{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "toy_notebook_fr" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "March 28, 2019" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#A propos du calcul de pi" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hideCode": false }, "outputs": [], "source": [ "## En demandant à la lib maths" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Mon ordi m'indique que pi vaut approximativement" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "In [1]: from math import *\n", " print(pi)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "##En utilisant la méthode des aiguilles de Buffon" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "In [2]:import numpy as np\n", " np.random.seed(seed=42)\n", " N = 10000\n", " x = np.random.uniform(size=N, low=0, high=1)\n", " theta = np.random.uniform(size=N, low=0, high=pi/2)\n", " 2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "## Avec un argument \"fréquentiel\" de surface" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'apel à la fonction sinus se base sur le fait que si X ~ U(0,1) et Y ~ U(0,1) alors P[X² + Y² < 1] = pi/4 (voir méthode de Monte-Carlo sur Wikipedia). Le code suivant illustre ce fait :" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "ename": "IndentationError", "evalue": "unexpected indent (, line 2)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m import matplotlib.pyplot as plt\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mIndentationError\u001b[0m\u001b[0;31m:\u001b[0m unexpected indent\n" ] } ], "source": [ "In [3]: %matplotlib inline\n", " import matplotlib.pyplot as plt\n", " \n", " np.random.seed(seed=42)\n", " N = 1000\n", " x = np.random.uniform(size=N, low=0, high=1)\n", " y = np.random.uniform(size=N, low=0, high=1)\n", " \n", " accept=(x*x+y*y)<=1\n", " reject=np.logical_not(accept)\n", " fig, ax=plt.subplots(1)\n", " ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", " ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", " ax.set_aspect('equal')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Il est alors aisé d'obtenir une approximation (pas terrible) de pi en comptant combien de fois, en moyenne, X² + Y² est inférieur à 1:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "In [4] : 4*np.mean(accept)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }