZWXfKbLGfD5zYoxxmZlaTjgt7RFwD3NfDLGZmVgNFROcjS0PA5RFx9DzjjAKjAIODg2vHxsZmHW9qaoqBgYE55zW5Y1fHueo2uBx27u7b7BfU5HzOVl2v861ZvbLycxd6v/bTfNn6VUfa27ps242MjGyNiFY386+9sLdrtVoxMTEx67Dx8XGGh4fnfO7Qhi0d56rb+jV72DS5tG/zX0iT8zlbdb3Ot33jusrPXej92k/zZetXHWlv67JtJ6nrwu6zYszMMuPCbmaWmTKnO14EfAs4QtIdkt7au1hmZlZVxx16EfH6XgYxM7N6uCvGzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDOlCrukEyXdIumHkjb0KpSZmVVX5jdPlwDnAa8EjgJeL+moXgUzM7NqymyxvxD4YUTcFhGPAGPAb/cmlpmZVaWI6GxE6WTgxIg4o7j/RuBFEfHOGeONAqPF3SOAW+aY5CrgniqhF0GTs0Gz8zlbdU3O52zVlc13WEQc1M0Ml5YYV7M89kufChGxGdi84MSkiYholZj/omlyNmh2Pmerrsn5nK26fuQr0xVzB/C0tvuHAnfWG8fMzLpVprBfDxwu6RmS9gZeB/xjb2KZmVlVHXfFRMQeSe8EvgIsAT4TETd3Me8Fu2v6qMnZoNn5nK26JudztuoWPV/HB0/NzOyJwVeempllxoXdzCwzLuxmZpl5QhZ2Saslre53jtlIeqak90g6od9ZZmpyNmh2Pmerrsn5mpwNqud7QhV2SUOSrgauAD4u6SX9ztRO0n8Evkb6Lp23SXp7nyP9QpOzQbPzOVt1Tc7X5GzQZb6IaPQfsG/b7dcCnyhuvxn4B2BNcV99yHYC8Izp+QMfAE4r7r8I+BIw3I98Tc7W9HzOlme+JmerO18jt9glHSDpryTdCnxC0mHFoN8BflTcHgN+CJwx/bRFzHeUpO8B/w34rKQTIrX2UcAhABFxHfBN4C2Lma/J2Zqez9nyzNfkbL3K18jCDpwI7EtasEeAD0haTtoteTVARDwMXAy8pLj/WK/CSDpU0gFtD50CXBIRLyV9wLxB0uHAhdP5CpcBR0vap1f5mpyt6fmcLc98Tc62WPn6VtiVLJX0Vklfl3SWpGcVg58NPBIRe4A/A34KnAZ8FXiKpF8rxrsV+LGk43qU8UhJXwa+AXxY0vTXFP8/YL/i9heBu4B1pE/UJ7ftYdxH+nbL5/0qZWt6PmfLM1+Tsy12vr4V9mJX4zeBNwEfA/YB/qYYfBdwd/HJ9GPSwjyL1ADf5/GvBV4G3Fs8XgtJK9ruPh+4IyKGgCuBTxSP3wc8LGn/iLgP+FfgqUWObwLvLcbbG/g5sD33bE3P52x55mtytn7mW7TCLuk4SR+VdHpxX8CRwBUR8aWI+BhwmKQXAztIn2BHFk/fBgwUj/0F8CpJryZ9KAwC3+0y25MknS/pemCjpIOKfGuAayUpIv4RuF/SOtKewv7FcIr7BwOPkfYwDpb0N8BFwJ6IuDvHbE3P52zVNTlfk7M1Jd+iFHZJzwH+EngA+D1J7y3mvRp4oFhogPOBN5AK9R7gxcXjN5COGD8UEdcAG4DTgeOB/x4Rj7VNo4qXFvN7FemgxNnAAaQvOzuk2LsAuKDI9+1iWV4JEBHfKqaxNCK2AWcCNwP/MyLeQneanK3p+Zwtz3xNztaMfHOdLlP1j7RlfQZpt2Np8difAmcVt1vAJ4GTgZcDX2l77tNIuyqQCvmNpF9hOgb438BT2sYtfTpS0bBnAleTunNWFY9/EXh3cfsZwMZi+LGk/rAlbcv2k2I6q0l7Eu8EPgt8CljRRbs1NlvT8zmbX1e33b//q3WLXdLzSQc4fxv4IPC+YtAO0m+mQvrkuRb4XeCfgUMkPVfSskj96TskvSQiriR93eVHgUuBiyLi36bnFUXLlHQS8BrgQ8BxpL59SGfbTO8d/Bj4OvDKiLie9Ik7UsxzCrgOODYidgBvJHUF3QW8LyIeLBuobU/j1U3LNoPbrprGtRu47brJ9kRouzI/jfdLJL0QOBz4akT8hLQ1fmtEnC7pBcA5klrAOPCfJO0XEQ9J+i7we6RzNC8E/gD4pKTdwCRwezGLvwIujIhdJTIpIkLSsaTdnK8DWyKdHvnrwG0RcaWk20lXr74C2Ar8jqRVEXGPpH8FHpT0dODPgdMkHUz61ah7SbtORMQEMFGh3VqkvZoHgI8DdwPP7Hc2t121bE+EdnPb5dd28ym1xa5kmaQ3SbqR1LF/IDBdeH8ObC+2vm8g7VocBzzE46fwADxK2gU5hLRVfhOpf/1q4J6IuAPSVnnFov5S4DOko8ovBz5SjPIYcKuk5RFxe5HvuaQX607S+aTTy7GE1D6XFBlPBdYCm6PiOa6SVkr6bDHN24FzI+JuSXuRPsn7mW1J0Xa/SdoVbEzbFevdgKTzaVjbFfMMScM0c53bR9KKhrbdAQ1vuwFJ+0q6gIa13YI66a8BVgAvLm4fWAT75CzjnUW6DHZ1cf9kUn/6YaSvALi6eHxfUjfMqrbnHgPs3UmeGfPcD3gbj2/5LwP+CHhHMfxJwPeK6Z9C6u8aKoadVCzLquL2JLCS1L//5fY8wF5dZLuIdMXYAKlr6cy2caaPQ7wT+B+Lla3tdT2DtLKtJx3gaUrbTWe7tFivDmpY2+0PbCH9khjAe5rQbjPyfRn46+L+x4C39bvtSO+JN5Pe/5c0re3a8l0J/H3xWGPWu07/Ftxil3Q2cBuwRdJgRNxP6he6s+gbf40ev0DoW6QDoNMXGl1LOoj6UERcAPxU0udIB0VvAX7RhxQRN0bEIwvlmZHtEOByYBj4HOkAxWtJewl7iun+lHTg9d2kvq+Defw0ymtI59I/EhGXA58mXc16HumI9aNt+Up9qs7I9nfA24tstwJHSNpYbEX9vtIFV1eQ9mB6nq3It4L05jqBdP3AK0jHPY4lbSn1s+3as20mnS3wWtI1DL/R77YrLCdde/EsSatI6/ySYpp9abdZ8u1NWteeSuriOFrSR/rVdpKWkY6xnQx8PCJ+txh0TNs0+9Z2M/J9LCKmt7gngaP62XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI6t41OJtPK+qO3+6aQtkzcD3257/KnAncXtd5Au231S8fwvAU9vG3dVj7K9iXSk+9eBvy/+Xg/8L9K5/IuWrW16B7bd/s+kN9Op/W67WbL9MemUsWc2qO3eTOprfT/wVtKBtOv73W6z5HsfaY9nVRPajrQHduqMx04BrmtC282R7+lFhr6vdx0vRwcLOn1qzinAeHF7GWlramVx/zDS1vqxpF3Ai0lbWv9E+qTapyfhUx+X4Be/3foCHu/uuZd0zuj0uF+jKLSk3aevFuP8ySJlOwb4xvSK2zbeMtLB5ROK++f0OtuMnAeQjm/sBD5c3L8XGOxX282S7a5ivisouvn61XZtr+dbSN1srwW+UDx2T7/bbY58Y8Vj7acL92W9I3VR3ApsKub/gaJ+3Acc3IB1rj3fVaQv5jq03+td6eUoscBPJl0o9Jzi/tIZw88HTp5egUhdD2fSo6I+x8p8AY+fL/854KPF7V8j7XE8ve2FOZq2rwRepGzvaH+suH1I0XbPXexsbRn+kHS+7WZSv/Y3izec+tl2M7KdRzqt7NlNaDvSV0YvIfWhXk3aMr4JeH+/17lZ8v0z6QyzFzSk7b5C2gN7Gmkr+CzShmFT1rn2fF8gXfp/eBPartO/6aLTEUmfAn4WERuK+3uRzrt8B/Ac4JQo2U9eF0mHkvq03hURtyp9odhokWs18J2o56qybrK9PSJuKx47htQtta7I9of9yNZO6TqEM0lvsiNJK+uh9LHt2rIdTXqz/TnpLKuT6FPbSRogdXPsQ2qn3yBdeHI2aUv5cPrYbrPkO5x0fOK3SMe8XkZqv76sdypOey5uP4/0Pr2WdEl939e5GfmOJl3pfi7pm2b7tt6VUfY89s3AucVBhiNJK/HxpBfl7H4V9cIxFOfASzqD1P9/NqkL6QeRTr/sd7YfFdluJ60ce0hb8Tf2MVu7e0kHAd8XEX8n6TTg5obku5/UT3wT6XVdRv/abg/p7IlHSVvqPyet/5PAexvQbnPle1jSa0gFv2/r3XTRLNxPOu70/oi4sAFtNzPfA6SN123Af6W/613Hym6xv450oPRh0jeOXRkRt/QoWymSriUdXNtOOof0QxHxvb6GKszIdhewoUHttpK0BfcG0vffbwbOi4hH533iIpgl26cjYlN/U/2y4sKT6b7su/qdZ6Yi38nAZyOdddLvPPuQfnPhjaQ96r8EPhXpa7r7bpZ8myPiz/qbqpyOC7uk55LO57yYdLCotq/K7VaxB/FB0pbw5yNdtdYITc4GIGkpqfvlYVK+Jr2ujc0G6aIu4LEos3W0iJqcT9KZpNNqP9e01xWan28hpbbYzcys+Zr603hmZlaRC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDP/H+KofDj+oV4qAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -359,9 +2480,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }