{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Analysis of the incidence of chickenpox" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ " %matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The incidence of chickenpox dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "data_file = \"chickenpox.csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02022217242761894229610372945FRFrance
12022207237741913628412362943FRFrance
22022197186131419823028282135FRFrance
32022187178511396321739272133FRFrance
42022177203141600124627312438FRFrance
52022167196601486024460302337FRFrance
62022157177991371521883272133FRFrance
72022147170051316220848262032FRFrance
82022137154481165919237231729FRFrance
92022127147021079418610221628FRFrance
10202211711729834715111181323FRFrance
112022107133141003616592201525FRFrance
12202209710485760013370161220FRFrance
13202208712088874115435181323FRFrance
142022077140031078917217211626FRFrance
1520220679798704812548151119FRFrance
16202205710851779713905161121FRFrance
1720220479547672112373141018FRFrance
182022037139721068017264211626FRFrance
192022027849560261096413917FRFrance
202022017137931059716989211626FRFrance
21202152713239961116867201525FRFrance
22202151713326962917023201426FRFrance
232021507141281031217944211527FRFrance
242021497136741036916979211626FRFrance
25202148711549850314595171222FRFrance
26202147711419837614462171222FRFrance
272021467821657241070812816FRFrance
2820214578965646811462141018FRFrance
292021447873656361183613818FRFrance
.................................
16131991267176081130423912312042FRFrance
16141991257161691070021638281838FRFrance
16151991247161711007122271281739FRFrance
1616199123711947767116223211329FRFrance
1617199122715452995320951271737FRFrance
1618199121714903897520831261636FRFrance
16191991207190531274225364342345FRFrance
16201991197167391124622232291939FRFrance
16211991187213851388228888382551FRFrance
1622199117713462887718047241632FRFrance
16231991167148571006819646261834FRFrance
1624199115713975978118169251832FRFrance
1625199114712265768416846221430FRFrance
162619911379567604113093171123FRFrance
1627199112710864733114397191325FRFrance
16281991117155741118419964271935FRFrance
16291991107166431137221914292038FRFrance
1630199109713741878018702241533FRFrance
1631199108713289881317765231531FRFrance
1632199107712337807716597221529FRFrance
1633199106710877701314741191226FRFrance
1634199105710442654414340181125FRFrance
16351991047791345631126314820FRFrance
16361991037153871048420290271836FRFrance
16371991027162771104621508292038FRFrance
16381991017155651027120859271836FRFrance
16391990527193751329525455342345FRFrance
16401990517190801380724353342543FRFrance
1641199050711079666015498201228FRFrance
16421990497114302610205FRFrance
\n", "

1643 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202221 7 24276 18942 29610 37 29 \n", "1 202220 7 23774 19136 28412 36 29 \n", "2 202219 7 18613 14198 23028 28 21 \n", "3 202218 7 17851 13963 21739 27 21 \n", "4 202217 7 20314 16001 24627 31 24 \n", "5 202216 7 19660 14860 24460 30 23 \n", "6 202215 7 17799 13715 21883 27 21 \n", "7 202214 7 17005 13162 20848 26 20 \n", "8 202213 7 15448 11659 19237 23 17 \n", "9 202212 7 14702 10794 18610 22 16 \n", "10 202211 7 11729 8347 15111 18 13 \n", "11 202210 7 13314 10036 16592 20 15 \n", "12 202209 7 10485 7600 13370 16 12 \n", "13 202208 7 12088 8741 15435 18 13 \n", "14 202207 7 14003 10789 17217 21 16 \n", "15 202206 7 9798 7048 12548 15 11 \n", "16 202205 7 10851 7797 13905 16 11 \n", "17 202204 7 9547 6721 12373 14 10 \n", "18 202203 7 13972 10680 17264 21 16 \n", "19 202202 7 8495 6026 10964 13 9 \n", "20 202201 7 13793 10597 16989 21 16 \n", "21 202152 7 13239 9611 16867 20 15 \n", "22 202151 7 13326 9629 17023 20 14 \n", "23 202150 7 14128 10312 17944 21 15 \n", "24 202149 7 13674 10369 16979 21 16 \n", "25 202148 7 11549 8503 14595 17 12 \n", "26 202147 7 11419 8376 14462 17 12 \n", "27 202146 7 8216 5724 10708 12 8 \n", "28 202145 7 8965 6468 11462 14 10 \n", "29 202144 7 8736 5636 11836 13 8 \n", "... ... ... ... ... ... ... ... \n", "1613 199126 7 17608 11304 23912 31 20 \n", "1614 199125 7 16169 10700 21638 28 18 \n", "1615 199124 7 16171 10071 22271 28 17 \n", "1616 199123 7 11947 7671 16223 21 13 \n", "1617 199122 7 15452 9953 20951 27 17 \n", "1618 199121 7 14903 8975 20831 26 16 \n", "1619 199120 7 19053 12742 25364 34 23 \n", "1620 199119 7 16739 11246 22232 29 19 \n", "1621 199118 7 21385 13882 28888 38 25 \n", "1622 199117 7 13462 8877 18047 24 16 \n", "1623 199116 7 14857 10068 19646 26 18 \n", "1624 199115 7 13975 9781 18169 25 18 \n", "1625 199114 7 12265 7684 16846 22 14 \n", "1626 199113 7 9567 6041 13093 17 11 \n", "1627 199112 7 10864 7331 14397 19 13 \n", "1628 199111 7 15574 11184 19964 27 19 \n", "1629 199110 7 16643 11372 21914 29 20 \n", "1630 199109 7 13741 8780 18702 24 15 \n", "1631 199108 7 13289 8813 17765 23 15 \n", "1632 199107 7 12337 8077 16597 22 15 \n", "1633 199106 7 10877 7013 14741 19 12 \n", "1634 199105 7 10442 6544 14340 18 11 \n", "1635 199104 7 7913 4563 11263 14 8 \n", "1636 199103 7 15387 10484 20290 27 18 \n", "1637 199102 7 16277 11046 21508 29 20 \n", "1638 199101 7 15565 10271 20859 27 18 \n", "1639 199052 7 19375 13295 25455 34 23 \n", "1640 199051 7 19080 13807 24353 34 25 \n", "1641 199050 7 11079 6660 15498 20 12 \n", "1642 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 45 FR France \n", "1 43 FR France \n", "2 35 FR France \n", "3 33 FR France \n", "4 38 FR France \n", "5 37 FR France \n", "6 33 FR France \n", "7 32 FR France \n", "8 29 FR France \n", "9 28 FR France \n", "10 23 FR France \n", "11 25 FR France \n", "12 20 FR France \n", "13 23 FR France \n", "14 26 FR France \n", "15 19 FR France \n", "16 21 FR France \n", "17 18 FR France \n", "18 26 FR France \n", "19 17 FR France \n", "20 26 FR France \n", "21 25 FR France \n", "22 26 FR France \n", "23 27 FR France \n", "24 26 FR France \n", "25 22 FR France \n", "26 22 FR France \n", "27 16 FR France \n", "28 18 FR France \n", "29 18 FR France \n", "... ... ... ... \n", "1613 42 FR France \n", "1614 38 FR France \n", "1615 39 FR France \n", "1616 29 FR France \n", "1617 37 FR France \n", "1618 36 FR France \n", "1619 45 FR France \n", "1620 39 FR France \n", "1621 51 FR France \n", "1622 32 FR France \n", "1623 34 FR France \n", "1624 32 FR France \n", "1625 30 FR France \n", "1626 23 FR France \n", "1627 25 FR France \n", "1628 35 FR France \n", "1629 38 FR France \n", "1630 33 FR France \n", "1631 31 FR France \n", "1632 29 FR France \n", "1633 26 FR France \n", "1634 25 FR France \n", "1635 20 FR France \n", "1636 36 FR France \n", "1637 38 FR France \n", "1638 36 FR France \n", "1639 45 FR France \n", "1640 43 FR France \n", "1641 28 FR France \n", "1642 5 FR France \n", "\n", "[1643 rows x 10 columns]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_file, encoding = 'iso-8859-1', skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Anomaly check" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ " raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "data = raw_data # as there is no anomalty detected" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Convert date to pandas-readable format" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ " def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_nameperiod
02022217242761894229610372945FRFrance2022-05-23/2022-05-29
12022207237741913628412362943FRFrance2022-05-16/2022-05-22
22022197186131419823028282135FRFrance2022-05-09/2022-05-15
32022187178511396321739272133FRFrance2022-05-02/2022-05-08
42022177203141600124627312438FRFrance2022-04-25/2022-05-01
52022167196601486024460302337FRFrance2022-04-18/2022-04-24
62022157177991371521883272133FRFrance2022-04-11/2022-04-17
72022147170051316220848262032FRFrance2022-04-04/2022-04-10
82022137154481165919237231729FRFrance2022-03-28/2022-04-03
92022127147021079418610221628FRFrance2022-03-21/2022-03-27
10202211711729834715111181323FRFrance2022-03-14/2022-03-20
112022107133141003616592201525FRFrance2022-03-07/2022-03-13
12202209710485760013370161220FRFrance2022-02-28/2022-03-06
13202208712088874115435181323FRFrance2022-02-21/2022-02-27
142022077140031078917217211626FRFrance2022-02-14/2022-02-20
1520220679798704812548151119FRFrance2022-02-07/2022-02-13
16202205710851779713905161121FRFrance2022-01-31/2022-02-06
1720220479547672112373141018FRFrance2022-01-24/2022-01-30
182022037139721068017264211626FRFrance2022-01-17/2022-01-23
192022027849560261096413917FRFrance2022-01-10/2022-01-16
202022017137931059716989211626FRFrance2022-01-03/2022-01-09
21202152713239961116867201525FRFrance2021-12-27/2022-01-02
22202151713326962917023201426FRFrance2021-12-20/2021-12-26
232021507141281031217944211527FRFrance2021-12-13/2021-12-19
242021497136741036916979211626FRFrance2021-12-06/2021-12-12
25202148711549850314595171222FRFrance2021-11-29/2021-12-05
26202147711419837614462171222FRFrance2021-11-22/2021-11-28
272021467821657241070812816FRFrance2021-11-15/2021-11-21
2820214578965646811462141018FRFrance2021-11-08/2021-11-14
292021447873656361183613818FRFrance2021-11-01/2021-11-07
....................................
16131991267176081130423912312042FRFrance1991-06-24/1991-06-30
16141991257161691070021638281838FRFrance1991-06-17/1991-06-23
16151991247161711007122271281739FRFrance1991-06-10/1991-06-16
1616199123711947767116223211329FRFrance1991-06-03/1991-06-09
1617199122715452995320951271737FRFrance1991-05-27/1991-06-02
1618199121714903897520831261636FRFrance1991-05-20/1991-05-26
16191991207190531274225364342345FRFrance1991-05-13/1991-05-19
16201991197167391124622232291939FRFrance1991-05-06/1991-05-12
16211991187213851388228888382551FRFrance1991-04-29/1991-05-05
1622199117713462887718047241632FRFrance1991-04-22/1991-04-28
16231991167148571006819646261834FRFrance1991-04-15/1991-04-21
1624199115713975978118169251832FRFrance1991-04-08/1991-04-14
1625199114712265768416846221430FRFrance1991-04-01/1991-04-07
162619911379567604113093171123FRFrance1991-03-25/1991-03-31
1627199112710864733114397191325FRFrance1991-03-18/1991-03-24
16281991117155741118419964271935FRFrance1991-03-11/1991-03-17
16291991107166431137221914292038FRFrance1991-03-04/1991-03-10
1630199109713741878018702241533FRFrance1991-02-25/1991-03-03
1631199108713289881317765231531FRFrance1991-02-18/1991-02-24
1632199107712337807716597221529FRFrance1991-02-11/1991-02-17
1633199106710877701314741191226FRFrance1991-02-04/1991-02-10
1634199105710442654414340181125FRFrance1991-01-28/1991-02-03
16351991047791345631126314820FRFrance1991-01-21/1991-01-27
16361991037153871048420290271836FRFrance1991-01-14/1991-01-20
16371991027162771104621508292038FRFrance1991-01-07/1991-01-13
16381991017155651027120859271836FRFrance1990-12-31/1991-01-06
16391990527193751329525455342345FRFrance1990-12-24/1990-12-30
16401990517190801380724353342543FRFrance1990-12-17/1990-12-23
1641199050711079666015498201228FRFrance1990-12-10/1990-12-16
16421990497114302610205FRFrance1990-12-03/1990-12-09
\n", "

1643 rows × 11 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202221 7 24276 18942 29610 37 29 \n", "1 202220 7 23774 19136 28412 36 29 \n", "2 202219 7 18613 14198 23028 28 21 \n", "3 202218 7 17851 13963 21739 27 21 \n", "4 202217 7 20314 16001 24627 31 24 \n", "5 202216 7 19660 14860 24460 30 23 \n", "6 202215 7 17799 13715 21883 27 21 \n", "7 202214 7 17005 13162 20848 26 20 \n", "8 202213 7 15448 11659 19237 23 17 \n", "9 202212 7 14702 10794 18610 22 16 \n", "10 202211 7 11729 8347 15111 18 13 \n", "11 202210 7 13314 10036 16592 20 15 \n", "12 202209 7 10485 7600 13370 16 12 \n", "13 202208 7 12088 8741 15435 18 13 \n", "14 202207 7 14003 10789 17217 21 16 \n", "15 202206 7 9798 7048 12548 15 11 \n", "16 202205 7 10851 7797 13905 16 11 \n", "17 202204 7 9547 6721 12373 14 10 \n", "18 202203 7 13972 10680 17264 21 16 \n", "19 202202 7 8495 6026 10964 13 9 \n", "20 202201 7 13793 10597 16989 21 16 \n", "21 202152 7 13239 9611 16867 20 15 \n", "22 202151 7 13326 9629 17023 20 14 \n", "23 202150 7 14128 10312 17944 21 15 \n", "24 202149 7 13674 10369 16979 21 16 \n", "25 202148 7 11549 8503 14595 17 12 \n", "26 202147 7 11419 8376 14462 17 12 \n", "27 202146 7 8216 5724 10708 12 8 \n", "28 202145 7 8965 6468 11462 14 10 \n", "29 202144 7 8736 5636 11836 13 8 \n", "... ... ... ... ... ... ... ... \n", "1613 199126 7 17608 11304 23912 31 20 \n", "1614 199125 7 16169 10700 21638 28 18 \n", "1615 199124 7 16171 10071 22271 28 17 \n", "1616 199123 7 11947 7671 16223 21 13 \n", "1617 199122 7 15452 9953 20951 27 17 \n", "1618 199121 7 14903 8975 20831 26 16 \n", "1619 199120 7 19053 12742 25364 34 23 \n", "1620 199119 7 16739 11246 22232 29 19 \n", "1621 199118 7 21385 13882 28888 38 25 \n", "1622 199117 7 13462 8877 18047 24 16 \n", "1623 199116 7 14857 10068 19646 26 18 \n", "1624 199115 7 13975 9781 18169 25 18 \n", "1625 199114 7 12265 7684 16846 22 14 \n", "1626 199113 7 9567 6041 13093 17 11 \n", "1627 199112 7 10864 7331 14397 19 13 \n", "1628 199111 7 15574 11184 19964 27 19 \n", "1629 199110 7 16643 11372 21914 29 20 \n", "1630 199109 7 13741 8780 18702 24 15 \n", "1631 199108 7 13289 8813 17765 23 15 \n", "1632 199107 7 12337 8077 16597 22 15 \n", "1633 199106 7 10877 7013 14741 19 12 \n", "1634 199105 7 10442 6544 14340 18 11 \n", "1635 199104 7 7913 4563 11263 14 8 \n", "1636 199103 7 15387 10484 20290 27 18 \n", "1637 199102 7 16277 11046 21508 29 20 \n", "1638 199101 7 15565 10271 20859 27 18 \n", "1639 199052 7 19375 13295 25455 34 23 \n", "1640 199051 7 19080 13807 24353 34 25 \n", "1641 199050 7 11079 6660 15498 20 12 \n", "1642 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name period \n", "0 45 FR France 2022-05-23/2022-05-29 \n", "1 43 FR France 2022-05-16/2022-05-22 \n", "2 35 FR France 2022-05-09/2022-05-15 \n", "3 33 FR France 2022-05-02/2022-05-08 \n", "4 38 FR France 2022-04-25/2022-05-01 \n", "5 37 FR France 2022-04-18/2022-04-24 \n", "6 33 FR France 2022-04-11/2022-04-17 \n", "7 32 FR France 2022-04-04/2022-04-10 \n", "8 29 FR France 2022-03-28/2022-04-03 \n", "9 28 FR France 2022-03-21/2022-03-27 \n", "10 23 FR France 2022-03-14/2022-03-20 \n", "11 25 FR France 2022-03-07/2022-03-13 \n", "12 20 FR France 2022-02-28/2022-03-06 \n", "13 23 FR France 2022-02-21/2022-02-27 \n", "14 26 FR France 2022-02-14/2022-02-20 \n", "15 19 FR France 2022-02-07/2022-02-13 \n", "16 21 FR France 2022-01-31/2022-02-06 \n", "17 18 FR France 2022-01-24/2022-01-30 \n", "18 26 FR France 2022-01-17/2022-01-23 \n", "19 17 FR France 2022-01-10/2022-01-16 \n", "20 26 FR France 2022-01-03/2022-01-09 \n", "21 25 FR France 2021-12-27/2022-01-02 \n", "22 26 FR France 2021-12-20/2021-12-26 \n", "23 27 FR France 2021-12-13/2021-12-19 \n", "24 26 FR France 2021-12-06/2021-12-12 \n", "25 22 FR France 2021-11-29/2021-12-05 \n", "26 22 FR France 2021-11-22/2021-11-28 \n", "27 16 FR France 2021-11-15/2021-11-21 \n", "28 18 FR France 2021-11-08/2021-11-14 \n", "29 18 FR France 2021-11-01/2021-11-07 \n", "... ... ... ... ... \n", "1613 42 FR France 1991-06-24/1991-06-30 \n", "1614 38 FR France 1991-06-17/1991-06-23 \n", "1615 39 FR France 1991-06-10/1991-06-16 \n", "1616 29 FR France 1991-06-03/1991-06-09 \n", "1617 37 FR France 1991-05-27/1991-06-02 \n", "1618 36 FR France 1991-05-20/1991-05-26 \n", "1619 45 FR France 1991-05-13/1991-05-19 \n", "1620 39 FR France 1991-05-06/1991-05-12 \n", "1621 51 FR France 1991-04-29/1991-05-05 \n", "1622 32 FR France 1991-04-22/1991-04-28 \n", "1623 34 FR France 1991-04-15/1991-04-21 \n", "1624 32 FR France 1991-04-08/1991-04-14 \n", "1625 30 FR France 1991-04-01/1991-04-07 \n", "1626 23 FR France 1991-03-25/1991-03-31 \n", "1627 25 FR France 1991-03-18/1991-03-24 \n", "1628 35 FR France 1991-03-11/1991-03-17 \n", "1629 38 FR France 1991-03-04/1991-03-10 \n", "1630 33 FR France 1991-02-25/1991-03-03 \n", "1631 31 FR France 1991-02-18/1991-02-24 \n", "1632 29 FR France 1991-02-11/1991-02-17 \n", "1633 26 FR France 1991-02-04/1991-02-10 \n", "1634 25 FR France 1991-01-28/1991-02-03 \n", "1635 20 FR France 1991-01-21/1991-01-27 \n", "1636 36 FR France 1991-01-14/1991-01-20 \n", "1637 38 FR France 1991-01-07/1991-01-13 \n", "1638 36 FR France 1990-12-31/1991-01-06 \n", "1639 45 FR France 1990-12-24/1990-12-30 \n", "1640 43 FR France 1990-12-17/1990-12-23 \n", "1641 28 FR France 1990-12-10/1990-12-16 \n", "1642 5 FR France 1990-12-03/1990-12-09 \n", "\n", "[1643 rows x 11 columns]" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "sort data" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
period
1990-12-03/1990-12-091990497114302610205FRFrance
1990-12-10/1990-12-16199050711079666015498201228FRFrance
1990-12-17/1990-12-231990517190801380724353342543FRFrance
1990-12-24/1990-12-301990527193751329525455342345FRFrance
1990-12-31/1991-01-061991017155651027120859271836FRFrance
1991-01-07/1991-01-131991027162771104621508292038FRFrance
1991-01-14/1991-01-201991037153871048420290271836FRFrance
1991-01-21/1991-01-271991047791345631126314820FRFrance
1991-01-28/1991-02-03199105710442654414340181125FRFrance
1991-02-04/1991-02-10199106710877701314741191226FRFrance
1991-02-11/1991-02-17199107712337807716597221529FRFrance
1991-02-18/1991-02-24199108713289881317765231531FRFrance
1991-02-25/1991-03-03199109713741878018702241533FRFrance
1991-03-04/1991-03-101991107166431137221914292038FRFrance
1991-03-11/1991-03-171991117155741118419964271935FRFrance
1991-03-18/1991-03-24199112710864733114397191325FRFrance
1991-03-25/1991-03-3119911379567604113093171123FRFrance
1991-04-01/1991-04-07199114712265768416846221430FRFrance
1991-04-08/1991-04-14199115713975978118169251832FRFrance
1991-04-15/1991-04-211991167148571006819646261834FRFrance
1991-04-22/1991-04-28199117713462887718047241632FRFrance
1991-04-29/1991-05-051991187213851388228888382551FRFrance
1991-05-06/1991-05-121991197167391124622232291939FRFrance
1991-05-13/1991-05-191991207190531274225364342345FRFrance
1991-05-20/1991-05-26199121714903897520831261636FRFrance
1991-05-27/1991-06-02199122715452995320951271737FRFrance
1991-06-03/1991-06-09199123711947767116223211329FRFrance
1991-06-10/1991-06-161991247161711007122271281739FRFrance
1991-06-17/1991-06-231991257161691070021638281838FRFrance
1991-06-24/1991-06-301991267176081130423912312042FRFrance
.................................
2021-11-01/2021-11-072021447873656361183613818FRFrance
2021-11-08/2021-11-1420214578965646811462141018FRFrance
2021-11-15/2021-11-212021467821657241070812816FRFrance
2021-11-22/2021-11-28202147711419837614462171222FRFrance
2021-11-29/2021-12-05202148711549850314595171222FRFrance
2021-12-06/2021-12-122021497136741036916979211626FRFrance
2021-12-13/2021-12-192021507141281031217944211527FRFrance
2021-12-20/2021-12-26202151713326962917023201426FRFrance
2021-12-27/2022-01-02202152713239961116867201525FRFrance
2022-01-03/2022-01-092022017137931059716989211626FRFrance
2022-01-10/2022-01-162022027849560261096413917FRFrance
2022-01-17/2022-01-232022037139721068017264211626FRFrance
2022-01-24/2022-01-3020220479547672112373141018FRFrance
2022-01-31/2022-02-06202205710851779713905161121FRFrance
2022-02-07/2022-02-1320220679798704812548151119FRFrance
2022-02-14/2022-02-202022077140031078917217211626FRFrance
2022-02-21/2022-02-27202208712088874115435181323FRFrance
2022-02-28/2022-03-06202209710485760013370161220FRFrance
2022-03-07/2022-03-132022107133141003616592201525FRFrance
2022-03-14/2022-03-20202211711729834715111181323FRFrance
2022-03-21/2022-03-272022127147021079418610221628FRFrance
2022-03-28/2022-04-032022137154481165919237231729FRFrance
2022-04-04/2022-04-102022147170051316220848262032FRFrance
2022-04-11/2022-04-172022157177991371521883272133FRFrance
2022-04-18/2022-04-242022167196601486024460302337FRFrance
2022-04-25/2022-05-012022177203141600124627312438FRFrance
2022-05-02/2022-05-082022187178511396321739272133FRFrance
2022-05-09/2022-05-152022197186131419823028282135FRFrance
2022-05-16/2022-05-222022207237741913628412362943FRFrance
2022-05-23/2022-05-292022217242761894229610372945FRFrance
\n", "

1643 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 \\\n", "period \n", "1990-12-03/1990-12-09 199049 7 1143 0 2610 2 \n", "1990-12-10/1990-12-16 199050 7 11079 6660 15498 20 \n", "1990-12-17/1990-12-23 199051 7 19080 13807 24353 34 \n", "1990-12-24/1990-12-30 199052 7 19375 13295 25455 34 \n", "1990-12-31/1991-01-06 199101 7 15565 10271 20859 27 \n", "1991-01-07/1991-01-13 199102 7 16277 11046 21508 29 \n", "1991-01-14/1991-01-20 199103 7 15387 10484 20290 27 \n", "1991-01-21/1991-01-27 199104 7 7913 4563 11263 14 \n", "1991-01-28/1991-02-03 199105 7 10442 6544 14340 18 \n", "1991-02-04/1991-02-10 199106 7 10877 7013 14741 19 \n", "1991-02-11/1991-02-17 199107 7 12337 8077 16597 22 \n", "1991-02-18/1991-02-24 199108 7 13289 8813 17765 23 \n", "1991-02-25/1991-03-03 199109 7 13741 8780 18702 24 \n", "1991-03-04/1991-03-10 199110 7 16643 11372 21914 29 \n", "1991-03-11/1991-03-17 199111 7 15574 11184 19964 27 \n", "1991-03-18/1991-03-24 199112 7 10864 7331 14397 19 \n", "1991-03-25/1991-03-31 199113 7 9567 6041 13093 17 \n", "1991-04-01/1991-04-07 199114 7 12265 7684 16846 22 \n", "1991-04-08/1991-04-14 199115 7 13975 9781 18169 25 \n", "1991-04-15/1991-04-21 199116 7 14857 10068 19646 26 \n", "1991-04-22/1991-04-28 199117 7 13462 8877 18047 24 \n", "1991-04-29/1991-05-05 199118 7 21385 13882 28888 38 \n", "1991-05-06/1991-05-12 199119 7 16739 11246 22232 29 \n", "1991-05-13/1991-05-19 199120 7 19053 12742 25364 34 \n", "1991-05-20/1991-05-26 199121 7 14903 8975 20831 26 \n", "1991-05-27/1991-06-02 199122 7 15452 9953 20951 27 \n", "1991-06-03/1991-06-09 199123 7 11947 7671 16223 21 \n", "1991-06-10/1991-06-16 199124 7 16171 10071 22271 28 \n", "1991-06-17/1991-06-23 199125 7 16169 10700 21638 28 \n", "1991-06-24/1991-06-30 199126 7 17608 11304 23912 31 \n", "... ... ... ... ... ... ... \n", "2021-11-01/2021-11-07 202144 7 8736 5636 11836 13 \n", "2021-11-08/2021-11-14 202145 7 8965 6468 11462 14 \n", "2021-11-15/2021-11-21 202146 7 8216 5724 10708 12 \n", "2021-11-22/2021-11-28 202147 7 11419 8376 14462 17 \n", "2021-11-29/2021-12-05 202148 7 11549 8503 14595 17 \n", "2021-12-06/2021-12-12 202149 7 13674 10369 16979 21 \n", "2021-12-13/2021-12-19 202150 7 14128 10312 17944 21 \n", "2021-12-20/2021-12-26 202151 7 13326 9629 17023 20 \n", "2021-12-27/2022-01-02 202152 7 13239 9611 16867 20 \n", "2022-01-03/2022-01-09 202201 7 13793 10597 16989 21 \n", "2022-01-10/2022-01-16 202202 7 8495 6026 10964 13 \n", "2022-01-17/2022-01-23 202203 7 13972 10680 17264 21 \n", "2022-01-24/2022-01-30 202204 7 9547 6721 12373 14 \n", "2022-01-31/2022-02-06 202205 7 10851 7797 13905 16 \n", "2022-02-07/2022-02-13 202206 7 9798 7048 12548 15 \n", "2022-02-14/2022-02-20 202207 7 14003 10789 17217 21 \n", "2022-02-21/2022-02-27 202208 7 12088 8741 15435 18 \n", "2022-02-28/2022-03-06 202209 7 10485 7600 13370 16 \n", "2022-03-07/2022-03-13 202210 7 13314 10036 16592 20 \n", "2022-03-14/2022-03-20 202211 7 11729 8347 15111 18 \n", "2022-03-21/2022-03-27 202212 7 14702 10794 18610 22 \n", "2022-03-28/2022-04-03 202213 7 15448 11659 19237 23 \n", "2022-04-04/2022-04-10 202214 7 17005 13162 20848 26 \n", "2022-04-11/2022-04-17 202215 7 17799 13715 21883 27 \n", "2022-04-18/2022-04-24 202216 7 19660 14860 24460 30 \n", "2022-04-25/2022-05-01 202217 7 20314 16001 24627 31 \n", "2022-05-02/2022-05-08 202218 7 17851 13963 21739 27 \n", "2022-05-09/2022-05-15 202219 7 18613 14198 23028 28 \n", "2022-05-16/2022-05-22 202220 7 23774 19136 28412 36 \n", "2022-05-23/2022-05-29 202221 7 24276 18942 29610 37 \n", "\n", " inc100_low inc100_up geo_insee geo_name \n", "period \n", "1990-12-03/1990-12-09 0 5 FR France \n", "1990-12-10/1990-12-16 12 28 FR France \n", "1990-12-17/1990-12-23 25 43 FR France \n", "1990-12-24/1990-12-30 23 45 FR France \n", "1990-12-31/1991-01-06 18 36 FR France \n", "1991-01-07/1991-01-13 20 38 FR France \n", "1991-01-14/1991-01-20 18 36 FR France \n", "1991-01-21/1991-01-27 8 20 FR France \n", "1991-01-28/1991-02-03 11 25 FR France \n", "1991-02-04/1991-02-10 12 26 FR France \n", "1991-02-11/1991-02-17 15 29 FR France \n", "1991-02-18/1991-02-24 15 31 FR France \n", "1991-02-25/1991-03-03 15 33 FR France \n", "1991-03-04/1991-03-10 20 38 FR France \n", "1991-03-11/1991-03-17 19 35 FR France \n", "1991-03-18/1991-03-24 13 25 FR France \n", "1991-03-25/1991-03-31 11 23 FR France \n", "1991-04-01/1991-04-07 14 30 FR France \n", "1991-04-08/1991-04-14 18 32 FR France \n", "1991-04-15/1991-04-21 18 34 FR France \n", "1991-04-22/1991-04-28 16 32 FR France \n", "1991-04-29/1991-05-05 25 51 FR France \n", "1991-05-06/1991-05-12 19 39 FR France \n", "1991-05-13/1991-05-19 23 45 FR France \n", "1991-05-20/1991-05-26 16 36 FR France \n", "1991-05-27/1991-06-02 17 37 FR France \n", "1991-06-03/1991-06-09 13 29 FR France \n", "1991-06-10/1991-06-16 17 39 FR France \n", "1991-06-17/1991-06-23 18 38 FR France \n", "1991-06-24/1991-06-30 20 42 FR France \n", "... ... ... ... ... \n", "2021-11-01/2021-11-07 8 18 FR France \n", "2021-11-08/2021-11-14 10 18 FR France \n", "2021-11-15/2021-11-21 8 16 FR France \n", "2021-11-22/2021-11-28 12 22 FR France \n", "2021-11-29/2021-12-05 12 22 FR France \n", "2021-12-06/2021-12-12 16 26 FR France \n", "2021-12-13/2021-12-19 15 27 FR France \n", "2021-12-20/2021-12-26 14 26 FR France \n", "2021-12-27/2022-01-02 15 25 FR France \n", "2022-01-03/2022-01-09 16 26 FR France \n", "2022-01-10/2022-01-16 9 17 FR France \n", "2022-01-17/2022-01-23 16 26 FR France \n", "2022-01-24/2022-01-30 10 18 FR France \n", "2022-01-31/2022-02-06 11 21 FR France \n", "2022-02-07/2022-02-13 11 19 FR France \n", "2022-02-14/2022-02-20 16 26 FR France \n", "2022-02-21/2022-02-27 13 23 FR France \n", "2022-02-28/2022-03-06 12 20 FR France \n", "2022-03-07/2022-03-13 15 25 FR France \n", "2022-03-14/2022-03-20 13 23 FR France \n", "2022-03-21/2022-03-27 16 28 FR France \n", "2022-03-28/2022-04-03 17 29 FR France \n", "2022-04-04/2022-04-10 20 32 FR France \n", "2022-04-11/2022-04-17 21 33 FR France \n", "2022-04-18/2022-04-24 23 37 FR France \n", "2022-04-25/2022-05-01 24 38 FR France \n", "2022-05-02/2022-05-08 21 33 FR France \n", "2022-05-09/2022-05-15 21 35 FR France \n", "2022-05-16/2022-05-22 29 43 FR France \n", "2022-05-23/2022-05-29 29 45 FR France \n", "\n", "[1643 rows x 10 columns]" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted_data" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PeriodIndex(['1990-12-03/1990-12-09', '1990-12-10/1990-12-16',\n", " '1990-12-17/1990-12-23', '1990-12-24/1990-12-30',\n", " '1990-12-31/1991-01-06', '1991-01-07/1991-01-13',\n", " '1991-01-14/1991-01-20', '1991-01-21/1991-01-27',\n", " '1991-01-28/1991-02-03', '1991-02-04/1991-02-10',\n", " ...\n", " '2022-03-21/2022-03-27', '2022-03-28/2022-04-03',\n", " '2022-04-04/2022-04-10', '2022-04-11/2022-04-17',\n", " '2022-04-18/2022-04-24', '2022-04-25/2022-05-01',\n", " '2022-05-02/2022-05-08', '2022-05-09/2022-05-15',\n", " '2022-05-16/2022-05-22', '2022-05-23/2022-05-29'],\n", " dtype='period[W-SUN]', name='period', length=1643, freq='W-SUN')" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "periods = sorted_data.index\n", "periods" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ " periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm8HUWZ9vOec29u1puE7CSBsEQgCRJI2FQUQSSCiozihHFBPxTFbVzmm0EdP5eREVxA0QFFQUBGQHAB2WQXw5IQ9iyEBBKykoTs6733nFPfH93VXV391tJnuzf39vP7JefcOtVV1d1V9da7kxACOXLkyJEjh4pCdw8gR44cOXL0POTEIUeOHDlypJAThxw5cuTIkUJOHHLkyJEjRwo5cciRI0eOHCnkxCFHjhw5cqSQE4ccOXLkyJFCThxy5MiRI0cKOXHIkSNHjhwptHT3AKrFyJEjxaRJk7p7GDly5MixT+Hpp59+QwgxylVvnyUOkyZNwvz587t7GDly5MixT4GIXvOpl4uVcuTIkSNHCjlxyJEjR44cKeTEIUeOHDlypJAThxw5cuTIkUJOHHLkyJEjRwo5cciRI0eOHCnkxCFHjhw5cqSQE4ccvQI7O0q4/bk13T2MHDl6DfZZJ7gcOVRc9McXcOcL63DIqMGYNn5odw8nR459HjnnkKNXYN22vQCAvV3lbh5Jjhy9AzlxyJEjR44cKeTEIUevgujuAeTI0UvgJA5E1J+I5hHR80S0kIi+G5Z/h4jWENFz4b8zlGu+TkTLiGgJEZ2ulM8gohfD364gIgrL24jolrB8LhFNqv+t5ujNoO4eQI4cvQw+nEMHgFOEEEcBmA5gFhGdEP52uRBievjvbgAgoikAZgOYCmAWgCuJqBjWvwrABQAmh/9mheXnA9gihDgUwOUALq391nLkyJEjR7VwEgcRYGf4Z2v4z8a9nwXgZiFEhxBiOYBlAI4jonEA2oUQTwghBIAbAHxAueb68PttAE6VXEWOHDly5Gg+vHQORFQkoucAbABwvxBibvjTF4joBSK6loiGh2XjAaxSLl8dlo0Pv+vliWuEECUA2wCMYMZxARHNJ6L5Gzdu9LrBHDly5MiRHV7EQQhRFkJMBzABARcwDYGI6BAEoqZ1AH4SVudO/MJSbrtGH8fVQoiZQoiZo0Y5ExnlyOHEsyu3YMUbu7p7GDly9DhkslYSQmwF8AiAWUKI9SHRqAD4NYDjwmqrAUxULpsAYG1YPoEpT1xDRC0AhgLYnOlOcuSoAmdf+ThO/vEj3T2MHDl6HHyslUYR0bDw+wAA7wLwUqhDkDgbwILw+x0AZocWSAchUDzPE0KsA7CDiE4I9QkfB3C7cs154fcPAXgo1EvkyJEJ+azJkaM+8AmfMQ7A9aHFUQHAH4QQdxLR74hoOgLxzwoAnwEAIcRCIvoDgEUASgA+L4SQbqsXArgOwAAA94T/AOAaAL8jomUIOIbZdbi3HH0IuflCjhz1hZM4CCFeAHA0U/4xyzUXA7iYKZ8PYBpTvhfAOa6x5MiRI0eO5iD3kM7R6zBv+Wa87+dz0FHK4yzlyFEtcuKQo9fhm39+ES+u2YbXNu3u7qHkyLHPIicOOXoVcjuGHDnqg5w45OgVoDy6Uo4cdUVOHHLkaDDKFYF/u/V5vLx+R3cPJUcOb+TEIUevQ08TLC3dsAO3Pb0aX/z9s909lBw5vJEThxw5cuTIkUJOHHLkyJEjRwo5ccjRa5GrqHPkqB45cciRI0eOHCnkxCFHjhw5cqSQE4d9AI+/8ga6ypXuHsY+gZ5mqZQjx76KnDj0cDz92mb8y6/n4rL7X+7uoeTIkaMPIScOPRwbd3QCAF7ZsNNRs48j1z7nyFFX5MQhR6+CED0vvlIPG06OHF7IiUOOXoGccei72Lq7EzfNW5mHaK8zcuKQI0eDkWepayyunbMcX//Ti3hw8YbuHkqvQk4ccvRa9JRNORcrNRart+wBAOzpzDmHesJJHIioPxHNI6LniWghEX03LN+PiO4noqXh53Dlmq8T0TIiWkJEpyvlM4joxfC3K4iC5UtEbUR0S1g+l4gm1f9Wc+ToO/juXxdi0kV3dfcwmoqcBtcXPpxDB4BThBBHAZgOYBYRnQDgIgAPCiEmA3gw/BtENAXAbABTAcwCcCURFcO2rgJwAYDJ4b9ZYfn5ALYIIQ4FcDmAS+twb3XFfQtfx6sbc4uhng7RA7eI7uBgfvvYiuZ32l0In29PM0TY1+EkDiKA3BVbw38CwFkArg/LrwfwgfD7WQBuFkJ0CCGWA1gG4DgiGgegXQjxhAje4g3aNbKt2wCcKrmKnoILfvc0TvnJ37t7GDlcEPkJsq9BJnrK33t94aVzIKIiET0HYAOA+4UQcwGMEUKsA4Dwc3RYfTyAVcrlq8Oy8eF3vTxxjRCiBGAbgBHV3FCOvo18g+h7iI6R+cuvK7yIgxCiLISYDmACAi5gmqU6d+IXlnLbNcmGiS4govlENH/jxo2uYefogxAiN2vta4hpQ04d6olM1kpCiK0AHkGgK1gfiooQfko7stUAJiqXTQCwNiyfwJQnriGiFgBDAWxm+r9aCDFTCDFz1KhRWYaeo4dhw4692NtVf+sS0Ue2iI5SGXc8vzaXs6PnWKX1NvhYK40iomHh9wEA3gXgJQB3ADgvrHYegNvD73cAmB1aIB2EQPE8LxQ97SCiE0J9wse1a2RbHwLwkOihs/4///IidneWunsY+zyOu/hBfPK3T3nV7SiV8c+/egLPrdrqrNsTZ00jxnTZ/S/jSzc9i0eW5By0RE989/syfDiHcQAeJqIXADyFQOdwJ4BLAJxGREsBnBb+DSHEQgB/ALAIwL0APi+EkEfECwH8BoGS+hUA94Tl1wAYQUTLAHwVoeVTT8SNT66siyVIqVzx2ux6M554dZNXvaXrd2Lu8s34xp9edNbt7fvDqs278dqmXdi4vQMAsHlXZzePqPtRoFwh3Qi0uCoIIV4AcDRTvgnAqYZrLgZwMVM+H0BKXyGE2AvgHI/x9giUK7VPw58+sBS/eHgZ/vqFt+HICUPrMKocAPB8guD2DHlDPcUeJ/3wYQDAOTMCCW2pkodyp8iUtXvH0duQe0hXgXpMwsXrtgMA1m/fW3tjOSL9RU8Mbd6ITaulGOyIpTocVHoL+oa2qXnIiUMVqMcklKedSn7cqQv2dvWtE3SxEEygenCx+z56BofY25AThypQj/VIuZw0M2zPao9q+dTDHmojrGlaCsHS9SUO185ZjnsXrKv/QHoQ8nNWfeHUOeRgUIdZGNlme7aVz3s7GmEWWy80YtOSnEOpnG581ebdSt8CRITv3bkIALDikjPrP5huRkHqHLp3GL0OOedQBeoxCXMlWn0xbtgAAMCwga19Qspg0jl0lMqR0hroG/Mr9pDuAzfbROTEoQrUI+yTr/nd46+8EfRZc4/7Lnwe97EHBkGBP3r8gT3uCNkYsZLUOSR1LZ2l5N897FE0FH3pXpuBnDhUgdZC7avdVyF9wxOv1dxXX4CIPnveFtEYsVKwdLsYsVJfQxR4L38UdUVOHKpAa0vtj01yH7mxSX0gN4aevEHUk4MoSs5Tu2Gdq+2hgQbqijx8RmOQE4cq0FIHzqFgWNw5zLA9K8kxqDV62qZRz1cdc56OPuvXZY9FVuOOHH7IiUM3oZBRIZ1PezvkcyyV6+/v8P07F+HI7/wtUfb4K2/g9W1+DoyNIFKxhY59ZvSF/TLnwhuDnDhUgXosOLlf+DrB9YVFXg/8+h/Lkz4PdcBv5izHjr3JYIv/8uu5eM/PHvW6Psu727a7C5fdt4T1X/jU9XGgQt8NsSfqYHLsG8iJQxWox4KLxUqefebUwQp1M13neaKvFVt2d9W9ze/+dSGueGgZHli8PvXbA4s3RN9vnR/k03IdLvrStOlDt9oU5MShCtRlwWUMn9Hbw2xUKgI/feBlbNrZUdX1vjGGNu7oiKLhrty021G7Psjy6nZ3BlxPxXE/K+TYe/e08ELsM5Q/jHoiJw5VoD60IVv4jN4kT+UW8ZOvbsJPH1iKi5iw3OTh5eGrazjrF3Pwgf95DADw9h897KhdH6ic5r0LXsfvnlhhrCsPAb56Cv3QoD/bXR29P/eIz/zIkR05cagC9TigRAZPnm3tq5zDwy9twB3Pr02UcbciT/7VhsHgZPTclrG2SSInEz5749P41u0Ljb/Hd+G34bmmxYzvP4B/LO3dCYHyaAONQU4cqkB3RGXdVyf+J697Cl+66Vnv+tXeZxdDHGxNdTXAqsmELPck6/pzDu46H7tmnv8A9kHIR1UKRZM79tZfF9QXkQfeqwL14RyyipX2UerAgLuTWs099TASLtTboql+CMVKnrVTYqU6j2ZfgJw79yxYhxdWb8OGHR3477OP7N5B9QLknIMHGqHoyso59Ka4/T7ObFnBhZGwbbDNjOIqb3fJ+h3edQs9zYNvH4CMK9UX9CzNgJM4ENFEInqYiBYT0UIi+tew/DtEtIaIngv/naFc83UiWkZES4jodKV8BhG9GP52BYXG2kTURkS3hOVziWhS/W+1fqgHscjquNOLGAcWtSoVfYlnaxjNdG9nz0wOJDma6hXS9R5RGgvXbmuqWM4FnZD2onNUt8KHcygB+JoQ4ggAJwD4PBFNCX+7XAgxPfx3NwCEv80GMBXALABXElExrH8VgAsATA7/zQrLzwewRQhxKIDLAVxa+63VD/qCq6dC2j+fQ++Z8bY74R6Hz0bpu1n1KwZTfm+piZxDhnf3+CubAPhzDinOs8HTZMUbu3DmFXNw8V2LG9tRFoSPSj4zlxlwDj84iYMQYp0Q4pnw+w4AiwGMt1xyFoCbhRAdQojlAJYBOI6IxgFoF0I8IYId8QYAH1CuuT78fhuAUyVX0ROgT7V6TL2sTnC9ab7bCEC1hNeXc+gXBk3c09l8sVImeM7+ZnOUm3d3AgCeDX1FOHzsmrn487OrmzWkCHnq3foik84hFPccDWBuWPQFInqBiK4louFh2XgAq5TLVodl48PvenniGiFECcA2ACOyjK2RaIjOIfzsizoHDrWeBHyc4P7y7Bps2xNYsvTkzHFAFoV08u9Gc5jRuCzz9h9L38BXbnm+oeNQoYske/taaRa8iQMRDQbwRwBfFkJsRyAiOgTAdADrAPxEVmUuF5Zy2zX6GC4govlENH/jxubZbqc4h3rEVsqsc+jeCb9hx15c99jyurRl28Cq3dxcz2fb7i58+Zbnoue9t9REU9YqrvEVK900byVeVhTdjZ4mrtzn3TFP5aPyjVSbww9exIGIWhEQhv8VQvwJAIQQ64UQZSFEBcCvARwXVl8NYKJy+QQAa8PyCUx54hoiagEwFMBmfRxCiKuFEDOFEDNHjRrld4cNQD1OZ1K84Ssr7+4J/5nfPY3v/HVRXUJOsPtHjayDa08qaaaud2qOeY1ENRtmFqHq7KufzNx+tXBl5OxU5vNtTzdHtETRZx4Gv57wsVYiANcAWCyEuEwpH6dUOxvAgvD7HQBmhxZIByFQPM8TQqwDsIOITgjb/DiA25Vrzgu/fwjAQ6IHveFGKKSl1UyX5wm2mXLUvz6/Fp++YX4iJMWG7UHMo0Zrgmy3af3Ns0zi1iZtXNUii/WWOocaPUsi3ZChJzVN6b/d+nzDxXef+O08/OYfSY623HO2jn0aPk5wbwXwMQAvEtFzYdk3AJxLRNMRzMcVAD4DAEKIhUT0BwCLEFg6fV4IIWfIhQCuAzAAwD3hPyAgPr8jomUIOIbZtd1WdizbsBOdpQqm7N+e+k1fCPWYeq3Fnss5fDH0aN6+t4T9BvUDEJ8I+9UhCx6HrLGmdPSgs0QKVemjqyTCjX4OrpSczU5b+siSWLwsn1lv1jns2NuF86+bj0+ddBDePXVsQ/tyEgchxBzwTP/dlmsuBnAxUz4fwDSmfC+Ac1xjaSTeddnfAQArLjkz9VtqIdRhAcpNttNzMXXH5qdyK/JEWA/nrGrNVfdVVPPqeurjcFmVdWqcsOveF67dhinj2lPpTasam2ef+zK27u7CvBWbcc7MCe7KNSL3kK4C9Zh7/TJzDt1AHCpp4qByUS+s3oqXXt+eud2sOhuffYMVK/WYTaIanUN1m2WzxEqm+agTB9u8nbP0DZx5xRzc+ORrdR1cbzZl3RrmEBk6oLXhfeWxlapAPeaezEPdE8VKXJ/ROJWy9/8iCH3NcVtZEZtIVne96530ILcZL1Sbprzh1koOnkZX/Ns26tc27wIALFrnDiuSBb1ZrLR9b/OIQ845GLB9bxcmXXQXrpmzPK2QrkcmuHD16yctE948fmjNfWaFurClH0E9lh0vVpI6hypNWWsZUNa+Mu7AVYmV9jFiJpHFYTR2BK3T2xP1m6M9FY3W/anIiYMBG7YHcf9/P/e1tEK6DrNPttHp4BxOmjwSADC6vX/tnWYEdwLLcu8ylWWqjWoHZAM7sJ6xTTRVId1oJziHziF1kLJM70KdFcjSSqknGyfUCnlvzTg85MTBA/UOX/P3lzdi064gDEHJoZCWfTcrttIvHlqa6rsaCCHwf297wbt+reEzXJfVcyk1Y+/J1Id6czWObd7yzVY9UsHJ4SXLbWKlQkZHUBciyWfvpQ1K1N7G95XrHBwoVwTWbt2TKKtl8u3tKuO8a+PkKy6xUiU6DVXfZxb8+L6XU32rEBDYvKsz8tMwwe6vkP7RJzGe1bO6iRtC1q6qGVt3nX4//KsnALj1SKYNPctBqt5iJWlA0ZsV0pWIODSeOuTEwYjg4a/YtBunXf5o4pdaTvE6C+1SSFe6kVXmnImEAI75r/sxuM0+deybfP3BvZOeskdU8+6q9veo8jr/9u3zUS81bdRCCLy2aZe1DgB89ZbnMGX/dnzqpIOdY5MZ4HrIa28Imkn4crFSNajy/ezqKOG9P5+TKHPpHCQt6Y6NjtsAZMlOR0IVfRI3MnXjsg07sGBNdpParBBNJNRVi9caPLRYzJnE5l2d2NtV9o4mcNO8VbjioWUAAJtk9U/PrsH3PcODy/zgvdhYqanJoHLioMFn4Vc79+Yu34Tlb+xKlLk4h2hDqrLPWlDLItMf47dvX2j8DVB1DpzIybwQhBB412WPGn/nMLZK5b5pY3Re51lPGkEE1/TMHS56Pdrwjvmv+zH76icZ443477mvbsKki+7CS69vT+g1qj0NG9dqT2EZGwB5z4Um7Nw5cdDQyHm1h8k+5go30J2cA2+t5DcQfZPYuqdL/ZFBdeEzNu7osIyBR7FKbV7Voh7PC3/7+IqqOlPbr4ao7O0qY2uYp8GFiuWw8tyqral7VafQPQteBwA8vmxTQizpM6fe87N/MGPh6/Ze0hDfc62ZE32QEwcNcmLZuLZqxQq7O9OiGNepKV6MzZ/yrELacxj1JGa2ey94bvTq+6z21BWLlaq7PlNfGeqq3Gc1Y/vgVY9j+vfu96orreyMOoeUQpqvN0ghDhUPV5/F69JiQ9Pa6d0K6ZBzaIK1Uk4cNHiJlaqce9X4DXSvzqF+bSWtLauzOuJ+K1Yhe61VXpuVUDeasLv0Vi4sXOuvr5GWdh0GKzv9XrnTPVHyHVQbRdXkH9GLaYNyeM05h6bDR87+mznLq2qbO+W6uuvOfLi1OMHZTBqtOgePtlTYNnrTddUQFKAGcUUVF+7YW/IOd50UKzUHvhuz6bClvoJqtznT+zUtmeseW44Fa7ZV2VvPgMg5h+5DI0957KbkK1bqjsB7NfRpz/aWRqPnunorvqIoUxtZH4tvdVV/8tkbn2bl7M6+anhn94Y6AR/4ZzDky+vxvk0ch+kZfOevi1LWgtVCCIFlG3bWpa0skGsy5xyagF8/+ipOV/wY5LxqxKPnFKFOzqFKC5l6gNsAfIln1XtURj1HNcS8es6hcW9BCJHKnKZbtjUan73x6VTZgjXb8OLq9GnbV+dgOmAkOAfP16FzK90pVrpx7kq867K/Y97yVMLKhqKZHtJ9njhcfPdiLFlf36iQJlSzJzVTCaqjJoW07TeL/0RW+BIOtVqtnEMjrqtXfKF6z5P3/nwO3veL9GnbeGqvIg6Zr+WNHvHV7Ihn7/Ty+1+umRN/YdVWAMCKJhPwZnpI93nioKPZm7BbId08a6WnX9uS7JvTOTDX3flCOh+zbfHZ9Arsb3W+92KNsz7rHLmFCUCoP59fPfpqLUNqOnxP7UbOQSEIzeYcfvbgUqcTZ09F7iHdjWi2yairP19rpWvmLMeki+7Ct29fYKzTUSrjlY1mOekHr3o88fcGiw+BihcZJV8jOAG2fhV9VC1WighYtl7/+nyaeKr72s6OEn70tyVVjSkLpoxLp8CtFjv28pur/mTU+1QJoo9YSSeguk+QidniNtBGGXY03cRccg5NkCvlxEFDpHNoANvGbXz+nIMZKzftxn/duQgAcP0T5qxa3/zzApz6k79j8y4/h6c5S99Ilfl6MGc1SbXdob0tv+vUelWLlTJuBF3lCh5ZssEwtritX9eRa7CL2eoLTieSfh/cfNH/5t+Hvp9v39Ol/W4SK6Whi8F8fCts6K50Gz3Kz4GIJhLRw0S0mIgWEtG/huX7EdH9RLQ0/ByuXPN1IlpGREuI6HSlfAYRvRj+dgWFOzARtRHRLWH5XCKaVP9b9YOcQo2wDqpGhh9byNjENH5jffLVTQCCGE8+uGX+qtQGwFoacRM1oxLZ51TOi5yyoyXDyuLMSX2nxp0vrMUnfvsU+5u68fVvLXqPxwW7D0l95/S6rXtQqQi8sTPmMG2cgwqfw5cuNvrqH57T2vYXK+l1df1FtWi2GLqneUiXAHxNCHEEgBMAfJ6IpgC4CMCDQojJAB4M/0b422wAUwHMAnAlEcnZfxWACwBMDv/NCsvPB7BFCHEogMsBXFqHe6sKjYxlxHIOjmt8QnY3Ujml6yH8FdLVPcFGLTa12bYW/834ykdeiduw6EU4bN5lDjaoblYDWvdRBp6Anz7wMmZ+/4GoKO3nwF/62DKFKzVMX31Df2pFci6adQ6cWCn5d60GAM3YnDl8488vAughnIMQYp0Q4pnw+w4AiwGMB3AWgOvDatcD+ED4/SwANwshOoQQywEsA3AcEY0D0C6EeEIEb+8G7RrZ1m0ATqVGyHU8EHMOjWs7Uebt52Cu00j5o4/xLcs42G6rCiJpbCqz+CpbikU130bWMfq+lac0AlwLmnmSLRDhgcW82EzCdLp/6CX7dYDb8zuLE5wuVip1o3NpPdDj/BxCcc/RAOYCGCOEWAcEBATA6LDaeACqecbqsGx8+F0vT1wjhCgB2AZgBNP/BUQ0n4jmb9y4McvQvRGnNaz/5GFNOF06B5ndyjKeRntR1zsfAU8kbf3b2vIbW7Wb5pD+6QBxvs/Dtn7VTfOuF9ZVNzgG1ude52nC356uNE53esOTSb2Y6TG9utFuJmrkHJinoNd1ZWD0RXeRmB7BOUgQ0WAAfwTwZSGELRiLSQJtk0x7Sa2FEFcLIWYKIWaOGjXKNeSqECczaUDb7InZ3pGPn0OjT0FJi5P077zjd7YxVe3PUcWtr9myx13J0pVvl9WE9mgk6m1ZUyhQ6t37iJVcm75EhyN8iNlDmiurr86hO+QaSWuvHsI5EFErAsLwv0KIP4XF60NREcJPySeuBjBRuXwCgLVh+QSmPHENEbUAGAqgua6HIbLKlTkcd/ED+PAvn0i3XUWrPh7S9XKg4kCUPP2xCmkP4ZM6sbNa1FStv0g4wcXfs9iKq2sw64buyznUEyai/J5pY+tOkArEEIPUeMy/SZgMBFzT2tdLG/D3kejJUMVsPYJzCGX/1wBYLIS4TPnpDgDnhd/PA3C7Uj47tEA6CIHieV4oetpBRCeEbX5cu0a29SEAD4kGBhM66xdzcPWjr7C/1UPnsGFHB+atSNO2mkxZLfVq3WhsjzpFHDw5B9uYWGsl+xAtbWVH1c9LEmrPy23rt1GT29QuUSP6TN+hzpX5EPYWg1ei61pVJXH42CHxdcwLapTOYc2WPQlrrUZC9fPoKZzDWwF8DMApRPRc+O8MAJcAOI2IlgI4LfwbQoiFAP4AYBGAewF8Xggh+cMLAfwGgZL6FQD3hOXXABhBRMsAfBWh5VMjUK4IPL96G/777pfY32NrpfovJT5Wkesa93h8TkF/f3kjVjPilJ0dJRz09bvxy7/zxBJIbobPr97q7Cu4KPmnOpmzEkn5GxforJp9/vSpY73rqlxR9A6UPldu2o1JF93FB62ziZXqY0npDQLV3ZSVu70v36Kbm7rbMXEOvgcnAGgpklLubqtma6Wwu188vCxhrdVIqMYRzRBr2bPEAxBCzIH5EHSq4ZqLAVzMlM8HMI0p3wvgHNdY6gFXxisb5/DJt07Cbx9bYb2eS0oSt82cmB0roOQhV3JN9GUbdkZx+HWs2xoQjFuZEA8S6iJ8xTMSpU2sZL0uq65C6emkySPxD8VxL9GU8v3oA4bDFy6x0m1PB8/tz8+uxqxpSaJjW7+NEysZfmgA51CgtM5Bh899mjLzuS5V532LksGJG5O+RlzpeXsiuhJipZ7BOfQquBKLxE5n6d9M4QfkS1u1ebc1zHI1fg7lsnDWcy3AbXvMBHFXZ8DUqZm5VBAocRK7gwkFkdWUNateQf1l0kV34Tf/4D2KRw1uw/977xRzxyGyyGt5S4l4RFc8tAwAb/1iVUj7D8ELsbMe3zI1oFOfx+hDA42cg9NYw92GhE4cTOep259bgzO8QqUn+1u4tvF5IlTOoUfoHHodXEouaa3EVCwQ4eMnHojhA1ujside2YTJ37wH81dsjlIoZuraMR7JOdhO1C7OwZanWnpLD+pnZiJV4rNu297U762MzFh/fkmxUhVUUsH371qstBWX7+4sm+P0JMZib39XRwnH/Nf9qfAhNq6yi3kHzVRI/+dfzDG1grHUfzfxadIrs6Kh3CX5KRvESnxbycZM4/rXm5/DonXbM5uHz19RP18VE1TOoad4SPcqOF+5hXMoFggFSp6kZeyc+a9tcS6EakJVy42/Fs7BRjzkacTkGEbklo+3MR6+aZNGfgx/f3ljIv6Qjxli4jfl+7Y9Zo9kF9Q+Xl6/A5t3deJKhzEMAAAgAElEQVRH9y3RxErmd1FixBRWhXTYSL3EGy+HYeezcmy1wE+s5G7HNGbXelLntXpA4YakR2F1Hag2ZlQyD+xXvxAoJqiHvFYHMawH+h5xcHIOZsiFoG7Gkp1vayk4F1/WjQ+I7bFt1W6eZ9YXBG3YNtfgt3qfcvUrHl4SOy2qzZ137Tx84rdPKT4EGXUOSmM7OrqMG7LaZ5ZAgWpdW96PUlng0ntfwk/ui6Or2p6pHHenIRdztbCoHBoSL8wFHxPmLDGSTG27xEqrNu/W+uTryWaO/+8Hre3p73aghfOuF9SDhMnCq57oe8TBsfnYTEcl56A2sbcreGH9W4uZJnM8niS6yhWc/KOHcd/C11GpiGgSmxZQqVzBrVoGMa6OC7UoT3nrkKybvOU3zzY6SxU/8QnntGeqqtS9dX7wnLl76yxXcNUjr+DnoQ4i6Matc2jWdl2rKetpl/0dVz6yLFHm86i9OAdjuT/nsH67/aSvLwHTnK5W0dsMHUBHnQ8SLvQ94uDcwINPbvIUiFDQ7P47SjHn4Fp+rCJWK9yyqxMrNu3GN/+yICFTNbX8o/vceQBsOgcfuJ2R0mUPLFpfVV9ZD7dqfV0pbOYGuHaCyqu37MYl9/Bmzv1D8RnXLCem8OHG9Hl28KhB5os8YLtn028+eR6WbtiJH96bPeeEDydo5Ci0vVANZQIk5+UyJU8Jd0DQx1ErcdBrNcOnrtkWVn2POHj+ztUrEKFQSOoc5MbbWix42GWny1Zu3s2GhQa0DcfQ9vOr3H4HtYYK8A0OqOLX/1huaY8piwwB/Opz6KpUEhvy9U+sSLVvgnzUb7v0YcwN8wLrG4AttDa3cG0bjSmJ0z/PnJiurOHEg1NhxyKYZOlEZHwGnM6oXvB5d+Z0n0noSmJ13g0xWNuZxmF+TtZmjHBZQdYDco6NHNyv4X0BfZE4eCqNuXoFSnsMx8k3yEPnwNe44YkV8R8k6yZ1BbU45W3dXb2iFqj/qciWzyFzWyqhLonEhn6bQdzGnSxNJ8nnFOI7pH9rqs+ob4Y42G4pmgtaJc7yi8MvP3oMW/6dOxay5TbOodr36/POfPRVvroIfQPe3Rkfqlw5MfQuTH1WK1Zqhj5HzrFrzju24X0BfZI4+P3OVZM6B66NWiwF+yUsLWRDIvJxUMflg1K5gh/e+1JkvaNnfsvSFhG5dQ7M7pJVif1C6HnNLzK/tmwcUlIhnUZXucL2facSMVWKXzjixoWXtm0Ye8KNTW/LN5z4rGnjMGJQ+gTJhW259hMzAyc4Zjj3L1qPl183K9prhWsajB7S5q2Q1l/vjr3+hx79XZg4B1/dgW7S3Yzczp2lWErRDPQ54uAL7l1LnUNCFxB+tZ3MJEwTaKjiN6FC3ex8rGkk7l7wOq585BX84O7F+P3clfj93JWJ3xMB6RxjJsu44/aYMssl3G8/vu9l+0CMfceNdZWFF5XmqpTKIrVhpOuZb2onk1PZ9tROu/zRoI5WKYtJpK/vwimHjzEqxz99w3zscUQ/NcFnP3zslXSqWRXFgpnjTm3o2t+mPNZ8W8m/a9E5XHrvS6l8FHVKLGeF5Bz6tTQnJGyfIw6+nAO3tAsFQkuhgHJFpGIw/fi+JVEazqx9Dx0QEwfZ3q6OcmLyZxErdYVWDR2lCr7x5xfx+vbkKScb51Ad0dPHqzoO2sUtfmXcb13litmU1dInEIjwdMW9keNiGtvObVQ+8nbt7ywmkc2wkLFBQDidsX7199ib3eRYavRz0P7Wibeqq1N/47gCX4W0C9v2dOGqR9JxyJqhc4h8koqN96kA+iJxcKzYRWFsJJ5ziJV30qxM1ntl4y5cdr/99GvquajEhZGV9nSVcfKPH4mLTZyDZW1m2ShNp1AhgGdW2r0/s2/o5h+zLjK1tm8CF25DK1UqKdHQa5t423iuF9eGVCBgGMMh6s9iUJt74ct21VOui04ERN78fN51xBhnv6lx1LgfvuuI0dZxccWVhB4uhqqf4+ZQmnPgx6QW6+/0kSUbcNR372Ova0YIcMk5tOacQ2OgTpJJF92V+l06MXGvukAU5R+OiEOVfZvgM2md/Th+//Mzdr8IFX+Yvwr/evNz1jo+/htbFKW4bR3xm6wfdGulRBvKGE1iJZepoO1gMXX/tDmo+lim7j8Un3n7IUybSWThHLLouYjpS8WQ/i2BbsIDE/cbADja88FpU8ZYDTm40z0n0gWAg0cOUsrdxMEn//R7fz4nQYxeWG2On+TjS1QrIuKQ6xwaA9eEjsJVGHQObS2Scygb65lgVrwJjzr+/UTtGTaPKx5ahtVbdvM/avDJ2uWrc3gqVJbaTrBZY9rcPC/WpwjhF3OGqxGIlewL3GR+CvAOSiLxXbDERX/fLk9ftX+Vc3A9NZd4sKVAkTWWC1Hq2hpZBwrDbxjnPFNWZiz4fv/p43HlR4+J/CB8Dhj/duvzzj4Xr9uOPyoHKY7zk2iGn0OnYjbfDPQ94uCY0LZAdwVCTBy66ndSUHsyLZQHFlfnVGZCvFHb6/kFV2NLUyUrQzGNrUsfkYCKXz3KR2jNinKlgq6S/WHYcn3Iw0KyvkfHYZ0BoSmm7uhlQ5YsdQSznwMQhGPw1WHIfgVqs9IrEFkNObg1KNdHR6kcOeUdc8BwjBzchr99+e1405jBPHHQ2jJ5G+tdqvG6VN2gz1jrjUghnROHxsD1CiV7yNUrFghtrVKsZA+RzPbtoXnLMse27e6KNvmssJnsqvCx3uAImu0kZVMG1sqdm8VKaqX460GhOKKrLJzOgrZ3wxEW3SrMlk71G2ccjju/+DYcPGqwdQwq1HfjUrC6OIcgkJvfTi/7FaI2vUOxYPcPYnUOYdn374wj88rx7D9sAN526CiDk6UfbATUJvJrioe0I0hmvdH3iIPjJQ4Pbcd5XwZCMZyI5Yi1rr3vLKalKj5x3byUhc1RE4ZGrfmIWFwnHi/OgSmzpgnNSDi4Ma7dms5qB/htb+pz+Y9ZhwEIRBGuRx95cbObj53jEcJep1goYNr4oQCAA0cMTNV7kZF3F7JwDo4H01Lw5xzierXtiEIAsIiV+ENHULZE8c1Q7003NY878xuTLQSLb3TgRqGzXEGBzMmR6o0+Rxxcr/Fth44Ma6XrBU5wSPyeZVIYlc1KuRrywYWFa9NZ54YNjB2jsgRG0+22JVycQ2uRd5Lj1tHXQjmvnXPwe6KPv2I3G3ZhbHt/APEprFQRNTlIVpMCNqgT1FIf8zFMprr3/WJOqkznHPZ02v0VbONpKZJ/XKGqvYiTf5cqwhotVi2eMDxUgjPMnTqaYoG8TFlNsEcwNqMZYqXOcqVp+gbAgzgQ0bVEtIGIFihl3yGiNVpOafnb14loGREtIaLTlfIZRPRi+NsVFM4wImojolvC8rlENKm+t5iESykX/czUay3G8eurUcr5TNBrH1vu3R7XnFpkCh8BqM+hNs5Bj1Ibt18d51CLtdJRE4d5EUQi4C+ffyuu/cTMaKMLxmvvybRvvHnCUGzcwUQFVS1rYA8VTokyh+4j/NR1Dp++Yb7lKrM/ARDIsX33/MiHX9SmcyhXBLuZb9vdhXXb9kSHiLu/dBI+9baDgmsYvY9KrILYZ36HFR1POA4cVkOKZugcSqJp+gbAj3O4DsAspvxyIcT08N/dAEBEUwDMBjA1vOZKIpKG21cBuADA5PCfbPN8AFuEEIcCuBzApVXeS80oFIIk7EII/Mtv5qZ+nzx6SLyZhJPTZt6mB9RbsIbPL62LH3xhzEldB1HXoaP9ZN8FQ3gN+ynL/Jsv56DvSeceNxE3ffp4oyhN7ZMAjB3aH6ccPiY6LVc85OemuFumLHpqLSEEK7ZhN3r7MCKo4gUBgTnLzN7IQfvmlgf0K2bgHGSftaFUEWgpFFKinLdd+hBO/MFDUfvtA1qie+XmmjrqIGpyui9urLr/zrm/fjJVR/Xwtk3NJtAGdJTKTdM3AB7EQQjxKABfredZAG4WQnQIIZYDWAbgOCIaB6BdCPGECFbWDQA+oFxzffj9NgCnUrV8qwds77AYemuaJkG/lkLi1FSpCGtqUJ0LeNmQLMY1r6aNb2fDKvAKO95k0tSnqWbR8xUUTIrOjHoF22+8/if599j2Ad4+AomTZhTo0EPnEFbQxTcmGbA67lJF4GMnHojxwwZodaRYidjr+IaDD5UQumiqK7xLlrAdqkK6FlQqAq1FSqVY3RFmbVOfDZGFOCiPv0gGsRIz1g//8gnnGB8xJKnS0QyF9J7OMgZ6OEnWC7WQoS8Q0Quh2EkKSccDUNOSrQ7Lxoff9fLENUKIEoBtAMwxiWuE7QUXQgmJOgHn/Mc7E3VIWRh7GfNFFXu1TaRUruD0qWNwxpFjtTHZZ1a/YsGbbRUCeGyZvzze1Ky3iEFLmyqxv7YJqqiHziE9Dvkl23WZOIdwVz7v2nnJNozEIW6wo1TGwH4tuOSDR2p1gs+EWMkxZmkpx6UwNcGV7GdgNZyDoc8Pz5zg1U6pItBaLBgdyNRnYyNIulgJsIf3lhiQMbWn1ciiCSrpXZ0lDGxtfMY5iWqJw1UADgEwHcA6AD8Jy7nZJSzltmtSIKILiGg+Ec3fuHEjV8UJ20ukiHOI64wJFZcSqkLapQDUd9iKAIYN6IdJI5IJXVzTqrVY8GaVK0LgjufXOlpU2+B7jzZNx2YdbDrpOscfvJ+lTzNYPwfmCtM+ZtrekjLqdH0fjks+irVaRE6T45ramswY2FJILrloA0xwDvZxPB+KMgsZuA0CWdvt31pEwXM3iDZq8M/bl8iUKxW0FMkY9kQ+bxnwMrjGfqMFA4fBmXy3G5z+jjAkP6pWVFov7N4XOAchxHohRFkIUQHwawDHhT+tBqBmK5kAYG1YPoEpT1xDRC0AhsIgxhJCXC2EmCmEmDlq1Khqhm59iYRgE1Hr6NYBcR7pZDx5DvqeUREChUJ6Y3NNrH4tBXZh+4QJMCGWn/O/y43ClUXOJK6wLeJqldWucVRTV+UEfa2VdJg2Q7V+R6h/atESw0fWSvauWcycFFs1efk5pMYXl7QWC16mz8nrzX35oFwJ+u0y+Jfc8tTKqL2CpnMw9S1FfPoh4/bn0gemNoP83pQZr56e/dVgb1cZ/Vt6OHEIdQgSZwOQlkx3AJgdWiAdhEDxPE8IsQ7ADiI6IdQnfBzA7co154XfPwTgIdFAuzBry6H8XI/GmaiiWLeYMrjFzaU5B8mdZEFrscButnzuZr82ZTVX6GLXSS24H25sNr2C3xgjcKIEw0ZmCyAY14m/J3QOnmIlHT6cw2Fjh7B1Y86Bv86G/zxzCg4P23Vdo4+wVK7gZw8ujf5WT+cuxJwD36vxHWh/lysVLF63Hc+u3IqljD5OckhEabGS6X5jjtdyA7Ku4YZNSl+7WKnxKFVE6nDRSDgFWER0E4CTAYwkotUAvg3gZCKajuCZrADwGQAQQiwkoj8AWASgBODzQgi5g16IwPJpAIB7wn8AcA2A3xHRMgQcw+x63JgJVrFS+PmWSx5KlD/4tXdge+hGH4sh+AQvKvS5Z7JYcU2tfgaxEgdvkzqXGCJcZC6vYamn0WGLkMo5dGWFvv/Iv7MunfhE6pYbm95B0bBgJdG89hMzMeOA/cJx6pwDwvK4rOwZXbZfSwFHjGvHS6/vyJxx7U/PrsFPH4iJQ7FAxk1dR1TNyEl5NYNSReCNncFB7L5F6zF5zBC+P8SES96n6dAiGX3T87j7SyfhU9c/hbXb9hqNLvoZ3ydbbO2vVgghsHbbXowfNgCViqg6U101cBIHIcS5TPE1lvoXA7iYKZ8PYBpTvhfAOa5x1AtWsZLhFHyIEtKgoKwM13xo12KxVIRgwwW42mkNTzJCCOcCznwoN214YTfDB/aLFjAHU6Y4W+jt7925KNsYPepkey5pa6WKB+dgquAKljdz0n6RfFufX5FFjjIml6GDilg57KqXnNt6cqKWAnmLg1SdAwdfS7fRQ2J93u5Oc+IelXOQNMF0aJE6HVMQxbFD+0fE3DTMokH50h2mrFc/+ip+cM9L+MRbJuH51dtwyuGjG9MRgz7oIW2Gy6JD1gGCieI6LQzSkp5XBJ/cxNVnazG5MGzIeoJxKaRtwcaCevzC+NMzazKNo17wdYKLv5tNJHWYnj+XBS7Rn6UNjnNwiSu/dOpkpe3gwg3bGSc8DWrX+uZZKGTxkA7bM8r93dvKz2ZPx+xjY/Xk3S++bqzbr6UQcXiSYzBxpjJwoSlLnKojSyr04/ZMfmZ2XVljqMODYeSC6x5fAaD6HNfVoM8RB6dC2nUCQyz7dG3WZe10UxEi8M59NrlxOhXS4Wz1MfP0lyo5FNJS5+BsMG3K6rTiyoBSueIMpZ0YjWHtJPI5qPWj330U0nyFBw2hR7jqac4hHIcy8L2OiL/qyVx+dYk4KbC2iKCHiSiSvzraVa/VIJZRlbazpo0NCVLw96adZuLWv6WY0A0BZs5AcutqNFUV6uFMpWHq4/AxMNDBLc2nX9uCBWvcIlTbYUCPHttEB+k+SBxcpqyOc3xSgWmvqy9AEXIOqbSd0UbNtyctpvzkyhk5BxNxkLJb5R6OPyhtnho8j2QjX7zpmUxjsOGo796HT/z2KWe9ak9uqnK1Wp2DcUxR3KT0Zh7VicRKMaSS2QR1g/AOs42kOLOzpHMO6U3R9EzfosYfYzZSk9JUJWCyr/5hlOODRg5irykWCK1K3KdYrMSPbXDIre/qMHBzCWMEnnMwUT99/Y1pb4uvZ+bOB696HO/9eTomlopb56/C4d+6F6s2G/KraH02K+ge0BeJg/N06GggIVayV9VP+hWjQjpuk4OcED77n+8G5rL6GNwWnMDURfiZdxycqkeUtgz5x1J7Uvks2GXgQlKKXXkC90n2k/CQjq1b3NZK2aA6cUlMnxiYn8r8DZxY6Tvvn4pjJw2P6uhQxTau+5XpP4mSG6B+8i5SWufAPY93TxmDU0O5t+l56b4ccZ9p7s31tvq3FECUVkibxEoOXXniOSR8S5Q6S9fvZK/l2uwXHdwMHTpwzZzlAGCMtKCb0q/azEcjbgT6HnGw/KZP1OPYk3J80lyvcQA6dB8BqZBOjUnI+jyrbIsrk2rLcwuT4iJTm+OHBcpCla3llL4FhtvylYu6TshZwG2y3O9AkmiTsum49dFZ9TnpMRULhPcdtT/GDu0fthnWUWZf/9YijjlguPHd+IoW/njhififjxwdtp98BvrJu6XIEAemzcH9W5yxlUxipU5F0Z7iUsJPfQ1IzkI3rTaKGh36EPU5qAc19Vmb5qX+PoQAHv/6Kdb+XJDclEmJf8B+yfDtL3qIqeqFvkccLG9RV0h/YPr4dJ2oHeBz/2sXn+zWWFvp5zBrahA+Qy4i2afZPC+D0tRTPB+dvAxNykW5bINyimLqEtKnpmZwvnoXWRanGkE1GT7D3kjWDcDEzQS6rVCUGImektcSY9UmoW6sNjo8pr1/lPNcr5cSK1FaIc3Nt6CO5GT5EZr8BxKcA8nPJFesy9+lo5ru52ASK0U6QYsPBsfRybKPnnAAvnLam9hrOWOCkYPb0L+Vd1L1QaRgNyzcttbu26L7HnGw/pq0JOLmeCGDiOevLyS9MqWfw8VnBxa9H5oxISoHzKyyDIrms/H7Wit1RRnv+Pq+zjacU59JFDTjwHSegmZBHaN6GpMSEJ/FnTV+jmnjV31DuI0qquNwUHRBl0+rzaWslRjiwHVPQIJz4EZiOgWrfab9PYLOdGW8dEgraP4LJs7B5YNBShvccxw/bKA5Z4LhfRB4c24fyDVvOhja/IUajeZFceohsPs5AOqs4iaPLPGZDC9rsktpyjpicBuWfH8WVm/Zg5vmxXEK1dPDA199B8a0t+G1TbsxP4wLU09HGykuMvs5MOIvQ4wjn4312EnDWQW9DpOcneuXG5tJ3q3iiHGx2CDBOTiuyypXljmzdai+IbG1UrJOEAqdb3fSyJi42eiEShx0Yws9vHdXuZJqy8Q5RNVMc8fAOXBWbHrNNOcgOZ8k91yTziH8rnI4sl3b8/zW7QsTf59wcBAf1BiZ2AMup75qA1HWA32Oc7BtAQG7r/zNTBSXvNUGVSHd1lJMiKiAJKt86OjBGNK/FdPGD03FlXH14QMpVjDVbmFOT1zTthzAKgb2a6mrn4YuqpGXmeXxqkhD2TSVfn2MFa5/fIXX+ADg5qdWhf0ly9V59niUL0ATPZH5WZxy+BitNR5F7T7V5l7TCFdHKU0cODy/emsip4nP2ypXBJ5asTkVmluFSawkOYeiQsQB4O1vGsm2o4upUr8r0gEuzWoWieiPPvTmqM9q93C5+Rs5h5w4NA8uziEpVmI4h2jyxRVPPiwdBPATb5mUqCdj9yTNGpPtm1nl5MLg8KYxg3HGkWON93fucRMTf0sv3EeWxDb6Y5UItNzpjxUzWDYxFZyYpNqMXRzkZT4OWCrijS7+X6ak1FERAt++YyH7W9weU6ZvOco8+/5diwGkRZjVxODSkXiHZD/QdJYqTCyw9BV7usqpQ40LVz68DOf88gksM+QzCfoKPnW7fl3nIMc0XEmHqyI+vMWDS/i4KNKBhClr+JnFyUzq5QJupFadQ845dDtsjzqwBVfESszT4RbGF955KL7yrqQSa9jA1kS9+LRiFteYJoJuxsehVBbGUBYA8JHjD0z83RHKdv+2cH3chtI/FxKCa1k/kdrk5PrYuAXhnbdCH42QYqVs2nAu8F4tXqhcGOg052A+dHDjssFbrOSgDoeNHcLEAkvXGzqgNeEhrXc/ekhb6polIVFgdVFaA/oakArZaA04Ttrc+kwpkpn37CNWMoGLeuCDW+evikxYy5UgBcCFNz6NtVtjc1VXbLNGou8Rhxo5By4ipUD6JerxZ5Zv2hX1EfWnjckUHruonZqCa5J1t+3pijZqVW4fWURpTesnNL1NjnM4dlJaoayLlbh2gZD11n7qYDxDXcTh4FGDwrHyv5sT7xjqK8825j74NnzCMrvSWAZ9pt9fuo6bW3RBvdR1ut1/2AAva6WWAikWQelN+ugDhhl9UABg4n4DcM15M9NjNZhWSz8CnXs2PRdO7KubLh99QDCPhw+KuY9auDRf7lnH/73theh7qSLwt4Wv454Fr+OSe16KynPOoYngTmJ/vPAtWPDd01O24Jxdf2QXr2x0QqRPwbri+tPXB8nf12yJTwXqCQywcQ7pjWLL7mR4gNHt/aONWt3c1NhIakyeDia4mxSFAfwJfBjHymsLg+MGfvWxGWFu3+Rvo7VESkDyHheuTdt0SwVlyuY8/DRZynznr7w4iHOC++gJSS6rpWDfqBPEhBW9cfoEvY4+ruDTGTLdUD51//ZEbmvbgfiyDx/FjsG1AQPpecQRVvVdHTRyME49ItaZ6LX1LiOdQ2QlyBMRZXSJenpdAuGHoa5AxmFSO66Ga6yWc1BRrlRYwpbrHJoI7lEPaiticFtLSs7LmrJqHAEQTER9Eesb/y4m6qR6AgPc5nm2k+v1nzw2OsEkFoMy2Q9TQiJ3MPF7vnDKoTgkPJkXPT2tCor5x9bdnXhu5dZUndOnjmUX0OTRg1N1gXhhn3lFOvRARivDCKbUqQknuLAR3QlKblCmOFMDFU7Nh3PQxZfqOCSk7sSdT4Mvv+tLJ1lNWZN9UdiWLleydg0hRMoiz+bkCcScgKmOfniTh4GIWDqse7gNVjcy2W9QP4wc3JYof2bllsT1WUCo3ZLwszc+g10dAaFV29rdkSS+/312Ms1sI9H3iAPzDtVTckLnYJkpCREP0qZ1qkVHUD8oLyc2bjmm5IT/+InJk6sq+tjbVcZLr2/Hw1qwt4hzEMmxyVsjAs588zjc++WTMGVcO8s5EJExKY0JcmEIITD9e/fjo9fMZesVCkG9nz7wclS2fgcfbM22H0qC+s0/L0iUx8852yJVibi8Ur/zfkrIdB2TRw/Grz4+QxmHuQ/1b70p/W8pDqyXzFk14fyrlkZWzlUfU1YV3K/cmlHb0bOvyb7lukg/B16sZCLUUe/Kz4k1F/UbVxJC4JPXmeN3yff+1kP51Pa1WCupeH5VeLBS2nr1jSTxlbrMZqDv+TkwU1qe0tI6h/T1Okcgv8sIrOfMmICPnnAgHgtNFHWFtO6ZqkJuBCrbHYwvXhj/duvzuPOFdSz7HnMOyrWaad/hY9vR1low6gYkgfIlDpIgLX9jl7WeVJarCWZe38bHiakIgaJBECKHtdMQWC0rcUgE3jNQh1ZLVNzvf2Aa9h8WWzep3R85fiiWrN/BipX0llJRUrUQ1XJuukKom6DmkP7iTc+ydUwhLfSy2Fs5XeNNY9LcoHprpixr8j71RyznoW6UYVLU64cy9Rr1d6mfA4A/KuHludS/FRHkN2kzpOhsLVKmyMEm3DI/MH1Wx86F4GkW+hznwM34lkJ8cjKJZCTUZD9cs4ePa8dRE4clQnurNbhJFIuVgm+thfRmAgRjm78iYH+5jUracKsLh1PQthTI4nQT1vH2kA7G5ZKNcmKlUYxlC2AXEZm8V3Ui7IukE1y4EWvUQSbC4W5Rf07q/BnUVsT0CcNS13BmqjrnKf1MusoCa7buiepLsV9WcARJB5fznK0XeSunf7vw5EOZ0CZxRV2spIeG0Tf9QkQckgQpk7WSqpCWn8pB8KV126PftzOhvuXYTM9jcFuLM6dHFpjGHoyhbt040eeIA/dsI5mrlpuA93MIPtV6AgIzJwVB+oaFJzvd3nr88MCrdda0sam25KDkhNe5AnVh2EL2SisYdeGwHIbF3V+W2/wFjpoYb3i2GED62PQ+f37uMbjuk8fiuEnJAIe209F7jozTlz+mePnKDFnZOQelz/DStHKYWFPcsHaivlpDCJPfQ3oT1MVHLQrn8NYwbe2wga245rxj9d652zL0yf/GZaOT4+cguVHuQOBSSOucw+8/fTyAmCPSm/ciKo0AACAASURBVJS0JOakghwfppwXHGfPxXRSA0aqaV45i8GYOLBdYkj/Fuzo4PNHVAP1eaWD/fUgzoGIriWiDUS0QCnbj4juJ6Kl4edw5bevE9EyIlpCRKcr5TOI6MXwtysoPJYTURsR3RKWzyWiSfW9xSRsOgedc7AqpBO7APD+o/bHrZ89EWcfPT5xraw3cfgAHDhiIM5SgvnpLLDkKnTv5DgiJX+i/935x0X19FDiJgKnT/Qbzw8W6XfeNxXvnjIGJx3Ke6DO+8apuOWCE/DJt07Cz889OtroXHOWCwex36B+OPmw0Sk5qq2tfznugOj7R34T6zckcc5q+kcJziEs0+pMG98e6FY4bk3X4aq6KGF+/npLegRgOSdVTnPr7q6E+SXXvxGWiqroSoVLdFMyiFImhrGrZI4GtRWdOBw+th2nHD465vy0JyOfn8o9n3HFP/D3lzfyY9OMPIBkHglVrCRfZ6tyEJLrX7VkknTb9DwG929tGOeg61aaSBu8OIfrAMzSyi4C8KAQYjKAB8O/QURTAMwGMDW85koikoK6qwBcAGBy+E+2eT6ALUKIQwFcDuDSam/GB7zOQZVDqsSBO3UHUBW68opjJ+0XscFyksrJ1lGqYGC/pIpHZ4HlItVDHqtJ07mT2UmTAw9tzt7aSOAE8GxooQEAbzkkULYdMGIgrv74TAzox8tXR7f3R//WIr79vql431H7o1CQylz7rLXZgvvY10voCk0dJlGVCZwTnC5OvOzD041iJb1+QiQghMGRMpb/H7DfQJx99HiMG5r0ypaHABex89VBxHMt3Z4kQD7GSgHBC76rojB1HKdNGYNbP3tiZBKsdsnpHAjx/NGHJ+eGyj3rFlKJtpT3KdHF6NdU0Z4rgY5LrNSvWEBnHQPkqS3p9giHGiz8GgEncRBCPApgs1Z8FoDrw+/XA/iAUn6zEKJDCLEcwDIAxxHROADtQognRPDWbtCukW3dBuBU0ldnHcFzDrFFBBfrX4Ucmiqb5NpUTeqEENi4o4Ox1IjrADFLq09WNeiYbtqm4tWNu7BBswDiJr60HFqxaZdSVt0jlyIqH87BVEfnHGzEwTXOow8YjjOOHGutoyJ6tpU4UhBRMiTKoNDMmRvXhOEDMGZIG048eASOnTQ8JRJwcQ4ydawOOSd/8fAy6/g//85Drb+rfZog551P+AwgnlPqifxvX357JCICgoNSUZvfAG/KqjpIuohDNTJ3k7I4DtYY3zd3z1HuE4POuV8LGbmo4Lpsg9YPGCqmjR+aqa1aUK3OYYwQYh0AhJ+jw/LxAFYp9VaHZePD73p54hohRAnANgC8zVgdwOocimlWE7DrHHYr3r1cchM1ANiNT76G51ZtTSUH0hdjzDnwYiUhgE27zLl2563QabiJ+wk2OpuVpK8zkAw/7SYO5s3mq+9Ohh6pCH5B/ePf38leP1ZzpjvmAP/Q4IUEEQ++E4DrPnlcol4wN5JjWvL9WRg9pD9aigXcdMEJOPHgEclTn+CNGoQIRETyO/espTXZbU+vTv2mon9rEe39/Y0OuVcg551Od6XY7qTJI3HFuWHSIIrHq26IY4f2x1sOSYoiuThkHOdQ0Ihlso3gU+WefSBrdZYqeGNnEKJCcsdRu5JzKNqJg6ikf/vxOUdF31sKhRQBUg+ZSzeYOR376H1yuDcO9VZIczuKsJTbrkk3TnQBEc0novkbN/IyRxc4tjo6OVDyd25/lAujqxTX4zLGqWz8/YsDn4R12/jMcbJLqZRMK6SDz3JFsJuNxHffP9U43sTYQhGJbeJlkWWrlj46ZM4KXaGr5qMeOSgpChJC4KanVqbamqhlxZKYzJhP+kLVOfz52TVhWbpegdIWXinTRo07kvk7dDwU+qi8sbMDptSxxpzClnuw1mFk8RKqrmu4wsW9ujHgLD/z9kMwJhTXEeLn47ZQCz7V57Zma9p8mcJ1V6mI1CYbi7x4MVs6YGHwKd/DZ343H+f++kkAwKfffnCiXrwBpcWCarN6eHUACe60tVhIKLK37enCv94cmwv7Zu6TkPGWfHR5jUS1xGF9KCpC+Ck9slYDUMN/TgCwNiyfwJQnriGiFgBDkRZjAQCEEFcLIWYKIWaOGpWOhOoDlnNQdA4uzkFaatgSlwRlwedVj7yCR0Pl2cjBvDJRbqylyJRV4xwUcz+bPXV/JmsUf1KjSNxlgjdtsLRz4sEjohOW7ij07ffFhEwXFVUEsGG7mUPSUUtCFNn1uq17IuLA3f2erjK7sanQ5foyf4eODx4TMM17OstG0dNHjg8U7wd7mK76EHJOFi9x+tR4o3v/Ufun9BgThg+I5niBiBUr8X2m18q23WmrHily/N6di3B+GGZGQvodcIYgxx+0H179wZnJPrWMDg8viQ+RqkhL1ftw1mbqU4oc9AwOsv1akn4OVz3yCu58YR1b1wfPrtyKbXu6mmq2yqFa4nAHgPPC7+cBuF0pnx1aIB2EQPE8LxQ97SCiE0J9wse1a2RbHwLwkGikvRbTstzwdbky904lC+pcGOHnrx59NSobObiNrZPiHDQxlSpv1Z3TZh8b02KOSP383KNxwdsPxtT925X2wpOa5Sn7qn10qywVuuWXSzGpXnfTvDTnYIJOMLPMHi4ciunWH1li51b1DczEFUwKrXjKFWEUPY1u7493vGkUhjBRXnX4vKnklhmjtUgJjqxQoJRIr01Jg5kUK9kftLythHkoq8cLntV1j69I/Ta4LRCZcZGJTY6gAD8HVJ1fknOIIe9zwvD4mXCmrOqGr4uV6rF97eoo4Z4F6xJlP5s9veZ2s8DHlPUmAE8AOIyIVhPR+QAuAXAaES0FcFr4N4QQCwH8AcAiAPcC+LwQQgrnLwTwGwRK6lcA3BOWXwNgBBEtA/BVhJZPjYJK/WccOBzPfOs0xcLIzTnIzZmLKKqCU5ymLG0UefecpW/gxieDDVF3glMtaj751oMSvw1VxABc0LmJ+w3EN844IjEeSQRtljC++mnZFrcehPYsXVFfJSpCpBTrHORJcKUmgskSW587kWY75ynXaRuYaeOPbPaFMIqeZHs+G42XWMmwaf7qYzMSfxeJUuLGtpZiQgQj29J1aDoiEayycZpypJju8t9nHZa4LuH9byMOAK6dszzx20AtEKFtzt7wf46LTHEfeWlj2Dc/f3Wxkq634PQYLiV1sUD4wu+TnuzvP2p/6zX1hlOTJYQ41/DTqYb6FwO4mCmfD2AaU74XwDmucTQC/YoF7KfYjeuL0Ray2xR+ImqLKdMJRsQCC5GISWRygitXRIrAfEGxVvHNc1MgGYXUpnPw5xxMpqw65+DyIZHghvXZdxySKjtgxEAs27ATWxmvVl/I2yzXIYaRqtwGzDoH1SwzICCm9gJxy/CBrakovFx7Nsj3OW95UmKbzCoXzL20bqUQvxOKDyH/O9fO3clRqRwGG5IGZkWz3NAj0WrFvj7lmtqyuxPfu3OR1lasI1IJktqMHMeoIW0Y096G5W/swm3PrMaHj52oHRzj762aWEnf9zndTDXRVhtoxMmi78VWspw8dM9hbiJLzsEWIylozExYXDA5wQUObvH4po1vT4gdfNuXC6MeMs3I8olp65IPxhEkdZ2Db1DDuH66XkTchF5uHXICnHJVLsKbPn1CKvCZva1YNyQ/bQeMcsVcJ6gXBjV09Ltld6f3GJ9iLNoSfRbSJrttLYWI+BfIf55FnINCeNlDk8XMOa4TfLrWZyTKYtZnfyV6bsA5hKIyZVTqHI10gFFOlPQcAYJDZlKslOyXE7+5rK66M4+DRJ8mDvocJ0raMrMigaIf58BNXF3so7LAKnTTWM5RC0iHuMh22reLlWQ91xylkHNQ27r0g0di1rRxCcWmbq1k81fg1g0f7TOsb4hz5QOVK5OQPZ14yAiceIi/VbUuujEppFWzTJMpa9BeaAnmuKEsG4lrihQVq6xp4wM9VUsx5hwIlOEQEnyWyvymqtZzic+8xUrhJ3cyHz6oNVFR1vjrC3GUWnUYkRVXoYAnX92EF1an84vI3yvhGigyxNXFOXzk+AOwaN12PKuEu29mgD0T+nRsJW5ylR0nE7nBcyGvVXAxb3Sxj6yhz4OUWEmJyqrOM105bUp0w41Nz/vA1vOUZQuRXNwD+7WkLF50hbQNLOfAvAzJvdWyjmK5eO2LUQ+2aHJwU80yTXWC9qToqQ5jo+QYTQg4h6BfAmH0kMCHJCIO5C++5MJscPfKhVbh6gA652DWOegE831H7Z8wPSYg2gwWK4H3Ep7VCucw++onjWNrbUnqVnRCx4ks1fG1Fgupt9KN2UEj9D3iYJlcpClN+VOfp87BImtW+9PHBDCmrHLCC4Ff/v2V1Fj0ei4EHtLu04lPczKAmZMLYU5UJvCcQ7psb2gUoFfPZq0UfKqB76p1PIp1DiIah80c2sU5SHFLPUQMXKpZe73gdBtlYFO8x7M4SAJAl1NP4DYikG098UqctIm/IiRI2jN7kxZ2QuVk36WEyFev+uRbJwEApk9MRtb90+fekvi7XxRBt8KOixMr6cEx9YNYdzq/SfQ94qB8TznQwMPPwZc4MGVpHUd6TED6lCzHoes5dM7BV6wkiaDvac3eVtqhjj8t87HyOXAbGMcVRcTBspBc4orodKs8DB+/iT9eeCLTVvApmzKZssp58OKabdjZUTISdRnmpBY/DglpyODKOyBFXuWKQLlSSaVIlRFqVdz5xbexbXGneO5WufziAPD7T8XhOGSfz62KRS/cu+VEWQBjDKJwsur41DZlzLL9NCdN3QM/DpIY65pUcMRdLWspUGoOqL+//U2jsOKSpD9HM9D3iENC55CeME4/B09rJZsi0ta+rS09fotObFwBxNT2hAfn4MM6SBPV5AbgvncbOKLFiZX2lviTmppJz+fUXaDks3VlX/uvs6ZixoGcV3ySEwxERmbRh8xmZ9c5iEih+29amJEsaAuVsarFzrfeOyVVT3W4VDkHOVeIKCVWajf4Ysj7UkOy20RBKu7/ytvxFiUyMJdgiJu+simdCHLGJ1z2wMThUBJKxzpp1QivPuU4n6gEcSiSNa7VT5RQHc1En1NIq1vJ8VrYC3kKlmA3+JDKu62V0kWmvdttqRFyDmU75+DtmwCEsZVqFysBaY9mXqSW/JuLRxW3Zz9p6WV69UFt8bQuC+Gc5HrARSdBMW7mwae8ulzmo+iaAium2gvHIgTwlXe9CV84ZbJ9XBb0U5IHSXAxmeThJ+AcRDzHIoV09YccU10u7pb+TORGrdbi3hLnlQ3wxiAc5yBFSeo16jq56D2Hp/ps1cVK2r3sYThmleAUC4XUYitXBMa0t+Gdh43OHGm4XuiznMOvPjYD57/toMRvqks9YFa8FQvkoZDmr9P7A5KTnMtTK+e1TpBSCyiDLFhXbnNwcUdyDALAxp0xcZDOQ7axSUWnxP1feTu+/b7gJMuJC9Y6QleY4KPYK1A2sZLZaS18n2GfXRXBEkH9WZhSshaIonfum5nPhLYwtMruTnveAdVBr1QWkUWczZTVZHkWcbyMmbAKmcEwUaZV45wVWbFS+KkfpEa3pzfYiIiLIIHVikvOxNGKyEhP1Qog4RclId9xVzlwaty+J/mMOXFqWZljHzpmAitWsvnANAN9jziEnweOGOgWKxnOzsUCOTkHkydosiAck36KYPoD0hN+r+al7Rt2WyqRszjimFhbaRarPo8jxrWn6qn3rmd+A4DJY4ZEBIMblp4Lwxc+ij2dc3A9F9O80BXSpXIlCr2drOcnDixQ/M5tnJYPpKXOrs50HhJubBWNc5BEligtHzfqTCIupGKtK3Ur3LX638nc0Om25GVdmoXUmUoGQXkfkVVZRYB7vKqITWIXk7tcvuNSuYJrH1uBu15Mhr3YzURTkPPyp/88HQeMGMiKlYRovuObir5HHCL2mDvBxDmUAbNMvqVQqMpayeTnoI9BRxwJNtmnfiJRF95/zDo8FRoh7jdQAEo5u2qtweE908bigzMmsL8JAbyweptT0ZnYFIybSfDJhk3O5L0Q4y/PrnHW6SxV8I+lccpRl7e0zfQUiDctVWavQi+zcQ5ynnFEJgskcdmtbG77DUyfgtXTcqkiIr+eGQcOx6B+RXzu5ENARPjYCbFex0QsI+VwgnNga6Y2er2aruwHeC5IjkWNmvy1096UcixtLVJEeMum96SI2CS2GgIHAgGxvX/R66nf9zDjlHMsCt2jdb+3qxKaE3cf+h5xUEzydAShAxSTRsMJ0kfnwMpWtafNTT4u/aGct07OQen0yPFDE9E29bEJEXMO//ORo/mbiMZtnqJyvI8qmyvbhjI2U2tx4p30b1kTpkj8518WpJ6TCyMG22W8pvGv3ByIvuaHXsilskmslPxbD7SodtRVJ86B4z5PPWJ0ql5BESup1krDB/XDwu/NitKxqpupmXMIPl3ceFDPzjlEJrVKtadWbIEOjnNQPaMlxg8bgNVbgphcZYOXeqyMj8t2MpxDZGpuIDIcJyqH12IgDt+7cyEEshly1Bt9jzgoijUdLcVCYtM3EQe9Hgeflyon0g/ueclaT26aep/6+NQubZZLUufQVa5gSFtLOi9BiPdMC4iLj3Od+3mo3+0nTdUpSUIVValKQx8c/q17M9U/lhF7qTA9jseWBQTyj88ECXpKlUrqxAqkia2fzsF/qV54cjoOVZGZQ2wEAIVAmzgffcxm0Ueoc/CI3priHAw6B98YWCoR5FLLDunfgt0dZazfvhfzlm+2WlGpxO3dU9Jctip+4topM/cvLeJMTpgL1my3Okg2A33OWkm+Au6htxYp8ZJM8mpVIZ11o9Lb8UHMOdjtp9VN3E4cAp3Dll2dVkWnDKvtM05XDTUGlGnCy4Xy8JINifJLP3gkPjwzDk0+cTif9KdZcIlRymFQw66ySEXYBbIbDgBmAsKhP0Ps5QbmEodKGjRvxWbs2Fsy9qtyO+b3GXy6TKb1iL1cm7ItWwBC9TqVc5jAJIkqFoLos1+55TkAwIK16dAYKmd/8KhBmDKuHccfnDYYUZXlLHFg7v+1TQHXIjlCPcrzIaMG4Y2dnTnn0EzEkzD90FsKhcSJw8Q5FCmWkX7uZD6Hr8kqQ2/HB3Jz1uX6OruqnkhtGzoRYf32DvzlubXWxSZN9HwmqMt6a7RijmcLNAcAO/YmWfcp44Ymnmcj18tlH/awKTf0H4s+Yr8P7sSvv3eTAjyRMyCDWImr6+u8Kfv80k3PhtfxW4RKNGwe3kDy/j510kGpeoT0pp82Fkn3cQCz6RNzEh+jWcbJsVUqInoe3FpX9S92T/bg03TS50Sin/vfZxJ96O/l7KPHdzvn0OeIgwT30FsKlKDgow32xUWPTZgt1U9DGayLALdYSW3OThy8uo2Ig49EY29XMLbr/89x7O9tSpY6F+dgyiOs12sE9h82wFnHKEQJfxCIN0TuPej7LSd2UNsD7Arps6Yn4/zXEmreNySLSjTMpr3BpzpPDxyRNnN+6fUd6fY93vHnGPGZvEpdKyajgLKIrbFYhzqiyILR5O0OqCIvgQVrkiJR2Y8Jco2lvaqDMbliYTUSfY442HUOhO3hqfXis6exExnwIw7cAuVknzq+cUbayUY2pZvR6Z68ap+2xeUroegXnkBthOZrpwVeux2lMiaPHox3vIlP35o8+dvFMvpC0bPG1UIbzmGsrg5W/DK8RGiGAcj50r+1EBEHHz8HE+eg9mNTSE/RTIdtITtcuiH9/l835D330Tn4ZoxbuDatY3IZZ31oxgT80zHpdymHokoAWAIdmi+bNufo2rCeLbS6LL7xyZV4Y2cySVWxQFbTaC7aLBDoVmyJoJqBvkccImslRqykHJGPmjAs9XtUT3ljJpksN4/+HxOuwAdyAm3elYzbv01LcpMgDg6dgw98xEozDgychjq6KtbUn2T4zo1L1zkO0KxNarH9HtOeFjEcpQRWMz22TyviEFPv/312kL/i8LHt0SbMKfv1d2MK16FWs3EOPn4Tkd7KIf7T23p5Q/pUr/fh0Ec7Pc53MaaeLs7h/71vCjvfIlNWhThwa7RYCMRKnBWUChmltlJxE8EX12xN/VakdNrV5LXBZ4pzELkTXNNh4xxaPTgC/TebA5OKI8cPxTDGrtwHso/7Fq1PlOun9LoTBw+FtFwwHaVKRExcfWYVK6nhMAC38tsGzl8iaZbJt66GrjCNf0g4zooQkQ6G4xb1x7lpJ5+sx1fn4CN2k2WvbNxlbAdIv2v9AMLVc+kcXI6I3M8uvw4TF84ppG1iJcmRmTiHgodYybQ+vvXeKaF5vOkuFANepfvWYsBtCJi5lWag71krSeLAPHOVc/AlDkZrDm1yD+jHm4vqYJ3zmC7mfuPUVM6EpCmrV3dW+HAOqg+GlXNQmvBR7KkYqD27WhYMvxG5Nzqfk3KkcxABJwUkdS2mPvS84FF7yncb4dVPtD6OdyboY7vwHbzBRfKZmdoKPqsJOe4SK/VzTHCpAwN4wkoUcAMtUXgQHqpYyahfNNz/+W87CD974GWrtVbkpa3UaSkUUC5LzqH7iENNWwgRrSCiF4noOSKaH5btR0T3E9HS8HO4Uv/rRLSMiJYQ0elK+YywnWVEdAU18InEtkqMWKmOnIM6IY8Y144rZtsdzWzgNqwx7f1Tzj3JcfmLIUzo5zhVAUmluk2nkskJTutOb1cf/sGjeN0QB+5OsnKCtiiqQGCt1OEpVpo1dSwOGzvE2h5gN2XVf+IMHXyJg1rv8LFD8C/HH+CsZzTtjXIr2PUcZx893to+27bpHYSfarA7k/dzRYhonRpFnQVJHNxiJXWZyDhhXE5uFXFk2LispRhwNaIXWCu9UwgxXQgxM/z7IgAPCiEmA3gw/BtENAXAbABTAcwCcCURyZVzFYALAEwO/82qw7hYRHljmYeeMAW1vBUfZZyasOc/Zh2GsUPTsm5f+NvF+43fWyEdbsq2ya22ZTvNqV1yXqZqWyoxWv6DM9InY+XvS/7pSNz6mXRuBROq5Ryy+CYIAJfcsxiASayk9GdZgXOWxV7nNie4lM7BIlZyQe3GJspKrgHTuILPVZvtQRP/fdZhzLXmvq1cQ3iZqsfgRFS6tZKNY6yEG7WPtZLEPx87Mby+YI/VxXAOkqAE5rPmSxuNRugczgJwffj9egAfUMpvFkJ0CCGWA1gG4DgiGgegXQjxhAh27huUa+oOG4PrawrqY4KqLizfU5sJvv4QifFbFravCa3LkgNIEsfBTAhort7c5XyS+8jT1BHFc8r+sXXOcQft5wx3oYLTOajPw7RZJ3Um5ucnczA8vCQIK8JxDgWPwwUAnDEtDn9is1ZK6xzSdaoRK9nmXdKU1SRn8+qS7cc2Xqv+Jex0d4edc5A5TeR9GCMwU8w5uMShapgWWbdYsId+kb+oS6ylEIuy9mVTVgHgPiJ6moguCMvGCCHWAUD4KQO4jAewSrl2dVg2Pvyul6dARBcQ0Xwimr9xYzoGkfeIYeAcPBW6Pt6q6mL23dwBsAntSXtLhxvEEL6cj2+cIkkc7JxD3I/J9Bfws7qQw5cnrbGMZZHeZ1bC28acOls8nltSjGJGgZILndc5KO1aHoxqRWVT0ProHHwfk4+ILRiPym3xdfTN9IpzedGqLYwHhxGDzYYdnCmryVoJiEOdmHQ6Mr2tTSEtx79HIQ5yHEWy+zlMDtOX6rmxyxURxlYyXtpw1KqQfqsQYi0RjQZwPxHZggRxtyks5elCIa4GcDUAzJw5s6pIbDZTVrXELuP14ByUxeyrQlnw3dMxuC39StS5ddTEYfjThW9J1dHHZRNXqI5Q4y1OX/0i4mBuS31MvjoHM4I60tJEz9UbtaV0Y9rATj5sFB5ZkjxATN2/HRcyHu2qyMYsV1ZGabkV0iKMcs9E3fhsi1/VKdlOy3obppOyD3yJQ1JBz9fTS99/1P5sPd5R0Nw3F03W1Kepfb3slgt40WSBAsV1ucJn9ZN1AGDs0AGRp7d83oUCb8p61IShGD6oH0aHByD1/bQWg0gNQqBbbVlr4hyEEGvDzw0A/gzgOADrQ1ERwk8ZKGc1gInK5RMArA3LJzDlDYHNlJUSm2t1bK2E7yK78iPHRN85wgAkM3YNbC16KU19Qzxf98ljjb/pKSL5PtVJ7S/64NsKPjtKFQwd0Gr0VvbhHDgLoB9+6M2s1ZiPCXPCic/GO1BSdMVZcCXEWJYHkyAONnNibTzS90SFel8jB/fDvG+cyrbV6mmxp64BI+fgLcryqhbBdtjixsxxBfpzV0WVifbCk3+lYjYrlX0OHRCv01isxHMOnWWRGJc0qrj8n4/CkP4tUcKgfVLnQESDiGiI/A7g3QAWALgDwHlhtfMA3B5+vwPAbCJqI6KDECie54Wipx1EdEJopfRx5Zq6wxZ4L2FXnmExclBfvO0F+5zoiCgSJXGZqLi2bGy5OlltegJJX+w6h/i73ULK+JNyfVCps1Txts4xbWDc/Q9p43Mdt3i+KwnbKysQsFpRwLqUw7aNrr8ikrL7kMTfV1xyJiveU5/T8IHxiVVHNRZ7PtyWDb5EJO7P/Bv3nHjOwa8vefLvqgi0tpjuU3K8qmgo7ltXSD/80gYsXrcd25R4UoPCZFZtLUUMG9iKBxYHPk1/esadj6RRqEWsNAbAn8OJ0QLg90KIe4noKQB/IKLzAawEcA4ACCEWEtEfACwCUALweSGEFNJdCOA6AAMA3BP+awhsyX4S5oqWCct5dOpInKxq1F8A8QS3EgcPxSqQ1DnYiJO0QLT7OfhxDiqv9puPz2RrxIus4nD6chNB7v45+T+gn4J9RIb2g8Nzq2JPWa65YoI4mPtRN7osTnAc1Eitvu/TVs9v3vpyDvU7Htt8barpU578S+VKwgJRhWzq6de2KGUh50BpsdKP71sCAFgV5pMA4oNAR6mMYQPiNb5yggGvDgAAE6VJREFU8250F6omDkKIVwGkQlgKITYBYHlWIcTFAC5myucDmFbtWLLAluzHV6H77Mq0m7yOVh9rDvgrVCVRs3MO8XebWKnsSxwsZr/c9b7B/iYxOabVOh2lCtr786d8vU/TfXLvz2QC2c9TlBL1mUH+z92HamBw94vr8GNDCtaks6W/QppDuyry8HxPteqQfPU0WQw2XGgpBMHyXNlhfeKcAcHYSqFDmum9u9a3btAhPeJVTkNatXV0VTBsoHnuNxN5+AwFSRFJbRO2xdNaybefHR0BC2qz1PBVSJdFmv3lIKv5eEgDMJ6s9DYODS00THU6S3bOIcnh8XW452riHJIiQPf7sInPgtzE8fPlxDfqfOCSz0uop3MfvY9d56NyBMZqifs3JYECgNe38wH5TH0+ftEp5j4z7kK2wxkROb2nAXd0WolX39gV5YRevYX313BxYvq7k89OjXMls/JN3X9oIvLBz2ZP9xpnI9D3iIP8wrxPVdRUT+Jgm/y+/chAblI2yUGdpLYF4i1WCie1bYjkyzmEn2PazT4JEXEou3QO7hM1d5o2PRMf5WqivuPk7TKjq8Zb2cYxylquTfE/zzzC2b8v56AHgXQhS+DAWqGKlr7/AV4g4UscVDy7Mp2WFLDPmZZimnOQIqS3HjoyKnv31LFY9L3TceSEoQlDhAnD3SHkG4U+F1tJHoddOocsmbc4tHiKlXzXRZRz1vNEbRM1qHPVJmKoZOQc7GMLfrMp8+XeJoRLjKK0m4FzMHkZ2zge37ajscEt0vB95+ozsCmk5XhcqUSjd+Cpc7DJ7w8yiAZVqLlRbG3VU6wExERy6v7t+OgJB9atXdN7txp1UFohPXRAKyaN6Jfy+xgYHvx8w+A0Gn2Wc3BZK/nIcc9/20HG3+rpIQ3EYT9sp0PfE5ivWOnMI8dh5oHD8fl38sHX9D59N3RzHaUtD0Jj61PfcA4bwzsOAsC7lLzAPv6BVq6mQKwXtm1sxnqe80Y+K9eBRv7c3zNA4vzX+JMyYPZZUKE6helBIk191gPSXNn2PHwdQVWY1tfIwW3Ge5DhN1SUygIzDhxuJPjJiLeZh1k39D3iYNE56Gk4a0FSIV17e3KCWWPseHZULvuJlYYObMVtF74FE5l0jNz1PuIK28aZDFHtRwTNNvbJv7971lRje/sN6hd5Y7vyHQN+4rNqr1fhy71G8YFcxCH8faQhwyGQTKm5c6/ZKs/n8CTDSbxbIb7VtpUF+w8dEPZvXs/jPDL+6TDGUSsWjCI4GX5DRakianaybQb6IHEwe0jf/NSqVJm9LfNvWc0jXZDzy24u6tuWH3HwgXq5VSEabpu+AQF9/RxMC1bfgE9gEsOr+M77p2DEoH4Y6RGnySU/d4Wo9s2HbYuPxY3HRUxkv0MMzpYAMFzRbZgU+L44YL9A9HTyYaMdNf3QbhHfqFi2cScAYMl6PlERAHzwGDZCTwo//NCbo+/TDI5ygDnbXaGQTl5VKlesh5+yI4pts9DniIMNvqymnKR67l4VPpE+s6DiIVYSHqdetS3A3y7chKRvhU3cEnz6yrtdohsXssqxZ00bh6e/dZr1ecgxuTgkaTxwyT8d6ezXpu/w9oHxSOeqwpfD7G+xVvLBlP3bMe+bp+Lc/9/e2QfbVVUH/LfufS+8fJFAEpIQeHkxQCAfQkgIBMOHTIkJSl9RW9KRJBg7GMcWtdPR4AdtZbSRaWlR2omMJoNaS8fRjlERSztFhpo2kMpXDAGCTAVjMWpiEiDhJat/nHPeO7n3nH32ve/ce+7hrd/MnXvevuftu87Z+56199prr7XkzOyTPXjoo2/1Os93Y6lP34/3o09dm57JMe2edlUqgyHL9x06wrY9v+L14+o0m8ZdXD1/0i1hxC1ID+VzqMf3R7P9E7/Dq0ePnTDKqsXXi8eXqJO4RhyRl8PZKa6iEdHIdvONi4fvleWpBKOZg2t9LX7/fbPKpX5fC2bmUZ1ZG/SioG+u2crYUVUOHz3GHdcn73EA/34TKZjM88NO5Ks4hztzADhtfOOh6tMGXVkL7hHje7rqcjkn4WNGjt9Tl6dgV0VI8t+qVIToWf8Hm7bx/L7DVCviVPxZ+S/axchTDs6orH519HRX6xLtuPBROpe86VTn5yf3dHHoyIDTdNPTXeXxW5c7vSeAwc6ax4zGJzpn/DNfzyd3mtNsuY4O5D/kChRcekaw4JyhkZ9LiXR3VeDoMS7srY+DNHiOp6dK1WNGA0ODAt9+/vFrznN+/r5lszhnqnsg0ij3f/iyVOeB4XoQ1hI9C651LK6fsDHWFU4k7NefuW4+qy7qjZUPWSSe3xekaD12XJ2myTQTVbsZecohfE9yqWyV21geffrWa+ey8ftPOxeHIVhEzuL44EMiB+UQ313s4bKbRygOnwXMozk6F0REi+lZm/2ih7AztWf4nmU+O31Czwn5q5Po9vRWOj44MPJr9/Omp9vYIciRnDejqhXvdaQsvrw2OUxLLf0O5RD16az1jkiJdFcqdUE3k9agXPtE4malPkcY/FYz8pSDw12pVW5jYx0LgNEIYnTGTGTF/OmsmD89F3mizpqHuSv+EJ+dYc6CrA11Q8fuRd9suSY6XCebJfrRupMaDR27N8vJCe9p/OiW5OipcaJ2zFL2Q5sa8/WWyhNXu/vKE/3GfcNQXOyYtUf6fbwjnEtwXvLsLWmHNLh3xsfNSj6DvVYxYhekk34frfIgc3mHLJ55CjdfdRa3vzvd9pw3xxp8SLiIj46npkT6BL8NdfGZhzOTnYfcfZPHtixGTVpodfB3x82zq0X7CVzxqCAeDsWv3jwGD43ianffGU/0KHbN3GBo74vrwR+155iEUO9J59WaEru7Komz2NGj0mWLBiFpSb3axQicOQTv7ej2t/XP47tP7HV76FSEP11en0O3lRzPcebgO5o75mHKOsGslIMf+Jyp41NTkjbDudPG8/QvDnp7ePmYxrI2zPkQ7axNyiIYxyeQYpwilINPf1oZS5+aRGSzz1IO37t5mXeok6zF8Eju2pnP6O4qryXMElwm2IFQmaxzbLJtByNPOTgywfkmyPFl9dI+Vi/ty7XOPIhmDr4x7V34juYGTRq+MZNco27PZ1bey3r33nQJP9/vDjgX70Ku/vTZ6+bz2ft2cYojq5kvF5w5kW9+4FIWxtKKJhHd09c9FzzzDmvh9Z0ZyuGJv1ieaYL9k6vOYsO3nmTmJPf6nI/3U2Xwoe+WK82sNLq7esJO8QjX7yZqHZ8Agq1k5CkHx8xhwuhuXtr/qvdCVtlp505MH5NGPJS1y83QV+wr50xhe44zh4ljRjEx42Ee333umjksnzeN5fPcI+BGSMr+Vkv0UH3VYe+O02gSnjxwuYtCtukMYNWSXq6/6Mxcdl5HCjJLab20P4jYWmtCGjOq6lxfSGLDynPprlZYuSC//tEMI27NwRVbKRrdTp9QXCTEdnDn9QtZs3Qmbz7DPdJshKwfj89iaPyzbz+WninWd4a3/vLZXuflyc8PDM0s8g4LMVwiu/lrA+6H1bqEFKvtIimNazPkde993YQjflaTnKenu8qRgeO8UpMgzCXe5HEn8VfvXOAMmd4ORtzMYeX8aZwzdVzijR8c3b7BVWbvpDF8uj+/3EpbbryI2VP8Nt65fmNxM4ZrGl+tCC9sfHumXJVKsAv2aBPhmd+IrJg/jeuemcFHV7jXuG69di63OnYDt4JP98/joWd+2dbv9CHqkr4mtnNq9mhEyu78v/zXE8rXX9H+gUujjDjlMHPS2MQcuwD9C0/n9vt3N7WrcyTz1nOzY+dEi7hTPO/tphsWDUumiG0bruLQkey0rnlzwyW92Se1mZ7uKn97fXHJY1ysWdrHmg5cn4s2u2bNth78syvZ/tNfc3VNkME9LwdxnuLrPO+//E1Oz75OoWOUg4isAO4EqsCXVHVju2X4wBWzWfeWWQ3tfjb8mHf6BDa+cwErHXs14l5A52csrvoyadxJTPIIppc3rus0ykP0EJ/kCJUDget0UvrbWtfWp29bUZrnS0coBxGpAn8PXA28CDwiIltV9SdtlqM0DVdGVi1xj6arFWHZWZN5+Ll9udmeiyKe5csoLzMmjuaLqxexpM8d3iaN2rWKMj1fOsW6vgR4TlWfV9WjwL1Af8EyGQXwDzdcyDfWL3VuNDOMdvK2edOcQTZdXLOgvDPITvkFzgDiyRReBC4uSBajQE7u6eaiJkdpncDX/+jiQbdGw7h09mRe2Ph2fnHgtWGHx283naIcklwB6nbqiMhNwE0Avb2dt+BnGJeaOclIYNqEzl+ArqVTVNmLQDwjyBlAnaO7qt6tqotVdfGUKVPaJpxhGMZIo1OUwyPA2SIyS0RGAauArQXLZBiGMWLpCLOSqg6IyB8DPyBwZd2sqjsLFsswDGPE0hHKAUBV7wPuK1oOwzAMo3PMSoZhGEYHYcrBMAzDqMOUg2EYhlGHKQfDMAyjDtGE5NdlQEQOArsTPuoF/tejignAgZzOy7Mu8LuGvL8zz+vMsw2KuE7rQ607z/pQ677Tt645qpqdoFpVS/kCHk0p/6Xn/9+d13l51uV7DS34zjyvM7c2KOg6rQ8Vf53Wh1p3nYnPztrXG9GstN/zvO/keF6edYHfNeT9nXleZ55tUMR1Wh9q3XnWh1r3nb51eVFms9KjqlqX7DmtvEyU/RpM/uIp+zWY/K3DV7YyzxzubrC8TJT9Gkz+4in7NZj8rcNLttLOHAzDMIzWUeaZg2EYhtEiSqEcRGSziLwsIk/Fys4XkW0i8qSIfEdETg7LR4nIlrD8cRG5MvY/i8Ly50Tk8yKSlEeik+V/UER2i8hj4eu0Nsl/poj8h4jsEpGdIvKhsPxUEXlARJ4N30+J/c8t4X3eLSJvi5W3vQ1ylr8UbSAik8LzD4nIXTV1dXwbZMjf9jZoQv6rRWRHeJ93iMhVsboKeQ41jI9LU9Ev4HLgQuCpWNkjwBXh8TrgtvD4g8CW8Pg0YAdQCf/eDiwlSC70fWBlyeR/EFhcwP2fDlwYHo8HngHmArcDG8LyDcDnwuO5wOPAScAsYA9QLaoNcpa/LG0wFlgGrAfuqqmrDG3gkr/tbdCE/AuB08Pj+cBLRd7/Zl6lmDmo6kPAr2uK5wAPhccPAO8Kj+cC/x7+38sELmWLRWQ6cLKqbtOghb4C/F6rZQ/lGLb8bRAzFVXdq6r/Ex4fBHYRpHbtB+4JT7uHofvZD9yrqkdU9afAc8CSotogL/lbLaeLRq9BVQ+r6sPAa/F6ytIGafIXRRPy/1hVo4RlO4EeETmpyOdQo5RCOaTwFPC74fHvM5RJ7nGgX0S6RGQWsCj8bAZBxrmIF8OyomhU/ogt4VT6U0VMR0Wkj2BU9N/AVFXdC8GPh2CmA8k5wWfQAW0wTPkjytAGaZSlDbIorA2akP9dwI9V9QgdcP99KbNyWAd8UER2EEzzjoblmwlu+KPA3wE/AgbwzFPdRhqVH+A9qroAuCx8rW6nwCIyDvgm8GFV/a3r1IQydZS3hRzkh/K0QWoVCWWd2AYuCmuDRuUXkXnA54D3R0UJp3Wky2hplYOqPq2qy1V1EfBPBHZhVHVAVT+iqheoaj8wEXiW4IF7RqyKxDzV7aIJ+VHVl8L3g8DXaaOpQ0S6CX4U/6iq3wqL/y+cJkfmipfD8rSc4IW1QU7yl6kN0ihLG6RSVBs0Kr+InAH8C7BGVfeExR31HHJRWuUQeSiISAX4JLAp/HuMiIwNj68GBlT1J+GU76CIXBJOQ9cA3y5G+sblD81Mk8PybuAdBKapdsgqwJeBXap6R+yjrcDa8HgtQ/dzK7AqtLHOAs4GthfVBnnJX7I2SKREbZBWTyFt0Kj8IjIR+B5wi6r+Z3Rypz2HnBS1Et7Ii2BkvRd4nUDzvg/4EIHHwDPARoY29PURRGvdBfwbMDNWz2KCjrQHuCv6nzLIT+C9sQN4gmCB605CD5o2yL+MYOr7BPBY+LoGmESweP5s+H5q7H8+Ed7n3cS8MYpog7zkL2EbvEDgCHEo7HdzS9YGdfIX1QaNyk8w4DscO/cx4LSi7n8zL9shbRiGYdRRWrOSYRiG0TpMORiGYRh1mHIwDMMw6jDlYBiGYdRhysEwDMOow5SDYbQAEVkvImsaOL9PYlF7DaNouooWwDDeaIhIl6puKloOwxgOphwMI4EwuNr9BMHVFhJsVlwDnAfcAYwD9gE3qupeEXmQIA7WW4CtIjIeOKSqfy0iFxDsgB9DsPFpnar+RkQWEcTSegV4uH1XZxjZmFnJMNKZA9ytqm8GfkuQa+MLwLs1iIm1GfhM7PyJqnqFqv5NTT1fAT4W1vMk8Odh+RbgZlVd2sqLMIxmsJmDYaTzMx2Ki/M14OMEiVseCKNEVwnCokT8c20FIjKBQGn8MCy6B/hGQvlXgZX5X4JhNIcpB8NIpza2zEFgp2Okf7iBuiWhfsPoGMysZBjp9IpIpAj+EPgvYEpUJiLdYbz+VFT1APAbEbksLFoN/FBV9wMHRGRZWP6e/MU3jOaxmYNhpLMLWCsiXySIuvkF4AfA50OzUBdBQqadGfWsBTaJyBjgeeC9Yfl7gc0i8kpYr2F0DBaV1TASCL2Vvquq8wsWxTAKwcxKhmEYRh02czAMwzDqsJmDYRiGUYcpB8MwDKMOUw6GYRhGHaYcDMMwjDpMORiGYRh1mHIwDMMw6vh/7DcshKTfPNMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Do some statistics" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1990,sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_september_week[:-1],\n", " first_september_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " #assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 221186\n", "2021 376290\n", "2002 516689\n", "2018 542312\n", "2017 551041\n", "1991 553090\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ " yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }