diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..fa90b4a5f9c004f2452760739d867315b686fe65 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -1,5 +1,1173 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek\n", + "import os\n", + "import urllib.request" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020187824851563102FRFrance
120201772720658001FRFrance
22020167758781438102FRFrance
3202015719186753161315FRFrance
42020147387922275531639FRFrance
5202013773265236941611814FRFrance
62020127812357901045612816FRFrance
7202011710198756812828151119FRFrance
820201079011669111331141018FRFrance
92020097136311054416718211626FRFrance
10202008710424770813140161220FRFrance
1120200778959657411344141018FRFrance
1220200679264692511603141018FRFrance
1320200578505631410696131016FRFrance
142020047799158311015112915FRFrance
1520200375968410078369612FRFrance
16202002765344530853810713FRFrance
1720200179835701912651151119FRFrance
182019527794152461063612816FRFrance
1920195175823367579719612FRFrance
20201950764244276857210713FRFrance
21201949766214540870210713FRFrance
2220194875542338377018511FRFrance
232019477753650581001411715FRFrance
242019467263813163960426FRFrance
2520194574492261563697410FRFrance
2620194475728362778299612FRFrance
2720194374834275169177410FRFrance
28201942762793989856910713FRFrance
292019417413020306230639FRFrance
.................................
15051991267176081130423912312042FRFrance
15061991257161691070021638281838FRFrance
15071991247161711007122271281739FRFrance
1508199123711947767116223211329FRFrance
1509199122715452995320951271737FRFrance
1510199121714903897520831261636FRFrance
15111991207190531274225364342345FRFrance
15121991197167391124622232291939FRFrance
15131991187213851388228888382551FRFrance
1514199117713462887718047241632FRFrance
15151991167148571006819646261834FRFrance
1516199115713975978118169251832FRFrance
1517199114712265768416846221430FRFrance
151819911379567604113093171123FRFrance
1519199112710864733114397191325FRFrance
15201991117155741118419964271935FRFrance
15211991107166431137221914292038FRFrance
1522199109713741878018702241533FRFrance
1523199108713289881317765231531FRFrance
1524199107712337807716597221529FRFrance
1525199106710877701314741191226FRFrance
1526199105710442654414340181125FRFrance
15271991047791345631126314820FRFrance
15281991037153871048420290271836FRFrance
15291991027162771104621508292038FRFrance
15301991017155651027120859271836FRFrance
15311990527193751329525455342345FRFrance
15321990517190801380724353342543FRFrance
1533199050711079666015498201228FRFrance
15341990497114302610205FRFrance
\n", + "

1535 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202018 7 824 85 1563 1 0 \n", + "1 202017 7 272 0 658 0 0 \n", + "2 202016 7 758 78 1438 1 0 \n", + "3 202015 7 1918 675 3161 3 1 \n", + "4 202014 7 3879 2227 5531 6 3 \n", + "5 202013 7 7326 5236 9416 11 8 \n", + "6 202012 7 8123 5790 10456 12 8 \n", + "7 202011 7 10198 7568 12828 15 11 \n", + "8 202010 7 9011 6691 11331 14 10 \n", + "9 202009 7 13631 10544 16718 21 16 \n", + "10 202008 7 10424 7708 13140 16 12 \n", + "11 202007 7 8959 6574 11344 14 10 \n", + "12 202006 7 9264 6925 11603 14 10 \n", + "13 202005 7 8505 6314 10696 13 10 \n", + "14 202004 7 7991 5831 10151 12 9 \n", + "15 202003 7 5968 4100 7836 9 6 \n", + "16 202002 7 6534 4530 8538 10 7 \n", + "17 202001 7 9835 7019 12651 15 11 \n", + "18 201952 7 7941 5246 10636 12 8 \n", + "19 201951 7 5823 3675 7971 9 6 \n", + "20 201950 7 6424 4276 8572 10 7 \n", + "21 201949 7 6621 4540 8702 10 7 \n", + "22 201948 7 5542 3383 7701 8 5 \n", + "23 201947 7 7536 5058 10014 11 7 \n", + "24 201946 7 2638 1316 3960 4 2 \n", + "25 201945 7 4492 2615 6369 7 4 \n", + "26 201944 7 5728 3627 7829 9 6 \n", + "27 201943 7 4834 2751 6917 7 4 \n", + "28 201942 7 6279 3989 8569 10 7 \n", + "29 201941 7 4130 2030 6230 6 3 \n", + "... ... ... ... ... ... ... ... \n", + "1505 199126 7 17608 11304 23912 31 20 \n", + "1506 199125 7 16169 10700 21638 28 18 \n", + "1507 199124 7 16171 10071 22271 28 17 \n", + "1508 199123 7 11947 7671 16223 21 13 \n", + "1509 199122 7 15452 9953 20951 27 17 \n", + "1510 199121 7 14903 8975 20831 26 16 \n", + "1511 199120 7 19053 12742 25364 34 23 \n", + "1512 199119 7 16739 11246 22232 29 19 \n", + "1513 199118 7 21385 13882 28888 38 25 \n", + "1514 199117 7 13462 8877 18047 24 16 \n", + "1515 199116 7 14857 10068 19646 26 18 \n", + "1516 199115 7 13975 9781 18169 25 18 \n", + "1517 199114 7 12265 7684 16846 22 14 \n", + "1518 199113 7 9567 6041 13093 17 11 \n", + "1519 199112 7 10864 7331 14397 19 13 \n", + "1520 199111 7 15574 11184 19964 27 19 \n", + "1521 199110 7 16643 11372 21914 29 20 \n", + "1522 199109 7 13741 8780 18702 24 15 \n", + "1523 199108 7 13289 8813 17765 23 15 \n", + "1524 199107 7 12337 8077 16597 22 15 \n", + "1525 199106 7 10877 7013 14741 19 12 \n", + "1526 199105 7 10442 6544 14340 18 11 \n", + "1527 199104 7 7913 4563 11263 14 8 \n", + "1528 199103 7 15387 10484 20290 27 18 \n", + "1529 199102 7 16277 11046 21508 29 20 \n", + "1530 199101 7 15565 10271 20859 27 18 \n", + "1531 199052 7 19375 13295 25455 34 23 \n", + "1532 199051 7 19080 13807 24353 34 25 \n", + "1533 199050 7 11079 6660 15498 20 12 \n", + "1534 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 2 FR France \n", + "1 1 FR France \n", + "2 2 FR France \n", + "3 5 FR France \n", + "4 9 FR France \n", + "5 14 FR France \n", + "6 16 FR France \n", + "7 19 FR France \n", + "8 18 FR France \n", + "9 26 FR France \n", + "10 20 FR France \n", + "11 18 FR France \n", + "12 18 FR France \n", + "13 16 FR France \n", + "14 15 FR France \n", + "15 12 FR France \n", + "16 13 FR France \n", + "17 19 FR France \n", + "18 16 FR France \n", + "19 12 FR France \n", + "20 13 FR France \n", + "21 13 FR France \n", + "22 11 FR France \n", + "23 15 FR France \n", + "24 6 FR France \n", + "25 10 FR France \n", + "26 12 FR France \n", + "27 10 FR France \n", + "28 13 FR France \n", + "29 9 FR France \n", + "... ... ... ... \n", + "1505 42 FR France \n", + "1506 38 FR France \n", + "1507 39 FR France \n", + "1508 29 FR France \n", + "1509 37 FR France \n", + "1510 36 FR France \n", + "1511 45 FR France \n", + "1512 39 FR France \n", + "1513 51 FR France \n", + "1514 32 FR France \n", + "1515 34 FR France \n", + "1516 32 FR France \n", + "1517 30 FR France \n", + "1518 23 FR France \n", + "1519 25 FR France \n", + "1520 35 FR France \n", + "1521 38 FR France \n", + "1522 33 FR France \n", + "1523 31 FR France \n", + "1524 29 FR France \n", + "1525 26 FR France \n", + "1526 25 FR France \n", + "1527 20 FR France \n", + "1528 36 FR France \n", + "1529 38 FR France \n", + "1530 36 FR France \n", + "1531 45 FR France \n", + "1532 43 FR France \n", + "1533 28 FR France \n", + "1534 5 FR France \n", + "\n", + "[1535 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data = pd.read_csv(data_url, skiprows=1)\n", + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "raw_data['period'] = [convert_week(yw) for yw in raw_data['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_data = raw_data.set_index('period').sort_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4HUWZP/55z7n3Zt83s0GAhCUESSBGlEXZJIAO4IAGFxgHhxkGHbffKIiKfpEZYFQQR1AUh0UQEFEQZA8YlpAQtmwQEkhCNpJA9uXe3HtO/f7oru7q6reWPufcLac/z3Ofe06d6qrq7qp6691JCIEcOXLkyJFDRaGzB5AjR44cOboecuKQI0eOHDlSyIlDjhw5cuRIIScOOXLkyJEjhZw45MiRI0eOFHLikCNHjhw5UsiJQ44cOXLkSCEnDjly5MiRI4WcOOTIkSNHjhQaOnsAlWLo0KFi3LhxnT2MHDly5OhWeOmll94TQgxz1eu2xGHcuHGYN29eZw8jR44cOboViGilT71crJQjR44cOVLIiUOOHDly5EghJw45cuTIkSOFnDjkyJEjR44UcuKQI0eOHDlSyIlDjhw5cuRIIScOOXLkyJEjhZw45KgbPDR/Hbbs2tPZw8iRo1sgJw456gJrt+zGxXe+jH+/4+XOHkqOHN0COXHIURdoaSsDANZs2d3JI8mRo3sgJw456gLU2QPIkaObIScOOXLkyJEjBSdxIKKeRDSXiF4jokVE9KOw/IdEtIaIXg3/TlOuuZSIlhHREiI6RSk/kogWhL9dT0QUlvcgorvD8jlENK72t5ojR44cOXzhwzm0ADhBCHE4gMkAphPRUeFv1wohJod/fwMAIpoIYAaAQwFMB3ADERXD+jcCuBDAhPBvelh+AYDNQojxAK4FcHX1t5YjR44cOSqFkziIADvCr43hn7BccgaAu4QQLUKI5QCWAZhGRCMB9BdCzBZCCAC3AThTuebW8PO9AE6UXEWOHDly5Oh4eOkciKhIRK8C2ADgcSHEnPCnrxDRfCL6HRENCstGA1ilXL46LBsdftbLE9cIIdoAbAUwhBnHhUQ0j4jmbdy40esGc+TIkSNHdngRByFESQgxGcAYBFzAJAQiogMQiJrWAfhpWJ078QtLue0afRw3CSGmCiGmDhvmTGSUI0cKwsbzGrBmy268uGJT7QeTI0cXRiZrJSHEFgBPA5guhFgfEo0ygN8AmBZWWw1grHLZGABrw/IxTHniGiJqADAAQL4ac9QM1Qgpj7vmKZzzq9m1G0yOHN0APtZKw4hoYPi5F4CTALwR6hAkzgKwMPz8AIAZoQXSfggUz3OFEOsAbCeio0J9wnkA7leuOT/8fDaAmaFeIkeOTkepnE/FHPUHnxzSIwHcGlocFQDcI4R4kIhuJ6LJCMQ/KwD8KwAIIRYR0T0AFgNoA3CxEKIUtnURgFsA9ALwcPgHADcDuJ2IliHgGGbU4N5y5MiRI0eFcBIHIcR8AFOY8i9arrkSwJVM+TwAk5jyZgDnuMaSI0eOHDk6BrmHdI66xFf/8ArumLOys4eRI0eXRU4cctQl/vraWlz254Xuijly1Cly4pCjriCs/ps5cuSQyIlDjhw5cuRIIScOOeoC3cUwWgiBy+9fiJdWbu7soeSoc+TEIUddoJvQBpQFcOvslTjnV8939lBy1Dly4pCjLpD7VObIkQ05cchRF+gupCEnYjm6CnLikKMuIPfcrr73dvHh5agj5MQhR50g33Zz5MiCnDjkqAt0dY5BoruMM8fej5w4dDO8/M5m7Ghp6+xhdDt0lz03d9LL0VWQE4duhB0tbfj0Dc/jot+/1NlD6XboLify7jLOHHs/cuLQjdDaVgYALFiztZNH0v2Qn8hz5MiGnDjkqAvkJ/IcObIhJw456gLdxpS1i49vb4UQAve8uAprt+zu7KF0GeTEIUddoLuIleQ4qZqk1zkyY8X7u/DtP83HN+95tbOH0mWQE4ccdYFanMg70ns595TuWLSVAn3eyvd3dfJIug6cxIGIehLRXCJ6jYgWEdGPwvLBRPQ4ES0N/w9SrrmUiJYR0RIiOkUpP5KIFoS/XU/h8YiIehDR3WH5HCIaV/tbzZGjOpQ7YL/uTJrwm1lvY9wlD6G5teSuvJdBPvacJsfw4RxaAJwghDgcwGQA04noKACXAHhSCDEBwJPhdxDRRAAzABwKYDqAG4ioGLZ1I4ALAUwI/6aH5RcA2CyEGA/gWgBX1+Deao6/LViHVZvyk0V3RHfhHDpzb/r1rLcBANt2t3biKDoHkU6qm4gfOwJO4iAC7Ai/NoZ/AsAZAG4Ny28FcGb4+QwAdwkhWoQQywEsAzCNiEYC6C+EmC2CVXabdo1s614AJ1IXFLr++x0v47Trn+m0/vNpWzlqseg74vlLAtSp07/Lrbz2h5wfOecQw0vnQERFInoVwAYAjwsh5gAYIYRYBwDh/+Fh9dEAVimXrw7LRoef9fLENUKINgBbAQyp5IbaG9ubO887OZdDV47acA7Vt+HfV2e86/qdXzHnkEPCizgIIUpCiMkAxiDgAiZZqnPnDmEpt12TbJjoQiKaR0TzNm7c6Br2Xod84laOWjy7jhA5dOY7lhsk1SPrECI/f8XIZK0khNgC4GkEuoL1oagI4f8NYbXVAMYql40BsDYsH8OUJ64hogYAAwBsYvq/SQgxVQgxddiwYVmGvlegXibu2i27Uaqx9rcWJ/GOeP7RBt0OYqUFq7diybvbnfW6nkC3/RG/2zpZZB7wsVYaRkQDw8+9AJwE4A0ADwA4P6x2PoD7w88PAJgRWiDth0DxPDcUPW0noqNCfcJ52jWyrbMBzBRdWIbyg/sXYvPOPR3ebz0oy97d2oyPXjUT1zz6hvc181dvwWd+PRstbWYrm27z5NpxoJ/632dxynWzOqPrLo9c55CGD+cwEsBTRDQfwIsIdA4PArgKwMlEtBTAyeF3CCEWAbgHwGIAjwC4WAghV+1FAH6LQEn9FoCHw/KbAQwhomUAvonQ8qmr4rbZK3HVw/6blwvLNmzHVh8LkTqYuO/taAEAzHrzPe9rvveXhZi7fBPeWGc+FderzmFPWxkvvP1+pj7rkHHIdQ4MGlwVhBDzAUxhyt8HcKLhmisBXMmUzwOQ0lcIIZoBnOMx3i6D1nK5Zm2d9LNZmDC8Lx7/5ses9eph4hZCmUbtGcegvTVVhEfoGJ1Dbfu46uE38LvnluPBrx7j0XeOHDFyD+lKUeOVtHTDDmedch2c7KqRd9teSXfhHGqtc1i6IeCm3s8gBq1HIhHH3qrHu+eREwdP6JOm3AmTqJ7mba3vtRbNdcQ7r3UPlIET6y7BCdsDkc6hk8fRlZATB0/oC6YzrdD35gksD8y1Fq/UhHOovokOh+Q/fO5fEhD57Bes3oorHlxcV6fpOrpVJ3Li4Al9znTGJKqHRSpt7LPcqo8ApvuYsta2k4InsV21aRf2hMHnZNV/vPF53PzscrS01U6/1lWRi5XScCqkc/DIxUrtg5hzqC1q0l5HEIcatycV/Db7iZ0tbTj2mqdSY5BzvFAHjg/1wJVnRc45eEI/URQLHb9gFobpQWvtINaVEItBuqJYqQN0DjXuQu7rtsOMHoVVVi1rYqa9GdF82/tv1Rs5cfCEPmcaix3/6C6642UAnRvfqb1RDedgIyg1CbzXIZxDbTuJFNIVjGEvPoOkkHMOaeTEwRP6xtBY3PtZ7c5B15UrdceNoxJOLGV80R1vPCPq4R6zIicOntBPdA2F/NG1B6oRb9t8A2oSeK9jWIeaIuLEMrRbn/ukDJ9Rn3fPId/hPKHPmYacc2hX1FysJPzqWdt3/P61u17BCT99OlG2bMP2SFdUiz6yolCJWKkON8hc5ZBGThwqRGfoHOoB7RU+Q+X8fvX3tytqw2Whdv+ra/H2xp2JspN+Nguf/MWz3n3EYbP9sGzDDvzfc8vZ3x5ZuA4PL3wXALAjg56qHsVKEvV0ry7kpqwVIucb2geRjLzG7aoWXlc/UmHQxI4MvOdZ78xfPocdLW04/yPjUNAs6O56Mc659e0/za/h6PY+xArpnDpI5MdfT3QFD+l6gv6875r7jlk846GoaCv5v7H3drTg1VVbAAQ+ANGYvFuoHFk3px0tZo6gUv+E9Fzf+2d7PYcOMSEnDp7QF0g9ymU7AqYT3CX3LcgkntHRliGK7pm/fA5n/vI5AMC3741P3B0ZeA8IREY/fGARyh42pVyNSrnbXa1tiT7rYarHoUNySOTEwRP1LIdtD+zeU8IVDy7Grj38ybfWz7ctg9H+6s27wzEILFobcysdmSaUAHz51hdxy/MrsHLTLvd1zAPzjeyqXzn9umdw7RNvel27t0CkPuTIiYMnUrGVOmUUew/+7/nluPnZ5bhpVlI5HJ3gKnjAtkuyiJUkWksCW5QkTB2a7AdJQuFTX0c1ZsG/mLnM2vbeBvXdPvn6ejy71D/Z1N6KXCFdIXLOoTrIzVoPBdJej7W1lD14XHNbCS2t8XUdonMQlYlzuLom2lAui5Ty2ndMeyvikN0CF9w6DwCw4qrTO3NInY6cc/CEvkDqQUnXnjDtN+21D2URK0k0t5ZQSmzWHRdbqVQWEUHz4QC4+Wi6rjOCRnYX5I8mhpM4ENFYInqKiF4nokVE9LWw/IdEtIaIXg3/TlOuuZSIlhHREiI6RSk/kogWhL9dT6FQlIh6ENHdYfkcIhpX+1utDimxUj6JagLTvpdlI/Y5A7dl4BxkaJSW1nKnKmbXbW0GEIcxt4Ebm8laqZTxRmp1282tJbzx7rYatVZjhDeZE84YPpxDG4BvCSEOAXAUgIuJaGL427VCiMnh398AIPxtBoBDAUwHcAMRFcP6NwK4EMCE8G96WH4BgM1CiPEArgVwdfW3Vlvkc6ajkD3om0/VLJyDdHBsaSslNovOmgOV6g5MxCHrfdTqvr9973xMv+4ZbM6QsrSjkAfeS8NJHIQQ64QQL4eftwN4HcBoyyVnALhLCNEihFgOYBmAaUQ0EkB/IcRsERwLbwNwpnLNreHnewGcSL6mFh2FlLVSPo2qgUks125ipQwK6aaGYFk0t5YTRKorh+xmrzOsoM4K+T5vxSYAwE6DhRoA/PSxJbj8/oUdNaQI+XJOI5POIRT3TAEwJyz6ChHNJ6LfEdGgsGw0gFXKZavDstHhZ708cY0Qog3AVgBDsoytvZHyc6hVu/U+K02n2wxP2Eus5OMrIATunPMO9oSZz0x5DtoTlRIg7joT56CLTpz3VaP7jvNZm+v8YuYy3Dp7ZW06zIBIIV3ny1GFN3Egor4A/gTg60KIbQhERAcAmAxgHYCfyqrM5cJSbrtGH8OFRDSPiOZt3LjRd+g1QXv5OXT3yXj/q2uw5N3tNWtPPo5aH259ZMlzl2/Cd/+8ALv2BEShuTWpp+gYa6XaXWcimj9+8PWkLsVxZ/VgfNHd12F7wIs4EFEjAsJwhxDiPgAQQqwXQpSEEGUAvwEwLay+GsBY5fIxANaG5WOY8sQ1RNQAYACATfo4hBA3CSGmCiGmDhs2zO8O2wn1sGB88LW7XsUp183KfF1HWyv5YJfGKdz38urE987i8nwIG1fDZK1697xVWLjWP1JsrZAlfPhts1dg665WZ71aIV/NafhYKxGAmwG8LoT4mVI+Uql2FgApKHwAwIzQAmk/BIrnuUKIdQC2E9FRYZvnAbhfueb88PPZAGaKLiZvaS9rpS51kxbMeft9nHvTC9iyq32VidWw97ZrKplO972yJtlG5hayg+vDZ+jc/dliKyWqO9qv1VyPw4e7G/zB/Yvwgwc6RvfwwwcW4Xt/WdAhfXUn+DjBHQ3giwAWENGrYdl3AZxLRJMRTK0VAP4VAIQQi4joHgCLEVg6XSyEkEeyiwDcAqAXgIfDPyAgPrcT0TIEHMOM6m4rO1pLZTyxeD2mT/oAG3Yg7edQX/jJY0vw4orNeHP9DkzbbzCA6k7SbnOD2j7hmuSQ7gidA9NJpZyDb3ClDlI5ZE48tHtPyV2pBrjl+RUd0k93g5M4CCGeBT/N/ma55koAVzLl8wBMYsqbAZzjGkt74jfPvI1rHlmCGz5/BE47bGTq93bjHLoWg+SEOt6Wtuxex3E79vJaPxaf5jy8CaofSAU9+OhfeJ2D+Y46wxYwazj2vj3dZ9dFa7di4sj+3nGkcvgj95AOIeWbK9/ng5ylF19tNoruQhrkRqOO10QcZr25Ee+GDlzudpOoJCOXlwdxN+Ec+H59qEO6yDdChqv5Wh1g5Abu62jWp8lOHJ5d+h5Ov/5Z/P6FjrduqgfkxCFE/16NAICtu3klWDpkd7sPqUtCve+WNp7tP+93cysOr91eiv5atNtZ1kqmfhNxmDKEz0i377JWqg0izsGzQRdxW7kpyLq3eF0X9bru5siJQ4im0CtWDbPw19fWYtwlD2EVEzK5M0xZJ47sDwDYd0jv2nSeBeFCVU990h+giUmZ+t6OFmtzTjl3rdOE1qC5jgmt4K9zcImbKk32016Ih+P3HF21ipITqVy6mcOCnDiEkAtQjVb5l9BaZcm729Me0p0gEDpwRF8AwKRRAzq8b/lU1I1KLsqse9CC1Vvx2KJ32Wtl87X2c6hFcx2d7EfCtPmVHHGfbHL4hOd3B1kr+TjBZYEkflljReXwQx6yO4RcLNx6EmgfhfSSd7cnvHBdoZRL0cbZsYvh9hdWYs7ywO2klMF5yoRP/W/lGd0qRg2eWcd4SHNlJs5BfRdp2Ih2qewfitznPb/yzmY0FAo4bIz74OJL+F3PW66VPFhe+yAnDiHkBFMtPOTiam4tYcO2pJikFtNRdx7bUyqjZ6FoqB2PsaPXwn//7fXos7CcOFdt2oUxg3plalu3qImtlWosVvIZi4MF6izHR9OjSAYFZHQOljbVWFO1eNZn3fA8AHsOhAIjmqwGsr2cNrQPcrGSBm5/+OofXkmddttjQu5xhJWO89x23mpIcg4xlry7Hcde8xR+rWV2qxSV3aH5qu5ircSKlQwdm96FhE3nkEkUUyuxErKd9G3zvK1UxqpNQTpXWyDBVZt24fifPI312/ys53LEyIlDCLnxepv/Vbli/u32l1Jlexx+A1IS0NEnJbU/02lVKu3nvP1+prZnLtmQ7Es+1wz36Hplm3fuwROvr880rs4CN6+MnEPZXscuVrLrK5Jjqg3keHQdyuadezI7vF33xNIoz7WN2Px+zkosf28n7nt5jbFODh45cQgh10rytGVZXVWumEdChawKJ3GIOIfOQzKEdQCieOFnTdX82qotie+V+Dm4MOWKx/GGR3BA9W1P2Wdg6veuxjnMWhoHn8x6WKkkM16toN/PlCsexz8weij9tr/75wUYd8lDAICX39lsbE9Fj4ZATGsyu7ahuzmo1ho5cQgR6Rw8TW+qmTZ6KGgJN3EI++5ozkG5W1Pym/hUWN3g5NXCwKF0FIpcCJVOIsumR/rVP7wSf8k4tFIGKm56/Dta2rCjxZybQYfNCW7phh3pfrXvd855J/rcT/Getpmy9ghzc1z3xFL8/Iml3mMNxpmp+l6HnDiEiKyVPOtXs2Ftb+YXlEsWG//esbPWJFZSxyEXfq0SySR6qZF1SxZwVmOdxTn4vO+sQ1P1W26xEl9h0uWPYtLlj3r3+XrorFYLhXS/no3RZ1t7PRtjAw8phvJFZyVF6irIiUMIEXEOnvWr6MvEObjmolwEnTlnTbJq+diqtTmPlO6dvC45zqEjTCa5jbjy2EpmqDL+juaIamHKqr4f23uR+cArQb2byObEIYScB75epfe/utZdyQDzpHNxDmGtTpy0bHgHoTo41UispDyLzrjbIsc5dEC/vBOcu+dtza2Z5OrNGerWerr5n8h963mGJs8I0zr95VPLsPy9nZU33E2QE4cQcjPytVaqqi+T9YmLve8khbTan8l8kpjfq+pTVXx3AjHsLLESB59H+olrZ+Hzv5njrhhCzXJXrbXS39/MlpWxFidybw6/ir64ubx55x78z6NL8IXf+j9rH6zatMsoUegs1D1xeH3dNoz/7t+wenNgM60qpNsrNI1puvrqHDp8kzLoHFiFdJVj46yVOup21ffdwJ4SOoc6cGKfv76W5lznrdyc+G4zrlA3omrv6vzfzU2VbWtuxYPzee66FvNXvTXbOq2mK07RLdvbtcdfEe/uR+DYa57CV+58uWZt1gJ1TxzunPMO2soCjy0K7OA7IliZiQi4Fk3k51Dj8WRB4kSPWE+T1cHJ0kPiX2eBmwedpZDmyhasqS7Npxpu3XW6ruT0/c27X8NX7nwFb21MWyH5cpf2bj2tCqt4Zzb92eZdrfjpY0tqwtXKFp58Y4O1Xkej7olDfOLNppCuBj7hEGy/d6SYZd6KTQnLlpKDc1AXfiVyWd/NUUV7JHrhGIeOeOp/0vJWA+l50VYq46YqPdGzzKFKptuaLQEnzjm3eXtIW6qpr9wmCq7mnXFETH1uv5i5DBu326MP+6CrKr5z4hD+z2rtUQ1MC9PJOXhOoh0tbbj8/oUYd8lDuI/ZbFSseG+n1Tv17F/NTnxfuj4+CXLEYdHaOLa+b8IfDkmFdMcvngbGyqUj1jCXslLv964XV1XdT5ID7Fi8v8MvD7ntvSddVW0K6crvjltvKW6iBptEThy6KCL7/MhMtCPMFQ3lTuIg/9sr/uTRJbh1dpAd65559o3k4z95GhfePs/esYK/LVgXfd6yK17ktgWaBZG1UkIhXZOmnVDvgRcrtd9Adu1pw3PL3mN/09/39/6ysOr+TLqjWsFmGv6tP75WdfuVMotZDCa4uu2ROyLSs3UxGuEkDkQ0loieIqLXiWgREX0tLB9MRI8T0dLw/yDlmkuJaBkRLSGiU5TyI4loQfjb9RTuzETUg4juDsvnENG42t+qHR2p7K1erGRvX1WW+ZyqnlnKb0oc3t3WjLtfDDxVP6dYbFSTiSw5JtleBddWcI0JjUwCI1v7ruRGLtz6/Ep83mAB0x5zMovhQHutibZSGZt2mrkIq1iJiZ7s08afX/GPscQRB51zqIV1XlcjChI+nEMbgG8JIQ4BcBSAi4loIoBLADwphJgA4MnwO8LfZgA4FMB0ADcQkXRTvBHAhQAmhH/Tw/ILAGwWQowHcC2Aq2twb5nAipXaSa5kzuzlIg7Bf9dkUm30sywcX9z6fDpnL3eiquTxxU5wnbtiuOx2tiF94+5Xq+pv3dbdxt/aQ6yWfL6d86wv+/NCHHHF48bfbaN6eGE6NhkHfTM3cWccuPWo+5y0ZQ0m5tlPV4CTOAgh1gkhXg4/bwfwOoDRAM4AcGtY7VYAZ4afzwBwlxCiRQixHMAyANOIaCSA/kKI2SKYmbdp18i27gVwIrWHlpFBOhNZ+7LbtnZd3fmG7C54muNWent6mwSq+QRPbF2eTVc7BPW+ejRyxMHcwTZD7nGJVkc4dpuVXDL6am2ec5bnWw1xsnGuJlNXH6icmm2Ou+KV2Z4nK1bS6rveqw+6LXFQEYp7pgCYA2CEEGIdEBAQAMPDaqMBqILu1WHZ6PCzXp64RgjRBmArgCFM/xcS0TwimrdxYzbHG+M9GZLNtCdMi8218H3FSgnOoZ2UdTq4CV4Jfed0Di7ERgW1ux81Jo+ErXU11g8Hzi/BF+qzXfF+Op95RW1mEIdU81izTAHf9/ezx5Yk+7DM8WVaQD99w7c9Bu43/fpaiJW6aggnb+JARH0B/AnA14UQ22xVmTJhKbddkywQ4iYhxFQhxNRhw4a5huwFffKqL6rdnOCMOgf7dSVPP4eO5hwERM3Ecqwpq2Ok7bG2OCc4X9NKDm5zXMu1yucsXrS2NrnQ6x0N/fCgPyPTM7t+5jLvPvSQIll0BqxYKcU51ODpdWfiQESNCAjDHUKI+8Li9aGoCOF/6cGxGsBY5fIxANaG5WOY8sQ1RNQAYACATVlvphLo66dW8t0dLW0Yd8lDuOW55anfjGIlF3vvqa3lvXuz9+cLIWrHGmdJdpO+tnbgxAVViVccr8QmVlJP1LUQYwCaqbDhtq4449CwbgXtV3CRfonv8+biYEnoe7/OMdnmLauQLrvrZEW3FSuFsv+bAbwuhPiZ8tMDAM4PP58P4H6lfEZogbQfAsXz3FD0tJ2IjgrbPE+7RrZ1NoCZoh01kp/99Wxc/2QQ2z2tc/BvxzZE6Rzzf5zdumHS+1oruerZFovPOAD7vaVOeEh63Eq0R/huDjZflUrB3Y+dc7A/c5fnve1X9TG6ZOi+SPo58Dcm40tVsxTlbfu0sbvC2EKcZZmE3m1arJT8fv25U4x1ubLWGti2qmOQYc27Anw4h6MBfBHACUT0avh3GoCrAJxMREsBnBx+hxBiEYB7ACwG8AiAi4UQ8q1fBOC3CJTUbwF4OCy/GcAQIloG4JsILZ/aA0IIzFm+CT97nI/tnmUZ2Pa+OO0oF/rZ1J69d5m9K8sYTZvWm+u34y8Gs755KzZhv0v/hpdW8sxbatEI4N/vSMeFqSjxTxUb/DWPvlH5xRoOGz0gVWYbmoscEwHTr5uFj/73k8bfTVDnhRowrxr4nFZr5bsS9Oeu8z+PaO/Pcy7YwnLrREm/b30uq1ZqPmKlWuscTv35M9jQRfJdN7gqCCGehXnun2i45koAVzLl8wBMYsqbAZzjGkstoGeuSm2eysvnFsc3Tjowkbu2yNRpbi1hSZiWklWmVGiuJCei6xSmTljTi/vEtbOM1z8e5lues9xPsmc6eVaSipK7wldR/8o7W6z1AOBfjt0Pv3kmLeoDks9q9MBemceh1tPn1d+XbLSmKrWLleLPWQK+2Y0R+M/JMYW/e/eotInsm+g6zaPet1+7WMkxdzRaKzPHAZ6cQw3EfPqz2tHSFln3dCbqzkNanwz6tHLN4YNH9lPqxpXbSuXopPyNu1/FRfIknSFGj6tvaVPtWjTVKtV3hJnq+vbgzw6+SrlqE/9IZLnfcZc8ZA0hfdnpE/06zRhbSX3O3G3f53K+8uQcKhW96Hjh7fejz0biEImVKu/HFpBRv+U92kZby6B2pl71calhU3zCZ9iG+PnfvoBbGbFyaoxaG+f/XzrKbWeg7ohD6pTLWN6/rhKTAAAgAElEQVTYUCTCJaceHNRVqo6/7GGcdcNzAJILL0sYBtcpJ+YcrNUS91CJYGBni4s4+LVTiViJtVZy3a9WgQshnRXsqVsbx+OL1+NDVz6RsoipZEvzPeXvssTByoKlG3Zg5fv2wIjqKTor9He21eEHAgAtFYrMspij6svRttlzTIE+p20c0XPL3sflDywyDy4aY7KNVZvMDpEdifojDinaYDan407dhULMbusT47XVQRhltZSN7lmZVAltIdvjPElXKQeVcm3O1h/wt67wFSslHA+Vu5u3YhNmvrHeeX2tOBQX9Pv+0V8XYeP2FmzY1pKYRZWceO2RReP2akUcgDiXuelAFIvGqn++qze7/TOyZLJLwjw+/V2kJAUWBTW38W/XxNI+a8ElUuv2fg57C1zvwfV7gSjiBoxhMBIy/9orpF1HaRl0D6gunLXpSt+9z5dIqRue2vbZv5qNf75lnvOltEcwNO6x+VorrdpsP/ntaGnDaT9/JmGZYlVIK/dX+QZqhum+amEFJue0jyI9JVby7cPStGvsNs6BW48rtDD0PsThxqftfhmdHSrGhPojDvpJIqMpa7FA0UbglfidtdvnL9TLN2xrxhFXPI431weKzFIo27f1q8eXr8bexKwbSf/SxIggfE9EXJjq5Dj8FNImcGNzwccr09TtY4vscX9mv/U+Fq/bhp88Gnv62sRK7R1B1YRqnEDlMG9+djn+9fZ5+NXf33Jeo4uV/P1bLJyD9psu5k0b3gnlN7dC2udgooaxZ8fYNWlDHRIH7XvKCU5VMjO7W8A5JOvqJ2T1G7dBmuaCPkkeXbwem3buiZRasSmreTZ96MonEt/bw8ubY5N9ncbaHNYdlawTJ3Gw2MEnoDwrjuNS58Y981ZFCW20S9GriRfHSXDPwDdhjX6A+NLR44zXud69dx5mv2os7n1pNR5dtJ6P/Kv1v3RDOmucD6w6B91pTTdt1dduQufgITLy2NkH9raHVum2TnB7G9zK3Bj8IlbFSkFZ2soi/sytP9NkeGoJnyZQ1o50Dpnmkr9CPLqiglAQXBm3tnYyMnNV8cmNzSkacCxie2Rak7w9XSa72bRzD75973xjfZOuRqKZEw15ekjrw/3wfqkQZCyW//dpxt9M5piSmzE9/wG97JtetfCd5rb5oa81l0JZ/erj5+AjOnU5peY6hy6ClP11Subo4hziU56vxzIzCBa/f+GdxHd9SkWcQ4buuD1n2267rXxW66Bq6yWIA/O76/k6u6lw8U0eOzDxXW4kF2sOf0TJ/L99muzuQ5z83ddDWr8VT2d4EBGOnTCU/e1b9/DJd1yHBNt7qYkZag3mmf6Lvt51BX9SIc31lfzus7G76uScQ1eB/nIzspVJnYNg66mTlVVsZhlvOKZyOQ5ul+V6Csf308eWRIlVNu7w88A07Q2+Jx12zjNlvR2b6bsOj1EXa2/7NcnlKQELkRZHSc5trZZ7QYhkOy4xApeW1eYEt2VXbAaasrazXKf/cvsFH2brvc3k+r78U7E/iH6gEkLg9y+sjKydONRiu/NpY+zgXo73a+cUtjUnTWxd699FbLh+XXu/LU1vZ6LuiIP+nnTuIClWYjiHgiJWCk8WTDSJCLy1kt/SUde9GsMl66ls1tKN+MXMZfjeXxbg2aXv4ccPvZ7peh2+4/fKwQtgcN+m+AvT9A8dtuLVnLxMVxIhtbtKZz+XGMs1HE6sZDulX/3IG5GfgM1pq5b40tH7Ga2V5q3cXJNUpS48NH+ds06BKFMcMP3d6f4XalvcvNKLTH0n+zGP74nF6/HJXzxr/L0z4QyfsbfBJTNUf25jTBEKRNGClLJatY3v/WVBMnxFRpNIDjtb2rCzpcKgZA2FiMi1tJbxhZv5VJRZUA3nwD1Tk5+DrZ3EeBwWI/bNQ4DnkSglsimFHemHhrVbkpyEi1hlFSsBwPbmVgzo1Zh6Or4ReCuBiWBlCRve3iC4nODsnIN+L8JSN/jd3l5U7sE5bN3dil/MXMr/2AVQf5yDfpLQCn6nhNhmxUpEkcJR2pyrbfz+hXfYiJ6JMXiOVXIdD7y2FsdcPTO+PgNxaSoWos3R3zrFdTIWeHuj27KET7PI1EtkOuPGk72fLNdzIEpzfZJz0E/+n73phUz9cZtrQdnk+/dswEmHjEj8XoxN5JLlNrFSjehG+rQcf77gmP0MF9Wmbxsu+vgBAedgqZMK2e2YK+WMnIOJOKhz+tVV6Zhfb67fjsN/9FjkONsVUX/EQfn8sf95KqUEVsEppIliBao8AdomHCcTrkQMoirOslyvR6w0hUTIEgq6LARO+OnfnfW4UXJipZWbYu9Z1vQ3w4Jmx2H52Xal/uqk9ZrrWbk5B/vJe/Sg3vjuaQcnyqQoU2jjKrQj5yD5GdthYXCfJtx+wTTvFj87dSz69ayNwOLYCUMBcijGte9p/WDyd/VnH1NWU9fqmN54dzueeiNpifhOjTL6tSfqjzgoL22l4wV9ZP+0mWCxkOYcbGINdukaJtTUfQclrzWs+yykpcHTxv/4nzydKjP17xummNvUS4we54oHF0ef2dOaox+b68SC1VutwepMi5vAEIfwvp2cYZXEAUjnKFC98lXltW/uDg6ukNw+nEdDgdDfkSJVRbFINeMqIrNyG/FX3sUHxwyAPv0k4bv5/Kl48lsfS5jnsjmktbJv/2l+qg6QPgR96ZYXE99dRgtdAXVIHPzrcknmiwVCT41zsFnL8NZKBgsHz3Et27DDW+7bVCwkwvCZ+lizJR3ywXRbvs+QzcHrPOWnf3eF4rZtxjL8uPFa9eloTnB6s7VSSO9mdA5J6xZh3PSFSB44XEmEagHb/TQUC5nGUFTEQD5X2d5tsUChzsFPId2rsRjpjYCAE7z8/sDYYfzwvjhgWF8cN2EovjM9HVgzas9jzIDb/6ESr/2ORtcfYSeCmxwFip2c5AZtmwisM5Xh4OkKEqaCMyOcvzq9iaoKSyJ4ze44zDL/u69Yi6tWcmiPKzE8ag87cWLG4hp7PB7775xzpd6XrmiWREyKlV687CQ8+53j2/UEaoytpXxuKlImc+1iwW5dlGrHUjXwOUoTcRXq3GgsFhJr77onlmJbuI7knCcinDllFAD+IOM79O4abE9F3RGHLPsIV7VAFJ3q5ATIujnVYl5wVir/8L/PsX1l3TvjjcigbPPmHBixkmN/rWTRcAvRNymOUaxE8f3f8PkjAPgnk/fVkaibqn4Lujgw8nERwUY2rF8PjBnUGwcM68v2sXbLbj5kRQb4BG1sKBYyKb6LBbsCWYdtbRUoIEy+nENB61vGLAOS70Iq+X2slUyohEPuaqg/4pBhapaFSLF/ckIGbQWwnRKy+DnopZfct8A6Nh+o9VwsuI6v3PkKW+77DFmFtOFZLVobWG1UwgVwTUrz0mqELqMGBNngRg3shQL561rcHrHpMvWZCpG2QoqIA0RqMz74A/2g45O/eNaaeU7CJ8+CVayk+P34oEDZDiu2ZykPab6mrE3FJNeSWBuMkt/HWsmEJxbzoXDivv3a6Uw4iQMR/Y6INhDRQqXsh0S0RsspLX+7lIiWEdESIjpFKT+SiBaEv11P4bGEiHoQ0d1h+RwiGlfbW0zC9nJTqSFFenNpaigoMWck52BuM4ufQ5ZF45vDQK322OL1FaXu1DFl7CB3JRgU0ob+n14SZG+rhDjsO6R35mtcIBCuOHMSfj5jMiaPHRiaTPqOja8nmb3XGNNG9bYFBArayoy4OeEXSVh6w7vAGSJIRE5wlvtuauB1DuaYVVmeo5tzaCgSW0em6RUCOHniCCz60SmBWEmpq64FlUuycw5ulMoC3/2z+WAXjKvrUwcfzuEWANOZ8muFEJPDv78BABFNBDADwKHhNTcQkYxCdiOACwFMCP9kmxcA2CyEGA/gWgBXV3gvXrC9ErkghRB4askG/HrW2ynLlJEDeir1gv/vbjWHd5jP2DEvXsvbNvtMF5mdzXduBZOwNhPxgGF90LupiENG9vfsO13WHol5pu03mClNb1hzL0unPLeJlfr0aMAZk0cDCDYif3EaXz64Tw8AwAYtrDqQfENCpBXNsVhJpBNUVfF+bUTEhyHo09SQSeeg6nJ8xFZ2nQOhoVBIBQ58aP46nHLdLDy8YB0EBBoKhD49GlLv0JRrvVAwEwduQE8sTho9zFvB515XnSX3Cs5BCDELgF+meeAMAHcJIVqEEMsBLAMwjYhGAugvhJgtgt3qNgBnKtfcGn6+F8CJ5DNrKoSNYke25AK4e+4qtg4RpRS2Lq9jXf49f43B8cVj4zx6fGBem0XEUcv9OJAZZxdpSZjG7UqgVAsM79czVeabUtUl2060qWzkKqxWxUrd1lIZvZuKuPj4A6Iy2bcv51BL2Nrv3aPoHfwPAJDRktXKORQCazzdY/2Nd4P8CW+u34Gy+ry0d6jORc48mI/Kmh7Hl2+bl/huEtV9RzF73Vs4BxO+QkTzQ7GTlDOMBqDuqqvDstHhZ708cY0Qog3AVgB+cYgrgM8rEUguwMX/75TE75GzqvcmmfzeVhKYss9AXHnWpMxja2oohm36b9DPv/W+u6I6DkPTBSLWisfcd7rMTBzCayrI6saNx9sb3MI5qHBZxaiQ7+bmZ5cnym3ezGrTza1lEBH+85TYES7WOTA5SPyGlYJvvgdb+wHn4E8dyEEdfj5jcuK7bZ4XQ7GSzjnEnEnIaYXj030iTGFuYrFSuk+fNb/NEJBQdZ7cKzgHA24EcACAyQDWAfhpWM7NEm4+y3LbNSkQ0YVENI+I5m3cuDHbiGXDHi8lmFDxdz1qqPzN9wXrjl9lEbC6k0YNyDw26fGcZYO+/YWVfpUdIApYbv8TtD/nED/TrrlqChSbLO8/rI+1rryDJzQfC9smqt42m+8hhO4EF1zbPs/M5SQHBImNeJ2DoU2yb7Cpe7ONjwLz1NZU8MzguzzIyBYLGuegG2tEYyikf5eY+YZ739muRHr91OGjos8qEdtrOQchxHohREkIUQbwGwDSf341gLFK1TEA1oblY5jyxDVE1ABgAAxiLCHETUKIqUKIqcOGDatk6LBNN1Jq2BaGXOS+L7hVOw6Xw9NMeiG425PhL3zFSrXSN0hQhr65x2Pa/CMlf6UDS7UX/nfsb8LwWX//qrx6okPnIueFrq/SlczJccS9cyGcVbGSPjW5Z+Yj6smmt+K/NxR8SEiMpM6B+V2/NwsnWSoHh6XWNp5z+Onjb2Jbc1u0znSdQ1aF9M6WtkTebxPUfCnjFVNj1RR6r+UcQh2CxFkApCXTAwBmhBZI+yFQPM8VQqwDsJ2Ijgr1CecBuF+55vzw89kAZop2JKt+nAOwcUegNORiEZFSzwdctqkCVSY7ljkGvMVKFYhpTCAEuSy8OQdm2zJZS0UijA4+UflmglN1Dq4RRpufVm4VK4l4Q+dMU9Vh+mzGDQZKNPvSE+I2XXfCiJXe2rgDd78YS44bCtk8pB3RLpgcz+baraUy1mxpxuJ12/DSyvg8qV7x3o6W6LnqptyJZ6qashqIg68xRYvC+amm8AnOoSMiE1YJZwQsIvoDgI8DGEpEqwFcDuDjRDQZwXtYAeBfAUAIsYiI7gGwGEAbgIuFEPJJXYTA8qkXgIfDPwC4GcDtRLQMAccwoxY3ZoKdTQ0mxZ1zVmLu8mCySW/oB796TKSoyqo81TfEclmgoSHtPOQnVuKJg2mTq6WYhghV2/ubvMnls398sT3cBYdaERTTZgGEDlSq4N8C+cz1jc4WJE8gUIT+8cKjWMc22aUqQ5fg8o40FAlcDpmRA2JzbddjUw00JE697plEWtxCgW/HtPm5+Az9Ednmb6ksopP8PS+uxpH7Dmavkc+LC4kSj0sZQ8EtGZh96Qn4wf2L2Pmqvnc18KW6D3QHzsFJHIQQ5zLFN1vqXwngSqZ8HoBJTHkzgHNc46gVbAtCvsbnFAVur5A4TBod6wf0RTN+eF8ssyRH18MllEUQO6eSuDjyJKJPLmPo4BpOwmCRkdNXoqEQ1GFNWU3EIfz/xOt25yFfeOecMJTbxErukOZhG4xS23YNgaINLv17zLXoGygXWNAnIJ+LOMQcclxRz5feUChkNk/2sRiUsL3HPj2K0VzbqVoEateoOgdT33q/TcUC9mhEVxVxjRzQy5hLQ50fKueg7gNdVbemIveQdqBXUzpZvK48db3oFOcgQpNYD9mxDhPnYExXWGP21YdzsHmY6kpatd1KwY3GP/+w2o5t09Lk/hbE4TGSN2W3VhJWeZF85GWGc5AxvlSC4HPwuO+V1dbf1TDhxjoFftg9G9LrBnCLlfRotDtaeMufW770IYwf3i+KLfWgkjVOn3cygKbNV0V/XP17NaRSiKa5db4ttQ9VvKfqHPZahXR3hvWdULqOFCslqmmyWNd71tl+IUQUNEwvl1i6ng99INnUlB7DGMzPPK4zJ48y/8iAENy7iXP4xMQgQY0tO9ldL/L+IwAfkE6Hrqxtbi0ZxBrhf6eCgC9O6xwUzsHRpvxZfwzW3At22hC1Kph6LWGU157KKdWHc9js8KKODkGWw4BJ5zC0bw++TZh1MkA67enlhhSxHz9oOIDAUdEFuYYLBbdBhET/Xo3YuitJHPQDmDG6skoclPtJWis5h53Cc8ves0ooao2cOCjgJmsvJmy3bq3k5hx0sZL7ZPfC27xvQiwPTZabOAfb2D4woJfxNw5EwSLSN4vDQpGbvCdJHPR6Ty2xi4yWeWSXe/6tOJjckne34+DvP4KHFqRzDVfEtqs6B+0nVSThkykvuEYXTSXrqURWwG5ZlfBz0OodPjZ4/qoIowpGLG6DUUjrKFI6nSoAc0Ifx7zXFenrLdEHZP8A0E8hEvqrjw94Zg9p/YH169GQ4lp8OQd1fqgHJZfO4XunH8I3GOLzv52Dk372d2udWqL+iENGMQvHOegZG53EgfFzKFAy6csnJo5ITDZTBFA52VKWFIbTnW1oYwfzxMF0SRCCIN3XRw4IfBblum8o8nqR5Rt3Gsfi+1ZUMZ8M1seFgJD02M04GE6SjL7AJVY6/qBhid/TxCH5Xbd755S1HzswbDOqB+g72c3/9CEcmUoUVTl5GDkg8CSPIwGYn2KxSN59/eXio1k9hoqmhmRbzqYZArZeC08i9YbB0olrqs8/ReAoHT1WH7KJoVLrqRxcq0PnsO8Qu/9MR6P+iIONc2Bm4tX/+MF0PSV8hhACqzalE+Wo4DgHIsLOlpg46IHd9GskigVe52Bi/Wup+BozqBeIKEUcUiabkrvRlpdN0qEP/9NTRrP1VIdE261F9+24/6TOQYVNIc1Dzh/TpqGLlZIyaH4j/OyHxoZtSsIkUs+xf89GTBrVP9Gvl58DU3b3hUfhiW9+LNmG5REWGd1ZMN50Wa/GomKyzLencw6+me5UYvPX19YmfouJQ5JzUDdrfe0T0gQsfQAzHcjichNx4IjjyRNH4Dh5GOgCOom6Iw42cNNw7OB0xE81fMZf56dFGjp2tCTl5HKBq562gat/XMfEOUgRZspayaSQruEc69EQLO4ntXy4+oMrGjZJm8y9X4+GxMnZVNemz1Ch37fpBGp6PDs1kULCz8G0+SvzAkgTZn3oSbt3fv7FJ+34P+88RsZNKQuG9usRyfFdxE724xuVVYolAfNz13UOvhZ9tmneM1JIJ99JwgmOGauOLArppmIBL1x6YmJOt2mHAQ5H7DPQ+ntHou6Ig99Dd1RSNuj3mAibOma9mXS5L5WDEAgj+vfE4D5NGNi7MWXFYRIT9Q9z3NaCc8jm2xoEjrOtVflb5OCn9b3NkjtAJwY2yx4f+DqsqVCHO7hPU+K3ZGwlI+8Q9h18c3FY+mbBca6xfkv2zIuf9NhPlaYPVYmvTwyxgDiky7krVMdPzl8DYHJnO4icTjw59GqKiZ26TtTnrz8vZvqmjD5MXQoROM9+YEDPxHrx8XPwsRDrKLhV/XsZaiFmKSi8sc8avPnZ5fj+JycmxiAn/dzvBmGkv3bXq4nTlrqxPP6N4zB2cG+8uX47doRBvXRiUAvOoVwW1sVYJGI3pji/RfidZG7fZL2fPPamuW/9lG0YRyVJjoIx8jCx7zrH6GPKqnt5p7kXs85h6YbtrNmmbjZt4hz0U7Fa56ARaY9rE9RNMu47+L+nLS3qLBB/yODfU1zTyDmkDgmOAXugd6in0rlzVXTLWafpRNHX8VRNyGQa/qX3zWfLC8r7LtbErKBy1B/nYPnN97Alq7msjowKX+W6hmIhUOCSeWwTRvRDz8YiPjhmYLTB6MRAP6XKEAxZiKEeC0hHwXBK1B+BFDVkUf77hrdWb9PWelazUxd0ncOE4WkvZrmxCQH86aXVeOmdzdY2B/WOuRNTSk/10Ta3lvDHl1ZjF+P6HARE5Pu5598+wpbf/+raVJkq1tGt8q57Ik3ciQjEvCtuLEnOgR9rinMgwurNu7B68y7+ghC2uabqHNRah40ewF8AnnNIm7KGdbX5r3KBpu1Bj9z64mUnhfUl99n5vEP9EYcacg569Nbx2oYxbkgfTNlnYGT9ISGtlVT4nhGKygaUaFPb1//r04dh4sj+VnmxDmk9pYYEOHdaHEexoRBYpujybPktOi1RtuQ4QHozMYmVskaE3bJ7Tzgm9xO2bTBJnYNgrdjUPADf+uNrTmfBSaPdSZNUsZI0b+byBajjA5Kc5YBQFOkD9d3qIhs1WY0KX51DkGJXik34Z6MThxH9e+KYq5/CMVc/xdb30Yv0VKyV1GekGjekxErk5hSMpqzKvuBryTWsX4+oX1vbHYn6Iw6W33xl8Cq7rb58aeWhYtSAXilHHSPH4TEhVLZTRepUE05QEzH81OGjUqea5rZSauNJJEQpBJYpKVm61k5DIGvIdPpJ6VAsC8+vveD/7194JxijoZ7vEFWFrwB/ImwwEO6oDa2uD/FU5f6cWCeuR5rIpLLdJWEUoG3kphZZnQNTWX1mQiCVhwFIK6Snjqs8Ja2EFCup5siAWQwXfE/HYdKHa5rf6vrOqvvh4ll1FuqPODAPXVoITBzll/4yPv3YT/x72sqpTXLLrj14Z9Ou1OIlxq7a1re+Qb+hhRLeurs1YqPVk+NnpsaR0z84JslWN7eWUztA0jwyTT7HDemd0jk0FgvBhuFxQ5KrKgvdkoTfCF173renHxTW8+QwlEHaLiko8moh+PduMjOWGKQouYsFv+RB6kHEZoFky1WQBVx2NJP3/bEThgZj9NQ5FDSzV+nZLTG0bxMaNVNWvZkzJo/CX79yTKptGzGMfGMoOX9M+Rzkd71F/Z4ODHU5I/snJQOB0QDfrgumw19noO6IA7djnTVlNF763kmY4mlGpioebSeD5tZSMDmU9q5+5A0AwKML3022Cb9TsUmsdNEdL2vtUbRhqENUCcWho3TiUErNZjU/c5HSDk8XHLt/1L40v20oBopr1wTfd0hv3PKlaeH9iER9kymvFJe0tJXw3LK0nF7Kl9OROQ2DUKpdcOuLxrEmnODCBodoFk0uM9v/OTv2mSl6Jk2KCa99rhWIEtyj6fnZcPAH+mFI3/iedGW4DukDxDLBRu4pnr96EL9igVKcg973UfsPwWHKoUYXfXFI6BwSojdlXIxYSd8q9APZ10+aAAA4QBMnq6lJsxqNmSI+d4bfQ90RB+4ZFwsFDOnbw5vKq6yf7eXvbi2llGDytKSLgXRTVommBl1BF/x3ybM/ftCwKB6QmonOZo3UrEX37NVYxDlHjsEph46IrrXpSuRpP4i3Ez/r5tYSXmSSrp9+2EgMD2Wt5bJILFaTCEXe9hUPLsafX1mT+t20WfiIDG0bajK2UnAylJuDRLFoVyYOVBTQ3qa6kVjJbVIqREw8feJU6Xjk68clZP6k9A2kn6kkhhzRYjmHAiltpn9vKBRSOge9mSZrIm4evZpinYPanjrG9LxOG1ToY+nXsxFH7DMwUV4qC9w55x28t0PqujIPNxyb/XtHoP6IA1MWnVY836SsxSmWVQzv1zOt2Arrc5usWk2eFB78apKF1k8Wr6/bltrUAURRX4UQCUKkL+S53z0R//u5KQACayXdkYqIIvbZbMoaQG7ojUVKbKYHf/8RnPOr2anrkvcDzLgprvPeDt5/RI7PFIBMEr8rHlzM/p5qz6tWOtwzUXrBFpVDgwvFoh/noB5EbPu93FRl1sHBfZvMlT2hci07WtrwgOZ5XIiIQ/paVueAeK5s3pVWqhcLlMh/AKSJSA8m1pkLSQ9pk84hzTmkjD6Ym9JNXh9d9G7qdw6f/OBItrygU+QQ/pkfa4f6Iw4c50DmSc5BdVQxnUhv/PwR+MW5U1iTOLUNCX2StZUFGovxxqxfVxbA+ztacOrPn8ElfzLZTAenSVUeq59Yh/fvGSWAaW4tsSEY5MTknOCIEBVKBWNjsRByQsLJDkszyLIQ2KmYaL67jQ+45lojcjG+8a4W1dbwbn259YQpa6hz0DeL2Fopfb1u+qpvVAN7N+IAJjd1zAkJKzHRY27ZzDR9IcX/QgDXhOJQrk9uA+Q4gwLF3tQcZ3j42IGptvRnqXMOPuc5yX2rBxaubb1d/WfOl0hf3/+uiXfVdT5uSOw7Y9IfSeLYUkoe+DpDB1GHxIFjd4P/2a2VzE5wpx42EoP6NKU2AdmHnn5Un2SlsmAnkJr8XCZ5kVnrUnVDrkW3ONIRRVHVNiBZVy6KQoEPsrZ1V8BCS5PBhmIhIkzO3A8GGevg3vzJ15VYpsngNWVWOfgtuoQTHAQbYyqyVmLa7K3lBdFFHIN6N2HiqPSGrh4kbYRWzpXWksCWXXuwcI0717ELagwxzkHPxjlwr50ovh9O7PXjM1O5wFLzokej/hzdazYiYuF3n2jKBEo9by4Kgb6+0+3EUM2fTctCRkDY0WyPCNsRqD/iYPnNwNGZ6wngyr+97qic3AT69ggmyJADoL8AACAASURBVL8cu7+1XltZsHmAi8pmKn83bZiEYAMrWTgHIGmVok7CPqEduFwURcZaiUA4MHS4O3xMoNBvKlIkTrNt5iJxP8nfbvzCkbj9gmm4+PgDEuVuJXd8+l64Zmv0+YJj9rNe54Kez4HjCKXOwW8d66dYwXoDqwpcG52VYqW2Uhln/vI5vLMpcBp75OvH+gyGhWpGa+O4uQMDL4KJiZiujAZi8Y8Kl87hV184EkDsJ8BBjk8V0bWWyilrKX2s+h1wY9bXrY4jlGi5Jn2HChnqXHeS65JiJSL6HRFtIKKFStlgInqciJaG/wcpv11KRMuIaAkRnaKUH0lEC8LfrqfwjRFRDyK6OyyfQ0TjanuLSXDvRJb56o5UWewWTXY697ITMfNbH4u+6yebhmIBPRsL+OqJSWWmvu2aOAfVlFXSjvXbYvn8mZNHYdZ/Hh/WTU8qTp+nckLqgrnjyx8GAFx43AE48eDhmPGhfcDlrf/ctH3wzLePx8XHj8dxBw7DZadPjDgHkxkk17eKYf164NgJwzBqYNLL3CWmGjMorn/hbfPiz8ftz1XPIFaK+5aGCDrh23dwH/MYtXmgh48uG6yR4vDwMVfHOc9JvVlbWWDF+7E38cEf8DPP5qCa0XL3ZDOt5XUOsViJU/6rty+TBen96jqHcUP7JBw1bVDNRI+5eiZmG3KmSOj3wInCCPbDZF/Fx0mdL6Z53K+ngXPIbl9QNXw4h1sATNfKLgHwpBBiAoAnw+8gookAZgA4NLzmBiKSx4EbAVwIYEL4J9u8AMBmIcR4ANcCuLrSm/EBx/LLDdTXskDP56BieL+e2F9JEK/Lpne3lhITJqqnKTzbymXWNNJkyirx4f2HYJ9QtlkgQivjT5G+n/j0/t0/L4jKxw0NNrth/Xrg5n/6EAb0buQV0kQYO7g3ejUVcds/T8N+Q/tE9+0SA7mcflI5hR2LRD19qvdqzHdhby4xjoRYiTHVlT4krEhF/07JeymXDcpLZYOW7V732SmpanKuVOr8xkENn8E1aycOnAgmFkWpDnAy1IvE4984LuJ49H51cawcpw+RLyg6IfVAxYHzOzISNM9HroqlTPNYckZ7NJ1D1jzdtYCTOAghZgHQhdpnALg1/HwrgDOV8ruEEC1CiOUAlgGYRkQjAfQXQswWway5TbtGtnUvgBOJXSU1AvOMI+LgrXMwKx7TdZMb34ZtLehhyK+rj4nVOagnbaZ/dcN66Z3NeG3VlsTvPDcS/BdCGGP86P3r16bbDBaXW+cQjtsUhbZnMvSDS6ykynVVLkcV0b1w6YnWNjgUiOIEQgIABf4xoxXOxkbo/uHwICXrDZ8/AqccOiIVe4rL0wAoXKqi3Ofqyfv7ORP/SMdVnz7MWSfoW46N3//sObGZ9oiia1qVU/jvv/xh3PrP0yLR2IQR/SIfkpTOgSEOuiWZCS6/jURdIPUiec7BP4aYj5OifAZ72pK/tzlyQbQHKtU5jBBCrAOA8P/wsHw0ADVJ8OqwbHT4WS9PXCOEaAOwFcCQCsflBPdYI6qclXPwmBTqJvDAa2vxxOvrsYaJUaMfQNpKguUc5AZUKvOnOXXecJPZpnPwE5X7EtBgErsmcoEhtOqGe+IhwxP1Zb2UNRKAV75/csIvRL3XAb1jIvMBJdaV70JTTZJD2oCRA3rhuUtOSNQJxphsc8mPp+NLR48DAJx22Ej8+otTQ84qeV82sVJLazlql6sngybeM2916jcdEzyjtKrhM0x+CxxmvrEe81cH+p67LjwqKldTiqry+6F9e0QZ7yRMBzDdDwKAl8OlrAf4iRJ1ncPOljZsbw5EyP+hiIQLBX/RZClBHOLy6Yd+IPos568eWkQNiukKkFkr1Fohzc0WYSm3XZNunOhCIppHRPM2btzIVXGCe5HliHPwQzRxlTf82/OmGurGE+GZN81j1jmMUllECk4Vag5pbkGom53ckLjrE2VZT1SW72qbNmulgz/QD184al92Q71G8STWA9xFAfUYO/lBfZoSBEFubj0ttvGyWx8iJgSwbMN2zF2+iaWRZCCyQZIkStXVFZScPkduKH96eXXEuXDEYeUmcwrW9Diz1SuX3c9HNdX9yaMB9zK0bxOO2j8+5xUKqljJ86Sv9WsioLKWPf5U8N/nUKd3fejlj+KS+wKRq8zOF9RT08fa21VFSWrdC47dL/osxUoqcVi8dhsuf2BR3E4X5xzWh6IihP9larDVAFTt0BgAa8PyMUx54hoiagAwAGkxFgBACHGTEGKqEGLqsGHDuCpOcBND7l+xVYO7nYZCMlwBlzEubBVCANc+/mY6g1qiVtrPgbNWinwPBD/FVX1HP0a3Ie2oVbqTRUyWxRfEpnN45OvHYfTAXglnPYmjxw81tusao0r8smxErvVWKASL8qSfzQJgF0GuM0QvVaHfsx7EUWLy2MACbN8hvaNNgdvcz//IOABJW3pj384aAVSO0vV8Tj0scOoSIraO0/NaB57zoW7Ew4Obi+xrMtIolwVeWrkJB37vYWt7QHIOHTthKFZcdTrbpomINGle5LKWa256iZUa0jqZz940GzOVvaOS0CiVoFLi8ACA88PP5wO4XymfEVog7YdA8Tw3FD1tJ6KjQn3Cedo1sq2zAcwU7ShU41qWCjE57Xxsp4sFSqYZNFwirVJ+/uRSbNq5RylLguUcOIW0YsrKyenVjZXjEk6dNBL/9NFxieRDqkWMC2wMGq4eQiWqBwecJbx3WQhj6GhuDICfGaCrhm7Pzp3yJf74klu0o4dVMekcpH6qqViMxUpMxVEDe+GkQ4anIgBzyKrSK4u0KevPZ0xOfI99ZZJhVFQUCrG1HGsWqo8TZkfDRL1w7bzwNu/vo9aD1qZprTNMSwTdYkrWMwWLlChrhwG1L4lI52BJKdpRZq0+pqx/ADAbwEFEtJqILgBwFYCTiWgpgJPD7xBCLAJwD4DFAB4BcLEQQqrdLwLwWwRK6rcASBJ/M4AhRLQMwDcRWj61F9TH2q9nA+ZediI+HLK+cp745N9tKFAyZpFRMct4ebIWF/HYbnz6Lby2egurc8h2yk9f36OxgB/+w6EY0rdHqp46eb918oGGNt39ynEK4WdloUcUtaEsBL7DeITrcY4AoLfHRim7dfWve9dWe3zhoqjadA4lxWLIPNeCMfZpshs8eHMOsRwmtZl//KCkLkiumbZyOTo06eso0DkEZdub0051qf4ZiyH+GZHRSfCGzx8RfY7Efsqt2NatEMCGbc248em3Er/1UfJAqFZNpk37/ouPBhBYSK0PPf/dCul4kHrdSuJmVQLn6hFCnGv4iTX5EEJcCeBKpnwegJQLpBCiGcA5rnHUCkI7NQzvFysnsxCHgsY5mJacHgkSMFl5xDJoGbn1UCaEuGrdo0+ac44ck/hu4zz0MQZtxmWmvS+LF7kwcDfpuuRtqicEvzGfOikdq2b/oX1S1lo65DN0EQfdImY3E88qC7hQDtzGJ5MrlcqxQtpkJSTHePT4oXhMSdikw2d+A/GMLguREGscue+gVAIhdQ7J3MyplJ8FiojC9/6yEC4Qc2jghm47XHz0gCGJekBStGyWEgSb/lfufAVztaCRqYRIYd8m4nB4KBoEAkOKEf17JuawOgRO55AiDl2Fc9jboD5WLhIjkIFzSMS+5+tJ8YoKfhPQR2fY3JVQF/p6mDFtH6ZN376Tk9C0V/pKJORpjlswl512SOJ70dNOXR9jog1mJvuIya6fuTSsa6+ni752KuEkrvnHD+L3F3zY2ZeKtM7BHIolIA5p3Rg/RuEUO/gShyxWbPL5l4TAhBGB3uujmu6IiDJZ2ugJjIJ+DDoHZj1w7QHJ9WiyuJLvR2YSNLcJJ+egomeDPeeH1Amqpr5dVqy010GdGAb5uU845WKhkDjtmhasmkEs6peb4AgtkNRQFw4PaX2C6Sc1lgW3eEirzZmUcXqTJk5CnvrUZ3T2kWMw97IT8S+at3KBzH4OOkzVuHv10ds9+No6AD7EIbmg31wfR4X9zIfG4pgJZiU6B12mLQycAxDMx1I5jphr2tslAXOdLP2JQ/A/lRvD0DcQzEsZ9O9sjZMFwIYIMYGYecGuHTK/P5FY78F/W6juqM3wv2sjloQJANZu4YNFqmhqKOD5t97D82+p3tnxIIJIyEnOQb83LoNee6DuiEOCpfQVoDPIonPQpxevSwjqqZupy0Nab5eT8aaut4iVfLKi+YqV4vAZCrHTxHhq3SwKaV+OqOShDZey9Kw6h2qhO8GVyubw7w2ScyiL6Fp+jMF9uBSj3qkro83UXTVSSJcF2srCmHchi6FNJp0Dsx6AZFmsr3OLlSTB0e/95vOTJusqkX9zfdr3RkdDoYDP/WZOoqx/z6QOo7FYSCik9bmZcw7tBPU56xulKUIoh5S1kukEjTRrzHEZcQRMO+egnn4eXrCOHX/cDz/udJtpdtv0BFKch1WcJjTuylDXIjPWYRIVcffVbAmspiOrzqFaBKfiZP+mjaoQ6RzkWGz6LWDbbruy15WxTkKuj5J2UrXNq7ayQFupbOROfDlE2U/KWoldO6H1HvN+9BwcAPBHxVHQKFYKTct1Qqs6UMo2ZRe6T46KD4W5sHXd2h1f/nDKKbGpWLDqHLq6KWu3BZevQCKWvbvbaShS4mRqE8OkFNKGpx4ocOPvnGlexL4LgZ88lgyVkOIcLGKpZJvB/8QkNGyE2RTSyQ3QRByaW8u45fkVXu2a3g3X9q49bosYCdcrd4VmNkG1ltHb0zk100bVUCDsKZVx14vvAECUA0OH3EzfNyRKkvAVK8nw2Lql0kcPSIvQ4rhFIvTR4fvQN8eFPzqFrQfw5qScWJTjMPo0FXHCwcMxWEnlKteOml7W9CS4+Qtw4Tvivm3z4+LjxwNIn/o5n57GImnEIfl7R3EOblu/vQzJk4R20mZO7yYUC5Sg4KZLVIVVdK1BKSw8+rbF79GJjq/4gDOPNY0irXPgITe/5ETma/vYvEuYng/nMLh7j9mi6KAR/bBEEQMIxxCyiL4k/uPECTjtMD7jF6CHzxDmZ1kg/GFuHJXGxTlIi6DjDuQdRX2Jg1Se6hzY105Mmw1HXEYYIl7PBS1R1k7yXBBKiUKB0dcZDje6QvqCY/fHNzVz7NifJy6zzXOBtO+CHhdNPfzZNm3VkMSFRo1z0JFlvVSDuuMc1Fdz/MF6PJewjqeMtaXNbc5IzInTppBWT1ZqzJXo2vBSbiLqC8dXp8I5wZmtlfw5h3IZWLd1d6KsWpjWHxciY5eFOJwyKfls3TqH7GELbLerWuIIx2k7bWhgH2NbWeBfjt0Pt/3zNLaeL3FoKBZQZOY5G4KlEBOH1pJA0eAlqIqVXIcX1kOauyZ8lr9/YaVyLVctrVszUQe5bvV92JTTHUjOj5MOGcGOW123/3HCeLbvxmIhFXhPhe3QU0vUIecQ/P/NeVPx8YM04hD+92HbioVCwizPegLRJ7hB3COESJxgp+wzMFXPdgLR280S6gJILlyTmGyWFh/KeoqFwIbtsYhDyl1tOJax+nn2O8dj4/YWnHXD80aZNRfp1kYc9JfieuO+YaGT15h/CwK2JU+cDQZ5o/6MTZt7lH1PCOvBwFshjYB78NHdqNkES4Zw80DSkso1Pzn/BVtssPd37lHK+AMYkI5EwIEAQKSNGnT/DjW2kmzr6f/v41G4e33c6vw1JShqaihE3IHqDNe7qYhde0rYmUFcWg3qjnOQ28Dogb1SER5jnYMPcUAiMY5JWclFjDSZygokOQc2AiUjApJIbSKemwCrkPbYCD//4X3wycPtYhN1cp81JW3aqEOPxwMAYwb1xrgww1tgrZS+L87r3KZz0G+vPRTSNv2MOi+keJJ73wBSIppGw6lcbqYlCxcC+CukgUDv4MMhJxTSFrHSsRPiA5mbC/UT5cnnfIRymOJa5gxOTO+dCzn/xaP2TSmd1cNfnGs93bssU9e3nu1NoqFAkRf0adc/E5VLEVwWXVo1qFvOgZ+XWXQOhcSisXEO+unEZKsNkey70bDATH4Bac4h/n7Vpw8zh5NgiOIHx7gT1F95ljkvQKksMPut93HEPm5uQYXNYicYI38dtyB3WjgH9V5Xb97FEhcVK97flciw5gMr56DoolrD06npfaes6iycgyQOtoNBFhPuHg0FazpNtW8gNGXVws1/7cQJUda1I/cdhENH9ceitducpg0FeXz3qgf0alJzeXCir+C/aiZq4i4DMW8yLP7nPrxPql5DsZAyh+a5m7RYafNO3sFONX5YtiH2p+nbowEbtrdgZ0suVmoXyFfDrR05oX1MxRoKlHhJNoW0j9xURnlVN/3tTFJ3INgIfcRKajcTRvRjT+VyjEBwDweO6IuejUVMZ8JRZMHScFK/tXGHo2YSZgV38F8I4R1bxha+WX0nF9/5Cn75uXR2NRWuMBwcbJvfa6vj/NamcBMSvps5ESmnVzOx89U5AMFG5RPaRD0ZBwrpuP9vnHwgvqHUlffpo3PwEfGqYexd7QFJ7+Nnl/HJrSK/I6V/zlR17KBeeHjBOrSVypF+gvUvYsTBpvhShQLPMckDTEfFVqo7sVLEOTBLN87D6374gaJOrWcWK3HX6tjdWsKuPSW8/E68Cb21gY/Rb4pFZJNN20QJqhNca0lg3yF9jHWvPCsVHsuKrIlJbKdiIFhcSe/SNP7xCLf4Sn18r63agmOufsp/kAA+MXGEs47vpi4Xu1nn4DemAsUE0WQuDfBz4Vdf4E1uiwVKHFj0lJ5x3/HJ2JTiNuo/HJyPziFLHCH1nZriVAH+EWF1AxHO6KF/r0a0lQX2lMr4+ZOBaTlHl2OFdHxoM4lkTZIBKXbsIDeHOiQO4SbOHVq4iIgmNBQILUrwtXGGDZXrh5s8K0ORxdfvfiUqMxEpUywim1jJdlqU9Vpay9i2u9Uo3gDMcnETWjwC1OlKPg6cXkTi2e8cn/i+/zAzcZPwTe1ogh6VtFK0lspRnm+TV7GvArlApERENb8nNlqvIXVtsUCJzcikJ5DEYM3m3Xh00XqrPqHoyTmQL+eg+P7EZUx74f+tu9OJori+dVPsYX3TCmS56S9dvyPKS81GIZCxp8oCYwf1xllTRif0L/r9cJIBeXjN4khYDepPrBRxDmnICb7HgzSrnMPPPnO48dTHLRJu8jQxhMl0ajLqHCyyaRtxkJf99PHg5GNSeAJ8Dl8bmj0I7Yj+PaIFawtnAPD6oDGDerN1bajU2VkSsnOnjXXU9BvH7tZSJOYwKXH9iUMcd8dGw1kveSPHlpxrppHINmU49dfXbTP2L9eZ67Y4fZ1pjADQrBxE2ENZWLhRsaA7yJAyNeIclP65Nc6Ji1wBM21BFgGzWEkezPKorO0Eq84hfPg+p90GhThYN16ujOlcjkt976dOSvs5AGY5sL6nq8PyEStJyGxUHLJyDs2hwu8X55pl+qoy2LRobM5/Ony8uCsNhdFaKuODYwZ4+Xv4jGP3nlKcHMfEOXg+cqLYMTOrzsGkwA4iwvrL/X32rYhzcMiVCkSRPsYGSRDnK3oc7v657v79+AP4RslvrvkSWtXPQQg7wZdWZ1t2JRXWcs529TSh3RbxppB+OVKc8s6mXRjUuxGv/eATxnaKhUJ0UuG8cyW4SdCLUWxxm5XuSBO1WfATKyXyKVuJQ/K77X5Mog8dn5kayP2b20oYPbAXPnX4KGPdpKzYPkafiJQ+MnrbJvY/Sg5rif8KLbP2tJUzOQK6sHtPKTZldehbsvTnin6q+/jYfCdU8aZpKHKucXNbR8Q5OOqRp86BExNx96+/t3/72AFGD3bvAJOMEQsvVoo5B1uQRSAWKx2r6cHkYdSHYNYCdUccJHhrpeBx7NpTwv7D+mJAb7MsvKEQy3dN4gBTP9dpKRYBXp1tOqUXDOx2OvBe/D0L52Az62z0FCt97MBAJt/cWkqlVbTB5lQH+OmDfPZS2+lrKOOcNDIMuNbmWNj/oiSLt9W7MAxbXhYiWvSm55RF5yBRdBBxvUUTcdANL4ycXdidnzGHVEi7OQefU/IOxrTTFrQSCIjYJacebFxjgf+Ch3iZmZc2zkyG2rdJG4pEKJfT1orSM9o3MVa1qDviYNM5qIpYl7mfvyVQ8vvksQMxon86bDX3vk3NFguEVxXTSikHt4VZsC1E/SebQtqXc5DVdreWvK+xQY7Rj3PwESvZfkwXqQcAW/vfPPmg6LPt9Cmz/JVFLCvvaVAKZ7FWknA5QKYt2/h6LW1lPLNUDVTHtysPVu/tsCfHAeL55eLAfDmHbc1pzsHmawDwlkeJvpEtydGeUkyguPkRmfqWA98J270T8QTg+5+cGGUF7AjUn0I6slZKvxxV5uvyIlWJg42Q6HJkH7ZbwpZA6N1tcWKRX5w7BeOH9031lSBgVu4m+ZtVrGTRR3BtNreWMbh39ZwDUZAExYdzqBYuHxKrSEC5VbsTnPwxG+fwMUMwPb2ea/7q79z03N/29FPRiYsp6F9QN9Q5OKZSoHNwv+8N29JJdjjiqHK9JussCfLUOXAcrU0PEQQIdIuVdA7s2s8ejuMOHBYmfnKPqxao6khHRCuIaAERvUpE88KywUT0OBEtDf8PUupfSkTLiGgJEZ2ilB8ZtrOMiK4nX6FuBfCxVgLcnENDgnMwP0a13kcPGIJrP5sWKQF+pxQJ1SoFCMRPowb2Yur534/6s51z8CNusu/mPSWn97G6CF0bqm6j/k8fHWfs2wabuIL7SX3HPmbBLqimuZJzMG1Y6in4x2ea/UzUZeNW9ia/G/MvaM/CrBNK/qAnxVHh6wRH8OMczpmathzj7l+d1y5Rp8zn4II8dLV4i5XC2FcOU1/9tj8x8QPRbx3FOdRCrHS8EGKyEELOhksAPCmEmADgyfA7iGgigBkADgUwHcANRCRXw40ALgQwIfybXoNxsbCFz/DlBrLUVWWal5x6cCpZSDwuf/JQJEpEZjRN4oQpawYxgy1pic2SKdle8L+5zU0cVNhaL1ByET741WNw+acmWtu75uwPpvwgAAdxYMoaPEWO6nN2iQ7kOP719pcAmEUdCfGgpe+X39kcfbYReLX/uA/P85jFqinx3br5FWxNJcb0+lqzSazEZ6aOTT07jnNSxZsuk+ysnIPL2TPycwijILjEvLpOsU8Y+kbmE+8ItIfO4QwAt4afbwVwplJ+lxCiRQixHMAyANOIaCSA/kKI2SLYIW9Trqk5Ylslu0zSxZarm4VtIfrKqrNg7dbmZERYS+iOaBwOe0hf4uCrP4hCFZQE+vd0O7lJ2LxXiSjBvk8azZuUTlYCsB02ekDKDwKwL3yOUKvzwRalVN28XYROH4eRc1A5Akujqtd2lvcNZAup4WqPyE7EvDkHSiplbUPUiRF3P+ohxTbHZd9+Ooe0WMk2vrKHKWuxkM5jof7WXUxZBYDHiOglIrowLBshhFgHAOF/6Uo6GsAq5drVYdno8LNengIRXUhE84ho3saNG7kq7gELs4d0QqHXDpyDrV4179sU0iBpympvQ92UrZyDJ3FQn+9+Q90eyxIu+28fnYOPOM22L3HXqM9k5hsbnGMIxmH7NZZBc30k2/E7YEwaHQdLdHEOlRIHUy31EOR7sHKdlXTC/9g3PmasqxMj7jmpc5fLZa717ufnEPbzp5dXW+tJYt0WWiu5TVkN/RXS+oj2QrXE4WghxBEATgVwMREdZ6nLPQ5hKU8XCnGTEGKqEGLqsGFmhZcNtvdNHpuKhHoys53SfC2gzldk5z0bC1hx1enW/iXmfe8kDGHc+gHdlNX/VY8aaF44vh7SvpyIDpsoRtU52OIn+RD5bylWRSo+M3UMjmdCY2QxJJCw30vwP8E5mMRKBT/ioI7RRcQrFStN228wW16Jvs5tyhp/Pv2DIzF+eF9L3WycgymXgkRgKeVxEAn7eSWMiWaal3L5lcvCI9+G2TO824iVhBBrw/8bAPwZwDQA60NREcL/8pi1GoCqORoDYG1YPoYpbx9YdA7JTcX+aLytlZR2bIvh5IkjcPjYQBxy7rR0aGATbGkWs+hQVHA5giV8OYeEiM5xilWXgU33UiCKwkefPNEc28hHPDioTxOGMkT1v846jF24ajhoX/hYK6m362PKanuNvZuyEIdkQyZdmIr/POUgfPsUnqgmOGTHph/7Odj7U9+jS5xpiyvGteHirIqaCNMEfX6d95F9reMLdA4uDjkQHQ1i/KwCa6UuzjkQUR8i6ic/A/gEgIUAHgBwfljtfAD3h58fADCDiHoQ0X4IFM9zQ9HTdiI6KrRSOk+5puawmbKqL2zBanuIZt+TUmNC52Af29thmGtXYC0Z16dvjwbrqTyLmExiiJKQnYOvclmlrbZYTTo4H5CoTYrFX75e6Vn8OwBzCIvelRAH22/hj3+dH5+DzPk7/O5HnQvujTf4f9IhI7DiqtOthwyJA0f0Mz6fBk/xaVA3O+fgCuGht8UqpBv8Dmqy7m6PMDr6QcLmaQ6EaVTLZStxkhn9TDGaOopzqMbPYQSAP4ebbAOAO4UQjxDRiwDuIaILALwD4BwAEEIsIqJ7ACwG0AbgYiGEfPoXAbgFQC8AD4d/7QKbKas6YVyJXXzDMfuaQAKx8m3Bmq3WerKdoX3tG3nCtNGTcXDdV3twDio++UFzHolCIT7N2dpU6YbVv8N7VOZTvQ2mjRSIn8/ts1fG4zFsWL7EQb3XVs/NNIuNhE2X0JiBS41+d/WtDM51ite75JwlffV/QEAcsugcJEzzTfbXWipDCPs6KhSCQxDnUNgtnOCEEG8DOJwpfx/AiYZrrgRwJVM+D0C2RAEVQr5vNt57Bj7q6SWxQtxmD92Y4bQi4dIPyAlp0jVE9VTLGc++XQvCxY5LJIlDBlNWl86hTWZN8+McfKLR+iBL9rQsfftYnqjN2Oao2p/LeUz2n+W2bIRWfccuJNKxgAAAEedJREFU7lLOX1fXazbHB7R/PNKeo0N/1mu3ph3jskRA8LXK0+/VREDlPbf4HG6IjGHF9RDq7Ym6C59Rtlor+a8UNeyvDVlOVNE4HG9FymxdIqBK4PK38CUySTNav2t+ck7qrKG1SVFqVt9YUTZC6xtcrVLYxqg/R9uGmiB2lueviu9cYUZkm00OjujOL384+uxreOEyQLj9hYBbemsjn8xKQp6cRw3oiZMdyZX0tbuTyaKoPuM1W3Zb29ONA0w+KLqBhukZycPFjU+/BcCcIhQI7sWUJ7q7OcF1K9jFSv7t+G54WWSxcdv21yJPHX172hm/Suyha2VD7Rv0D4gJks1KCkiastpFNvFn22ZaI7cTI3zHCAD7W8x91elgsxYrKhv0RyxGBUA8/10n5I+Oj9vxTQLlsmjzSbaTaNtDz6UvmRlMvg2VeLrSvqrPZWjfJtz7bx9l6+mE0HeN2whjgcy+NIFCunv4OXQ7RI/VwTk4WWNlEuw72LywVfbRdzNyh7oIT32OhV1JzoJazTv1Frx9IxwnedWU1aXQkyjWSOdQCaycQ9i7fEW2+bZ0fRzfyEZw1P5c2fXkHMvive7bt4sDP8AjU58KHz8Z/RDA+TGoosE+TfaDlUrg/vOUgxI+JKZ6gL9+zbbE+1mcRruNKWu3hBQrMVuDOr/6O07l6iSwmTmqpxWXiV/UtqeduGvTrWSj9znVnTttH1z7WbcISMK1YCSX4Tp0FQuxKauvtVIW0c4f/+0j1v4/YLGk4mCPwRT8l8TOZg21dINf8LssvizynWTJ7NfHMkb1Xt94d7u1HZf4UMf/+we3OjJrOLbePeyir94K8bAaAWjP3NuZ0NLmiP5mXWIuVmpH2DLBqZNgn8HpkAsqfMVKaiwib7GSywY7bMdVr71yzf73pw/DWVPsCsIsoUhir3UXEQFaPDgHtZks/h0fGsc7eEk8E8Zo8m0yC2GyOdl96ehxVfeXrhss/SzEYbiFOGbZnG0nYw77DLGvRSA7l+yyPhs9KA5kaVtn6ZhOfs/TdlDsb+H6coV0O8LXlPWnn+Gjp0r4ToKEE5zn4vU1BXRxIh2VFISDOjRXeGQ5TB9xmo/OIeH856lzGDMoHdVWR0OBMHpgL1xztt/J1zZGfVg2Ja7NG1xFFosqSVyziJVc3PRoJjIwB1+ClCUPSBYvfB8MVBzQbA6xw/v3TBwkbYTkP06cEH0+yBDyBnDolXLOof1gO6Wqa4vzTlTxiUMD6wk18xeHhPmc5+lqYG+7FZJvDt5KaEMW72wbfHNJALESPEsODV9rJdszUhV7PpZqRITnLjkBZzvMKqWM3GeMsu7lnzrUWDeLn0hWZNmAXdzBoD5+HIGvDuqVH5yMhT86xV0R7nAYEneE1lcuw4ssudKPmRAr7a3RaJXfvnrCeGM922HKN6d3LVCHyX4CcK8wSzz8r590IL541L5WVhvQ8yP7LfLvnnaI9XfZjKu5sWE00tMtjmU6/vvTh3nXtSELUZQL1cU5LH8vtvCw+zn4jDAZZrmWSYRk9z5+DoTgIGILX5FFl+ALeb+9PTyjfeEbf8o38F6fDGPLGi3Ytb2q7bn0cGpde7TV4H/PxoKVq9Q5BzWeVZE6LvBe/REHS2wlFe74MOQkDEAyeJfvGneFMpCWKLuY3Lkq9hnSGy9//2QnF9QeUDdvXw4nywk5S2Y7E1qU8AjSf6ImCLu3W1TJfsvOU6psZ5RH/CNf7AkF1650mVkgn/sFx9i56UG9m/CJiSPwz456leC/zjoMn/1Q2oxVIpoaTmfP+Lm4nvvGHbHPk+15ynVgs24EkqK+t/7rtMRBNsjpnXMO7QJbPgcV1ca3l9hvaBxJ0les5MLHDxqO0QN74SSHYxAADG4HRzkfZPHvKHmKlVTY4jX5vjuVc3Ala8kESexsDniKx6xLBi+fpc+WMHFkf3zycDen6ONpXilcDmvFAuGm88yZ4qpBj4aCV6Y+t1gpbuOEg81BHgHgofnrgP+/vXONsaq6AvC3mIHhDXV4KCAPRVEUeRakBaG+qUa0anxQoGJiTbS1xj7QSprG2mhTjc8ESQtB+7Bp2qbQ2hr7QKu1KlR8ICJiTUVJrS0gSBXHrv44+8yczr33PGbOueecmfUlN/fMnn333euue+7ae+2118abOYUNTPzv97CQaCT4f7dSxSFK5lbKDg1bkQ6QlnHoaGbUMEYO7sMTy09Opa2sCO4MH9scPlJqcyslD8WsRtyPefaRzfxp+ztAusbBT9g2IGQB1+/iwZaP6BcRVukPKuKsIT10zdxYffRDaJOsOZSB6LBp7znqowxuvIuaiQ7s3ci777dw58XhQSy+YYryDIQdYepFK9kmuEzprFupY+8Z3ub6q+dw83l1STGVOcERadRioe95SxSKmYJb6b7F01uv0xyNtRmH2u681oPpP4p2K/kfS5ongO054KVvGNina40Po4yd/1lGhb4mMZqLTvTSdM+bEH7GjD84jFpLCZtJNvYQWuoUy9rtjEPMiUOHEq3V4gsnj+ecySMi600aNYhFs6rngy8bSdYP/B+9RKGYoZvg4rXRN2KXbEc5YZR3LkfozMH18WDLf6ONYszRbhKOHOq5O48YUvsAncTkFznd+tZRSR5HuHDbU44Nd30lcbd99YwJvHzTmZEh275xiEpeGdZOU8+GVIMnwuhaw4YYhJ3nkBXXnV79gJSuTJKbyx+1J5mthZ+kVT/dVuPeS6fy+jsHIs7a8H3fsL9Kkrggh/TtxdjmvpFRbElYvuAYPjNtJGMTHOEaReu9lVqLyYmys4cN6sOzK06LlV5k2ICmWIM6EYm1zyLufp6wmUNTY49018dC6H7GIebMwegcSYyD79HJIGIzkj49G2Id6pKEAb17MmlU9Vw8PkH7tXN3eIbQxoYebPjKp9LoWiu9eza0znDSpp4DL5//HPR0GDV6B+8UwDg8dcMpqcriD4KiQpPD1hw845Du97UW3c+t5J5zHlwWjm+fN4mVn52WWnv+6GhYjM1JGpLvqiMkSQmx8cZTU3nPpGSdLjwPLvq4t4Fy7JDodBdps8ftRRicYth22kaudYbcibMkmhobWvOLZU23mzksOP5Qjh7eP9YIoztx6ax0dkYHWbV4es1slkFa1xxSuhcbG3rw+i1nxarrLw6OiZG/J03ymCV1lDsumhIrIeMF00dF7h7PihVnHcs317/E+GEprqGkTEtM49AU4aLa90ELW97ay3Ejou+tztDtjMOY5n6MiQitjIprNuJx+nGHxqo3fGBvdh/4MNGJcWnyh+vm0dwvXvqFtAiui2z48vy6vndSzp06Mu8uRPKJ8UN4+NqT8u5GKP6M1neB1aJ/UyO3XTiZyYdX/vj7hwBtfmNP9zEOInImcCfQAHxPVW/Jox/bvnVmJukKjNqsXTaTJ3f8K3KR0I8nnzM+/CCbpBwxtP6jzeDYsd6zFiMf/DxaUenCofaxqG1rptm7JQvxKygiDcC9wAJgInCJiEzMoy9NjQ2pbVYz4jF8YO9Yo9P7L/eSpoVltCwLweiWPBZwjfozf8JQ7rhoCteeenSH2/Cj9OqxEa4QxgGYCbyqqq+p6kHgQWBhzn0yCsaUwwfzwOUzWb7gmLy70mmGu7xcXW2HslEbEeHcqSM7lV7cD609cVz42SNpUBS30kjgjcDfO4FZNeoa3Zi5R4XvQi0LvRp7sOLsicyqw01udB1mH9kcO9iisxTFOFSbV1fMm0TkCuAKgNGj04+uMYx6EpW91DDypChz2p1AMM/uKOCt9pVUdZWqzlDVGUOHdo0RpGEYRhEpinF4BjhKRMaJSC/gYmBdzn0yDMPothTCraSqLSJyNfAwXijralXdknO3DMMwui2FMA4AqvoQ8FDe/TAMwzCK41YyDMMwCoQZB8MwDKMCMw6GYRhGBWYcDMMwjAok6izVoiIi+4BtVf41Gvh7jCYGAXtTrJdFm3FlyeK9s2gzT3mykDvt71qSulnIbfdOOvWyaDNNeSaoanSCMlUt5QPYWKP8nzFfvyrNelm0GVcWkyc3uVP9rhVAbrt3uoE8tX472z+6oltpT8x661Oul0WbcWXJ4r2zaDNPebKQO+3vWpK6Wcht90469bJoMwt5QimzW2mjqs6IW15GupIsYPIUna4kT1eSBdKVJ25bZZ45rEpYXka6kixg8hSdriRPV5IF0pUnVlulnTkYhmEY2VHmmYNhGIaREYU3DiKyWkTeFpEXA2WTReRJEXlBRNaLyEBX3ktE1rjy50RkfuA10135qyJyl+R0NmOK8mwQkW0istk9huUgy+Ei8kcR2SoiW0TkGld+iIg8IiLb3fPHAq+53ulgm4icESjPXT8py1M6/YhIs6u/X0TuaddWrvpJWZYy6uY0EdnkdLBJRE4OtJWNbuKGR+X1AE4CpgEvBsqeAea562XATe76KmCNux4GbAJ6uL+fBmbjHSz0G2BByeXZAMzIWTeHAdPc9QDgFbwzwL8DLHfly4Fb3fVE4DmgCRgH7AAaiqKflOUpo376AXOAK4F72rWVq35SlqWMupkKjHDXxwNvZq2bws8cVPUx4N/tiicAj7nrR4Dz3fVE4PfudW/jhX/NEJHDgIGq+qR6n+b9wLlZ970aachTh27GQlV3qepf3fU+YCveka8LgbWu2lraPuuFwIOq+oGq/g14FZhZFP2kJU99e12bpPKo6nuq+jjwfrCdIugnLVmKQgfkeVZV/QPQtgC9RaQpS90U3jjU4EXgHHd9IW2nyD0HLBSRRhEZB0x3/xuJd9qcz05XVhSSyuOzxk2LV+ThhgkiImPxRjdPAcNVdRd4NwHerAeqnxU+kgLqp5Py+JRNP7UolH46KYtPmXVzPvCsqn5Ahropq3FYBlwlIpvwpmQHXflqvA9nI3AH8GeghZhnVOdIUnkAFqnqJGCueyyua48DiEh/4GfAl1T13bCqVco0pDwXUpAHyqmfmk1UKctFPynIAiXWjYgcB9wKfN4vqlItFd2U0jio6suqerqqTgd+jOfrRVVbVPVaVZ2iqguBwcB2vB/YUYEmqp5RnRcdkAdVfdM97wN+RE7uDBHpiffl/qGq/twV/8NNd32XxNuuvNZZ4YXRT0rylFU/tSiEflKSpbS6EZFRwC+AJaq6wxVnpptSGgc/ukBEegA3Aivd331FpJ+7Pg1oUdWX3PRsn4ic6KaQS4Bf5tP7SpLK49xMQ1x5T+BsPNdUvfstwPeBrap6e+Bf64Cl7nopbZ/1OuBi5ysdBxwFPF0U/aQlT4n1U5Ui6CctWcqqGxEZDPwauF5Vn/ArZ6qbNFa1s3zgjaR3AR/iWcnLgWvwVvdfAW6hbTPfWLxMrVuB3wFjAu3MwPsS7ADu8V9TRnnwIjE2Ac/jLU7diYuSqbMsc/CmsM8Dm93j00Az3kL6dvd8SOA1X3c62EYgqqII+klLnpLr53W8gIn97vs5sQj6SUuWsuoGb9D4XqDuZmBYlrqxHdKGYRhGBaV0KxmGYRjZYsbBMAzDqMCMg2EYhlGBGQfDMAyjAjMOhmEYRgVmHAwjA0TkShFZkqD+WAlk6jWMvGnMuwOG0dUQkUZVXZl3PwyjM5hxMIwquGRov8VLhjYVb4PiEuBY4HagP/AO8DlV3SUiG/ByX30SWCciA4D9qvpdEZmCt+u9L95GpWWqultEpuPlzzoAPF4/6QwjGnMrGUZtJgCrVPUE4F288zXuBi5QLw/WauDmQP3BqjpPVW9r1879wNdcOy8A33Dla4AvqursLIUwjI5gMwfDqM0b2pbH5gfADXgHrTzisjw34KVC8flJ+wZEZBCe0XjUFa0Fflql/AFgQfoiGEbHMONgGLVpn1tmH7AlZKT/XoK2pUr7hlEYzK1kGLUZLSK+IbgE+Asw1C8TkZ4uv35NVHUvsFtE5rqixcCjqroH2Csic1z5ovS7bxgdx2YOhlGbrcBSEbkPL0vm3cDDwF3OLdSIdwjTloh2lgIrRaQv8BpwmSu/DFgtIgdcu4ZRGCwrq2FUwUUr/UpVj8+5K4aRC+ZWMgzDMCqwmYNhGIZRgc0cDMMwjArMOBiGYRgVmHEwDMMwKjDjYBiGYVRgxsEwDMOowIyDYRiGUcH/ACH5C4HQSMGaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAELCAYAAAAybErdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUJFd95/u9seWetVd3dVX1qtbSLakltCFACCSMhI0tzIBH4AHZMJYPFh7z7LEf+L039hs/jDk21jMzDzxgYUDGFhhsJGwkI4SMWKQWrV2tVi/qru6q7torq3LPjMi474+4NzIyM3KpqqzMyMz7OadOZ0dFVEVmRcTv/r6/jVBKIRAIBAKBE6ndJyAQCAQC7yGMg0AgEAgqEMZBIBAIBBUI4yAQCASCCoRxEAgEAkEFwjgIBAKBoIK6xoEQMkkIeZwQcowQcpQQ8jts+x8TQs4TQp5nXz/vOOYThJBThJDjhJDbHNuvIYS8xL73WUIIYdt9hJCvs+2HCSG7m/9WBQKBQNAojXgOBoDfo5ReBuD1AO4hhBxg37uXUnoV+/ouALDv3QngIIDbAXyOECKz/T8P4G4A+9nX7Wz7hwHEKKUXAbgXwKc3/9YEAoFAsFHqGgdK6Syl9Fn2OgHgGIDxGofcAeABSmmOUnoGwCkA1xNCxgBEKaVPUqvy7qsA3uU45ivs9TcB3Mq9CoFAIBC0nnXFHJjcczWAw2zTRwkhLxJCvkQIGWDbxgFMOw6bYdvG2evy7SXHUEoNAGsAhtZzbgKBQCBoHkqjOxJCwgC+BeBjlNI4IeTzAP4EAGX/fgbAhwC4rfhpje2o8z3nOdwNS5ZCKBS65tJLL2309AUCgUAA4JlnnlmilI7U268h40AIUWEZhq9RSv8JACil847vfxHAv7D/zgCYdBw+AeAC2z7hst15zAwhRAHQB2Cl/DwopV8A8AUAuPbaa+mRI0caOX2BQCAQMAghZxvZr5FsJQLgPgDHKKV/6dg+5tjtlwG8zF4/BOBOloG0B1bg+WlK6SyABCHk9exnfhDAg45j7mKv3wPgB1R0BBQIBIK20Yjn8EYAHwDwEiHkebbtDwG8jxByFSz5ZwrAbwIApfQoIeQbAF6Blel0D6W0wI77CIAvAwgAeJh9AZbxuZ8QcgqWx3Dn5t6WQCAQCDYD6dQFupCVBAKBYP0QQp6hlF5bbz9RIS0QCASCCoRxEAgEAkEFwjgIBAKBoAJhHAQCgUBQQc8Zh59NreDP/+1VFMzODMQLBAJBK+g54/D8uVX8f4+/hnTeaPepCAQCgWfpOeMQ9FkNYtP5Qp09BQKBoHfpOeMQ9ll1f8mc8BwEAoGgGj1nHIKaZRzSOeE5CAQCQTV6zjiENEtWSomYg0AgEFSl54xDkMlKIiAtEAgE1ek542B7DkJWEggEgqr0nnEQnoNAIBDUpfeMg8azlYTnIBAIBNXoOeMQYLJSWqSyCgQCQVV6zjhoigRNlpASRXACgUBQlZ4zDoBVJS1iDgKBQFCdnjQOIU0R2UoCgUBQg940DsJzEAgEgpr0pHEIaororSQQCAQ16EnjYHkOQlYSCASCavSkcQhqClLCcxAIBIKq9KRxCPuUrvccjs3Gcdu9T2Atrbf7VAQCQQfSk8YhqHV/QPqlmTUcn09gajnV7lMRCAQdSE8ah5Cv+1NZ41nLY1jLCM9B0D7WMjp+/W+fxnw82+5TEayTnjQOQU1GRi+gYNJ2n8qWwbOxhHEQtJPjcwk8fnwRL0yvtvtUBOukJ40Db77XzdJSImu9N+5BNMJPX1tCVu9uj0rQWvj1lBHXVcfRm8bBbtvdvRdsYp2y0uxaBu//4mF8+7nzW3lagh6DG4duvte6lR41DnzgT/d6DlxWimcae4/nYxkAwOya0IYFzSNnmACEcehEetI4BLVe8BzWF3OYj+cAAEvJ3Jadk6D3sGWlLpZwu5WeNA7FUaHde8HGecyhhnHIGQV8/FsvYnYtgzmWTSKMg6CZZJnnIGIOnYfS7hNoB0EWc0h18WomyWIOtQLSpxdTeOBn0zi4I2qnGi4n8y05P0FvkBMxh46lJ41D2I45dO8F24islGerurPLaSwmhawkaD485pARxqHjqCsrEUImCSGPE0KOEUKOEkJ+h20fJIQ8Sgg5yf4dcBzzCULIKULIcULIbY7t1xBCXmLf+ywhhLDtPkLI19n2w4SQ3c1/q0WCvZTKWlNWsm7cqeU05ta4rCQ8B0HzENlKnUsjMQcDwO9RSi8D8HoA9xBCDgD4OIDHKKX7ATzG/g/2vTsBHARwO4DPEUJk9rM+D+BuAPvZ1+1s+4cBxCilFwG4F8Cnm/DeqsLrHLrVc9ALpq3xNuI5nFtJ2bJSMmeIWgdB0xB1Dp1LXeNAKZ2llD7LXicAHAMwDuAOAF9hu30FwLvY6zsAPEApzVFKzwA4BeB6QsgYgCil9ElKKQXw1bJj+M/6JoBbuVexFQRYQLpbPQceaA9pMuJZA9bHXUm+YN2wZ5fTmItnEfFbRlNIS4JmkdWFrNSprCtbick9VwM4DGAbpXQWsAwIgFG22ziAacdhM2zbOHtdvr3kGEqpAWANwNB6zm09aIoETZaQ6tILlktK4wMBFExa9X3m2I2bM0xkdRMHd0QBCGlJ0DxyBpeVunMh1s00bBwIIWEA3wLwMUppvNauLttoje21jik/h7sJIUcIIUcWFxfrnXJNgj65a1NZeYbSeH8AQHVpKV8wS/5/+Y4+AMCy8BwETYJ7DiLm0Hk0ZBwIISosw/A1Suk/sc3zTCoC+3eBbZ8BMOk4fALABbZ9wmV7yTGEEAVAH4CV8vOglH6BUnotpfTakZGRRk69KkG1e6fBJR2eA1A9KM09B87Bce45COMgaA4i5tC5NJKtRADcB+AYpfQvHd96CMBd7PVdAB50bL+TZSDtgRV4fppJTwlCyOvZz/xg2TH8Z70HwA9oNaG8SQQ0uWt1UC4rTQwEAVT3HHJlnsOBMctzELKSoFmIVNbOpZE6hzcC+ACAlwghz7NtfwjgzwB8gxDyYQDnALwXACilRwkh3wDwCqxMp3sopfzK+AiALwMIAHiYfQGW8bmfEHIKlsdw5ybfV12CmtK1Omgi15isxAuUhkIallN57BoKIuxThOcgaBrF9hnCOHQadY0DpfTHcI8JAMCtVY75JIBPumw/AuByl+1ZMOPSKqxpcN15wTYqK/GYw0WjYRTmE/CrMobDmvAcBE2Dt89I6wVQSrGFSYiCJtOTFdKAZRyWU935EIzbslI9z8G6cT9w4y6cWkgCAIbCPhGQFjQN7p0WTIp8wYRPkescAfz45BIu3h7GaMS/1acnqEFPNt4DuKzUnZ5DImtAkyUMh3wgpGgsyskXTGiyhHdeuQMfe9vFAMA8B2EcBM2BxxwAIJs3a+xpUTApfv3LT+P+J89u5WkJGqBnjUNAk5Hu0lTWRFZH2K9AkggiPqVmtpKmlF4Cw2GfaL4naBrOavu0Xv9+i2d06AXatd0LOomeNQ5BTUa6S9PrkjnDrnaOBtQadQ4F+MqMQ8Sv2tlOAsFmyeoF9AVUAI3VOqykrYUJL54TtI+eNQ6BLg5IJ7JF49BXwzi4eQ5hn4x8wezZm3MhnsUf/vNLPfv+m01WNzEQtIxDIxlLq7ZxKEpQT5xYxM1//rg93VDQGnrWOARVBXnDRMHc0nKKtpDI6gizmRUDQc2+4crJFyqNA5+v3atu/Y9PLeHvD5/D8blEu0+l46GUImcU0B/UADTmOcRS1kLGaRz+7qmzOLucxkwsvTUnKnCld41DFzffszwHa7XWF1Sxmq7uOZTLSmHbOHTf59IIfHUaq/KZCRpHL1CYFBgMWcahkSppW1Zi+yayOv79hNUqZ6VLswu9Ss8aB96ZtduKcx55eRanFpLY0WelAQ4EVcTW4Tlw49CrLjyPt1TztgSNk2XS3ADzHBqZI10uK/3g1QW7tbwwDq2lZ41D0XPoHuPw7LkY7vn753DlRB9+9+2XALBuzLWMDtNFPssZhYq881CPGwfbcyh7EK2ldfzhP78kHlDrgGcqDYbWEZC2ZSVr3395cRYRdk2Kz7619LBx4NPgusc4HL0QR8Gk+J/vf52dIdIXUGFSuGYg5Q2rzsFJ2N/bxiFVRVa67ydn8PeHz+Hw6eV2nFZHwoss1xNzKPccjkyt4O0HtwMQxqHV9LBx6L6Yg85uKD7pDii69G7SUt4w4VNFzMFJ0kVWSucNfPXJKQDo2qr6rSBXJis1MmEwZscciq2+h8Maon5FGIcWI4xDF3kOOuuVpCrF/jUDzKVfdUlnzbl4Dras1KO1DgkXz+EbP5u2g/riAdU4fJYDT2VdT7ZSvmDCNClyhgm/KlttXcRn31J61jgEutA4GCyuoEjFP2tfoJ7nUBpz6PWANDeKzs/r4ZfncGAsiqhfEX2n1gH3FEI+BZosNWYcHEVwXFryqzIGQxpWROV+S+lZ48BjDpkGSvo7BZ7VocoOz4Gt2tyyb1w9B2Y0e7XOgRtFZ/rvWkbH5GBArF7XCX+4+xSJzU+pf69xjy2nm3bqa0CVMBjSqmbdCbaGHjYO3ec56AUTqkxK2iJzvdet1iHnEnNQZAl+VUKqi2Ix66FY51B8EMUzOqJ+FUMhTchK64B7Dn5Vrtsi//xqBnrBLAlIO48fDGrCMLeYnjUO3VjnoBfMEkkJsHorEVJckZ1fzeB1f/IoTs4nkDMKFZ4DAIR9vdtfqVjnUDSm8ayBaEDFYEgTTQnXAY85+FUZAVWuWgSXzht422d+iM8+dhKGSaFIBDmjUPQcNBmDYQ2xVB5bPCBS4KBnjUNQ7UbPgZZISgAgSwRRv2qvyE7OJ7CSyuPEfNI1Wwmw+iv1bLYSm6KXzBnIGyaMgolkzrA8h7BYva4Hnq3kV6WaY3nPraSR0Qv45+fOAwBGIz7kDNPe36fIGAppMExatf28oPn0rHFQZKnhIFmnoLtUPANW3IGvhHkTvkRWt2QlF88h5FN60jjoBRNZ3cRoxAfAitNwmSkaUGzd262gUFAkmTPwqYeP2decT6ktK51btnomzcQyAIBtfX5QR22On8UcAJEt1kp61jgAaDhI1ilYMYfKP2l/sBjM4zcsXwGXZysBVsZSogeNAzeIk4NBAJYUF88w4+BXMRTyoWBSxLOi79JdX3oaf/eU+0Cew6eX8b9+eBqPvToPgHsOStUW+dPMKHDGWOsXvpAJqDIGbOMgssVaRU8bh5AmI9VVngOFIlfO6O13eA78Xz7tzT3m0JueA1+p7rSNQ942BNGAJSsBEDO2ATx7NoYXplddv8c/s5fPxwFYMYe+gFrRkoQzvZKGX5UgsUt3W9QyDnxIlV+1ZCUAIubTQnraONTSQTuRap7DQFDDaoZ5Duxf/oBzizn0qqzEJaRJNnt7NZ23H1BRv9KV0kY8q2+odiPHYjFu8FoRvvL3KRJ2DQbtjKRyplfS2D0UwhUT/QCA7dEyz0GT7c9epLO2jp42DtYc6e55COqFyroFgHkOrPJ0jctKtTwHv9KTRXD8PU8MOGQlp+cQsmIRXNqglHZ89swfP3QUv/o3h9d1DKUUeg3j4Awaa4oEQgh2D4dQMCmmVypnMkzH0tg5GMRbLxlB1K9ghMV8uHHwK0XjIBICWkdPG4dumwZXVVYKaEjkDCuPPFMqK7lnK/WocWAPtYlBy3OIpfPFmIOLrPRnj7yK939xfQ9Wr7GYyOHVuQSmllINH2OYFJRWr6J3pkH7WYLEnmHL4E4tF3/Pwy/NIpHVMb2SweRgEL/1lovw6O/ejACLg3Ev169JCGoK/KokqqRbSE8bh6BWPfe6E6kqK7H+SmsZ3U5p5Q84Ta4MSIc0BVndSuPsJXgQfjTig0+RsOr0HPyKXVC4krIylr71zHkcn68+Me6vf/gajl5Y2/oT3wS8wd3jxxcaPoZX4leTHhOOgL2fPeh3D4UAAGeWLM9hPp7FR772LP7ooaPI6AXsHAxCUyRsi/rtBctaxij5GUMhnz0MSLD19Lxx6C7PoXq2EmBp6Nxz4Npt+SQ4AAj5rJvxSz85g7f8+eM9M56Rew5hn4qBoFV0Fc/okIhlMDVFsruDvjCziqVkrmqDQkopPv3Iq3johQutfAvrhg/kefz4YsPH8LhBtfde4jmwB/tgyOqsyj0Ufv19m9U2TDJvDYA9Y4QvZLgn0W0xQq/T08YhoCpddbHpBeoaQ+CZHouJvB1z4FK5W11EhM10+PZzFzC1nMav/+3PbP23m+EFcGG/ggHWKiPORq5KLJWG91f6/jErTTNfMO1iLydceuErc6/Cz++p08sNx9+451BdVtKxLWrFDfjigxCCPcMhW1bi1yEvGeEZYs5j4hkdskTsBY9flUpmSwu2lp42Dpbn0D3aul4wXWMO4/3Wqmwmlq5o3e3uOVjG4ZXZOC4bi+LkQhL3PznV9PP1GsmsAUKs6vnx/gCmY2mrr1KgOB9jMKRheiWN7x2dLzmuHP4AbWSGQTvJGgWMRnzIGyb+7ehcQ8fkHMbBLSCfyBrYOxxGxK/YngMA7B4O4QzzHHjQWmZGlycBAA7PIaPbXgPf7vXPs5sQxqHLPAc3WWms3w9CgONzCRRMWmIQ3DwHbhwA4M7rJhH2Kfb4xm4mmSsgrCmQJIJdQ0GcW0ljjTXd4+wcDOL56VWcXEji4I4oO666cfD6SjerF/Dmi0dwcEcUf/rdV+0VfS3yTFYyabF/kpNE1kDEr+Cysag9kRCw4g4XVjPIGQU7RfjX3rAbN188UmJE+DW5ltHhdyRM+FVJGIcW0tPGIaDJyBkmCl3SDqFaKqtPkbE96sfLLDg6MVCp7zqJOIzDocl++FW5q1qbVyOZ0+0xqbuGgsjqJl5bTJYYhz/95Stw/4evxyd/+XL8xk17ARQ1dtOk+Pi3XsSLM6u2Lu/1h1lWNxHSZHz6P1yJlVQef/bIq3WPcdYqJHKVxiSR1RHxq/jMew/hU+++wt6+ZzgEk1p1DVym/O1bLsJXPnR9yfFOWclpNPyK7Hlj2030tHEI2XOku+PBx1t2uzExEMBRVrE66dB3a3kOqkxw2VjEyurqIg+rGsmcYQ874hr41HK6RFYKaDJu2j+CX71hl92DiXsOiZyBB342jR+dXLIfYt43DgX4VRmXj/fh568Yw+Ov1s9ayjse0G5zP7jnMDkYLLnWdg8XM5Z4FljYsRDh8Gwlk6LUOKhCVmolPW0cgr7uGmyjGyYUF88BsDRdnqrpFvxzwm/Yy8aidZumdQOHTy/j7ff+EK8tpGzPwfkZOT0HJ3xfHnPIsQdXzjBt6cVNdvEKlFI204OnimoNLZScxqE83mKaFMm8gai/8qHPeybNx7OIZyxD7Ha9Or3Z0piD5OnPs9voaeMwErZWfguJbJvPpDnopnvMASi2hLBeN2YcDrF2BoEuqwcp58WZNZyYT+L4fMJ+7xMDQbvXTzTgbhwizGhwz4F/RnnDLMpKLplMXqE4htO6BkI+axFQr+o775CVyuMtqbwBSoufjRNe5byUzGEto5fEI5w4r0lnzMGnClmplfS0cRjrsx6Ys2tdYhwKJrSqslLRILjllDvpC6h43/WTeO+1EwCs1Vs3yEpPnV7Gf//OKxXbeSUuUDSMmiLZ10dVz4Htyz0yvqrNGQVHtpJ3H2Y8jZVfA0FNgWHSkoe/GyWeQ5lx4PGXiIvnoMoSBoIqlpNWQ0O3fazzcRoHp6wk2d6ZYOupaxwIIV8ihCwQQl52bPtjQsh5Qsjz7OvnHd/7BCHkFCHkOCHkNsf2awghL7HvfZawWZaEEB8h5Ots+2FCyO7mvsXqjPVbbu7saqbOnp1BTVnJYRCchsIt5iBJBJ9695W4knkO1WSl6ZV01U6bXoNSiv/+nVfwpZ+cqdCtV9M6BkMa3nPNBN56yai9fdeQ9Tk5Yw5O+MONVwRnXTwHXgMxE0t7riVJ1jGMB3CMzq0js5bGHKoZB3eDOhT22Z5DNY9MkSU7xdVfnsrqYU+s22jEc/gygNtdtt9LKb2KfX0XAAghBwDcCeAgO+ZzhBD+1/08gLsB7Gdf/Gd+GECMUnoRgHsBfHqD72XdDIU0aLLUPZ5DTVnJetAFVNlubAa4G4dyAppSISsZBRPv/vxP8RffO76JM24dh8+s4JVZKyC/mCjtQrqa1jEQVPEX7z2EX7lu0t5uG4cqDzqfIkGRiK27O40Dlz/46vw//q+ncO+jJ5r4jjYPPzc/8xzsBI06q3O9UJSdKj2HYiGhG8NhDUvJHOI1ZCWg6D2Uew56gXZNdqHXqftkoJQ+AWClwZ93B4AHKKU5SukZAKcAXE8IGQMQpZQ+SS1B86sA3uU45ivs9TcB3Mq9iq2GEILtfX5c6ALjwDtlVpOVtvf5IRGrQytf8SoSsVdotQioUoWs9PTUChYTuY6pnL7vx2fs10tlLapXM3m7xYiTnYNWdk21FS4hpKSDbZYZhHzBrCiCW0zkcKJGH6Z2UPQcmKzk455DbQ8nXyheC+uRlQBWYZ7MI5E1qhpdoGgcAmqlxORWkS5oPpuJOXyUEPIik50G2LZxANOOfWbYtnH2unx7yTGUUgPAGoChTZzXuhjr82NurfNlpQJr11DNc1BlS0PvC6gIqDJkibgGo91wa23+8EtWNa1bf36vMbuWwfePzeOm/cMAKof1xFKW51BO0XNwf9ABrIOti+fAV9dZvQC9YGUvnXNpV91O+Pny64B7DvUGYNWSlZyNCt0YCfuwWCcgbZ2TZQj8ZdlK1nl7/5rrBjZqHD4PYB+AqwDMAvgM2+62DKU1ttc6pgJCyN2EkCOEkCOLi403CqvFjv4ALqx2vufAH0bVYg4AcHBHFLuHQiCEIOpXGpKUgMpspYJJ8chRbhy87+J/54ULoBT4yM37AFR6DtaDqtJzuOXSUfzhz1+K1+0aqPgexzlSNetMZeWeg2Ha8ZrzsYynOt3yh6zf0dgOaMRzKP7NE9l1xhxCGhJZA8mcUTWWAxRrHQJldQ6A8BxaRfW/Tg0opXZjGULIFwH8C/vvDIBJx64TAC6w7RMu253HzBBCFAB9qCJjUUq/AOALAHDttdc25ak01ufHfDyLgkkbkli8xPRKGiMRH/yqDN20bvRqRXAA8Fd3Xm2/jvjVkhVgLYKqDL1A7a6vz5yN2bp9J3gODz5/AYcm++2HfPnks9V0Hv0unoNflXH3m/fV/NkRfzXPwfpcCia1W0UYJsWF1Sx2DgXdf1iL4edrp7Ku03MIaXKNgHSVmIMj3tWIrOQrizlY5+39a64b2JDnwGIInF8GwDOZHgJwJ8tA2gMr8Pw0pXQWQIIQ8noWT/gggAcdx9zFXr8HwA9oC8drjfX5YZh0Q6MS2wmlFL/w2R/hSz+xtHSd3bC1vIGAJturw8g6PQegmMf/CmvDsXck5HnjcGohgaMX4rjj0A74VRkRv1IiK+UNE6l8wVVWagTnYCT+0Mo7PAegdLSll6SlYp1DWcyhTiEcf28DIc01IC1LpGTF74R3CAZQU1bSFBfPgUlNokq6NdT1HAgh/wDgLQCGCSEzAP4IwFsIIVfBkn+mAPwmAFBKjxJCvgHgFQAGgHsopfwv+RFYmU8BAA+zLwC4D8D9hJBTsDyGO5vxxhqF57JfWMtilM2u7QSyuol41sD5mBUv4fJOtZhDORG/0rDnYBuHfAFRv2oPYRkJ+zwvK333pTlIBHjnldZ6hmveHF7j0OcSkG6EiF/F1LL1wLdlpYKJnMNoOmdOn11J4U0Y3tDvajbVYg71quH5gmDQ1ThYrTOq5ZSUeA4NxRycRXDccxDGoRXUNQ6U0ve5bL6vxv6fBPBJl+1HAFzusj0L4L31zmOrcNY6XDXZ367TWDf8plxlXTT5Das0KI1dvC2CC77GAvF2/jt7aKxldIQ0q62G12f6zsWzGAxptuEfCmtYcqSy8s9vw56DX7GlFKfnoBvuxuHcsnc8h6KsVOo5VJvwxskbJmSJIOpXXT2HapISUOxKANQO9PtqeA6iSro1bCjm0E3scHgOnQR3/blkwY1Do1LR//1LBxv+XfwGzTiMQ19AhSpLDXsf7SJvlHaqHQ77SlJKuXHodwlIN0LEp9hDgjJ2QLpQUmVcYhw8JCvx1Fu+Ig+qpYuAauRZg8ewT6loPZPMGYj4qhtaPocbAPpqGGS3OgcefxCeQ2vo6fYZgJX371Okjktn5Su2mO05rE9WIoRUdf3LCTC5gbft5tWtqiJ5PuaQN8wSgzkc9pXEHPgoSreAdCOEfda8bb1glgSk8y6ew3h/AGc95DnkyjwHRZagKRJSDcQcNFlCyJHGy4lnjaoFcICVFs090doBaZHK2m563jgQQrB3JIwXZrw9CL4cvrpbLfMcGpWV1kO5rMSrWzVZ8nzMwc04rGV0++Ftew6bkJUAqzspT7F0ZisBRe/usrEIzq2k6za2axV2QNrRXyukyfXbZxRMaIoV3E/mDPzV90/aU+RW0/magWag6D3UrHNQi6NBOSKVtbX0vHEAgNsPbsfPplYw10HSUirnLiupDcpK66FcVopnmecgE0/l7bthPcgcxiFiPZiWU1bcgQek3SqkG4E330vmjGLMoeDuOVy6PYpkzrC9vXaT1QsgpDT92Sp4rJ/KqskEIZ+MeNbAvd8/gQeePgdKrVRdPpa2GsNhH2SJ2IsON6q1zwC8P5e7WxDGAcA7D42BUuBfX5pt96k0DJ9BkdVNVoVrrUbdJsFtlvJUVh5zUGSppCDKi7jFHABgmUlLsbQORSII1XhQ1aLYfM8olZWcngMbsbpv1GrH4ZVFSFYvwK/IJfKi1ba7AVlJkRB2xBamYxmsZXQkc0bJpEE3hkI+RGtkNAFFWal8hjTg7Tbo3YQwDgD2jYRxcEcU33nhQv2dPYJTF15N60XPYQuMg1u2UlFW8vYqzk1WAmCns66mdfQHtYbjL+XwB2QyZzgC0qWew3IqB4kUBwh5ZX5IVjdLZBvAii/VK4LTmTfGJbWxPj9mYmnMsLTqep7DzRcP45ZLt9Xcpxc8B6NgwvRwE0FhHBjvvHIHnp9exXzcGzduPZzphrF03l6pKjUqpDdKUGUB6bzVJyidL7BsJeJ545Dy/y3hAAAgAElEQVRj+jhnmOndPJ11LeNeHd0o3HNI5nTbcyiYtKTdyEoqj6CmYDRipdMuJLxRcMlHhDqxYg71PQdVlnDbgW34xDsuxW/ctBdZ3cTz06sASlvCu/GBG3fjM79yqOY+tdpndEu20vv/5jA+/W/1Z3a3C2EcGLzJmrOa1cs4deFYOg9jC2Ulv2b9zIxesLuw8lRWzxsHvVDSYJB7Dk++tozlZA6xlI7+OgHUWoRLZKXShnT8965mdAS1Yqv08pbh7SJnmBXNF4NVPAejYOKWv/h3PPD0OTuOMxr14zdv3oc9bDb0k6eXAQDjdWSlRnArglPZnIdukZVOLyZxdsk72Wvl9HydA4fLMYbHNXSOs/ho1RHg3ApZSWM3ZTpvlBiHlVQeeoGCUrphWWarKQ9Ih3wKbtgziH967jweOToHnyLhml2DG/75ERaQjjtiDoAVE4r4VeSSOVBqSXN+VUbUr3jGO3X1HKrEHF46v4bTSykcn09UxHH4ZMGnXltGUJM3XFDoJKjJIAQI+kofUT5F6hpZKZ41PD1+VxgHBpdjvL4S5qTLZCWeNbMVshIhBEHVmgbHjUM0UOzNpBcoNMWjxsEw4SszmF//zRtxbDaO/+3rz+PVucSmZCVeyLWWzpdU7iayOqIBxe4AG2S1IqNRPxbi3vAcsoZZ0tgOqJ6t9NPXLK8gkTWQL5j29QYUZaTlVB77R8NNWSi855oJ7BkOlfwewJKWusFz4KNkvWwchKzEUKXig64TSOYKtn5uBaS3TlYCrIylrF6wO4zymAMAGKZ3DWp5QJpz2VgUD9z9erztslF7zsNG8ClWG5HVtBVz4GUmiZxhexVAMag/GvF5KCBdgL9CVnKPOTzJjEMya1R4Dn7HdMF6mUqN0h/UcOtllUFrvyJ1RRFceSdfLyKMA4OvuL2et89J5w0MBDUEVBmxVH5Ls5UAyzg4PYe+gAqFG1TDuwa1XFZy0h/U8Dd3XYc7rhp3/X6j9AdUxNI6MnrBnmNgxRxk+3dzecQyDt7wHHJ6ocJzCGky0nqhJIsmZxTwsymri34yZ9jZSk54JlYz4g218KlyV/RW4rJw+YRFLyGMA4OvgnUPp5Y5SeYMhHwKBoLWg6loHLZG3gkwWSluy0qqXXCX97BBLV/lbgX9QQ2r6TyyesGu+k1mDagKsVfmvG/RaNSPhUTOE1XSOcOs9Bx8CigtrSV47twqcuxzTOQMO1vJySQzCvUylTaLT5E8vdpuFN6sUchKHUAxIO3dB52TdL6AkE9Gf1DDWiZv59XXmgS3GYJMVnJ6DloHxGmqyUrNZCCkIpbOI6ub9nSzVL4ATZYqOp6ORnzIGybimdrpoq2gWiorUCyyBICnTi9DIsANeweRzOqun+kk9xzq1DhsFr8qd5Vx8PJ7EQFphtJhMYdUzsBQKAhKrSpfw9z6mAOXlfyqBJ8i2wbVq8bBNCkMk265cegPaDi7bOX4O/sFqQ7jwGclcG1+IZGt2ZV0K3nw+fPQC9S1CI4Hzp1yx8vn49g7EsZ4fwAn5hMouHym3Dg0K+ZQDZ8idYWslGCztr0sKwnjwFA7YBXsJJW3ZCVVlnBsLm7PD9g6WUnBSipTMhje68aBy11bbhyCqp2e6uw0qimS/fDlAelt0WIh3P5tkS09r2rc/+RZrKTyyBqVngM/T2cF/isX1nDt7kFr6l3WgCyRikXIOy7fjlgqjysntnYmil+V7WaTnYwdc9ALnk0FF8aBweUYL2feOEnlLFmJZ8roBROEYMvmYAftbCXDfgBy45D3aECarzC3Puag2h6n03OwjAOTlbRiQBpobwuNjF7A1HIKskQqi+B8fBoca+yYyuPCWhYHd0SR0QuWXKZIFQY34lfxmzfXnrfdDPxqd2QrcVnJpNYixqdsrLfXViJiDgze6rqTZKWQpmCABUNzBROqJG3ZCiSoyXYRHH8A8toGrxpUHocpfwA2mwFHR1fn6EtNluzfbaeycs+hjbUOGb0Ak1rXer2YwyuzcQDAwR19ds1BK4L81fAp3VHnwGUlAMjmvXn/COPA4CuhTqiQNgomcoaJoKZgIKTBpFaX0a2SlADLnecxB24cinEab17crZOVHMbBMeimxHNgAemwzxp20850VqfOXSkrlXoORy9Yc04O7IiWjP/cqpTpevjV7qiQTjhqSdJ6+5MT3BDGgcE9B6+ugp3w3jchn2wXws2uZbZklgMnqMnI5AuIOYa5eF1W4p7D1geki95CpefAZSVn8z+fXTndDpzpk+VeVchX5jlciGOsz4/BkFbSonurP9NqdEuFdMIxQc+rQWlhHBiK/aDrAOPAVh0hn2I3kptdy9or+a0gqMkwTIrZtSwuHbMCqVxW8qznYMtKW6vnDoSKD82SbKWSgHRx1R32KSVddVuN82Hk1j4DKAakj16I4+COKACUjP9sq3HwcPpnozjHq3q11kEEpBnFVhDeXAU74S5/iXFYzTal4Vk13rR/BM+dW8V7rpnAbQe3A+iAbKUWBaT7AtVjDuWprIBlHJJtMg6mSUtSQcuL4JyT7fKGidcWk7j98u0l3wNg17i0Gp7K6tUMn0YpiTkI4+BtOqkILslc/pBWlJUyegGjim/LfudVk/2479euK9nmeeNQsD6nLS+CcxjlaqmsAYesFPLJWEq2Jx2Tr1K5gSqPOfhVqwNvKmcgntVh0mKGVXk8pR34VRnUwxk+jZLMGWweCkVGBKS9TSdlK6UdstJAULPTV1sdJLRjDh79zHItijk4paS+gHN1XYw5cC3fet0+WYkbhyvG+wBUBqQJIXY9A9fFuZzkBVmJx0g6PZ01kTUwwrx+r8pKwjgwCCFQJNIRAWkuSYQ0BZJEMBiyvAdli2ocqqF5zNuaXknj5j9/HEdYk7hWGQdFluxMnpBPsY11SRGc6g1Ziccbbrl0FG++eMQ2Ek7CPgWJnGHr4hEWiHbKSu3KVuIxklyHB6UTWQMjLK1ZGIcOQGFuntdJO7KVgOJ0s1av5rw2A+Pe75/A2eU0vvLkWQCtizkAxVoHvyLbv0+VJfiV0lRWgE1ba7PnsKM/gK9+6Hps7/NX7MMD5lwX5x6DM27SrjoHHiPp9HTWRFa3PYesyFbyPqrk/bGXgMNzYCs5HnfoFVlpIZHF3V89UtJG4dRCAt9+7jzCPgXfOzqHOGsQB2x9ERwAe2CQXy226dYUCTuHghgMaSU1AmGfjFS+0Jbh8txzCGjVP5Ow3/JseC4+P3dJIrb30C5ZiWdT8QaQnQilFMmcgdGokJU6BlWROqIIzpmtBMBegWxlEZwbfPWotzj999mzMXzvlXl7AA0AfPGJM/CrMj77vquQM0w8/NJsy+ocgGIhnM/RWkJTJPzSoR146hO3lgRP+d+tHQ8F/jvLYw1OymMOEUd9g20c2uQ5vG6X1bvpRyeX2vL7m0E6XygJ9Avj0AF0TszBupj4jIDhCDcOLfYc2lTnwGdmn1pI2tumY2kcGIvirZeMYu9ICP/07PmWVUgDViGcT5EgOZrSaTIBIaTi93Pj0A5piT+IArWMg5/HHKzPucTr8bfXcxjrC+CK8T48+spcW35/M+BGl8vBogiuA1BlqSNiDnNrGYxEfJBY4LPdslKrjUOMGYeTDuOQyBqI+BUQQnDDnkG8tphqacxhcjBgt+P2OTwHN5y1BK2GP4icRXnlhDUecyjNVgLQdlkJAH7uwDY8N72KRY9M1FsvyVxxYJZflYTn0AlYAWnvew7nVtL2WEaguAJptazEs6NaHXNYzVixBqfnEM/q9ojOqF9FwhFzaMWD7KNv3Y9vfeQNJb9Pk91X50XPoQ2yUr4xzyGZNVgdhFSy6OBeRLuylQDLOFAK/ODV+badw2aI23KdgqCmCM+hE1Ak0hExh+mVDHa5GIetmgJXDUIsCaXVqayrKWvl9dpiEgUW1OWeA2A9wHKGaQdUW2EcAppsz2rgnkM1Y82zzNriOfCYQ62AtE9BijVZdPZTAorGoZ2ew6XbIxjvD+CHJxbbdg6bwU4R9isIqLLwHDoBS1bytueQN0xcWMvYk7cARyprG1Zz7fC2uOeQM0ycj2VAKUXC6TmworRl1tyu1Z+L1qCs1JaYQwOeAzcA8/FsSbwBaH9AGrAWJReNhjETy7TtHDaDU67raFmJEPIlQsgCIeRlx7ZBQsijhJCT7N8Bx/c+QQg5RQg5Tgi5zbH9GkLIS+x7nyWsMQohxEcI+TrbfpgQsru5b7FxVFnyfG+lmVgalKJUVorwmEPre820I04TS+v2w+3kQgI5w4ReoPb8Zv5AW07moclbN+OiGvWMgy0r5T0akGbnN7vmZhz4LI/2riu3RX329L1Og6fhRvwqAprc0XUOXwZwe9m2jwN4jFK6H8Bj7P8ghBwAcCeAg+yYzxFC+FX4eQB3A9jPvvjP/DCAGKX0IgD3Avj0Rt/MZumEmMO5lTQAYOdQ0TgMBjUQ0h4dWJUlOyuoVayldVw1aaU0nlxIIp4t3mxAsb/RUjLXkhqHcorZSh4MSOsFaLJUU4IMOYyDsyoacGQrtdFzAKxxq4uJnC0rdhKzaxlIxEpl5bLScjKHtbS3ajfq/oUppU8AWCnbfAeAr7DXXwHwLsf2ByilOUrpGQCnAFxPCBkDEKWUPkkppQC+WnYM/1nfBHArafVSj9EJRXDT3Dg4PAdFlnDFeB/2DIdafj6aTFpe5xBL57FzMIjRiA+nFpK2m84bw9myUirflhUur2mo6zm0SVbiLT2qwQ3AWkav8Bx2DwUR9SslFd/tYDTqZ0OuOi9j6Xwsg7G+gFVBz4zD3fc/g//j2y+1+9RK2GhX1m2U0lkAoJTOEkJG2fZxAE859pth23T2unw7P2aa/SyDELIGYAhAy6tcFJl4fp7DuZU0fIpkF9BwHvrom9pyPqrSWoNKKcVqRkd/SMXekRCmllKIZ0rz8fm/S4lcSRpmq9DsgLT7Q5jXpyTblK3k7BDrRsTnTF0tDUi/66pxvP3g9rZ3RN3Grv/5eM4evdopzMQyGB8IALDkvYV4DmdXUp5bmDZ7WeW24qc1ttc6pvKHE3I3IeQIIeTI4mLzMxVUWYLeBjf13kdP4LOPnWxoX57G6pVe9q2OOWT0AvKGif6AhpGIH0vJXLGSt0xWSuSMtngO9WIOkkQQ0mS7u24ryeiFmvEGoLSuodxzcLbQaCc8M8xLcYeFRLahligzsTQmuHHQZEwtp5DVTSy3qY17NTZ658wzqQjs3wW2fQbApGO/CQAX2PYJl+0lxxBCFAB9qJSxAACU0i9QSq+llF47MjKywVOvjiqTtnQY/ccj0/hegxWf51YyJZJSu2l1hhevju4PqhgOa1hK5h2ykmUUnA+0dmjj9YwDAAR9StsC0oEaBXBAaYO9cuPgFWzjkPCGcVhN53HTpx/Hv740W3M/vWBiLp7FRH/Rc+DdgxeTOViquzfY6J3zEIC72Ou7ADzo2H4ny0DaAyvw/DSToBKEkNezeMIHy47hP+s9AH5A2/QJKVLreyutpXVcWMtipYFVA6UU0yvpkjTWdqO2OIjPjcNAUMVw2IdkzsAie0BEHN1DeffytngOdQLSAG/b3XpZKasXEKgTc4jU8By8wnBYg0QsWckLzMQyVmr1au302rm1LEwKTAxY97Czx1XeMNvWyt2Nun95Qsg/AHgLgGFCyAyAPwLwZwC+QQj5MIBzAN4LAJTSo4SQbwB4BYAB4B5KKb8DPgIr8ykA4GH2BQD3AbifEHIKlsdwZ1Pe2QZoR7bSsbk4ACt4Wm/04fnVDJI5A3tHWh94rkarZSXeibUvoGEkbN1IU8tWkL68e2g82x5ZyW6fUTMjSG5LQDrdQMwhVCPm4BUUWcJw2IcFj8hKvJWHcza0G9Mx61p1ykpOlpJ5Wx5tN3WNA6X0fVW+dWuV/T8J4JMu248AuNxlexbMuLQbK+bQWuPw6qxlHHKGiXS+UHJjlnP4tKW2Xbd7sCXn1giqTFqayrrKgs8DIRUZ3arveG0xCUJK5ZBoQLWMQxtkpQM7ojg02W/3vnIjpLVn4E8mX6g7a9zKopGQ1c22BPQbZVvUjzmPGIcF5r3W+5vywj3uOZTHf5aTubZkHbohKqQdWDGHza+Cnzm7gliqseDSq3MJ+/VKlWP4APKnz6ygL6Dikm2RTZ9js2h1zCHGPIf+gIahkJWxcmYphbBPKXkY89VXOzyHO64ax4P3vLHmPnygzkf+7hl88l9fadGZMVmpTswBKNZieFVWAnghnDdkJe45JKp4DmsZHT88sYjzsQwIgT1kiRsHfk+3a7a4G8I4OFCaIJEYBRPv++JhfPmnUw3tf2w2bo+VdDMO51czeN2fPIoHnj6Hw2eWcd3uwZor0lajtTMgzdIZz69m7GA0h9c8tKMIrhFCPgWxVB6PHVvAizNrLfu96Xz9mAPgMA4eyEyqxmjU7xlZaYHLSjn3Qrb7fnwGd33paTz4/Hlsj/rtRYufyUrX77HUgCUP1W14885pE2oT5jmspPLIG2ZDk6oKJsXx+QQOTfTZxwJW4Pmbz8wgntXxtafOIp0v4FMPv4qp5TRev9c7khLAPAejtTEHv2oVDw2x2dmUVq5w2+k5NELIp+DCWhb5QmPXSrNoJJUVKKazekX/dmNbxI9ldr+1GzvmUEVWOnzaGkw1tVxMYwWKnsO1u60ORF5KZ/XmndMmFFnadLUvX0FkG2imxfOb33jRMAArKA0AL5+P47/+4wv42APP4+s/m8b+0bD9ALlhz9Cmzq/ZqEpr4zSrab04r1mVbaNQ4TkEvNHmoRphR4VxvMXGwV8nIA0UPQdvxxwsz3HRA6vthRoB6ZxRwPPTq7h8PAoAGO8vGocdfX7IEsGhiX70B1XhOXgVRSabLoLjf9x0A820Xp214g1v2GcZBx6nOL1kzSn4wasLWE7l8d9+8QDefmAbBoIqLhvzTrwBsLyt1sYcdPQFioaAj0gt9xyiHeA5cFrlORRMirxhIqh2ScyB6fZza+3vzsoD0gkXz+GlmTXkDBMffet+/J+/cBk+cONu+3s37hvCTz9+C3YPhzAU0rCc8o5x8O5fvg00YzYBdy8bacPL4w1X7+yHKhPbczi9mAIhwDuv3IGZWBpv3DeM1+0cwEoq3/KZDfVolaz0wvQqPnDfYegFikOTffb24bAPp5dSLsaBxxza2+ahGs4q41S+AL1gNqVx4l//8DVcOdFnLzg4x2bjdpO6QI1ZDuXnF2ogeN0ueDHo2eU0rtnVPrmVUlozIP30FM8yHMDtl28v+R4hxC7oGw77sJTwjqzk3b98G1AkCSYFTJNuOOjLXdxGpju9OhfH3uEQ/KqMwZCGFbZqOLOUwsRAAP/jfVfb5xLyKTXTXNuFqrTGczg+l0A8a2DXUBBvdDz4htiI1HJtvBNiDgCwayiIs8tpxDM6hsK+OkfV53/+4BTeeNFQhXH43W+8gATrXttIzCEaUBHxK3ayhBeZHAhCIsDUUqqt55HIGcjqJhSJuMpKPzuzgotGw3X/vsNhn1335AW8eee0CYXNQ9iMhs5XEOkGWiMcm03gsjFLhxwIanZA+sxSCnuGwwDgqcwkN1rVspu35f7Ob78Jv33rfns7H3TEYwwcO+bgUePA4ya3XroNQLF+YzNQSpHKGzh6ofIBM7OStnPs/Q0Yhw+9cQ/u/ZWrNn1OW4mmSBgfCOAMK4JsF/ye3zkYREYvlKgPecPEkalYQ7VJw2FNBKS9Ch+Ws5l01qKsVPuBuZbRcX41g0tZDGEobBkHSinOLKWw1yOFMPVoVSprPGuAECBcJnMM2zGHKp6Dx2Q4zi2XjuL+D1+Pm/ZbK/xmxB1yhglKrUIr52yARFYv0cKDDUhFu4dDeNuBbZs+p61m91Co7Z7DAqu14J0LnLPBnzixiETOwM8dGHU91slQ2Ie1jO6J7CtAGIcSFMn6ODYTd1iyZaXansNxVvzGPYfBkA8rqTyWknkkc4ZnqiTr0ar2GYmsXlHoBhSn4HVaQFpTJNy0f8SePdEM4+Bsx/HKbNF7mFsrrQVoJObQKewZtoxDOxvW8WA0v2cTjlqHbz9/HgNBFTftr98olC90qhXDtpruuUqagMoeJM3xHGrHHI6xm/ey7ZZxsDIV8jjDVkG7O8g4FEzaUKvizRDPGBXpqkAtz8HbRXAcnnnVjHRWZ4bc0QvFwrpZZhyuY7n0jchKncLuoRASOaOtD1R+z+8dsaRgXuuQzBn4/rF5/MKVYw0lG/D4Gf957cbbd06LUdmqdDOFcMWYQ23j8OpcHANB1c7VHghqSGQNnJi3PIpOkZVUZfNxmkZIZCunkgHWwwEAxvtLB77wFblXPQdOXxM9B+c194oj7jDLUj0/est+XLo9govYQ6wb4Kv1qeX2SUuLiRw0RcIOVr/Ag9KPvjKHrG7iXVeN1zrcZh+TpbwSlPb2ndNieJroRvsrZfUC4lkDEqmfrXRsNoFLt0ftLqyDbNXw7NkYNLl4oXkdVdq8t9UI8azu6jlcsj2CJ37/rRWpjGN9fhya7MfBHX0Vx3gJ2zg0YX4wT4LQFKlEVrqwmgUhwI17h/DIx97ccZPTasE97DNL7QtKLyZyGAn77MULj++8fD4OvyrhdTsHGvo5e4fD6AuoePZsbMvOdT0I4+CAB6Q3mn3D6xTG+gIwTFo1UFswKY7PJexgNAC7FcSjr8xj70jI0ymETuwg/hYH0RJZo2pB1s6hyvkWflXGg/e8EdfsauzGbBeaIiGgyk31HA5N9OHkQtI2FnNrWQyHfZ73ojbCxEAAskTaGpReSuUxHNbs2hruOSwlcxiJ+BrOOJQkgmt2DeCIMA7eQ92k58AlpV3sYVVNWjq3kkZGL9jBaKBoHAKajE/+8hUb+v3toBin2XrjEA14t8/PZugLqE01Dr9wxRgKJsVffu8EAODCWgY7+rrHW3CiyhImBwI400ZZaTmZw1DYZ8++SDiMw/A6a1eu2TWAUwtJe25JOxHGwYEi8VTWjT3oyo1DNWmpPBgNWDMaPvXuK/Dd37nJ86tdJ9ygbnWtQ7xKzKEbaJ5xsB5Kb9o/gg+8fhfu+8kZPH1mBXNrWbtFdDeyoz9QkZHVTGbXMnjP539aNVC8nMxjKKTZfah4Z9alRH5DxgEAnj3Xfu9BGAcHtuewwcwbfvHwMZ7VMpZenY1DIsD+bcXAoCQRvO/6neu+mNoNryPYypgDpbSmrNTpNNtzCGoyPv6OS7GjL4BPP/IqZteyGOvrjBjWRgix2RhbxSsX4jhyNoaXz1e2VqeUYjlleQ5BVQYhpbLSeu/nQxP9UCSCI1PCOHgKXiG90ToH2zgMcFnJ/YI9NpfA3pFwV6QU8sD51382vWW/I6MXUDCpa0C6G4g22TiENKvVyq+/cTeeORtDMmdgrIs9h5AmN9TocqPwRZ6b5xDPGtAL1JppLRGENQWJnAGjYGIlnccISzRplIAm47KxaEtnfFRDGAcHvAhuoxLJ7FoGw2GfrY1Xa9t9bDZeEm/oZK7fM4j3Xb8Tf/3D1/DYsfkt+R3xjGVkvTxbYDP0BdTm1Dmw1TOfS/yeaybsOo+xDsl+2whBn7KlxiHLuh24tQZfZtt4jULYryCZNbCSzoNS2AOp1sO2qM+eeNhOhHFwoCncc9iYRDIdswZ5BNnN6XbBxrM6ZmIZXLrdW623N8Mf/eIBjPcH8LXD57bk5/OGcUJWqk1aL0CViZ2V1B/U8IuHdgBAV3sOQVVuqJfZRuGeg9usBZ6hyEfWhn3WbHDeXXUjMnHI15754uV05922Qez2GRss6JqJZXDFeJ/d9bLcOBy9sIZvP3ceAHCgSzwHwEob3T0cbMoDLpbK48jZGH7O0deHN93r1myl/qDalLbd6ZxR0XH1t96yD6mcgYM7uud6K4d7DpvpplyLXA1ZydVzyBm2IdmIcQhvcQylUYTn4EDZROO9gklxYTWDiYGg7daXy0q/9bVn8cUfncHOwSCumuzf/Al7iIivOdLI149M4ze+eqRklRbPclmpO9cyzWqhkc4XKtq67x0J4/P/6ZqGmu11KiF+vxlbIy3xrEM3z2EpWeohRPwqElnDNiQjG5CVwj7FdS5EqxHGwcFm6hwWElnoBYrJQXdZiVKKubUs/vOb9uCJP3grBkLrC1R5nWhAsVf4m2EpUZxpweE3SrTLjcNmPa90vmAvTHoJfr85u6E2E250uCGYjxfTZnmLbd6CPeIr9xzWf5+HfQpyhtnSCYtuCOPgYDN1DrxX/sRA0FVWSucLyBnmhgJUnUCUrZg2S4y1kXAaB76i7tZspeYZB8PTk9u2Cu4VbVXcIZNnAelEDsdm47jhTx/DZ753HACwnMqhL6DacZ6wzwpILyVz8ClSycS/RuHeX7ulpd67kmqgyhuv9p2JWb1dJgYCrrIS7xo52GUeAycaUJFugm7OszSmXDyHbs1WitjFU5t7GKR61HMI+aongDQD7jmsZXS7tcX/+MEpjER8VgGcwzvYFvVhMZnD6cUUhsM+u3faegg7rof+YPueF8JzcLCZIriZFctzGO8PQJMlSKR0JVPMauhS48Cbjm3Se+DGoVRW0qHKBH61Oy9XvlJ0GzG5HjL5gq2/9xLN8BzOLKWqem5Zh9F56rVl+FUJb7poGH/56AnMx7MYDhXVgFsu24aCSfHvJxY3rBJwb6PdGUvdebdtkM0Uwc3EMhiJ+OBXZRBCENQU2x0FnFkNXSorNSmouuomK2V1RPzqhlZhnQB/GCQ27TkYXR14rkYzYg7v+8JTuPfRE67fcwa6nzy9jItGw3j/DTuxmtbx3PRqiedw5Xgfxvr8KJh03QVwHK/ISsI4ONhM++mZVavGgRPQZGT0XvIcmHHYZFCay29nl9P2AKFubp0BFGWlzT4MMvmC/aDsJYqew8aMg14wMRfP4nSVzq6ZfAE8Q3YllcfFoxHctH8YqkxQMGmJcakawDAAABrFSURBVJAkgtsObgewsTRWwLFYaHPGkjAODoqprBvzHCYGiq2jA2ppSX8vxByAYjXzRjAKJuJZHcNhDRm9gHk2fjGecZ/l0C00S1ZK96hxKMYcNvb5xdi9ObPiPhMiq5slvan2b4sg4lfx+r1DAIoFcJxmGYetyr5qFGEcHGw05lCscSheQEFNLunKupLKw6dIXXvz8tXvZjyHtYwOSoGr2XAULi11u+egyhJ8irRpjTmdNxDcQHZMp8OD8KkNeg48RXVmNeM67jajFzDuuLcvZg0zeaFmebrqdbsH8J5rJnDrZaMbOp/y7q7tQhgHB+oGPYfXFpPQCxT7HOMX/apc0pWVd2jsVt2cew6JTRgHnsbKJ2dNsele3W4cAMu4bibmkDdM6AWKYBc0c1wvPH03s0HPgXv1ecPEUjKH+5+cwg9PLNrfz+oF9AdURJjhvXib1frmtoPbMd4fwOXjpdMGFVnCX7z3kL3IWS9hzRuyUnffceuEEAJZIusugnuO9V6/emex6jmoVcpK3SopAcVspc3ISnzAyWVjEfgUCa8tJmEyr+z6PYN1ju5sNtsygXupPek5qJsLSC+nipXPU8tp/Ol3X8UNewdx88UjACzjENBkDEd8MEyKcdbEcFvUj598/JZNnn0lXCZrt6zUe1dSHRSJQF9nb6Xnzq2iL6BiL5tnC1jGYdUxF7jbjUNIUyCRzclKfAU3HPbhivE+PHsuhpMLSSRyRonh7UZ4N8+NkmbJD90qW9ZCkgiL8W3s8+OyEgD8+/EFZPRCSbZcVjfhV2SM9wcwEFS3pH+TE0WW4FelzpaVCCFThJCXCCHPE0KOsG2DhJBHCSEn2b8Djv0/QQg5RQg5Tgi5zbH9GvZzThFCPkvaqL2osgTdWJ/n8Oy5GK7e2V8iGZXLSnxaVLciSQQR/+b6K3Fj2h9Ucf2eQbw0s4YfnbTc+06ajrcRwr7NyUp8ldmLxgGwVtsbzVZaSeXsbKSHX54DAEyvpJFnc9EzzHP41LuvwP/7H69uyvnWI+xTkeyCgPRbKaVXUUqvZf//OIDHKKX7ATzG/g9CyAEAdwI4COB2AJ8jhPAr+fMA7gawn33d3oTz2hCqTNbVlTWe1XFyIYmrJ0sfXuUB6eVUrqs9B4D3V9r4A24lXexTc8PeIRgmxd/+ZApDIQ07B4N1ju5seNuFjWLLSj1Y5wBY73ujxmE5aY3zHA5rtsdgUqsFP2DJSj5VwuRgEDuHWnMdhn1yVxbB3QHgK+z1VwC8y7H9AUppjlJ6BsApANcTQsYARCmlT1JKKYCvOo5pOYosravO4cXpNVAKvG5XqezhdHPTeQNZ3ezaAjhOdJOeQyydh8Yyuq7ZNQBZIji/msHrdg10bSCfE95kD/8Uu9Z6sUIasBZjG43ZLCXzGAr7MM5S0Xnyw5nFFEyTImeYFa3Qt5qwv/1tuzdrHCiA7xFCniGE3M22baOUzgIA+5fnc40DcM6SnGHbxtnr8u1tQZXIuiqknzsXAyHAobIW3AFNsWUl3rmxm2UlwLqpNhNziKXyGAhaldBhn2JngXS7pARs/mHAPYde7K0EME+9yuTFeiynchgKaXYq+u2sTuHMUgo5Ji21eqRvSNucJ9kMNmsc3kgpfR2AdwC4hxDy5hr7ui39aI3tlT+AkLsJIUcIIUcWFxfddtk0iiytq85hOpbGaMRXUaQV1GToBQq9YHZ9ARzH8hwav6BNk+KPHzqKoxesebmxtG63PgaAG1iGUk8YB5+6qZiDPT+6B7OVAOt9b9S4rqSs5nl89vtNF49gIKjizHLKNjit9hwi/vZPg9uUcaCUXmD/LgD4ZwDXA5hnUhHYvwts9xkAk47DJwBcYNsnXLa7/b4vUEqvpZReOzIysplTr4oik3XNkF4te6BxBoKWsVhK5uxUucEN9lrpFKIBdV11DkupHL780yl876g1e3o1nS/5LH/l2km895oJHJro7kwlwNKY84aJ3AYH1nBZqdUPMa9Qnjq+HpaTVibhvpEQCAGunuzHnuEQziym7M7KrW766IVRoRt+x4SQECEkwl8DeDuAlwE8BOAutttdAB5krx8CcCchxEcI2QMr8Pw0k54ShJDXsyylDzqOaTmaLK1LVlrN6HY/fif7WaHMifmknSrX7bJS1K+uKyDN5+zy+oaVVB4DoeJnedFoGH/+3kN2r/xuZrMtEzI97jlsNCCd1QtI5gwMh31419Xj+M5H34TJwSD2DIdxZqnoObRaVvLCqNDNXEnbAPwzCxQqAP6eUvoIIeRnAL5BCPkwgHMA3gsAlNKjhJBvAHgFgAHgHkop/2t+BMCXAQQAPMy+2sJAUCvJe67HWlrH7uHKDAZeRXlyPoHZtSx8ioQd/YGK/bqJaMBa7RgFE0oDMx0WWafaFZbCuprW29q/vp2EmSyZyhkbkh95GvBGhst0A5bnsP6H6YqjIaYqS3aca89wEN96Nmv3XWqHcdhsl97NsuEriVJ6GsAhl+3LAG6tcswnAXzSZfsRAJdv9Fyaye7hIB59Zb7h/VczefQHKmWPwZCG4bAPx+cSmFpO4eCO6KaG4HQCPO7S6JASPhJ0NZ2HaVLE0nkM9qpx2GQnzrl4FsNhrSe8LDesmMP6PQeeLFJukHcNWQWtx+cTAFov14V9CvKGibxhtu1v2ptXUg12DYWwlMw3rJ1bq133jqEXbwvj2FwcL5+P48oe0M3X25mVz9ldSeWxks7DpBubudsNbHYa3NxaBtui/maeUkcRYEWnbo3zarGUcp+zsr3P+izPLVu1Di3PVvLATAdhHMrYzYpczi67t+91ktWtudB9VY1DBC+fjyOjF3Boss91n26C91dqdBYyNw6rad1+PRLpzQec3bZ7gy0T5uI5jPX15mcHFPsRNZrOSinFr/7NU/iTf3kFQOWiZJRNcTvH2ni3o84BaO80OGEcyuDuZCPGwW73EHBf7fK4A4Ce8Bx4TIVXltZjMVH0HPjrkQ2OVux0iqMhNxaQnlvL2KvdXoRXhqcajDvMx3P4yallTC2lEFDliutulC1SztqeQ2sflV4YFSqMQxm7mOcwtew+FcrJasbSK6vJSpdst1p4R/wK9gyFXPfpJi4aDYMQ4PicpdPOrmVq7s8D/xm9gJmYtW/Py0obiDlk9QJiaR3be1hW4j2lMg1mLPFYwn2/dh0e+72bK9qOBDQZEb9iew7tCEgDwjh4iqCmYDTiw9lGjIPtObgbh4tGLc/hyom+Le/k6AX8qozdQyGcXEjgxZlV3PipH+D7NYL7XEoCgBPsZu11zyGWzuOrT07hhelVWN1kqvPg8+fx7s/9BLNr1sS87X3dnQ1XC9tzaNDzOsmut0MT/VWzCEcjPvvh3HLj4OcJCu3rzNqbeW912DUUxNQ6ZKVqMYe+gIpbLh3F2y7b1tTz8zL7R8M4PpfAj04uAQD+7vBZvO2A+/tfSlrNCFdSeZycT8KnSD2dikkI8K1nZ3B60VqY3HHVDvzVndW7gP7o5BKePbeKp04vA4CIOaDxUaHH5xIYDms104ZHI368xv4WrZaVhtno0eV1pNU3G+E5uLBrKNSQ57Bmy0rVL7Av/dp1eP8NO5t2bl7nku0RTC2n7VbbT5xYxIXVSnnJKJhYTuWxf9SS3k7MJzAS6d5JefUghCCsKTi9mMJQSMMb9g3h+enVmsdMsQ6iPPW6l7OVeEB/Pp6rs6fFiYVkSUzQjdFo0YtttecwHLGeKYvJxt7PViCMgwu7h4KYj+fqrkLqyUq9yMXbIiiYFE+dXsHNF4/ApMA3n5mp2G8lnQelwH42j3chketZSYnDpYSfO7AN+0bCdTvccu/2x6csL62XA9IHd0Qx3h/AF554ra4cZ5oUJ+cT9Y0Dux4VibS8RimoKQhpsp2o0Q6EcXCBZywdm03U3C+W1qHKpGcHrLhxyfbiDfcfrpnADXsG8QgboOKEt85w3qDDXd7SvB5cUnv7wW3oC1itSKo96BLZYvpv3jAR8Sk9K8kBgE+R8Ttv248XZtbwvTpFrOdXM0jnC/bCpBo8Y6ld/apGIr51dWtoNsI4uPCmi4bRH1Txp989VrOoZi2TR19A61kpxI3dQyGosvV5XL97EJduj7imtvIH20WjxRtUeA7WavEN+4YRDSgomBSpKtk3PMWSZyj1stfAeffV49g7EsIXnjhdcz+e/HBJg7KSr43GYTGRbcvvBoRxcGUgpOH/+oUDeOZsDF87fLbqfrWqo3sVTZGwdziMXUNBbO/zY3wggETWqJjzwN3lsb4AImzF2+uew89fPoaPvGUf/KpstyKpJi3xVOt3XjkGQBgHwGq3/+b9Izg+l6jqcX3nhQv47GMnAQD7R2sbB75YCWjteUwOh31CVvIi737dOK6c6MM3nz1vb1tM5HDt//N9/PQ1S+NdTesi3uDC//6OS/Df3nkAADDeb9WNnI+VBqWLFdE+DLCMkV73HH7jzXvx0Vv2A3C0IqmSysiD0e88tAMAerrGwcmuoSCSOQPLqUo5JpHV8dv/8BwWEzn8/m2XVM0y5PAAv19pp+cgjIPnIITgsu3RkkybY7NxLCVz+PJPpgBY7bqF51DJLZduw60sfXecTdcqNw4LiRz8qoSQJtuzL0Z63HNwUvQc3JMippbT2Bb14fIdUezo89vdRHud3cO8w0FltiHX7//rbZfgnrdeVPdnjdqeQ5uMQ9iHeNbY8IyPzSKMQw129AewmMjZAz+4dv6DVxewlMxhLW3FHATV2dFvrb7Ol6WzvjSzhku2RUAIsVOBRyLis+TwGSHV+lRNLaWweygERZbwxB+8FR+8cVcrT8+z7GbJJGeWKuNcy0n3JnvVCPsUBFS5rZ4DgLYFpYVxqAF/sM2xCtTplQwIAQyT4tvPnReeQwMMh3zQFKnEA8sZBTw/s4rrdltjQHkh0khYSCOcaMCKw9SKOfAHoSJLIimCMTEQgCyRmp5Do0O3CCEYjfrgb5fnwIxDu6Sl3s19awAuiVxYzWD3cAjTsTR2DgbRH1DxxR+dRjpfsCURgTuSRDDeH8CMwzi8OLOGvGHiOjYjmhvYYeE52NiykkvM4R+PTGMpmcfF22sHVHsRVZYwMRBw7XDAx/WuJ/Hhrht3l0wnbCX8PJeEcfAe46znCn+wzaykMTkQxO/fdgn+ywPPAQAGQ0Inr8d4fwDnYxksJqx52k+fWQEA23N4+4HtyBtmRfOzXiZSpf35Iy/P4Q++9SJu2j+MX+2hyvv1sGsoZAfsnVQb7FOLD71pT9POa73YnkObqqTF3ViD7X1+EAJbEpmOZXDbwT4cmuzHv33szfi3o3M91Tdpo+zo9+Px44v4L//wHJ45G8PEQAD7R8P2TXrjviHcuG+ozWfpLRTZ6jNVHpD+/L+fwr6RML74wWtb3tKhU9g9FMRz52KglJbIbcvJHKJ+pWOm5Q2xDsXtkpU641NqEz5FxkjYhwurGaRyBlZSeUwOWt6EX5Vxx1XjPTvQfT2M9wexmMjhydPLKFCK00spW1ISVCfqV0pkpdOLSbwws4ZfuXZCGIYa7B4KIZE1EEuXel1LqXxH1dL4FBn9QVUYB6+yoz+AC6tZO1NpciDY5jPqPHjsRpYI7v/Q9ZgcDOC2g9vbfFbeJxpQSwLS337+AggBfunQeBvPyvvsHrbu0TNl0tJyMmevxjuFkbCvpLV9KxHGoQ7jAwGcX81gesWSliYHhXFYLzx287bLRvGGi4bxoz+4BTdfPNLms/I+Ub9qxxwopXjw+fO4ce+QqIauQzGdtdQ4LCXzGOqwGOFw2IcF4Tl4k/F+yzjwiVCTA707UGWjXDYWwb6REO5+8952n0pHEWXN9wBgJpbB2eU03nG58LjqsXMwCE2W7IE+nE70HHawZI52IIxDHcb7A8gbJl6YXkVQk9eV6SCw6A9qeOz33oJrdok4w3qIBhRbVuK9lC6q0w9IYAXz946E7AZ7gDU/JJbWOyrmAAD7RkOYi2fbMi5UGIc68BGC//rSLHYPhUSxkaBlRP3FmAPvwspnnAtqc8n2CE7MJ+3/r6StNNZOm1G+b8TqWvzaQrLOns1HGIc6XDXZjysn+vD+63fir+68qt2nI+ghogEViZyBgklxbiUNTZFEg70GuXhbBOdXM/aKm9c4NNo6wyvYxmGx9cZB5GHWYSTiw0MffVO7T0PQg/D+SsmsgbPLKUwOBCBJwnNtBD5+9uR8oqT1daOtM7zCrqEgFIkI4yAQCIpEWZV0PKvj7HLanlAoqA+fSPiPz8zgH54+Z2cwdZrnoMoSdg4F8dpC/Zn2zUbISgKBR4k6OrOeW7H6egkaY3IgCL8q4e8P///t3VusXFUdx/Hvr+eUAi1taXsKLS2X1gocoIBUAbmYqCVCVUwgkcbYig+AlygPJgIh6osPECEEaoINYEBNBYNGUC4iQSLesJWGUhpKW5u2WKHF0hvh0vL3Ya8pk845pXPOntlrzvl9kp2Z2bNnnbX+2Wf+s9a+rA1EvH9aa6cdc4BiaKmKnoOTg1mmajffW7tlF2++s9cHo5swYoT2TUF79YUzGHtoN90jtC+mnWRmzxjWv76bPXvfa+vf9bCSWaZqxxyWrt8G+EylZp0xfTxbd77DtZ/+MLOnjefZf7/ekcdsZvaM5t29xUkJJ0wazS1/WM1nT5/CSUePbenfdXIwy9TMyaM5ZvxhLHl2AwDHTvAxh2bcOK+X71x0Iocd0sW82VOYl+bb7jQzUw9o9as72fHWHhY9tYbjJh7e8uTgYSWzTI3q7uKGS05mz3uBxL6bPtrBOXRk175ZBjvZKVPHMu6wkTyy4r88umIz3SPERb2tv1LePQezjF1y2tGcM2MCr+14m1EVTVdp1RrV3cXnT5/KA0s3MmH0IZz3oUmMa8MkY9n0HCR9RtJLktZIuq7q+pjlQBJ3LfwoS646p+qqWIUuP2sab+95j83b32Leae0ZHssiOUjqAn4MXAz0AvMl9VZbK7M8jBnVzVG+MnpYmz1tHLMmj6FrhJjb254JxnIZVvoYsCYi1gFI+iVwKfBipbUyM8uAJL73uV7WbdnNkW26yjuX5HAMsLHu9Sbg7IrqYmaWnQtm9XDBrPbNg5LFsBLQ18nH0bCRdJWkpZKWbtmypQ3VMjMbnnJJDpuA6XWvpwH/2X+jiFgcEXMiYk5Pj2cSMzNrlVySwz+BWZJOkHQIcAXwUMV1MjMbtrI45hAReyR9E3gc6ALuiYiVFVfLzGzYyiI5AETEI8AjVdfDzMzyGVYyM7OMODmYmVkDJwczM2ugiIbLCTqCpJ3ASwP46Dhge4lVKbu8ScDWksrKva1ll1dTVgw7ob0573+QfwyHU/yOBTYAx0XEB18LEBEduQBLB/i5xSXXo+zyBtSuDm1rqeWVHcNOaG/O+18nxHA4xQ/Y0sz2w3FY6eHMyytT7m3NOXbQGe11DPMqr2xl1u+NZjbu5GGlpRExp+p6lG2otqudHMOBc+wGJ+f4NVu3Tu45LK66Ai0yVNvVTo7hwDl2g5Nz/JqqW8f2HMzMrHU6uedgZmYt4uTQYpKmS3pK0ipJKyV9O62fIOkJSS+nxyPT+olp+12SFtWVc4Sk5XXLVkm3VdWudiorhum9+ZJWSHpe0mOSJlXRpnYpOXZfTHFbKenmKtrTbgOI31xJy9I+tkzSJ+vKOiutXyPpdkl9TVWQjzJPu/LS5+ljU4CPpOdHAKsppkK9Gbgurb8OuCk9Hw2cD1wDLDpAucuAC6tuXyfFkOJeYq8Bk9Lrm4EfVN2+DondRIpz5HvS63uBT1XdvgzjdyYwNT0/FXilrqxngXMp5q95FLi46vYdaHHPocUiYnNE/Cs93wmsopj57lKKfzDS4xfSNrsj4hngrf7KlDQLmAz8uYVVz0aJMVRaRqdfbWPpY96QoaTE2M0AVkdEbZatPwKXtbj6lRtA/J6LiNo+tRI4VNIoSVOAsRHxtygyxX21z+TKyaGNJB1P8cviH8BREbEZih2Q4sv+YM0H7k872bAymBhGxLvA14AVFEmhF7i7hdXNyiD3vzXASZKOl9RN8cU2/QM+M6QMIH6XAc9FxNsUCWVT3Xub0rpsOTm0iaQxwIPAtRGxY5DFXQEsGXytOstgYyhpJEVyOBOYCjwPXF9qJTM12NhFxDaK2N1P0WNdD+wps445azZ+kk4BbgKurq3qY7Osf9w5ObRB+lJ6EPhFRPw6rX41dTVJj68dZFmnA90Rsawllc1USTE8AyAi1qZe1wPAx1tU5WyUtf9FxMMRcXZEnEtxX7OXW1XnnDQbP0nTgN8ACyJibVq9iWL645o+p0LOiZNDi6Wx7buBVRFxa91bDwEL0/OFwG8Pssj5DLNeQ4kxfAXolVS76dhcijHkIavM/U/S5PR4JPB14K5ya5ufZuMnaTzwe+D6iPhLbeM09LRT0jmpzAUc/P98Nao+Ij7UF4ozP4JiCGN5Wi6hOPvjSYpfX08CE+o+sx74H7CL4hdHb91764CTqm5Xp8aQ4iycVamsh4GJVbevg2K3BHgxLVdU3bYc4wfcCOyu23Y5MDm9Nwd4AVgLLCJdhJzr4iukzcysgYeVzMysgZODmZk1cHIwM7MGTg5mZtbAycHMzBo4OZi1gKRrJC1oYvvjJb3QyjqZNaO76gqYDTWSuiPizqrrYTYYTg5mfUg3WXuM4iZrZ1LcqnkBcDJwKzAG2Ap8JSI2S/oT8FfgPOAhSUcAuyLiR5LOAO4EDqe4AOqrEbFN0lnAPcCbwDPta53ZB/Owkln/TgQWR8RsYAfwDeAO4PKIqH2x/7Bu+/ER8YmIuGW/cu4DvpvKWQF8P63/KfCtKO5VZJYV9xzM+rcx3r8/zs+BGygmcHkiTeLVBWyu2/7+/QuQNI4iaTydVt0L/KqP9T8DLi6/CWYD4+Rg1r/97y2zE1h5gF/6u5soW32Ub5YNDyuZ9e9YSbVEMB/4O9BTWydpZLpvf78iYjuwTdIFadWXgacj4g1gu6Tz0/ovlV99s4Fzz8Gsf6uAhZJ+QnH3zTuAx4Hb07BQN3AbxXSQB7IQuFPS4RR31b0yrb8SuEfSm6lcs2z4rqxmfUhnK/0uIk6tuCpmlfCwkpmZNXDPwczMGrjnYGZmDZwczMysgZODmZk1cHIwM7MGTg5mZtbAycHMzBr8H6ORyVIQh6gUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-200:].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +1184,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -